
Automated planning with goal utility dependencies
within a satisfiability framework

Richard A. Russell
Richard.Russell@cl.cam.ac.uk

Computer Laboratory, University of Cambridge

1 Introduction

In classical planning the objective is represented as
a conjunction of goals with the intention that each
one is to be achieved. Modern real world planning
agents are faced with problems where there are too
many goals and only a subset of them can feasi-
bly be achieved. This is known as oversubscription
planning or partial satisfaction planning. Until re-
cently, approaches to this problem assume that each
goal is equally important or statically weighted, but
my work attempts to solve problems that have a
general utility function with no such assumptions.
This is relevant to problem domains where the util-
ity of achieving a collection of goals is significantly
greater than the sum of the utilities of achieving
each goal individually.

I have used a satisfiability (SAT) framework to
investigate the problem of goal utility dependen-
cies. Goals are mapped one-to-one with clauses
and the problem becomes finding a variable assign-
ment that makes some clauses true and others false
so that the utility of those clause truth values is
maximised.

Motivation

Goal utility dependencies would be beneficial in
the following scenarios:

• Logistics — delivery of complementary prod-
ucts to retailers at the same time is likely to in-
crease sales.

• Remote scientific agents — choosing which ex-
periments to perform on limited resources to max-
imise scientific return, assuming related experi-
ments are preferred to disjoint ones.

2 Compiling to SAT

SAT solvers have steadily progressed to the stage
that they can now handle millions of clauses and
thousands of variables. Kautz and Selman [2] de-
scribe an approach to planning that compiles the
planning graph to a SAT formula. They then use a
high-performance SAT solver to find a variable as-
signment that satisfies the formula. If one is found
then a valid plan can be extracted from it.The fol-
lowing example demonstrates this using the blocks
world domain.

Example

Starting with an arrangement of stacked and labelled
blocks, the problem is to move blocks around so
that they are placed into a desired arrangement. A
block can be moved onto another only if both blocks
have nothing on top of them. A block can also be
moved to the table regardless of how many blocks
are already on the table and only one block can be
moved at a time.

Figure 1:An example problem in the blocks world planning
domain.

The blocks world problem shown in Figure 1 could
be represented within the SAT framework as fol-
lows:

1. The initial state is described as:

ClearA0∧ClearC0∧COnB0∧AOnT0∧BOnT0

2. The goal state is described as:

AOnB6∧BOnC6∧ClearA6∧COnT6

3. Actions imply their preconditions and effectsA⇒
P,E.

MoveAToC1 ⇒

(ClearA0∧ClearC0∧COnB0∧AOnT0)

∧(AOnC2∧¬AOnT2∧¬ClearC2)

When put into clausal form the above becomes:

{¬MoveAToC1∨ClearA0}∧ ...

...∧{¬MoveAToC1∨¬ClearC2}

3 Algorithm

My algorithm is a variation of Iterated Robust Tabu
Search that is used in the MiniMaxSAT solver [1].
It exploits the utility function to intelligently fo-
cus its efforts on selecting clauses that will increase
utility.

1. Start with a random assignment to variables and
use this to determine which clauses are satisfied.
Calculate the utility of this initial assignment.

2. Use the decision tree representation of the util-
ity function to determine which clause we should
try to flip to give a maximal improvement in the
utility of the assignment.

3. See if we can change the variable assignment to
flip that clause without changing the truth values
of other clauses.

4. If we cannot do this then restore to the previous
assignment. If we can then update the state of
the program so that we remember this solution.

5. Loop until we reach a utility that is within some
bounds of the maximum utility. Occasionally
force some clauses to flip so that the search does
not stagnate.

6. Return the best assignment found so far.

Figure 2:How the utility function is represented.

 1

 10

 100

 1000

 10000 100000 1e+06 1e+07T
im

e
to

 a
ch

ie
ve

 9
0%

 o
f t

he
 m

ax
im

um
 u

til
ity

 (
se

co
nd

s)

Number of clauses

Random instances with 6400 variables

My algorithm

Figure 3:Results of my algorithm solving randomly gener-
ated formulae and utility functions.

4 Pros and cons

SAT compilation is a leading general purpose method
for performing deterministic planning. Therefore
it makes sense to try to extend this framework to
handle goal utility dependencies. By using a gen-
eral purpose SAT solver there is the possibility that
improvements in SAT solver research carry straight
through to improvements in the performance of this
system.

However, we are still subject to the restrictions of
working within a SAT framework. It is hard to rep-
resent actions that have durations, concurrent ac-
tions or any type of uncertainty, all of which are
desirable in many real world planning problems.

5 Future work

1. Compile from planning graphs to this variation
of SAT and compare with existing systems.

2. Extend planning for goal utility dependencies to
more realistic models, e.g., handling actions with
durations.

References

[1] F. Heras, J. Larrosa, and A. Oliveras. Mini-
MaxSat: A New Weighted Max-SAT Solver.
Proc. SAT, 2007.

[2] H. Kautz and B. Selman. Planning as satisfia-
bility. Proc. ECAI, pages 359–363, 1992.

