
Dryad and DryadLINQ
Unlocking the Power of Parallelism and Data Centers

The goal of DryadLINQ is to make
distributed computing on large
computer clusters simple enough for
ordinary programmers. DryadLINQ
combines two important pieces of
Microsoft technology: the Dryad
distributed execution engine and the
.NET Language Integrated Query
(LINQ).

About this brief:

We introduce key concepts in the
Dryad/DryadLINQ solution,as
described in the documentation
provided by Microsoft Research in
the Dryad/DryadLINQ package:

 An Introduction to Dryad and
DryadLINQ
 DryadLINQ API Reference
 DryadLINQ Programming Guide
 DryadLINQ Installation and

Configuration Guide

In this introduction:

Introduction to Dryad/DryadLINQ 2
Dryad Basics

Dryad Jobs
DryadLINQ Basics

DryadLINQ Programming Guide 6
DryadLINQ API Reference 11

Learn more at:

http://research.microsoft.com/en-
us/collaboration/tools/dryad.aspx

The Scientist’s Challenge:
You have all the data for an important scientific problem. You just need to analyze it. With
terabytes of data, you need a powerful data processing application in order to have results
to talk about at the upcoming national meeting. The analysis might be straightforward in
principle, but actually doing it is going to be tough.

For many important scientific investigations, efficiently analyzing large data sets is a major
challenge. For example, astronomers use the Sloan Digital Sky Survey to investigate prob-
lems such as the distribution of “dark matter” around distant galaxies. The current data
set—SDSS Data Release 7—covers more than a quarter of the sky and contains more than
50 TB of data representing 357 million unique objects.

Your best bet is to create a distributed application that runs on a cluster of relatively
inexpensive networked PCs. However, implementing such an application is a non-trivial
task: distributed applications must manage numerous threads, allocate resources across
numerous individual multicore computers, handle hardware failures, and so on. Writing the
code could take months, and you’re a scientist, not a programming expert.

As an alternative to writing all the code yourself…

Microsoft® Dryad is a high-performance, general-purpose distributed computing engine
that handles some of the most difficult aspects of cluster-based distributed computing. It’s
powerful: Microsoft routinely uses Dryad applications to analyze petabytes of data on
clusters of thousands of computers.

But Dryad applications still aren’t that easy to implement. To further simplify things,
Microsoft has developed DryadLINQ, which allows developers to use an extended version of
the .NET LINQ programming model and API to implement Dryad applications. DryadLINQ
code is similar to what you’ll see in a conventional LINQ application, and the application
core is often only a few lines of code. Behind the scenes though, a DryadLINQ provider
automatically converts the LINQ query into a Dryad job and executes the query as a
distributed application on a cluster.

With DryadLINQ and a Dryad cluster…

Even a novice at parallel processing or cluster-based computing can implement a high-
performance distributed application to efficiently analyze terabytes of data. As an example,
consider one time-consuming problem: Q18 of the Sloan Digital Sky Survey, which searches
the data set for possible gravitational lenses:

Q18: Find all objects within 1' of one another that have similar colors, where the color ratios u-g,
g-r, r-I are less than 0.05m. Magnitudes are logarithms, so these differences correspond to ratios.

To address this problem, Microsoft researchers used DryadLINQ to run the query on a 40-
node Dryad cluster consisting of 40 off-the-shelf networked Windows®-based computers.
Dryad took about an hour to install.

 The query itself is a three-way join over two input tables, one with 11 GB of data and the
other with 41.8 GB.

 To perform the query, the team used Microsoft Visual Studio® and a standard Windows-
based workstation to implement a DryadLINQ application that consists of approximately 100
lines of Microsoft Visual C#® code.

 The team manually distributed the data across the cluster and ran the application from the
workstation. The DryadLINQ provider set up the Dryad job and ran the query on the cluster.

The results came back in under two minutes—not even enough time for a quick cup of coffee.

2

Introduction to Dryad and DryadLINQ
Distributed computing is becoming an increasingly
important part of application development. In particular,
cluster-based distributed computing is the only practical
way to analyze the large-scale data sets that are the key to
addressing a variety of important problems. For example,
large-scale internet services routinely analyze petabytes of
search log data by using distributed applications running on
clusters of thousands of computers.

A cluster-based distributed application must be implemented
so that different parts of the application can execute concur-
rently on different computers. In general, dividing an appli-
cation into concurrently executing parts is a difficult problem.
There are two basic approaches:

 Task-parallel computing assigns different tasks to different
processors.

 Data-parallel computing distributes the data for a task
across the available computers and operates on the data
concurrently.

Many important types of applications can use data-parallel
computation, including data mining, image and stream
processing, and scientific computations. Implementing
these tasks as distributed applications on a cluster allows
the application to efficiently process large volumes of data.

Data-parallel computing on a cluster of computers poses a
number of challenges. For example:

 Cluster-based computations must manage thousands of
threads and allocate resources across thousands of
individual computers.

 Members of the cluster are commodity computers, some
of which can be expected to fail during the course of the
computation.

 The programming models most developers are familiar
with—and that have the best tools and documentation—
are designed for applications that run sequentially on a
single computer, not as distributed applications on a
cluster.

The solution: Dryad and DryadLINQ.

Dryad: A High-Performance Distributed-
Computing Engine
Dryad is a high-performance general-purpose distributed
computing engine that simplifies the task of implementing
distributed applications on a cluster. The original motivation
for Dryad was to efficiently execute data mining operations
similar to those performed by technologies such as
MapReduce or Hadoop.

However, Dryad is a general purpose execution engine. It
can be used to implement a wide range of other application

types, including time series analysis, image processing, and
a variety of scientific computations.

The Dryad engine handles some of the most difficult aspects
of large scale distributed applications. In general, Dryad:

 Efficiently distributes applications across clusters of as
many as thousands of commodity computers running the
Windows operating system.

 Automatically schedules and distributes cluster resources.
 Monitors the cluster and automatically recovers from

computer or network failures.

Dryad provides excellent performance and scalability, and
can handle very large-scale data-parallel computations.
Dryad has been deployed by Microsoft since 2006, and
Dryad applications are used daily to analyze petabytes of
data on clusters of thousands of commodity computers.
However, Dryad can be used effectively even on clusters of
only a few computers.

DryadLINQ: An Efficient Way to
Implement Dryad Applications
Implementing a native Dryad application is typically still a
complex and demanding task, so application developers
won’t use Dryad directly. Instead, Microsoft has simplified
the process of implementing Dryad applications by creating
DryadLINQ.

DryadLINQ is an abstraction layer over Dryad that provides a
straightforward and efficient way to implement Dryad
applications. Developers can use Microsoft Visual Studio to
implement their DryadLINQ applications in any language
that supports LINQ.

The DryadLINQ API and programming model is an extended
version of LINQ, which is a new SQL-like query technology
for Microsoft .NET-connected applications. LINQ defines a
set of general-purpose operators that allow applications to
declaratively express query operations such as traversal,
filter, and projection in any .NET programming language.

Much of the code in a typical DryadLINQ application is
similar to that used by LINQ applications. The DryadLINQ
provider then translates LINQ queries into a Dryad job,
executes the job on a cluster, and returns the results to the
application.

With DryadLINQ, a developer does not need to know much
about Dryad—or even about parallel or distributed
computing—to implement a Dryad application that can
efficiently analyze terabytes of data. However, developers
who are familiar with these technologies can take
advantage of that knowledge to optimize performance.

3

Dryad Basics
Figure 1 shows the essential elements of the Dryad stack.

DryadLINQ

Dryad

Distributed File System

Cluster Services

Windows

Server
. . .

Application Layer

API and Provider

Execution Engine

File System

Cluster Management

Server Cluster

Dryad Applications

Windows

Server

Windows

Server

Windows

Server

Applications

Figure 1. Dryad Architecture

Application Layer
DryadLINQ applications use the DryadLINQ API for the
Dryad-based parts of the application. Applications do not
have direct access to Dryad or the distributed file system.
They access those components indirectly, through the
DryadLINQ API.

API and Provider
The DryadLINQ provider converts LINQ queries into a
Dryad job, and uses Dryad to execute the job on the
cluster.

Execution Engine
The Dryad execution engine manages the execution of the
Dryad job on the server cluster.

Distributed File System
Distributed file systems—such as those supported by
Microsoft codename “Cosmos” or Windows Azure cloud
services operating system—manage files across the
cluster. Dryad does not require a distributed file system,
but can use it if it is present.

Cluster Services
Cluster services manage the remote execution of
processes on the cluster’s computers. It also handles the
cluster’s name services, metadata, and so on.

Note: Dryad cluster services are specific to Dryad, and are
not related to Microsoft Windows Cluster Services.

Server Cluster
Dryad applications typically run on large clusters of
Windows-based computers. However, Dryad can be used
with clusters of a few computers, or even on a single
computer. The latter option provides limited
performance, but it is quite useful for debugging and
learning purposes.

Dryad Jobs
Dryad applications are hosted by a client workstation that is
connected to the cluster by a network link. Much of the
application code—such as the user interface—executes on
the workstation. The Dryad-based parts of the application
are packaged as a Dryad job, which executes on the cluster.

A Dryad job is a mechanism for efficiently executing a
distributed application on a cluster. Consider a very simple
data-parallel programming operation: multiply each
element of an array by a constant value. Figure 2 shows a
diagram of how this operation would be implemented as
Dryad job.

The basic execution plan as shown on the left side of
Figure 2 represents how the job would execute on a single
computer. To execute this plan as a Dryad job:

1. The input data is partitioned into manageable pieces, and
each partition is copied to one of the computers in the
cluster.

2. A separate instance of the array processing code is
dispatched to each computer in the cluster.

3. Each instance of the array processing code simultaneously
processes the data partition on its computer.

4. The processed partitions returned to the client application
as a data set.

The application in the preceding example consists of a single
query. A Dryad application typically consists of multiple
related queries. The execution plan for a Dryad job is
represented by a directed acyclic graph (DAG), called a
Dryad graph.

SS SS S
...

Application

...Data

Partitions

Processing

Code

Output

Data

Server

Cluster

S

Basic

Execution

Plan

Distributed

Job

Figure 2. Simple Dryad Job

4

Figure 3 shows an example of a more complex Dryad graph.
The basic execution plan—on the left—shows the structure
of the operation as it would run on a single computer. The
graph on the right shows how Dryad might implement the
operation as a distributed job running on a cluster of at
least six computers.

Dryad applications are implemented in stages. Each stage
corresponds to one element of the basic execution plan,
and handles a query or a group of related queries. A Dryad
graph has several elements

Input Data Partitions
A Dryad job typically starts with a partitioned data set—
one partition per computer—that provides the input for
the first stage.

Vertices
Each stage consists of one or more identical vertices,
typically one vertex per computer. A vertex is an instance
of the data processing code for the stage, and processes
the data for its computer. For DryadLINQ, each vertex
includes a .NET assembly that contains LINQ processing
code.

The number of vertices can vary from stage to stage.
However, for stages that process data partitions, the
number of vertices matches the number of partitions.

Channels
The output of a stage’s vertices is passed over channels to
the next stage, and becomes input for that stage’s
vertices. Dryad supports a variety of channels and
distribution schemes to allow applications to efficiently
pass data from one stage to the next.

Details such as the number of vertices in each stage, or the
way that data is distributed from one stage to the next are
chosen to optimize job performance.

The DryadLINQ provider automatically generates a Dryad
graph for the application’s queries, and serialization code
for channel communication. In addition, DryadLINQ can
sometimes improve job performance as the job is executing
by using runtime information to dynamically modify the
later stages of the graph.

DryadLINQ Basics
The DryadLINQ API supports a set of operators, which can
be broken into three categories:

 Unmodified LINQ operators, such as Select and Where.
 Modified LINQ operators, such as FirstAsQuery or

LastAsQuery.

To produce more efficient distributed code, DryadLINQ
supports modified versions of those LINQ operators that
return scalar values, such as First or Last.

 DryadLINQ-specific operators, such as Apply or Fork.

These operators represent operations that cannot be
efficiently synthesized by composing native LINQ
operators. They can substantially improve application
performance in a distributed environment.

DryadLINQ also supports several attributes, which
developers can use to annotate their methods to improve
application performance.

How DryadLINQ Evaluates Queries

As a LINQ application progresses, LINQ simply constructs a
LINQ expression to represent the operations and data. LINQ
continues adding operations to the expression until the
application takes an action that requires the result of the
query.

Application

Input Data

Partitions

XX XXX X

RR RR

M M

MM MM

Stage 1

Stage 2

Stage 3

Stage 4

Output

Data

Vertices

Channels

X

R

M

M

Basic

Execution

Plan

Dryad

Job

Figure 3. A Typical Dryad Graph

5

For example, the application calls foreach to enumerate the
collection that represents the query’s final result. LINQ then
evaluates the results of the query by using the collection’s
IEnumerable<T> interface to perform the specified
operations on each element of the data set.

DryadLINQ data is represented by the IQueryable<T>
interface, which inherits from IEnumerable<T> and supports
all of its methods. From an application perspective,
collections that expose IQueryable<T> are used in much the
same way as those that expose IEnumerable<T>.
Applications construct queries over the data by applying
LINQ operators to the collections, use foreach to enumerate
the collections, and so on.

DryadLINQ applications are actually based on
DryadTable<T> objects. DryadTable<T> exposes
IQueryable<T>, and applications construct queries over
DryadTable<T> objects much like any other IQueryable<T>
collection. The distinction is that DryadTable<T> is a
specialized type of IQueryable<T> collection that represents
persistent data sets for DryadLINQ.

IQueryable<T> evaluation also takes place only after the
application takes an action that requires the result of the
query. However, the evaluation process for the two types of
collection is quite different.

 IEnumerable<T> represents iterators.

Typically, IEnumerable<T> represents a collection on the
local computer. During evaluation, the object is compiled
by the local .NET JIT compiler and the computation is
performed locally.

 IQueryable<T> represents queries.

During evaluation, DryadLINQ queries are passed to the
DryadLINQ provider, which handles the computation on
the cluster.

Figure 4 shows a typical DryadLINQ evaluation process.

 Figure 4. How DryadLINQ Works

The following procedure explains the details in Figure 6. The
numbers correspond to the parenthetical numbers in Figure 6.

1. An application creates one or more DryadTable<T>
objects to represent persistent data and defines a query
by applying one or more LINQ operators to the collection.

DryadLINQ builds a LINQ expression to represent the
query, but defers evaluation.

2. The application triggers the object evaluation process by
calling foreach.

The foreach operator initiates the evaluation when it calls
the object’s GetEnumerator method. The actual
enumeration doesn’t take place until evaluation is
complete.

3. LINQ passes the LINQ expression to the DryadLINQ provider.

4. The DryadLINQ provider:

 Transforms the LINQ expression into sub-expressions
and uses them to generate a query plan. The job
manager uses the query plan to create a Dryad graph
for the job.

 Generates LINQ-to-Object data processing code for the
vertices. The code for each stage is compiled to a .NET
assembly, and dispatched to the cluster’s computers at
the appropriate stage of the operation.

 Generates serialization code to handle channel
communication between stages.

5. The DryadLINQ provider creates a job manager, which
constructs a Dryad graph for the job.

Because LINQ applications operate on datasets rather
than individual items, the DryadLINQ provider has
considerable flexibility in how it translates the LINQ code
into an efficient Dryad graph.

6. The job manager executes the job on the cluster:

 The job manager—in conjunction with the Dryad
runtime—schedules and spawns vertices as resources
are available.

 The job manager monitors the cluster for failure and
initiates recovery procedures, as required.

 The job manager applies DryadLINQ-specific policies, as
appropriate, to rewrite the later stages of the graph to
optimize performance.

7. When execution completes, the job manager passes the
results—and control—to the DryadLINQ provider.

8. The DryadLINQ provider transforms the output into
DryadTable<T> objects, and passes the objects—and
control—to the DryadLINQ application.

9. The foreach call can now enumerate the DryadTable<T>
objects to obtain the data as .NET objects.

The application can also use the DryadTable<T> objects
for subsequent DryadLINQ queries.

Any subsequent queries are handled in the same way.

6

DryadLINQ Programming Guide
Programming models are valuable only to the extent that
you understand how to use them. The DryadLINQ package
includes a programmer’s guide, which provides details for
implementing DryadLINQ applications, including a set
tutorials accompanied by complete code samples.

Listing 1 is an excerpt from “DryadLINQ Programming
Guide,” showing how to use DryadLINQ to implement a
simple string-matching application and a MapReduce
application.

A Simple DryadLINQ MatchString Application

This section implements MatchString, a DryadLINQ
application that takes a single input file and runs on a single-
computer Dryad configuration. Listing 1 shows the code for
this version of MatchString.

IQueryable<T> and DryadTable<T>

The DryadLINQ Match method returns an IQueryable<T>
collection instead of IEnumerable<T>.

The MatchString input data is represented by a
DryadTable<T> object.

The Data Context

The DryadDataContext object represents an instance of the
DryadLINQ provider. Applications initialize the object with
the URI of the folder that contains the persistent input data,
which is shared as \\MyComputer\DryadData\input.

DryadDataContext supports a number of useful methods.
The MatchString example creates a DryadTable<LineRecord>
object to represent the input text by passing the file name to
DryadDataContext.GetTable. The LineRecord type is a
DryadLINQ structure that represents a line of text.

Query Operators

Match selects those lines that contain the search string by
applying the standard LINQ Select and Where operators to
the input data collection. Match then returns an
IQueryable<T> collection to the caller that represents the
selected lines.

In practice, DryadLINQ applications use regular LINQ syntax
and lambda expressions for most standard operations, and
implement custom delegates in the same way as standard
LINQ delegates.

The compiler recognizes the difference and produces the
appropriate code. For example, the Where operator
specifies which lines are to be selected, and LINQ-to-objects
and DryadLINQ versions of the query would both use the
same lambda expression:
.Where(s => (s.IndexOf(toSearch)) >= 0)

However, the expression resolves quite differently at
compile time for the two applications.

LINQ-to-Objects uses an IEnumerable<T> version of Where:
public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, bool> filter
)

The filter argument corresponds to the lambda expression,
and compiles to a Func<T, bool> delegate that handles the
operation on the local system.

Listing 1. A DryadLINQ String-Matching Application
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using LinqToDryad;

class Program
{
 public static IQueryable<string> Match(string directory,
 string fileName,
 string toSearch)
 {
 DryadDataContext ddc = new DryadDataContext("file://" + directory);
 DryadTable<LineRecord> table = ddc.GetTable<LineRecord>(fileName);

 return table.Select(s => s.line)
 .Where(s => s.IndexOf(toSearch) >= 0);
 }

 static void Main(string[] args)
 {
 IQueryable<string> results = Match(@"\\MyComputer\DryadData\input", "TestFile.txt", "here");
 foreach (string s in results)
 Console.WriteLine(s.ToString());
 }
}

7

DryadLINQ uses an IQueryable<T> version of Where:
public static IQueryable<T> Where<T>(
 this IQueryable<T> source,
 Expression<Func<T, bool>> filter
)

The filter argument is the same lambda expression, but it
compiles to an Expression<Func<T, bool>> object, which
represents the lambda expression as an expression tree,
and is passed to the DryadLINQ provider for evaluation.

The DryadLINQ Evaluation Process

Main calls foreach to enumerate and print the selected
lines. The DryadLINQ provider then executes the shaded
code in the Match method as a Dryad job. After evaluation
is complete, Main regains control and the foreach loop
prints the results.

DryadLinqConfig.xml

The configuration file, DryadLinqConfig.xml, defines how a
DryadLINQ application executes, and includes most of the
information that distinguishes between single-computer
and cluster-based applications. The file must be with the
executable file in the project’s output folder.

The example in Listing 2 is a slightly edited version of the
DryadLinqConfig.xml file that was used to run MatchString.
It is based on a computer named MyComputerName, which
is configured for single-computer Dryad operation. To use
this example on your system, simply modify the computer
name, domain name, and file paths, as appropriate.

The settings are as follows:

DryadLinqRoot
The root folder of the DryadLINQ installation for this
example is c:\DryadLinq_release.

ClusterName
This example uses a single-computer configuration, so the
cluster name is just the computer name:
MyComputerName.

DryadOutputDir
This example directs Dryad to write its temporary output
files to c:\dryaddata\output on the client workstation.

APEnvironmentPath and APConfigPath
This example was run on the workstation that installed
Dryad, so Autopilot.ini and Cosmos.ini are in
c:\dryad_release\clusters\MyComputerName\client and
c:\dryad_release\clusters\MyComputerName\client\bin,
respectively.

LocalArch
The example ran on an x86 client workstation, so this
element is set to “i386”.

LocalFlavor
This example references a debug build of the Dryad job
manager.

PartitionUncDir
The folder path for output files is c:\dryaddata\output, so
this property is set to dryaddata\output.

Cluster
Because this example uses a single-computer configura-
tion, the Cluster attribute values are similar to those used
for the local settings:
 name: The client workstation’s computer name
 host: “localhost”
 domain: The client workstation’s domain name
 arch: The client workstation’s architecture
 flavor: Debug

LinqToDryad.dll

All DryadLINQ projects must reference LinqToDryad.dll,
which contains the DryadLINQ provider implementation and
exposes the DryadLINQ class library. The DLL is located in
the DryadLINQ installation’s lib folder—typically
c:\dryadlinq_release\lib.

The DryadLINQ class library is in the LinqToDryad
namespace, so most DryadLINQ applications simplify their
code by including a using LinqToDryad directive.

Listing 2. A DryadLINQ Configuration File
<DryadLinqConfig>
 <DryadLinqRoot>c:\DryadLinq_release</DryadLinqRoot>
 <ClusterName>MyComputerName</ClusterName>
 <DryadOutputDir> file://c:\dryaddata\output </DryadOutputDir>
 <APEnvironmentPath>c:\dryad_release\clusters\MyComputerName\client</APEnvironmentPath>
 <APConfigPath>c:\dryad_release\clusters\MyComputerName\client\bin</APConfigPath>
 <LocalArch> i386 </LocalArch>
 <LocalFlavor> debug </LocalFlavor>
 <PartitionUncDir>dryaddata\output</PartitionUncDir>

 <Cluster name="MyComputerName"
 host=" localhost "
 domain="MyDomainName"
 arch=" i386 "
 flavor="debug " />
</DryadLinqConfig>

8

Run the DryadLINQ MatchString Application

To compile and run the DryadLINQ MatchString application

1. Create a new Visual C#® Console Application project.

2. Replace the code in Program.cs with the example code.

3. Add a reference to System.Data.Linq.

4. Add a reference LinqToDryad.dll.

5. Create a DryadLinqConfig.xml file for the project, and
place it in the project folder.

6. Add DryadLinqConfig.xml to the project and set the file’s
Copy to Output Directory property to “Copy always”.

7. Put a copy of TestFile.txt from the LINQ version of
MatchString in the folder that is associated with the data
context, c:\DryadData\input.

8. Build the application and press Ctrl F5 to run it.

If you are running the application on a cluster, make sure
that the cluster is running before pressing Ctrl F5.

The example in Listing 3 is an edited version of the output.

The first few lines of output show the execution plan. Although
the query includes two operators, Select and Where, there is
only one stage, whose vertex is named Super__0. Vertex
names are usually based on the associated operation.
However, the DryadLINQ optimizer often determines that it is
more efficient to run multiple operations in the same vertex—
Select and Where in this case. Vertices that run multiple
operations are named Super_XX.

As the program runs, the console window displays a series
of job manager messages, which track the progress of the
job and often contain useful debugging information. For
simplicity, the example shows only the last few messages.

The application’s output—the highlighted text—appears
after the job manager’s messages have ceased. As discussed
earlier, the foreach loop does not enumerate the result
collection and print the results until the job manager has
completed the evaluation and shut itself down.

How to Implement a Simple MapReduce
Application

MapReduce is an effective programming model for
processing large amounts of data in parallel. A standard
example used to illustrate the basic principles is counting
the instances of each word in a document. A MapReduce
operation has two basic stages:

1. The Map stage maps each element of input data to a key,
and groups the data by key.

The word counting example starts with a collection of
words, and uses the word itself as the key. By grouping
words with the same key, each group contains all
instances of the associated word.

2. The Reduce stage “reduces” the group associated with
each key to a single value.

The word counting example reduces each group of words
to the number of words in the group.

The operation returns a collection of key-value pairs; the keys
used by Map and the associated values produced by Reduce.

DryadLINQ provides a simple and straightforward way to
implement MapReduce operations. This section is a walk-
through of Histogram, which implements the canonical
MapReduce example; counting word frequency in a text file.

Histogram has two primary components:
 A Pair structure, which serves as a data container.
 A BuildHistogram method, which counts word frequency

and returns the top five words.

Listing 3. Output from the DryadLINQ Match Application
Query 0 Output: file://C:\\dryaddata\\output\43ae715e-78f3-4f00-9267-3dd2e3bda725\Output.
DryadLinq0.dll was built successfully.
Input:
 [Table: file://c:\dryaddata\input\TestFile.txt]
Super__0:
 Select(s => s.line)
 Where(s => (s.IndexOf(_) >= _))

...

Cross data statistics: Total 170 Cross-machine 0 Cross-pod 170
Cross data statistics: Total 170 Cross-machine 0 Cross-pod 170
TestFile.txt[0](1),(),(nowhere),0s
Completed uninitialise cosmos
Super__0(1),(TestFile.txt[0].0),(MyComputer),1.9375s
0f75bfb3-00a3-44c2-939f-febf495cc6b60,(Super__0.0),(nowhere),0s
Job running time: 10.36 seconds
Total running time in vertices successful/failed: 1.94s/0.00s
Average job parallelism: 0.19
XmlExecHost - Finished running the app
Application completed successfully.
Some text here and there
over there and back to now

9

The Pair Structure

Pair has two properties:
 Word is a string that holds a word or key.
 Count is an int that holds the word count.

The structure also overrides ToString to simplify printing the
results. The following example shows the Pair
implementation.
public struct Pair
{
 private string word;
 private int count;
 public Pair(string w, int c)
 {
 word = w;
 count = c;
 }
 public int Count { get { return count; } }
 public string Word { get { return word; } }
 public override string ToString()
 {
 return word + ":" + count.ToString();
 }
}

The Histogram Application

Histogram is a console application that consists of the
BuildHistogram method and a brief Main method that
invokes BuildHistogram and prints the results. For simplicity,
the input data for this example is in a single file on the client
workstation. However, for large data sets, the input data
would be partitioned and distributed across the cluster. The
source code for Histogram is shown in Listing 4.

The BuildHistogram method:

1. Creates a DryadTable<LineRecord> object, inputTable, to
represent the lines of input text.

For partitioned data, use GetPartitionedTable<T> instead
of GetTable<T> and pass the method a metadata file.

2. Applies the SelectMany operator to inputTable to
transform the collection of lines into collection of words.

 The String.Split method breaks the line into an array of
words.

 SelectMany concatenates the collections created by
Split into an IQueryable<string> collection named
words that represents all the words in the file.

3. Performs the Map part of the operation by applying
GroupBy to the words object.

The GroupBy operation groups elements with the same
key, which is defined by the selector delegate. This creates
a higher order collection, whose elements are groups. In
this case, the delegate is an identity function, so the key is
the word itself and the operation creates a groups
collection that consists of groups of identical words.

4. Performs the Reduce part of the operation by applying
Select to groups

This operation reduces the groups of words from Step 3 to
an IQueryable<Pair> collection named counts that
represents the unique words in the file and how many
instances there are of each word. Each key value in groups
represents a unique word, so Select creates one Pair
object for each unique word. IGrouping.Count returns the
number of items in the group, so each Pair object’s Count
member is set to the number of instances of the word.

5. Applies OrderByDescending to counts.

This operation sorts the input collection in descending
order of frequency and creates an ordered collection
named ordered.

6. Applies Take to ordered to create an IQueryable<Pair>
collection named top, which contains the 100 most
common words in the input file, and their frequency.

Listing 4. A DryadLINQ MapReduce Application
public class Program
{
 public static IQueryable<Pair> BuildHistogram(
 string directory,
 string fileName,
 int k)
 {
 DryadDataContext ddc = new DryadDataContext("file://" + directory);
 DryadTable<LineRecord> inputTable = ddc.GetTable<LineRecord>(fileName);

 IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' '));
 IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x);
 IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count()));
 IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count);
 IQueryable<Pair> top = ordered.Take(k);

 return top;
 }
 static void Main(string[] args)
 {
 IQueryable<Pair> results = BuildHistogram(@"c:\DryadData\input",
 "TestFile.txt",
 100);
 foreach (Pair words in results)
 Console.WriteLine(words.ToString());
 }
}

10

Main then uses the Pair object’s ToString implementation
to print the top one hundred words, and their frequency.

The core of the MapReduce operation is thus implemented
with two lines of code—the highlighted lines in the
example—which correspond to steps 3 and 4 in the
preceding list.

How DryadLINQ Executes Histogram on a
Cluster

Although DryadLINQ constructs the Dryad graph for
Histogram, it is instructive to examine the graph and see
how a moderately complex sequence of queries executes on

the cluster. In particular, an understanding of how the job
executes on the cluster is essential for debugging the
application.

The example in Listing 5 shows the execution plan, which
has been edited slightly for readability.

Note: This plan is optimized for a particular cluster and a
particular configuration. If the application is run in a
different environment, DryadLINQ might produce a
different graph.

Figure 5 shows the graph that is associated with this plan—
assuming four input partitions for convenience.

Listing 5. Output from the Histogram Application
Query 0 Output: file://\\Computer01\DryadData\output\5513ccf5-9e1d-4ef9-a093-5b28c1f76c6c.pt
DryadLinq0.dll was build successfully.
Input:
 [Table: file://\\Computer01\DryadData\Input\TestFile.txt
Super__1:
 SelectMany(l => l.line.Split(new [] {_}))
 DryadSort(w => w)
 DryadOrderedGroupBy(w => w,(k__0, g) => new KeyValuePair<String,Int32>(k__0,
 g.count()))
 DryadHashPartition(e => e.Key, e => e.Key)
Super__7:
 DryadMergeSort()
 DryadOrderedGroupBy(e => e.Key,e => e.Value, (k__0, g__1) =>
 newKeyValuePair<String,Int32>(k__0, g__1.Sum()))
 Select(g => g.Count())
 DryadSort(c => c)
 Take(100)
Super_20:
 DryadMergeSort()
 Take(100)

Input Data

SelectMany

Sort

GroupBy + Select

HashDistribute

MergeSort

GroupBy

Select

Sort

Take

Input 1

Super_1

Input 2 Input 3 Input 4

Super_20

Output

MergeSort

Take

Output Data

Super_1 Super_1 Super_1

Super_7 Super_7 Super_7 Super_7

OperationsStage

(1)

(2)

(4)

Figure 5. Dryad Graph for Histogram

11

The graph has three stages:

Stage 1
Each Super_1 vertex processes its input partition into an
IQueryable<string> collection that represents the individual
words.

The DryadLINQ optimizer divides the GroupBy query into
two operations. The GroupBy operation in this stage runs
separately on each input partition, and reduces each group
of identical words in the partition to key-value pair; the
word and the count. If the input partition contains 10
instances of “the”, the data that is passed to Stage 2 con-
sists of just {“the”, 10}. This approach can substantially
reduce the amount of data that must be passed to Stage 2.

The final operation in the stage hash-partitions the data to
be sent to Stage 2. This operation calculates a hash value
for each key by using the .NET GetHashCode method.
HashPartition then uses the hash values to distribute the
key-value pairs across the vertices of the next stage. All
keys with the same hash value—which represent identical
words, in this case—go to the same vertex.

Stage 2
After merging the data that it receives from the vertices of
Stage 1, each Super_7 vertex performs the final part of the
GroupBy operation, which groups identical words across
the entire data set. Hash partitioning the data from Stage 1
improves performance by guaranteeing that all instances of
a word are sent to the same vertex, so the GroupBy
operation doesn’t have to spend time transferring data
between vertices.

To limit the amount of data that must be passed to Stage 3,
the vertex then orders the collection and performs a Take
operation, which sends the partition’s top 100 unique
words and their frequency to Stage 3.

Because Stage 3 selects the top 100 words from the entire
data set, there is no point in sending it more than 100
words from any individual partition.

Stage3
The final stage consists of a single vertex, Super_20, which
merges and orders the data from Stage 2 and performs a
Take operation that yields the top 100 words in the data set
and their frequency. The graph uses a single output
partition for this stage because Take works only on a single
computer. The output from Stage 2 must therefore be
merged into a single ordered collection before Take can
pick the top 100 words for the entire data set.

In this case, the decision to hash-partition the output from
Stage 1 was made by DryadLINQ. However, developers can
explicitly direct DryadLINQ to partition data by applying the
HashPartition or RangePartition operators.

DryadLINQ API Reference: An Example
The DryadLINQ package includes an API reference that covers
all the classes used by applications. The following is an

excerpt from the DryadDataContext class reference, and
shows two of the more useful methods:
GetPartitionedTable<T> and GetTable<T>, which are used to
create DryadTable<T> objects from persistent data sources.

DryadDataContext Class

This class represents DryadLINQ providers.

public class DryadDataContext

Members

The class contains the following members. For overloaded
methods, the link is to the first overload. Property members
are indicated by shading.

DeletePartitionedTable GetPartitionedTable PathCombine

DeleteTable GetTable Source

ExtractDir IsCosmosStream CosmosUriPrefix

ExtractFile IsNTFSFile FileUriPrefix

...

GetPartitionedTable<T> Method (string)

Creates a partitioned DryadTable<T> object from a specified
data source.

public DryadTable<T> GetPartitionedTable<T>(
 string tableName
)

Types

T
The type of data in the collection.

Parameters

tableName
The table name, for stored tables. To create a new table
from a set of files, set this parameter to the name of the
metadata file.

Return Value

Returns a DryadTable<T> object that represents the data.

Remarks

The metadata file contains the names and location of the
partition files, and how they are to be distributed to the
cluster’s computers. The file contains three sections:

1. The first line is set to the name of the folder that contains
the files.

2. The second line is set to the number of partitions.

3. The remainder of the file consists of one line per partition,
and describes how the partitions are to be distributed
among the computers on the cluster.

12

Each line consists of three or more elements—separated by
commas—in the following order:

 The partition number.
 The partition size, in bytes.
 The name of the computer that the partition is to be

placed on.

For fault tolerance, it is sometimes useful to place the same
partition on multiple computers. In that case, the final
element on the line is a comma-separated list of the
computer names that the partition file is to be placed on.

For example, assume that the Match example runs on a
cluster with four worker computers, m1, m2, m3, and m4.
The input text is broken into four partition files of 100,000
bytes each, as follows:

 MatchData.00000000 goes on m1.
 MatchData.00000001 goes on m2 and m3.
 MatchData.00000002 goes on m3.
 MatchData.00000003 goes on m4

All the partition files for this example are in the
\DryadLINQData folder. The metadata file is named
Match_Meta.txt, and contains the following text:

\DryadLINQData
4
0,1000000,m1
1,1000000,m2,m3
2,1000000,m3
3,1000000,m4

...

GetTable<T> (string) Method

Creates a DryadTable<T> object from a specified data source.

public DryadTable<T> GetTable<T>(
 string fileName
)

Types

T
The type of data in the collection.

Parameters

fileName
The table name, for stored tables. To create a new table,
set this parameter to the name of the data file.

Return Value

Returns a DryadTable<T> object that contains the data.

...

DISCLAIMER: This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing
market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This set of White Papers is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Microsoft, Visual C#, Visual, Studio, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any
real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© 2009 Microsoft Corporation. All rights reserved.

