
1

Effective and Efficient: Large-scale Dynamic City
Express

Siyuan Zhang, Lu Qin, Yu Zheng, Senior Member, IEEE, and Hong Cheng

Abstract—Due to the large number of requirements for city express services in recent years, the current city express system is found
to be unsatisfactory for both the service providers and customers. In this paper, we are the first to systematically study the large-scale
dynamic city express problem. We aim to increase both the effectiveness and the efficiency of the scheduling algorithm. The
challenges of the problem stem from the highly dynamic environment, the NP-completeness with respect to the number of requests,
and real-time demands for the scheduling result. We introduce a basic algorithm to assign a request to a courier on a first-come,
first-served basis. To improve the effectiveness of the basic algorithm, we adopt a batch assignment strategy that computes the
pickup-delivery routes for a group of requests received in a short period rather than dealing with each request individually. To improve
the efficiency of the algorithm, we further design a two-level priority queue structure to reduce redundant shortest distance calculation
and repeated candidate generation. We develop a simulation system and conduct extensive performance studies on the real road
network of Beijing city. The experimental results demonstrate the high effectiveness and efficiency of our algorithms. Remarkably, our
system can achieve much better service quality and largely reduce the operation cost of a city express company simultaneously.

Index Terms—City express service, logistics, batch assignment.

F

1 INTRODUCTION

With the development of logistics industry and the rise
of E-commerce, city express services have become increas-
ingly popular in recent years [1]. We demonstrate how
current city express systems work in Fig. 1: A city is divided
into several regions (e.g., R1 and R2), each of which covers
some streets and neighborhoods. A transit station is built
in a region to temporarily store the parcels received in the
region (e.g., ts1 in R1). The received parcels in a transit
station are further organized into groups according to their
destinations. Each group of parcels will be sent to a corre-
sponding transit station by trucks regularly (e.g., from ts1 to
ts2). In each region, there are a team of couriers delivering
parcels to and receiving parcels from specific locations in
the region. When a truck carrying parcels arrives at a transit
station, each courier will send a portion of these parcels
to their final destinations by a small delivery van, or a
bike, or a motorcycle, which has a limited capacity. Before
departing from the transit station, they will pre-compute the
delivery routes (e.g., the blue lines in Fig. 1) usually based
on their own knowledge. During the delivery, each courier
could receive pickup requests (e.g., r5, r6 and r7) from a
central dispatch system or directly from end users. Each
pickup request is associated with a location and a deadline
of pickup time. A courier may change the originally planned
route to fetch the new parcels, or decline the pickup request
due to the constraints in their schedule or their vehicle
capacity. All the couriers are required to return to their own
transit station by some specific time (so as to fit the schedule
of trucks that travel between transit stations regularly), or
when fully loaded.

The service quality and operational efficiency of current
express services have never been found satisfactory due to
the following three reasons. First, current central dispatch
systems process each pickup request individually without
a global optimization. For example, a new pickup request

Courier

Original route of

Delivery Pickup request (deadline)

Transit station Region

(10:00 a.m.)

(10:15 a.m.)

(10:00 a.m.)

New route of

(10:05 a.m.)

3c 1ts
2c

2ts

1c 7r

0r

1c 1ts

0r 5r

1c

1c

0r

0r7r

1ts

1ts

1c

1c

1R 2R

1R Truck

5r

6r

1r

2r

3r

4r

Fig. 1: Dynamic City Express

(e.g., r5) is usually assigned to the nearest courier (e.g., c1)
to the pickup location. In the meantime, each courier makes
a decision on whether to pick up a new parcel solely based
on his own situation without knowing the status of other
couriers in the same region (e.g., c3 can pick up a parcel at
r5 instead of c1). Second, the dispatch systems do not know
the current status of a courier either, e.g., the remaining
capacity, the number of parcels that have not been delivered,
and the following pickup-delivery route, before assigning a
new pickup request. Note that these statuses would change
dynamically due to the new pickup requests. Third, requests
near the boundary of a region (e.g., r7) are ignored by
couriers (e.g., c1) in other regions because couriers only pick
up parcels in their own regions.

Motivated by the huge number of requirements and
drawbacks in current city express systems, in this paper, we
study the dynamic city express problem and aim to design
a central dispatch system with an effective scheduling algo-
rithm for couriers to deliver and pick up parcels in real time.

2

Each courier in the system carries a handheld device record-
ing his location, uploading his status when he finishes a
delivery or pickup task, and receiving new pickup requests.
The central dispatch system receives information of couriers
from their handheld devices and manages their schedules
consisting of pickup and delivery time and routes. After
collecting pickup requests from customers in a short period,
the system processes the requests in a batch according to the
minimum incurred distance. Finally, the system sends the
updated schedules to all the couriers and the confirmation
or decline messages to the customers.

Challenges. In the literature, related problems such as vehi-
cle routing with time window [2], [3], [4], [5], [6], and taxi
ridesharing [7], [8], [9] have been studied. However, the city
express problem is challenging due to the following reasons.

(1) Real-time demand and dynamic scheduling for a large number
of requests and couriers. The real-time property of the city
express problem requires the couriers to adjust their route
dynamically when new pickup requests are issued. Mean-
while, the schedules of the couriers change dynamically as
couriers finish a delivery or pickup task. However, most
existing solutions for vehicle routing problem with time
window are based on the static assumption [2], [3] where all
requests are given in advance. Moreover, existing solutions
for dynamic vehicle routing with time window [4], [5], [6]
can only handle a small number of requests per hour (less
than 100). In fact, thousands of pickup requests can be
issued within an hour in real time. A city express system
should work out the schedule of all couriers in a short time
before the gathered information of couriers and requests is
outdated.

(2) Exponential search space to find a feasible schedule. As
shown in Section 2.2, the city express problem is an NP-
complete problem even if all requests are given in advance.
The optimal algorithm is usually with time complexity
exponential to the capacity of a courier, i.e., the maximum
number of parcels that can be carried by a courier. On
the other hand, the spatio-temporal constraints of the city
express problem are looser than those of the taxi ridesharing
problem [7], [8], [9], which studies the routing problem of
taxis under specific time windows. More candidate couriers
for a pickup request and more feasible scheduling possibili-
ties of a courier exist in the city express problem. It reduces
the pruning power of existing spatio-temporal index [7], [8]
and search space index [9].

Contributions. In this paper, we tackle the above challenges
and make the following contributions.

(1) Systematic study of large-scale dynamic city express problem.
We formally define the dynamic city express problem which
involves the scheduling of multiple couriers to serve pickup
requests and delivery tasks in real time. To the best of
our knowledge, this is the first work that systematically
studies the large-scale dynamic city express problem on
road networks.

(2) High effectiveness using incurred distance and batch as-
signment. We design a basic algorithm that handles pickup
requests on a first-come, first-served basis, and assigns a
new request to the courier with the minimum incurred dis-

tance (the increased cost for a courier to serve the request).
Such a strategy has been proven to be effective for the
Travelling Salesman Problem (TSP) [10], [11], [12], which is
a relaxation of the city express problem. We further observe
that the short response time from issuing the request to the
confirmation of the request allows the system to gather mul-
tiple requests and assign the requests in a batch mode other
than individually. Therefore, we propose a batch assignment
algorithm to improve the effectiveness of the basic solution.

(3) High efficiency using space reduction strategies. We fur-
ther improve the computational efficiency of our solution
based on a two-level priority queue structure. The proposed
algorithm, SIDF∗, can reduce redundant shortest distance
computation by utilizing a global priority queue, and avoid
repeated candidate generation by maintaining a local prior-
ity queue for each courier.

(4) Extensive performance studies. We conduct extensive per-
formance studies with a city express simulation system on
the real Beijing city road network. The experimental results
show that our proposed algorithms can achieve both high
effectiveness and efficiency.

Outline. Section 2 provides the preliminaries, formally de-
fines the dynamic city express problem, and proves the
complexity of the problem. Section 3 introduces our basic
solution based on the incurred distance with a simple lazy
path computation strategy to reduce the computational cost.
Section 4 presents a new solution to improve the effective-
ness of the algorithm using batch assignment. Section 5
designs a two-level priority queue to improve the efficiency.
Section 6 presents extensive experimental results on a real
city road network. Section 7 reviews related work, and
Section 8 concludes the paper.

2 OVERVIEW

2.1 Preliminaries
We model a road network as a directed weighted graph
G(V,E), where V is a set of nodes (road intersections), and
E is a set of edges (roads). An edge (u, v) ∈ E connects
two nodes u and v in V . We also define I to be the set of
intermediate nodes (with degree 2) which lie in edges. Each
edge (u, v) ∈ E is associated with a positive weight w(u, v)
denoting the time to travel along the edge. Note that travel
distance can be easily converted to travel time when the
average travel speed is given. Thus, for the simplicity of
presentation, we use travel time to denote travel cost in the
rest of the paper.

For any two nodes v0 and vk in V ∪ I , a path from v0 to
vk in G is a sequence p = (v0, v1, v2, · · · , vk−1, vk) such that
vi ∈ V for any 1 ≤ i ≤ k − 1, and (vi, vi+1) is an edge in
G for any 0 ≤ i ≤ k − 1. Note that (v0, v1) (or (vk−1, vk))
can be a partial edge when v0 ∈ I (or vk ∈ I). Given a
path p = (v0, v1, · · · , vk), the cost of the path, denoted as
cost(p), is calculated as cost(p) =

∑k−1
i=0 w(vi, vi+1). Given

two nodes u and v in G, the shortest path from u to v is
the path pmin with the minimum cost among all paths from
u to v in G. We denote the corresponding cost of pmin as
cost(u, v).

Definition 2.1: (Request) Given a road network G(V,E), a
request is denoted as r = (l, d), where l(r) is the location of

3

the request that lies in the road network G, and d(r) is the
deadline to pick up the parcel in the request. 2

We suppose that each request has the same service time
ts, which is the time spent on serving a customer (e.g., filling
the forms and wrapping up the parcels) for a courier. How-
ever, our proposed algorithms can easily handle requests
with different service time. After a request is issued, a staff
will contact the customer within a short period tr to confirm
or decline the request. If the request is accepted, it will be
assigned to a courier.

Let C = {c1, c2, · · · , cn} be the set of couriers. As
described in introduction, each courier also has parcels for
delivery on board. We use the same form for pickup request
to represent a delivery task. The delivery tasks in each trip
are assigned to the courier before the trip, and the pickup
requests are assigned to the courier in real time during
the trip. All the delivery tasks are required to be finished
before their deadlines, whereas a new pickup request may
or may not be satisfied. If it is not satisfied by any courier,
the request is declined or asked to modify its deadline for
consideration.

Definition 2.2: (Schedule) For a courier ci ∈ C, a schedule
for ci, denoted as Si = (ri,1, ri,2, · · · , ri,mi), is a sequence
of unserved tasks, such that if following the sequence to
pick up/deliver the parcels, the courier can (1) arrive at the
location l(ri,j) before the deadline d(ri,j) for every 1 ≤ j ≤
mi, and (2) return to the transit station after serving ri,mi

within tmax time after setting off. 2

Note that Si only keeps the unserved tasks. Once a task
is served by courier ci, it is removed from the schedule of
ci. Suppose l(ci) is the current location of courier ci and
ts(ci) is the location of the transit station where ci sets off.
Given the schedule Si for courier ci, the cost of Si, denoted
as cost(Si), is calculated as:

cost(Si) = cost(l(ci), l(ri,1)) +
∑

1≤j<mi

cost(l(ri,j), l(ri,j+1))

+ ts ×mi + cost(l(ri,mi), ts(ci)),

where cost(l(ci), l(ri,1)) is the time spent on traveling from
the current location of courier ci to the location of the first
task in the schedule Si;

∑
1≤j<mi

cost(l(ri,j), l(ri,j+1)) is
time spent on traveling to the locations of all the tasks in Si

following the order in the schedule; ts ×mi is the total ser-
vice time for all the mi tasks in Si; and cost(l(ri,mi), ts(ci))
is the time to travel from the location of the last task to
the transit station. For ease of representation, we use l(ri,0)
to denote l(ci) and use l(ri,mi+1) to denote ts(ci). Then
cost(Si) can be simplified as follows:

cost(Si) =
∑

0≤j≤mi

cost(l(ri,j), l(ri,j+1)) + ts ×mi. (1)

In other words, we treat the current location of ci and the
transit station of ci as the locations of two special tasks
ri,0 and ri,mi+1 without any service time. The deadline of
the special task ri,mi+1 can be calculated as d(ri,mi+1) =
tset(ci) + tmax, where tset(ci) is the set-off time for courier
ci from the transit station ts(ci).

A list of notations used in this paper is summarized in
Table 1.

Notation Definition
w(u, v) The weight of edge (u, v)
cost(u, v) The shortest traveling time from u to v
r = (l, d) A request for city express
l(r) The location of the request r
d(r) The deadline to serve the request r
C = {c1, ..., cn} The set of couriers
Si = {ri,1, ..., ri,mi

} The schedule for courier ci
cost(Si) The cost of the schedule Si

l(ci) or l(ri,0) The current location of courier ci
ts(ci) or l(ri,mi+1) The location of the transit station of ci
tset(ci) The set-off time for ci from ts(ci)
ts Service time for a request
tr The maximum time to confirm/decline the request
tmax The maximum time spent for a trip
tcur The current time
aj(Si) The time for ci to arrive l(ri,j) in Si

dj(Si) The latest time for ci to arrive l(ri,j) in Si

cand(r) The candidate couriers to serve r
cand(ci) The candidate requests that ci can serve
cost(u, v) A lower bound of cost(u, v)
∆distj(r, Si) The incurred distance of r to segment j of Si

∆dist(r, Si) The incurred distance of r to Si

∆distj(r, Si) A lower bound of ∆distj(r, Si)

TABLE 1: List of Notations

2.2 The Dynamic City Express Problem
In this paper, we study the dynamic city express problem
(DCEP), which is defined as follows: Given a set of n couriers
C = {c1, c2, · · · , cn}, a set of delivery tasks at different transit
stations, and a stream of pickup requests, DCEP aims to update
the schedule for each courier dynamically as new pickup requests
stream in, such that (1) all delivery tasks are satisfied, and (2) the
pickup requests are satisfied as many as possible.

The following lemma shows the complexity of the prob-
lem when all requests are given in advance. In the dynamic
case, the problem becomes even more difficult to handle.

Lemma 2.1: Given the set of couriers C and all requests in ad-
vance, the problem to decide whether a certain ratio P of requests
can be satisfied by the couriers is an NP-complete problem. 2

Proof Sketch: Given the set of couriers C and all requests,
we show that the problem to decide whether a certain
percentage P of requests can be satisfied by the couriers is a
generalization of the decision version of the Traveling Sales-
man Problem (TSP) which is proven to be NP-complete [10].
Given a set of m nodes and the travel cost between each
pair of the m nodes, the problem is to decide whether it is
possible to find a route shorter than L that visits every node
once and returns to the original node. Given an instance of
TSP, we can construct a corresponding instance of DCEP as
follows.
(1) We construct a graph G of m nodes each of which

corresponds to a node in TSP. For each pair of nodes
in G, we add an edge in G, and the weight of the edge is
the corresponding travel cost between the pair of nodes
in TSP.

(2) We add m pickup requests on the m nodes respectively,
and each request sets its deadline to be infinity.

(3) We set the number of couriers to be 1, P to be 100%, ts
to be 0, and tmax to be L. After the construction, solving
the instance of TSP is exactly equivalent to solving
the corresponding constructed instance of DCEP. This
completes the proof. 2

2.3 Solution Overview
We first introduce a basic solution in Section 3. After receiv-
ing a request r1, the system identifies candidate couriers

4

that can possibly handle it using the courier index. Among
the candidate couriers, the basic algorithm finds the one
with the minimum incurred distance, and then updates the
courier’s schedule.

In contrast to the basic solution that handles requests
on a first-come, first-served basis, our proposed solution in
Section 4 collects a set of requests {r1, r2, ..., rm} that are
issued within a short time, and processes them in a batch.
The batch strategy allows more flexibility in assignment,
thus can find more cost-effective pickup-delivery routes and
potentially serve more requests. To improve the computa-
tional efficiency, we use a two-level priority queue structure
described in Section 5 to reduce redundant shortest distance
calculations and avoid repeated candidate generation.

In real practice, an express company may decline a
request either because it is impossible to serve it or the
service cost is too high [2]. Existing solutions [5], [7], [8],
[9] consider accepting or declining a request once after it
arrives, which share a similar idea of our basic solution. But
in this work we will show that a batch processing mode can
satisfy more requests than the basic solution.

3 THE BASIC SOLUTION

In this section we first introduce a basic solution for DCEP.
Note that our dynamic city express problem shares similar
spatio-temporal constraints with the dynamic taxi rideshar-
ing problem [7], [8], where a taxi ridesharing query asks if
there exists a taxi in a city that can take the customer from
his/her current location to a specific destination under time
window and capacity constraints. We modify the existing
method for taxi ridesharing service [8] to solve our problem
and introduce a basic solution in this section. Our basic
solution adopts the same framework of taxi ridesharing,
which is processed as:
(1) A list of candidate taxis that can satisfy pickup and

delivery time window constraints is first returned by a
grid spatio-temporal index.

(2) The pickup and delivery locations are inserted into the
schedule of a candidate taxi with the minimum incurred
distance.

Based on the same framework, in this section, we first
introduce the spatio-temporal index we use for candidate
generation. Then we describe the basic solution to process
a new request r in three steps: (1) identifying candidate
couriers that can possibly serve r; (2) finding the courier
that can serve r with the minimum incurred distance; and
(3) updating the schedule of that courier. These components
also serve as basic building blocks in our improved algo-
rithms introduced in Sections 4 and 5. These components
and the related notations are first introduced in this section
for the ease of understanding.

3.1 Indexing

In order to compute the candidate couriers to serve a pickup
request and avoid unnecessary shortest path computations,
we build a Network Voronoi Diagram (NVD) to index all
the couriers in the road network G. Specifically, we select
the set of transit stations as the generators and build a NVD
on the road network using the algorithm introduced in [13].

NVD partitions G into a set of Voronoi regions each of which
is represented by a generator tsi. Note that an edge e ∈ E
may belong to two different Voronoi regions. In this case,
we add a new node in V that splits e into two edges, to
ensure that each edge in E belongs to only one Voronoi
region. For each location l in G, we use ts(l) to denote the
generator for the region that l lies in. For each node v ∈
V , we precompute cost(v, ts(v)) and cost(ts(v), v). For any
two generators tsi and tsj , we precompute cost(tsi, tsj). We
also precompute the radius of each generator tsi, denoted as
radius(tsi), which is the maximum cost from tsi to any node
in the Voronoi region of tsi. With the NVD index, given any
location l in G, suppose l lies on the edge (u, v), the distance
from l to ts(l) can be calculated as:

cost(l, ts(l)) =min{w(l, u) + cost(u, ts(u)),

w(l, v) + cost(v, ts(v))}.
(2)

For any two locations li and lj in G, the lower bound of
cost(li, lj) can be calculated as:

cost(li, lj) =max{0, cost(ts(li), ts(lj))
− cost(ts(li), li)− cost(lj , ts(lj))}.

(3)

Obviously, with the NVD index, for any two locations li and
lj in G, cost(li, lj) can be calculated in constant time. Note
that we can update the NVD index periodically to handle
the dynamic update of travel cost in road network.

210 tststs

















=

0

0

0

2120

1210

0201

2

1

0

dd

dd

dd

ts

ts

ts

M

0ts

1ts

2ts

a. Network Voronoi Diagram b. Generator distance matrix

1v
),(10 vtsCost

),(22 tsvCost
2v

Fig. 2: The NVD Index

Example 3.1: Fig. 2 (a) shows the NVD index for a road
network G with three transit stations ts0, ts1 and ts2 as
generators. Accordingly, G is partitioned into three regions
by the bold lines. Roads in different Voronoi regions are
depicted in different line styles. The distance matrix for
generators is shown in Fig. 2 (b). The lower bound of
cost(v1, v2) can be calculated as

cost(v1, v2) = max{0, d02 − cost(ts0, v1)− cost(v2, ts2)}.
2

3.2 Candidate Courier Generation
Given a new request r, as the first step, we compute the set
of candidate couriers for r, which is the set of couriers that
can possibly arrive at the location l(r) before the deadline
d(r) from their current locations. We define the candidate
set cand(r) for a request r as follows.

cand(r) = {ci|cost(l(ri,0), l(r)) ≤ d(r)− tcur}. (4)

Here, cost(l(ri,0), l(r)) is calculated by Eq. 3 using the
NVD index. In order to efficiently identify cand(r), we first
compute the set of candidate Voronoi regions candts(r) as:

candts(r) = {tsj |cost(l(tsj), l(r))−radius(tsj) ≤ d(r)−tcur}.
After computing candts(r), for each tsj ∈ candts(r), we
enumerate all couriers ci that lie in the Voronoi region of tsj
and add ci into cand(r) if cost(l(ri,0), l(r)) ≤ d(r)− tcur.

5

3.3 Incurred Distance Calculation

For each courier ci ∈ cand(r), we insert request r into
the schedule Si of ci and calculate the incurred distance
for the insertion. Due to the spatio-temporal constraints of
our problem, we only calculate the incurred distance of
valid insertion. In the rest of this paper, we denote any
two consecutive requests ri,j and ri,j+1 as segment j of Si

(0 ≤ j ≤ mi). We call a segment j in Si a valid segment
w.r.t. request r iff after inserting r between ri,j and ri,j+1,
the deadlines of all requests in the new Si can be satisfied.
Specifically, two conditions need to be satisfied:
(1) Condition 1: After inserting r into segment j of Si,

courier ci can serve r before its deadline d(r), which
is formalized as:

aj(Si) + ts + cost(l(ri,j), l(r)) ≤ d(r) (5)

where aj(Si) is the courier’s arrival time at l(ri,j), and
ts is the service time for ri,j .

(2) Condition 2: After inserting r into segment j of Si, other
requests ri,k with j ≤ k ≤ mi + 1 on Si can still be
served on time, which can be formalized as:

aj(Si) + 2× ts + cost(l(ri,j), l(r))

+ cost(l(r), l(ri,j+1)) ≤ dj+1(Si)
(6)

where we define dj+1(Si) as the latest time for ci to
arrive at l(ri,j) in Si, such that each request ri,k with j ≤
k ≤ mi +1 can be served before its deadline d(ri,k). For
each 0 ≤ j ≤ mi+1, we can compute dj(Si) recursively
as follows:

dj(Si) =


d(ri,mi+1) j = mi + 1

min{d(ri,j), dj+1(Si)

−aj+1(Si) + aj(Si)} otherwise
(7)

Note that there is another condition that the number of
parcels carried by a courier cannot exceed the capacity of
the courier. Since such a condition is trivial to handle, we
omit it for the ease of discussion in the rest of the paper.

After we find the valid segment(s) in Si of courier ci, we
calculate the shortest incurred distance ∆dist(r, Si) when
inserting r into the valid segment(s) of Si. ∆dist(r, Si) is
defined as follows:

∆dist(r, Si) = min
0≤j≤mi; segment j of Si is valid w.r.t. r

∆distj(r, Si),

(8)
where ∆distj(r, Si) is the incurred distance if we insert
request r between ri,j and ri,j+1 in Si, and is computed
as:

∆distj(r, Si) =cost(l(ri,j), l(r)) + cost(l(r), l(ri,j+1))

− cost(l(ri,j), l(ri,j+1)).
(9)

For each candidate courier in cand(r), we calculate the
shortest incurred distance when inserting r into the valid
segment(s) of his schedule. Among all candidates, we
find the courier ci with the minimum incurred distance
∆dist(r, Si) and update the schedule Si by inserting r into
the corresponding valid segment j. The values aj(Si) and
dj(Si) for 0 ≤ j ≤ mi should be updated due to the
insertion of r in Si.

3.4 Lazy Path Computation

According to Eq. 9, calculating the incurred distance
∆distj(r, Si) involves calculating cost(l(ri,j), l(r)) and
cost(l(r), l(ri,j+1)) using the costly Dijkstra’s algorithm (or
its variant A*) [14], with time complexity O(m+n · log(n)),
on a road network G with n nodes and m edges. In order to
minimize the number of exact shortest path computations,
we compute a lower bound of ∆distj(r, Si) for any segment
j as:

∆distj(r, Si) =max{0, cost(l(ri,j), l(r)) + cost(l(r), l(ri,j+1))

− cost(l(ri,j), l(ri,j+1))},

where cost(l, l′) for any two locations l and l′ can be
calculated by Eq. 3 using the NVD index. The rationale
is that if the ∆dist of a segment is large, we can prune
it without computing its ∆dist. We call this strategy lazy
shortest path computation. Accordingly, we design an algo-
rithm BestR to find the best courier for a new request r
using lazy shortest path computation, which is shown in
Algorithm 1. We use a priority queue H to maintain the
candidate segments. Each entry (ci, ri,j ,∆dist, flag) in H
denotes segment j in Si with incurred distance ∆dist. flag
is either true or false, denoting whether ∆dist is the exact
∆distj(r, Si) or the lower bound ∆distj(r, Si) respectively.
H maintains the segment with the minimum ∆dist, and
is initialized to be ∅ (line 1). For each candidate ci in
cand(r), we insert into H every segment j that satisfies
conditions 1 (Eq. 5) and 2 (Eq. 6) by replacing cost with
cost (line 2-6). The incurred distance of each segment j
in H is the lower bound ∆distj(r, Si). At this stage, no
exact distance has been computed. Next, we iteratively pop
out the entry (ci, ri,j ,∆dist, flag) in H with the minimum
∆dist. If ∆dist is the lower bound ∆distj(r, Si) (flag is false),
we compute the exact incurred distance ∆distj(r, Si) using
cost(l(ri,j), l(r)) and cost(l(r), l(ri,j+1)) (line 11), check the
conditions 1 (Eq. 5) and 2 (Eq. 6) using the exact cost
(line 12), and push the entry with the exact incurred distance
into H if both conditions are satisfied (line 13). Otherwise,
the segment (i, j) is the one with the minimum ∆distj(r, Si)
and is returned by the algorithm (line 9-10). If no segment
is returned when H becomes ∅ (line 7), we return (−1,−1)
indicating that request r cannot be satisfied.

Algorithm 1 BestR(request r, candidate set cand(r))

1: H ← ∅;
2: for all ci ∈ cand(r) do
3: compute cost(l(r), l(ri,j)) for all ri,j ∈ Si;
4: for all segment j in Si do
5: if ValidLB(Si, j, r) then
6: H.Push((ci, ri,j ,∆distj(r, Si), false));
7: whileH ≠ ∅ do
8: (ci, ri,j ,∆dist, flag)← H.Pop();
9: if flag = true then

10: return (ci, j);
11: compute cost(l(ri,j), l(r)) and cost(l(r), l(ri,j+1));
12: if Valid(Si, j, r) then
13: H.Push((ci, ri,j ,∆distj(r, Si), true));
14: return (−1,−1);

15: Procedure ValidLB(schedule Si, segment j, request r)
16: return aj(Si) + ts + cost(l(ri,j), l(r)) ≤ d(r) and aj(Si) + 2ts +

cost(l(ri,j), l(r)) + cost(l(r), l(ri,j+1)) ≤ dj+1(Si);

17: Procedure Valid(schedule Si, segment j, request r)
18: return aj(Si) + ts + cost(l(ri,j), l(r)) ≤ d(r) and aj(Si) + 2ts +

cost(l(ri,j), l(r)) + cost(l(r), l(ri,j+1)) ≤ dj+1(Si);

6

Current schedule S

(10:40 a.m.)

(10:30 a.m.)

(10:30 a.m.)

(10:30 a.m.)

(10:30 a.m.)

(10:50 a.m.)

New schedule returned by

New schedule returned by

10 20(travel time in minute) 10

10

4

2 3

3r 2r
6r

4r

1r

5r

0r

0r 1r 2r

10

0r 1r 4r 2r

0r 5r
1r 6r 2r

It is 10:00 a.m. Each request

has 2 minutes for service.

Fig. 3: An Example with One Courier and Four New Requests

3.5 Basic Algorithm
The overall algorithm is outlined in Algorithm 2. Suppose
for each courier ci, aj(Si) and dj(Si) for 0 ≤ j ≤ mi + 1
have been computed respectively (line 1-2). When a new
request r is received, the algorithm loads the updated
locations of all couriers (line 4), and invokes Update(C, r)
to find the courier ci ∈ C to serve r and update the
corresponding schedule Si (line 5). In Update(C, r) (line 6-
11), as step 1, the algorithm computes cand(r) (line 7); as
step 2, it finds the courier ci and segment j in Si with the
minimum incurred distance by invoking procedure BestR
(line 8) using lazy path computation; and as step 3, it either
declines r if no valid segment is found (line 9-10) or up-
dates the corresponding schedule using the Insert procedure
(line 11). In the Insert(Si, j, r) procedure (line 12-17), after
inserting r between ri,j and ri,j+1 (line 13), ak(Si) for all
j + 1 ≤ k ≤ mi + 1 need to be updated in increasing order
of k (line 14-15), and dk(Si) for all 1 ≤ k ≤ j + 1 need to be
updated in decreasing order of k (line 16-17).

Algorithm 2 Basic(couriers C and their current schedules)

1: for all courier ci ∈ C do
2: compute aj(Si) and dj(Si) for 0 ≤ j ≤ mi + 1;
3: while there is a new request r issued in real time do
4: load updated locations of all couriers;
5: Update(C, r);

6: Procedure Update(courier set C, request r)
7: compute cand(r);
8: (ci, j)← BestR(r, cand(r));
9: if i = −1 then

10: decline request r; return;
11: Insert(Si, j, r);

12: Procedure Insert(schedule Si, segment j, request r)
13: insert r between ri,j and ri,j+1 of Si;
14: for k = j + 1 to mi + 1 do
15: ak(Si)← ak−1(Si) + ts + cost(l(ri,k−1), l(ri,k));
16: for k = j + 1 down to 1 do
17: dk(Si)← min{d(ri,k), dk+1(Si)− ak+1(Si) + ak(Si)};

4 EFFECTIVENESS: BATCH ASSIGNMENT

The Basic solution (Algorithm 2) adopts a first-come, first-
served strategy in which early requests have high priority
to be assigned. However, using request arrival time as the
first priority may result in inferior scheduling result. We use
an example depicted in Fig. 3 for explanation.

Example 4.1: A courier c has two tasks r1 and r2 in his
schedule S. Four new requests r3, r4, r5, r6 arrive in se-
quence. The basic solution first considers r3, but cannot
satisfy it. Then it processes r4 and updates the courier’s
schedule to be r0 → r1 → r4 → r2. The next step is to check
r5 and r6. But neither of them can be served by courier c
due to the large incurred distance of r4 to schedule S.

In contrast, if we process the four requests according to
their incurred distance in a batch model, we can first satisfy

r6 because it has the minimum incurred distance among
the four requests. Thus we update the schedule to be r0 →
r1 → r6 → r2. We perform another search and insert r5 into
the new schedule. After that there is no satisfiable request
on the map. It is obvious that with incurred distance as the
first priority, we can satisfy more requests with less incurred
distance comparing to the basic solution. 2

This example motivates us to consider processing a batch
of requests using incurred distance as the first priority.
Batch assignment is feasible in practice because the response
period tr allows the algorithm to collect multiple requests
and assign them in any order. Moreover, as shown in [12],
using the minimum incurred distance as node insertion
order for TSP is a 2-approximation algorithm. By adopting
this strategy, we propose a new algorithm SIDF, which
stands for shortest incurred distance first.

SIDF is outlined in Algorithm 3. After computing aj(Si)
and dj(Si) for the current schedule Si of each courier ci ∈ C
(line 1-2), the algorithm loads the updated information of
all couriers, collects and processes the set of requests R
issued in every tr minutes (line 3-4). Two steps, candidate
computation (line 6) and schedule updating (line 7), are
used to process the requests in R. In candidate computation,
the set of candidate requests for each courier and the set of
candidate couriers for each request are computed. In sched-
ule updating, the requests are processed in the increasing
order of their minimum incurred distances to couriers.
Candidate Computation. The procedure ComputeCand to
compute the candidates is shown in line 8-13 of Algorithm 3.
We first compute the candidates cand(r) for each request
r ∈ R (line 10-11) using the same method in Algorithm 2.
Then we compute the candidate set cand(ci), which is a set
of requests that courier ci can reach before their deadlines,
for each ci ∈ C. cand(ci) can be considered as an inverse set
of cand(r), thus, for each ci ∈ cand(r), we simply add r into
cand(ci) (line 12-13).
Schedule Updating. In the schedule updating procedure
UpdateR (line 14-29 of Algorithm 3), we use a global priority
queue Hg to maintain the priorities of all requests. Each
entry in Hg has the form:

(r, ci, ri,j , ri,j+1,∆distj(r, Si)),

which means that the minimum incurred distance for the
request r is ∆distj(r, Si) when we insert r into segment
ri,j → ri,j+1 of ci’s schedule Si. We compute the initial
priorities of requests in R (line 16-19), and assign the
requests according to their priorities in Hg (line 20-28).
The priority of a request r is the minimum ∆dist(r, Si)
among the schedules of all candidate couriers, which can be
computed using the procedure BestR(r, cand(r)) (line 17).

7

After computing the priorities of all requests and adding
them into Hg (line 18-19), we pop out the request r with
the highest priority (minimum ∆dist) from Hg iteratively,
assign r to courier ci by inserting it into the corresponding
segment j of Si (line 22), and remove r from the unpro-
cessed request set R (line 23). After a request r is assigned
to segment j of Si, the priority of each request r′ ∈ cand(ci)
needs to be updated in Hg (line 24-28). This is processed
by removing r′ from Hg (line 25), calculating the updated
priority (line 26), and inserting it again into Hg if it is still
valid (line 27-28). Here, after inserting r into segment j of
schedule Si, for each request r′ ∈ cand(ci), the priority of r′

needs to be recalculated due to the following three factors:
(1) Segment deletion. The original segment j is removed from

Si. Therefore, the priority of a request r′ ∈ cand(ci) may
decrease due to the removal.

(2) Segment insertion. Two new segments j and j + 1 are
created in Si. Therefore, the priority of a request r′ ∈
cand(ci) may increase due to the insertion of two new
segments.

(3) Segment updating. The values of ak(Si) (for j + 1 ≤ k ≤
mi +1) and dk(Si) (for 1 ≤ k ≤ j+1) are updated after
the insertion of r. Therefore, the priority of a request
r′ ∈ cand(ci) needs to be updated accordingly because
some segments become invalid w.r.t. r′.

The algorithm terminates when all possible requests in Hg

are assigned. The remaining unassigned requests in R are
declined (line 29).

Algorithm 3 SIDF(couriers C and their current schedules)

1: for all courier ci ∈ C do
2: compute aj(Si) and dj(Si) for 0 ≤ i ≤ mi + 1;
3: for every tr minutes do
4: load updated locations of all couriers;
5: R← the set of all requests issued in the last tr minutes;
6: ComputeCand(C,R);
7: UpdateR(C,R);

8: Procedure ComputeCand(courier set C, request set R)
9: cand(ci)← ∅ for all ci ∈ C;

10: for all r ∈ R do
11: compute cand(r);
12: for all ci ∈ cand(r) do
13: cand(ci)← cand(ci) ∪ {r};

14: Procedure UpdateR(courier set C, request set R)
15: Hg ← ∅;
16: for all r ∈ R do
17: (ci, j)← BestR(r, cand(r));
18: if i ̸= −1 then
19: Hg.Push((r, ci, ri,j , ri,j+1,∆distj(r, Si)));
20: whileHg ̸= ∅ do
21: (r, ci, ri,j , ri,j+1,∆dist)← Hg.Pop();
22: Insert(Si, j, r);
23: R← R \ {r};
24: for all r′ ∈ cand(ci) and r′ ∈ Hg do
25: Hg.Remove(r′);
26: (ci′ , j

′)← BestR(r′, cand(r′));
27: if i′ ̸= −1 then
28: Hg.Push((r′, ci′ , ri′,j′ , ri′,j′+1,∆distj′ (r

′, Si′)));
29: decline all requests in R;

5 EFFICIENCY: TWO-LEVEL PRIORITY QUEUE
STRUCTURE

SIDF improves the effectiveness of request assignment with
a batch mode, but it is computationally expensive due to
redundant shortest distance computations. Specifically, the
redundant computations come from two aspects. First, in the
UpdateR procedure, when a request r is assigned to courier

ci (line 22), its schedule Si is updated. Then it invokes
BestR(r′, cand(r′)) to compute a new assignment for every
request r′ ∈ cand(ci) from scratch, which involves the
costly shortest distance computation for every r′ ∈ cand(ci)
w.r.t. the schedule of every candidate courier c′ ∈ cand(r′).
Second, SIDF only makes a new assignment after all the exact
incurred distances of all requests are computed, which may
not be necessary as some requests with very large distances
to some couriers can be easily pruned.

In this section, we aim to improve the efficiency of our
solution with a new algorithm SIDF∗ from two aspects.
First, we observe that once a request r is assigned to the
schedule Si of a courier ci, only those requests in cand(ci)
may be affected in terms of their incurred distance to Si.
The schedules of other couriers are not affected by this
assignment. Thus we can confine the update to courier ci.
Second, we design a mechanism to delay and reduce the
exact shortest distance computation as much as possible,
while at the same time, still maintain the same effectiveness
of SIDF. With these considerations, we design a two-level
priority queue structure, which is illustrated in Fig. 4. At the
bottom level, for each courier ci, we maintain a local priority
queue Hi that keeps all the candidate requests cand(ci); and
at the top level, we maintain a global priority queue Hg that
keeps the topmost entries popped from each local priority
queue. With the two-level priority queue structure, after a
new request r is assigned to a courier ci, we only need to
update the local priority queue Hi and the global priority
queue incrementally. For other couriers that also contain r
in their local priority queues, they can discard r in a lazy
manner. In this way, the total number of shortest distance
computation can be largely reduced.

In the following, we first introduce the components
of the two-level priority queue before describing the new
scheduling algorithm SIDF∗.

5.1 Local Priority Queue for Courier

For each courier ci, we maintain a local priority queue Hi

that keeps all the candidate requests cand(ci). Each entry in
the local priority queue Hi has the form:

(r, ci, ri,j , ri,j+1,∆dist, flag)

It represents a possible assignment that assigns a request
r into segment ri,j → ri,j+1 of ci’s schedule. Different
from the entry in Hg of SIDF, a flag is added in each entry
indicating the incurred distance ∆dist is an exact value (if
flag = true) or a lower bound (if flag = false).

The operations on the local priority queue include the
following.
1. Initialization. In the initialization step, for each request
r ∈ cand(ci), and each valid segment j in Si, we insert an
entry (r, ci, ri,j , ri,j+1,∆distj(r, Si), false) to Hi. Here we
only calculate the lower bound of the incurred distance, but
not the exact incurred distance.
2. Pop. We pop the topmost entry in Hi and push it into the
global priority queue Hg . The rationale is, the request in the
top entry of a local priority queue is more likely to have a
short incurred distance. Thus it will be first pushed into the
global priority queue for further verification.
3. Push. There are two cases that we will push an entry into
the local priority queue Hi.

8

: global priority queue, each

entry is from top entry of

: local priority queue, contains all entries related to courier ci

(r1, c2, r2,0, r2,1, ∆dist, true)

(r1, c1, r1,1, r1.2, ∆dist, false)

(r2, c3, r3,5, r3.6, ∆dist, false)

(r5, c1, r1,1, r1,2, ∆dist, true)

(r3, c1, r1,4, r1,5, ∆dist, false)

(r6, ci, ri,2, ri,3, ∆dist, false)

(r5, ci, ri,4, ri,5, ∆dist, false)

(r7, c2, r2,2, r2,3, ∆dist, false)

(r2, c2, r2,4, r2,5, ∆dist, false)

(r6, cn, rn,1, rn,2, ∆dist, false)

(r2, cn, rn,4, rn,5, ∆dist, false)

Fig. 4: Global Priority Queue and Local Priority Queues

(1) For a request r and a valid segment j in Si, once we
calculate the exact incurred distance ∆distj(r, Si), we
push the entry (r, ci, ri,j , ri,j+1,∆distj(r, Si), true) back
into Hi for further comparison with other candidate
requests in the queue.

(2) When Si is updated with a new request inserted, there
may be some requests that can possibly be served by the
courier ci due to this insertion. Accordingly, we push the
entries for those new candidates with the lower bound
of their incurred distance into the queue Hi.

5.2 Global Priority Queue
On top of the local priority queues for couriers, we maintain
a global priority queue Hg that keeps the topmost entries
popped from each local priority queue. The entries in Hg

have the same representation as those in local priority
queues. The operations on the global priority queue include
the following.
1. Initialization. In the initialization step, the topmost entry
from each local priority queue is popped out and pushed
into Hg .
2. Pop. The top entry (r, ci, ri,j , ri,j+1,∆dist, flag) is popped
out from Hg . We will first check whether the request r
is not assigned yet and whether the concerned segment
ri,j → ri,j+1 is still valid (i.e., not altered by any earlier
assignment). If the entry is still valid, we process it in one of
the following two cases.
(1) If flag = true, we will assign the request into the

concerned segment j and update courier ci’s schedule
Si.

(2) If flag = false, we will calculate the exact incurred
distance ∆distj(r, Si) and push this entry back to the
local priority queue Hi for further comparison.

3. Push. After the top entry is popped out from Hg , a new
entry related to the same courier is popped out from the
corresponding local priority queue and pushed into Hg .

5.3 Improved Algorithm SIDF∗
The new scheduling algorithm SIDF∗ is shown in Algorith-
m 4. We describe how it works in 5 steps.

Step 1. We initialize the global priority queue Hg and the
local priority queue Hi for each courier ci ∈ C (line 1-6).
The initialization of Hi is done in procedure InitH (line 20-
27), which computes the candidate entries for ci and pushes
each candidate along with the lower bound of its incurred
distance into the priority queue. To initialize Hg , we simply
pop out the top element from each Hi (line 5) and push it
into Hg (line 6). We add a flag in each entry of Hg to mark
whether the entry keeps the exact ∆dist.

Algorithm 4 SIDF∗ (courier set C, request set R)

1: Hg ← ∅;
2: for all ci ∈ C do
3: Hi ← InitH(ci, R);
4: ifHi ̸= ∅ then
5: (r, ci, ri,j , ri,j+1,∆distj(r, Si), flag)← Hi.Pop();
6: Hg.Push((r, ci, ri,j , ri,j+1,∆distj(r, Si), flag));
7: whileHg ̸= ∅ do
8: (r, ci, ri,j , ri,j+1,∆dist, flag)← Hg.Pop();
9: if r ∈ R and ri,j → ri,j+1 is still a segment in Si then

10: if flag = false and ValidLB(Si, j, r) then
11: compute cost(l(ri,j), l(r)) and cost(l(r), l(ri,j+1));
12: if Valid(Si, j, r) then
13: Hi.Push((r, ci, ri,j , ri,j+1,∆distj(r, Si), true));
14: if flag = true and Valid(Si, j, r) then
15: Assign(Si, j, r, R,Hi);
16: ifHi ̸= ∅ then
17: (r′, ci, ri,j′ , ri,j′+1,∆distj′ (r

′, Si), flag
′)← Hi.Pop();

18: Hg.Push(r′, ci, ri,j′ , ri,j′+1,∆distj′ (r
′, Si), flag

′);
19: decline all requests in R;

20: Procedure InitH(courier ci)
21: H ← ∅;
22: for all r ∈ cand(ci) do
23: compute cost(l(r), l(ri,j)) for all ri,j ∈ Si;
24: for all segment j in Si do
25: if ValidLB(Si, j, r) then
26: H.Push((r, ci, ri,j , ri,j+1,∆distj(r, Si), false));
27: returnH;

28: Procedure Assign(schedule Si, segment j, request r, request set R, priority
queueH)

29: Insert(Si, j, r);
30: R← R \ {r};
31: InsertSeg(H, Si, j, R);
32: InsertSeg(H, Si, j + 1, R);

33: Procedure InsertSeg(priority queueH,schedule Si,segment j,request set R)

34: for all r ∈ cand(ci) ∩ R do
35: compute cost(l(ri,j), l(r)) and cost(l(r), l(ri,j+1));
36: if ValidLB(Si, j, r) then
37: H.Push((r, ci, ri,j , ri,j+1,∆distj(r, Si), false));

Step 2. We pop the top element (r, ci, ri,j , ri,j+1,∆dist, flag)
(line 8) from the global priority queue Hg and attempt to
assign request r to segment j in the schedule of courier ci.
Before the assignment, we first check whether r has not been
assigned yet (i.e., r ∈ R) and segment ri,j → ri,j+1 is still
valid. If the entry is not valid at this step (line 9 returns
false), we go to step 5. Otherwise, we go to step 3 if ∆dist is
a lower bound (flag = false), or go to step 4 if we have exact
∆dist.

Step 3. We need to check ValidLB(Si, j, r) due to segment
updating (line 10). If ValidLB(Si, j, r), we compute the exact
cost(l(ri,j), l(r)) and cost(l(r), l(ri,j+1)) (line 11), and push
the entry with exact ∆distj(r, Si) into Hi if Valid(Si, j, r)
(line 12-13), as described in case 1 of the push operation of
the local priority queue before.

Step 4. We need to check Valid(Si, j, r) due to segment
updating (line 14). If Valid(Si, j, r), we can assign r to

9

segment j of Si by invoking Assign(Si, j, r, R,Hi). In the
Assign(Si, j, r, R, H) procedure (line 28-32), in addition to
inserting r into segment j of Si (line 29) and removing
r from R (line 30), we invoke InsertSeg(H, Si, j, R) and
InsertSeg(H, Si, j + 1, R) to push new entries into Hi due
to the insertion of r (line 31-32), as described in case 2 of the
push operation of the local priority queue before.

Step 5. We simply pop out the top entry from the cor-
responding local priority queue Hi and push it into Hg

(line 16-18). Then we repeat step 2 to step 5 until Hg

becomes ∅. Finally, all the remaining requests in R are
declined (line 19).

5.4 Analysis of SIDF∗
The benefits of keeping a local priority queue for each
courier include:
(1) All the updating entries after we make a new assign-

ment are contained in one local priority queue. Using a
local priority queue avoids computing the new incurred
distance of every affected request, which considers a lot
of repeated possible entries due to the large number of
candidate couriers.

(2) The local priority queue enables incremental entry up-
dating. Once we make an assignment related to courier
ci, only new possible entries related to the two new
segments in Si are pushed into Hi. Other valid entries
with exact incurred distance w.r.t. ci remain in Hi, which
avoids repeated exact incurred distance computation.
No exact distance computation is performed in the local
priority queue.
The benefit of keeping a global priority queue is, it

supports lazy path computation among all assignments. We
only compute the exact incurred distance of an assignment
once it is popped out of Hg , which reduces a lot of exact
incurred distance computations.

Thus with the two-level priority queue structure, we can
substantially improve the efficiency of the scheduling algo-
rithm. Note that, SIDF∗ can achieve the same effectiveness
as SIDF, since it still adopts the batch assignment strategy
and the shortest incurred distance first criterion for request
assignment.

6 PERFORMANCE STUDIES

Data set. We use a real road network in Beijing city for
experimental study. We mainly focus on a 15km×5km area
that lies between northeastern 4th ring road and 5th ring
road of Beijing. The road network contains 8, 840 nodes and
11, 331 edges. In the scalability test, we use a series of road
networks with different sizes.

Simulation with Parameter Settings. The set of parame-
ters, their meanings, as well as the default values of all
parameters are shown in Table 2, and illustrated in Fig. 5.
In our experiments, when we vary a certain parameter, all
other parameters are set to be their default values if not
otherwise specified. Given a certain set of parameter setting,
we develop a simulation system to simulate the city express
process as follows.
(Transit Station and Courier Generation): We choose K nodes

as transit stations by performing the k-medoids algorithm

Parameter Meaning Default
K The number of transit stations 7

λ The average request intensity on a node 0.6/hr
n The number of couriers 500
ts The average service time 3 minutes
tr The maximum time to confirm a request 15 minutes
tmax The maximum time for each trip 120 minutes
md The number of delivery tasks in tmax 1, 600
mp The number of pickup requests in tmax 10, 800
ρ The average speed of each courier 15 km/h
d(r) The deadline for a pickup request r 30 minutes

TABLE 2: Parameters and Default Values

Average Speed:15km/h

Return to the transit station in 120 min

(Deadline is 30 min after received)

Delivery number: 1600

Courier Delivery Pickup request Transit station

Fig. 5: Experimental Setup

on all the nodes in the road network. Then we build a net-
work Voronoi diagram with the transit stations as centers.
The courier number in a transit station is proportional to the
number of nodes in the corresponding Voronoi region, and
the total number of couriers is n. All couriers are located at
their corresponding transit stations at the beginning of the
simulation.

(Request Generation): We assume that requests are generated
on all nodes in our experiments. Similar to most queuing
systems [15], we consider the arrival of a pickup request on
a node as a Poisson process with intensity λ, which denotes
the average number of pickup requests arriving per hour
on the node. We sample the λ values for all nodes from a
normal distribution N (λ, σ2), where the λ is the average
request intensity on a node. We set λ to be 0.6 by default,
and as a result, the average number of pickup requests in
an hour in the area is 5, 400 by default. Such a setting
is reasonable, since according to the statistics of the State
Post Bureau of China (http://www.chinapost.gov.cn/), the
total number of parcels including pickup and delivery in
Beijing in the first quarter of 2015 is 283 million. Under
the assumption that all parcels are uniformly distributed
in a region of 50km × 50km every day from 6:00 a.m. to
11:59 p.m., the expected number of pickup requests per
hour in our experiment region should be 5, 185, which
is close to our default value. The deadline for a pickup
request is set to be 30 minutes after the request is issued.
Compared with the current city express company such as
S.F. Express (http://www.sf-express.com/us/en/), which
requires to reach the location of a pickup request in an hour
after it is issued, our setting imposes a stricter requirement
on the service quality.
(Initial Delivery Assignment): The set of delivery tasks should
be generated at each transit station at the beginning. Thus,
we use our request generation algorithm described above to
generate the delivery in a period of 20 minutes and assign
them to their corresponding transit stations. The delivery

10

tasks are randomly assigned to the couriers in each transit
station and the initial schedule of each courier is calculated
based on Algorithm 3 by processing all delivery tasks to-
gether. After setting off, each courier should return to his
transit station within tmax time and finish all the assigned
delivery in this period. We set tmax to be 2 hours. Since there
is no strict temporal constraint on each delivery task, we can
easily calculate the initial delivery routes at the beginning of
the simulation.
(Service Process Simulation): We assume that the service time

of each task follows an exponential distribution with mean
ts, which is set to be 3 minutes by default. We update
the locations of all couriers every 1 minute according to
their schedules and average speed ρ. Once the schedule of
a courier is changed, we change the route of the courier
immediately.
Measurements. We test both the effectiveness and the ef-
ficiency of our proposed algorithms. All the experimental
results are based on a simulation for 2 hours of the city ex-
press process using our simulation system. For effectiveness
testing, we compare the satisfaction ratio SR of different
algorithms, which is computed as:

SR =
accepted pickup requests

issued pickup requests
We also compare the average incurred distance AID of
different algorithms, which is computed as:

AID =
∑

r is satisfied by ci

∆dist(r, Si)/# accepted pickup requests

The average incurred distance AID is used to measure the
average increased cost to serve an accepted pickup request.

For efficiency testing, we compare the average process-
ing time per request, which is defined as the time spent on
computing the schedules for all requests within the 2 hours
divided by the number of issued requests. We also compare
the average number of access nodes per request, which is
the average number of node access operations involved to
process a new request within the 2 hours.
Evaluation Algorithms. For effectiveness testing, we com-
pare three algorithms, namely, Nearest, Basic and SIDF∗.
Nearest is a simple baseline that assigns each request r to its
nearest courier ci that can possibly serve r. If no such courier
is found, the request is rejected. Basic (Algorithm 2) process-
es requests on a first-come, first-served basis, and SIDF∗
(Algorithm 4) is the efficient version of SIDF (Algorithm 3)
with the same effectiveness. For efficiency testing, we first
compare Nearest, Basic, and SIDF∗. Then we compare SIDF
and SIDF∗.
6.1 Effectiveness Testing
(Exp-1: Vary n). In this experiment, we vary the number of
couriers n from 100 to 800. The experimental results for SR
and AID are shown in Fig. 6 (a) and Fig. 6 (b) respectively.
When n increases, SR and AID for all three algorithms
Nearest, Basic, and SIDF∗ increase. When n is small, SR for
all three algorithms increase fast, and when n is large, SR for
all algorithms increase slowly. The reason is that, when n is
large, the potential for all three algorithms to satisfy more
requests becomes small since most requests that can result
in small incurred distance can still be satisfied by the algo-
rithms with small n. Basic increases SR by 20% on average

compared to Nearest, and SIDF∗ increases SR by 10% on
average compared to Basic. Remarkably, as illustrated by
the dashed line in Fig. 6 (a), to satisfy the same number
of requests (with SR = 0.8), Basic requires 800 couriers
while SIDF∗ only requires 500 couriers. In other words,
our algorithm can potentially help the express company to
save substantial cost (i.e., 37.5%) while achieving the same
satisfaction ratio (i.e., SR = 0.8). Regarding AID, Basic has
a smaller AID than Nearest when n is less than 600 and a
larger AID when n is larger than 600. It shows that trying
to find an optimal schedule immediately after a request
streams in may not lead to a smaller average incurred
distance. The AID of SIDF∗ is the shortest among the three
algorithms under all n values, which demonstrates the high
effectiveness of our proposed batch algorithm SIDF∗.

200 400 600 800
0

0.2

0.4

0.6

0.8

1

n

S
R

Basic
SIDF*
Nearest

(a) SR

200 400 600 800
0

1

2

3

n

A
ID

(m
in

)

Basic
SIDF*
Nearest

(b) AID

Fig. 6: Vary n (Effectiveness)

(Exp-2: Vary tr). We vary tr , the maximum time to confirm
a request, from 1 to 24 minutes and compare SR and AID for
the three algorithms Nearest, Basic, and SIDF∗. The exper-
imental results for SR and AID are shown in Fig. 7 (a) and
Fig. 7 (b) respectively. Nearest and Basic are independent of
tr. Thus, both SR and AID remain unchanged for Nearest
and Basic when we vary tr. For SR, SIDF∗ is better than
Nearest and Basic for all tr values. When tr increases from
1 to 12, SR for SIDF∗ increases. This is because the batch
assignment strategy in SIDF∗ can have a large room for
improvement when tr is large. However, when tr further
increases, SR for SIDF∗ starts to decrease. The reason is as
follows. When tr approaches d(r) (30 minutes by default),
the time left for couriers to satisfy early arrival requests
becomes short. For example, if request r arrives at the
beginning of the tr period when tr is 24 minutes, only
6 minutes are left for couriers to satisfy it. Therefore, the
overall SR decreases when tr increases in this case. Based
on this result, a city express company can choose the best
tr using our simulation system given a certain parameter
setting. For AID, SIDF∗ has the shortest average incurred
distance among the three algorithms under all tr values.
The AID of SIDF∗ decreases when tr increases from 1 to
10, but begins to increase when tr is larger than 15. This
is because when tr is too large, SIDF∗ has to reject some
requests that have a small incurred distance with a strict
deadline constraint (i.e., the requests issued at the beginning
of tr period).
(Exp-3: Vary ρ). In this experiment, we vary the speed ρ of
couriers from 15 to 25 (km/h). The trends of SR for the three
algorithms Nearest, Basic, and SIDF∗ are shown in Fig. 8
(a). When ρ increases, SR for all three algorithms increase.
This is because the increasing of speed means the decreasing
of cost to travel between any two nodes in the network,

11

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

t
r
 (min)

S
R

Basic SIDF* Nearest

(a) SR

0 5 10 15 20 25
1.6

1.8

2

2.2

2.4

2.6

t
r
(min)

A
ID

(m
in

)

Basic SIDF* Nearest

(b) AID

Fig. 7: Vary tr in minutes (Effectiveness)

which allows more requests to be served. When ρ reaches
25, SR of Nearest, Basic and SIDF∗ is 0.67, 0.75 and 0.92,
respectively. The curves for AID when we vary ρ are shown
in Fig. 8 (b). SIDF∗ has the shortest AID under all speeds,
while Basic has a smaller AID than Nearest only when the
speed is lower than 17 km/h. When the speed is larger than
17 km/h, both Basic and Nearest can satisfy more requests
with small incurred distance, but Basic can also satisfy those
requests with larger incurred distance that are rejected by
Nearest, which leads to the higher AID as shown in Fig. 8
(b). The results are consistent with our analysis that SIDF∗
can choose a schedule with less incurred distance than Basic.

15 20 25
0.5

0.6

0.7

0.8

0.9

1

ρ(km/h)

S
R

Basic SIDF* Nearest

(a) SR

15 20 25
1

1.5

2

2.5

ρ(km/h)

A
ID

(m
in

)

Basic SIDF* Nearest

(b) AID

Fig. 8: Vary ρ in km/h (Effectiveness)

6.2 Efficiency Testing
(Exp-4: Vary n). In this experiment, we vary the number
of couriers n and test the average processing time and the
number of access nodes per request by the three algorithms.
The results are shown in Fig. 9 (a) and Fig. 9 (b) respectively.
When the number of couriers n increases, the total process-
ing time as well as the number of access nodes increase
for all algorithms, because more couriers result in a larger
search space. All the algorithms can process a request in less
than 15ms and thus are suitable for realtime applications.
Remarkably, SIDF∗ has a smaller average processing time
per request than Basic. This is because the average incurred
distance per request by SIDF∗ is less than Basic, which
means finding a suitable schedule in SIDF∗ needs less node
access than Basic.
(Exp-5: Vary tr). We vary tr, the maximum time to confirm
a request, from 1 to 24 minutes and test the efficiency of
Nearest, Basic and SIDF∗. The results for the average pro-
cessing time and the number of access nodes are shown in
Fig. 10 (a) and Fig. 10 (b) respectively. When tr increases, the
average time and the number of access nodes increase for
SIDF∗ because more search space incurs for processing more
requests received in a longer tr period. The efficiency of two
streaming algorithms Basic and Nearest is not affected by
the window size tr. Nearest is the fastest among the three

200 400 600 800
0

5

10

15

n

A
ve

ra
g

e
 t

im
e

(m
s)

Basic
SIDF*
Nearest

(a) Average Time

200 400 600 800
0

2000

4000

6000

8000

10000

n

#
 A

cc
e

ss
 N

o
d

e

Basic
SIDF*
Nearest

(b) # Access Nodes

Fig. 9: Vary n (Efficiency)

algorithms while Basic needs more processing time for a
request than SIDF∗. Remarkably, SIDF∗ can process about
190 requests per second on average when tr = 15 minutes
and only 8 seconds are needed to process all requests
received in 15 minutes.

0 5 10 15 20 25
0

2

4

6

8

t
r
(min)

A
ve

ra
g

e
 t

im
e

(m
s)

Basic
SIDF*
Nearest

(a) Average Time

0 5 10 15 20 25
0

1000

2000

3000

4000

t
r
(min)

#
 A

cc
e

ss
 N

o
d

e

Basic
SIDF*
Nearest

(b) # Access Nodes

Fig. 10: Vary tr in minutes (Efficiency)

(Exp-6: Comparing SIDF and SIDF∗). We compare the
average processing time per request by SIDF and SIDF∗ to
show the efficiency improvement by the two-level priority
queue. The results for varying n and tr are shown in Fig. 11
and Fig. 12 respectively. SIDF∗ is six times faster than
SIDF on average, which demonstrates the advantage of the
global priority queue in reducing exact incurred distance
calculation, as well as the advantage of the local priority
queues in maintaining the information of candidate entries.
The results for the number of access nodes are similar to the
average processing time.

200 400 600 800
0

10

20

30

40

n

A
ve

ra
g

e
 t

im
e

(m
s)

SIDF
SIDF*

(a) Average Time

200 400 600 800
0

0.5

1

1.5

2

2.5x 10
4

n

#
 A

cc
e

ss
 N

o
d

e

SIDF
SIDF*

(b) # Access node

Fig. 11: Efficiency improvement by SIDF∗ (vary n)

0 5 10 15 20 25
0

10

20

30

40

t
r
(min)

A
ve

ra
g

e
 t

im
e

(m
s)

SIDF
SIDF*

(a) Average Time

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5x 10
4

t
r
(min)

#
 A

cc
e

ss
 N

o
d

e

SIDF
SIDF*

(b) # Access node

Fig. 12: Efficiency improvement by SIDF∗ (vary tr)

12

6.3 Performance Comparison with the Exact Algorithm
Since SIDF∗ is an approximate algorithm, it is interesting
to compare its performance with an exact algorithm which
performs exhaustive search to find the optimal schedule to
serve the pickup requests. Given a set of pickup requests
and a set of n couriers, the exact algorithm first uses a brute
force search strategy to explore all possible ways of request
assignments to the n couriers (without considering where
to insert them into the schedule). For every assignment
scheme, the exact algorithm uses dynamic programming
to obtain the optimal schedule of each courier with the
minimum travel cost. We assume that the couriers can
satisfy all the requests and compare the AID and average
processing time for SIDF∗ and the exact algorithm Exact.
(Exp-7: Varying the number of request mp when the couri-
er number n=2). We fix the number of couriers n = 2. The
results are shown in Fig. 13 (a) and Fig. 13 (b) respectively.
It is obvious that SIDF∗ has very close AID to the exact algo-
rithm while running at least two orders of magnitude faster
than the exact algorithm when the number of request varies
from 4 to 14. When the number of request is larger than 14,
the exact algorithm can not finish in 24 hours, thus we omit
the results when mp is larger than 14. This results show that:
(1) the exact algorithm is computationally infeasible due to
its exponential cost, and (2) our method SIDF∗ can compute
the request assignments with very close AID to that of the
exact algorithm, and is orders of magnitude faster.

4 6 8 10 12 14
3

3.5

4

4.5

5

m
p

A
ID

(m
in

)

SIDF*
Exact

(a) AID

4 6 8 10 12 14
10

0

10
2

10
4

10
6

10
8

m
p

A
ve

ra
g

e
 T

im
e

(m
s)

SIDF*
Exact

(b) Average Time

Fig. 13: Varying mp (Effectiveness and Efficiency)

6.4 Scalability Test
(Exp-8: Varying the number of nodes N in the road
networks). To evaluate the scalability of SIDF∗, we compare
the performance of the three algorithms, SIDF∗, Basic and
Nearest on road networks of increasing size. Specifically, we
run the three algorithms on road networks corresponding
to the second ring, third ring, fourth ring, fifth ring and
sixth ring of Beijing. The largest road network consists
of 81,000 nodes and 104,000 edges, and covers the main
urban district of Beijing. The number of couriers, transit
stations and delivery tasks are increased in proportion to the
node number of the road network. For instance, the largest
road network contains 5,000 couriers, 70 transit stations
and 16,000 delivery tasks. Other parameters are the same
as the default value. The results for SR, AID, the average
processing time and the number of access nodes are shown
in Fig. 14 and Fig. 15 respectively. The results show that
when the number of nodes N increases from 8,400 to 81,000,
SIDF∗ has the highest SR and the smallest AID among the
three algorithms. Besides, it uses less average processing
time than the streaming algorithm Basic according to Fig. 15.
It is noted that the SR of the three algorithms decrease when

the road network contains 81,000 nodes. This is because
the density of the nodes is different in different regions
of Beijing, and it takes more time to travel between nodes
outside the fifth ring region of Beijing. Overall, our method
SIDF∗ scales well with the road network size in terms of
both service quality and computational efficiency.

2 4 6 8
x 10

4

0.4

0.5

0.6

0.7

0.8

0.9

N

S
R

Nearest Basic SIDF*

(a) SR

2 4 6 8
x 10

4

1

1.5

2

2.5

3

N

A
ID

(m
in

)

Nearest Basic SIDF*

(b) AID

Fig. 14: Varying N (Effectiveness)

2 4 6 8
x 10

4

0

2

4

6

8

10

12

N

A
ve

ra
g

e
 t

im
e

(m
s)

Nearest
Basic
SIDF*

(a) Average Time

2 4 6 8
x 10

4

0

1000

2000

3000

4000

5000

N

#
 A

cc
e

ss
 N

o
d

e

Nearest
Basic
SIDF*

(b) # Access Node
Fig. 15: Varying N (Efficiency)

7 RELATED WORKS

Query Processing on Spatial Networks. A lot of work
has been done on spatial network query processing. The
most related works include shortest path computation, kNN
search, and best point detour on a road network.

Shortest path and distance queries on road networks
have been experimentally evaluated by Wu et al. [16]. In
[16], it is shown that the vertex importance based approach
CH [17] is the most space-economic technique and spatial
coherence based method SILC [18] is the most efficient
method. Inspired by CH, Zhu et al. [19] proposed the
Arterial Hierarchy (AH) method that can outperform CH
in terms of both asymptotic and practical performance.

The kNN query in a spatial network was first studied
by Papadias et al. [20]. In [20], two classical methods were
proposed: INE (Incremental Network Expansion) and IER
(Incremental Euclidean Restriction). The LBC method pro-
posed by Deng et al. [21] improved the INE method by
maintaining a path distance lower bound for each candi-
date data point and searching toward the candidates with
minimum path distance lower bound. Nutanong et al. [22]
further improved LBC by devising a novel heuristic function
that considered all the candidates for a query point as a
single unit.

The best point detour problem is proposed by Shang et
al. [23], which aims to find a detour that can pass a certain
type of node with the minimum additional traveling cost.
The best point detour problem is different from our problem
studied in this paper since we aim at optimizing the route
for multiple requests and multiple couriers in a dynamic
environment.

13

Dynamic Vehicle Routing. Our problem is a restricted
variant of the dynamic vehicle routing problem [2], [24],
[25], [26], [27], where each request that includes both pickup
and delivery location constraints are satisfied by a set of
vehicles. The dynamic vehicle routing problem has been
studied extensively in the Operational Research literature.
Our work is different from existing studies in three aspects:

(1) To the best of our knowledge, there is no existing work
that studies the dynamic vehicle routing problem on
a real road network, where it is costly to compute the
shortest distance between two nodes, and is impractical
to precompute and store all-pair shortest distances in
the large road network. Our solution exploits a spatio-
temporal index to estimate the travel cost lower bound
and reduces the number of exact shortest path computa-
tions. Therefore, we are able to handle real-world pick-
up requests workloads (e.g., 5400 requests per hour with
800 couriers in a road network of Beijing). In contrast,
the largest simulation instance on dynamic vehicle rout-
ing problem from the OR literature is 60 requests per
hour with 100 couriers in Euclidean space [28].

(2) Most works on dynamic vehicle routing problem as-
sume that all the requests can be satisfied by the fixed
numbers of couriers and their objective is to minimize
the operational cost [4], [29], [30], [31], [32], [33], [34],
[35] (e.g., the sum of the total travel cost for couriers
and the delayed cost for all requests). Our objective is
to satisfy incoming pickup requests as many as possible
under the temporal constraints on pickup requests and
couriers (i.e., each request must be satisfied on time once
assigned to a courier and couriers must come back to
their transit stations on time). This setting is more real-
istic, because in practice, a city express company may
not be able to satisfy all the pickup requests arriving in
real-time due to limited manpower.

(3) Compared with existing works [5], [28] that reject re-
quests immediately due to hard time constraints, we
adopt a batch solution that considers the scheduling
problem for requests received in a short period instead
of making a decision immediately after a new request
arrives. As we demonstrate in our experiments, such a
strategy can satisfy more requests than a basic streaming
algorithm as we gather short term requests information
for further optimization.

Dynamic Taxi Ridesharing. Recently, dynamic tax-
i ridesharing has been studied in the database community.
A taxi ridesharing query asks if there exists a taxi in a city
that can take the customer from his/her current location
to a specific destination under time window constraints.
Our dynamic city express problem is different from the
taxi ridesharing problem in three aspects. First, though the
number of taxis is larger than the couriers in our problems,
the capacity of a courier is much larger than a taxi so that
finding the optimal route of a courier using kinetic tree
structure [9] proposed for taxi ridesharing is impractical.
Second, the deadline of processing a pickup request (e.g., 30
minutes after issuing) is larger than the maximal waiting
time of a customer (e.g., 5 minutes) in ridesharing service.
Moreover, there is a tight time window for a taxi to reach
customer’s destination but a parcel can usually wait a longer

time at the transit station before being delivered to its desti-
nation. Thus the spatial-temporal index proposed in [7], [8]
is less effective in solving city express problem resulting in
more candidate couriers for a pickup request. Third, there
is response time for a request in city express service while
a taxi ridesharing request needs instant response. Once a
customer issues a pickup request on the website or through
a smartphone, a staff from the express company will contact
the customer to confirm or decline the request within a short
period (e.g., 10 minutes). Such a period allows the system to
gather multiple requests for better scheduling. On the other
hand, we propose a new algorithm that can accelerate the
request assignment on a two-level priority queue structure,
which can benefit the research in urban computing [1] such
as the ridesharing system.

8 CONCLUSION

In this paper, we propose a solution to batch process re-
quests in dynamic city express. We also develop a simula-
tion platform to confirm both the effectiveness and efficien-
cy of our solution. The new city express system has three
advantages: First, when the intensity of pickup requests
is 72/km2 per hour (i.e., 5,400/75km2), our solution can
increase the satisfaction ratio of pickup requests by more
than 10% compared to a basic solution and 30% compared
to an existing straightforward solution. On the other hand,
our solution can save 37.5% manpower to achieve 80%
satisfaction ratio compared to the basic solution as shown in
the experiment. Second, our solution enjoys high efficiency
with the help of the two-level priority queue structure. On
average, we can process about 190 pickup requests per
second under default settings, which is 15% faster than the
basic streaming algorithm. Third, the developed simulation
platform can be used to estimate the number of couriers a
city express company needs to achieve a certain satisfaction
ratio in urban area. For instance, by estimating the satisfac-
tion ratio under different courier numbers in the simulation,
we can find that at least 7 couriers/km2 (i.e., 500 couriers/75
km2) are needed to keep the satisfaction ratio above 80%,
or equivalently, serve 8,640 pickup requests in 2 hours. In
the future, we plan to consider more factors that can affect
the service quality of city express service such as the time-
dependent travel cost of road segments and the stochastic
information of requests’ locations.

ACKNOWLEDGMENTS

This work is supported by a Microsoft Research grant on
urban informatics, the National Natural Science Founda-
tion of China (Grant No. 61672399), CUHK Direct Grant
No. 4055015 and 4055048. Lu Qin is supported by ARC
DE140100999 and ARC DP160101513.

REFERENCES

[1] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on
Intelligent Systems and Technology, vol. 5, no. 3, pp. 38–55, 2014.

[2] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review
of dynamic vehicle routing problems,” European Journal of Opera-
tional Research, vol. 225, no. 1, 2013.

[3] O. Bräysy and M. Gendreau, “Vehicle routing problem with time
windows, part i: Route construction and local search algorithms,”
Transportation science, vol. 39, no. 1, 2005.

14

[4] Z.-L. Chen and H. Xu, “Dynamic column generation for dynamic
vehicle routing with time windows,” Transportation Science, vol. 40,
no. 1, 2006.

[5] M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard, “Parallel
tabu search for real-time vehicle routing and dispatching,” Trans-
portation science, vol. 33, no. 4, 1999.

[6] M. M. Solomon, “Algorithms for the vehicle routing and schedul-
ing problems with time window constraints,” Operations research,
vol. 35, no. 2, 1987.

[7] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic
taxi ridesharing service,” in Proc. of ICDE’13, 2013.

[8] ——, “Real-time city-scale taxi ridesharing,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 7, pp. 1782–1795, 2015.

[9] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time
ridesharing with service guarantee on road networks,” PVLDB,
vol. 7, no. 14, 2014.

[10] M. M. Flood, “The traveling-salesman problem,” Operations Re-
search, vol. 4, no. 1, 1956.

[11] M. Jsnger, S. Thienel, and G. Reinelt, “Provably good solutions for
the traveling salesman problem,” Zeitschrift Operations Research,
vol. 40, no. 2, 1994.

[12] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “An analysis
of several heuristics for the traveling salesman problem,” SIAM
journal on computing, vol. 6, no. 3, 1977.

[13] M. R. Kolahdouzan and C. Shahabi, “Voronoi-based K nearest
neighbor search for spatial network databases,” in Proc. of VLD-
B’04, 2004.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms (3. ed.). MIT Press, 2009.

[15] S. M. Ross et al., Stochastic processes. John Wiley & Sons New York,
1996, vol. 2.

[16] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou, “Short-
est path and distance queries on road networks: An experimental
evaluation,” PVLDB, vol. 5, no. 5, 2012.

[17] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contrac-
tion hierarchies: Faster and simpler hierarchical routing in road
networks,” in Proc. of WEA’08, 2008.

[18] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network
distance browsing in spatial databases,” in Proc. of SIGMOD’08,
2008.

[19] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest
path and distance queries on road networks: towards bridging
theory and practice,” in Proc. of SIGMOD’13, 2013.

[20] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query process-
ing in spatial network databases,” in Proc. of VLDB’03, 2003.

[21] K. Deng, X. Zhou, H. T. Shen, S. W. Sadiq, and X. Li, “Instance
optimal query processing in spatial networks,” VLDB J., vol. 18,
no. 3, 2009.

[22] S. Nutanong and H. Samet, “Memory-efficient algorithms for
spatial network queries,” in Proc. of ICDE’13, 2013.

[23] S. Shang, K. Deng, and K. Xie, “Best point detour query in road
networks,” in Proc. of GIS’10, 2010.

[24] G. Laporte, “Fifty years of vehicle routing,” Transportation Science,
vol. 43, no. 4, pp. 408–416, 2009.

[25] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem: models
and algorithms,” Annals of Operations Research, vol. 153, no. 1, pp.
29–46, 2007.

[26] D. Sáez, C. E. Cortés, and A. Núñez, “Hybrid adaptive predictive
control for the multi-vehicle dynamic pick-up and delivery prob-
lem based on genetic algorithms and fuzzy clustering,” Computers
& Operations Research, vol. 35, no. 11, pp. 3412–3438, 2008.

[27] C. E. Cortés, A. Núnez, and D. Sáez, “Hybrid adaptive predictive
control for a dynamic pickup and delivery problem including
traffic congestion,” International Journal of Adaptive Control and
Signal Processing, vol. 22, no. 2, pp. 103–123, 2008.

[28] A. Fabri and P. Recht, “On dynamic pickup and delivery vehicle
routing with several time windows and waiting times,” Transporta-
tion Research Part B: Methodological, vol. 40, no. 4, pp. 335–350, 2006.

[29] M. Savelsbergh and M. Sol, “Drive: Dynamic routing of indepen-
dent vehicles,” Operations Research, vol. 46, no. 4, pp. 474–490, 1998.

[30] O. B. Madsen, H. F. Ravn, and J. M. Rygaard, “A heuristic al-
gorithm for a dial-a-ride problem with time windows, multiple
capacities, and multiple objectives,” Annals of operations Research,
vol. 60, no. 1, pp. 193–208, 1995.

[31] D. Teodorovic and G. Radivojevic, “A fuzzy logic approach to
dynamic dial-a-ride problem,” Fuzzy sets and systems, vol. 116,
no. 1, pp. 23–33, 2000.

[32] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Séguin, “Neighbor-
hood search heuristics for a dynamic vehicle dispatching problem
with pick-ups and deliveries,” Transportation Research Part C: E-
merging Technologies, vol. 14, no. 3, pp. 157–174, 2006.

[33] S. Mitrović-Minić, R. Krishnamurti, and G. Laporte, “Double-
horizon based heuristics for the dynamic pickup and delivery
problem with time windows,” Transportation Research Part B:
Methodological, vol. 38, no. 8, pp. 669–685, 2004.

[34] S. Mitrović-Minić and G. Laporte, “Waiting strategies for the
dynamic pickup and delivery problem with time windows,” Trans-
portation Research Part B: Methodological, vol. 38, no. 7, pp. 635–655,
2004.

[35] L. Coslovich, R. Pesenti, and W. Ukovich, “A two-phase insertion
technique of unexpected customers for a dynamic dial-a-ride
problem,” European Journal of Operational Research, vol. 175, no. 3,
pp. 1605–1615, 2006.

Siyuan Zhang Siyuan Zhang is a Ph.D. student
in the Department of Systems Engineering and
Engineering Management, The Chinese Univer-
sity of Hong Kong. His major research interests
include spatial database and geographic infor-
mation systems.

Lu Qin Lu Qin is now a senior lecturer in the
Centre of Quantum Computation and Intelligen-
t Systems (QCIS) in University of Technology
Sydney (UTS). He received his bachelor de-
gree from Renmin University of China (RUC) in
2006 and his Ph.D. degree from department of
Systems Engineering and Engineering Manage-
ment in the Chinese University of Hong Kong
(CUHK) in 2010.

Yu Zheng Dr. Yu Zheng is a research manag-
er from Microsoft Research, passionate about
using big data to tackle urban challenges. He
currently serves as the Editor-in-Chief of ACM
Transactions on Intelligent Systems and Tech-
nology. He is also the founding Secretary of
SIGKDD China Chapter and has served as chair
on over 10 prestigious international conferences,
e.g. as the program co-chair of ICDE 2014 (In-
dustrial Track). Zheng received five best paper
awards from ICDE13 and ACM SIGSPATIAL10,

etc. His book, titled Computing with Spatial Trajectories, has been used
as a text book in universities world-widely and awarded the Top 10
Most Popular Computer Science Book authored by Chinese at Springer.
In 2013, he was named one of the Top Innovators under 35 by MIT
Technology Review (TR35) and featured by Time Magazine for his
research on urban computing. In 2014, he was named one of the Top
40 Business Elites under 40 in China by Fortune Magazine, because of
the business impact of urban computing he has been advocating since
2008. Zheng is also a visiting Chair Professor at Shanghai Jiao Tong
University and an Adjunct Professor at Hong Kong University of Science
and Technology.

Hong Cheng Hong Cheng is an Associate Pro-
fessor in the Department of Systems Engineer-
ing and Engineering Management at the Chi-
nese University of Hong Kong. She received
her Ph.D. degree from University of Illinois at
Urbana-Champaign in 2008. Her research inter-
ests include data mining, database systems, and
machine learning. She received research paper
awards at ICDE’07, SIGKDD’06 and SIGKD-
D’05, and the certificate of recognition for the
2009 SIGKDD Doctoral Dissertation Award. She

is a recipient of the 2010 Vice-Chancellor’s Exemplary Teaching Award
at the Chinese University of Hong Kong.

