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Abstract

A state-based technique for the summarization and
recognition of gesture is presented. We define a ges-
ture to be a sequence of states in a measurement or
configuration space. For a given gesture, these states
are used to capture both the repeatability and variability
evidenced in a training set of example trajectories. The
states are positioned along a prototype of the gesture,
and shaped such that they are narrow in the directions in
which the ensemble of examples is tightly constrained,
and wide in directions in which a great deal of variabil-
ity is observed. We develop techniques for computing a
prototype trajectory of an ensemble of trajectories, for
defining configuration states along the prototype, and
for recognizing gestures from an unsegmented, contin-
uous stream of sensor data. The approach is illustrated
by application to a range of gesture-related sensory
data: the two-dimensional movements of a mouse in-
put device, the movement of the hand measured by a
magnetic spatial position and orientation sensor, and,
lastly, the changing eigenvector projection coefficients
computed from an image sequence.

1 Background
A gesture is a motion that has special status in a domain or context.
Recent interest in gesture recognition has been spurred by its
broad range of applicability in more natural user interface designs.
However, the recognition of gestures, especially natural gestures,
is difficult because gestures exhibit human variability. We present
a technique for quantifying this variability for the purposes of
summarizing and recognizing gesture.

We make the assumption that the useful constraints of the do-
main or context of a gesture recognition task are captured im-
plicitly by a number of examples of each gesture. That is, we
require that by observing an adequate set of examples one can
(1) determine the important aspects of the gesture by noting what
components of the motion are reliably repeated; and (2) learn
which aspects are loosely constrained by measuring high variabil-
ity. Therefore, training consists of summarizing a set of motion
trajectories that are smooth in time by representing the variance of
the motion at local regions in the space of measurements. These lo-
cal variances can be translated into a natural symbolic description
of the movement which represent gesture as a sequence of mea-
surement states. Recognition is then performed by determining
whether a new trajectory is consistent with the required sequence
of states.

In this paper we apply the measurement state representation
to a range of gesture-related sensory data: the two-dimensional
movements of a mouse input device, the movement of the hand

measured by a magnetic spatial position and orientation sensor,
and, lastly, the changing eigenvector projection coefficients com-
puted from an image sequence. The successful application of the
technique to all these domains demonstrates the general utility of
the approach.

We begin by describing related work on gesture recognition. We
then motivate our particular choice of representation and present a
technique for computing it from generic sensor data. This compu-
tation requires the developmentof a novel technique for collapsing
an ensemble of time-varying data while preserving the qualitative,
topological structure of the trajectories. Finally we develop meth-
ods for using the measurement state representation to concurrently
segment and recognize a stream of gesture data. As mentioned,
the technique is applied to a variety of sensor data.

2 Related Work
Early experiments by Johansson with Moving Light Display
(MLD) images suggest that many movements or gestures may
be recognized by motion information alone. Work with very low
resolution American Sign Language images by Sperling et al. [13]
further supports the notion that in many domains a full geometric
reconstruction of the moving object is unnecessary for recogni-
tion. For example, Polana and Nelson [10] use low level features
of motion to recognize periodic motions such as walking.

A number of researchers have developed novel representa-
tions for motion trajectories that are useful in gesture recognition.
Gould and Shah [5] show the analysis of motion trajectories to
identify event boundaries. These are recorded in their trajectory
primal sketch to be used for motion recognition. Rangarajan et
al. [11] demonstrate two-dimensional motion trajectory matching
through scale-space. Davis and Shah [4] recognize simple hand
gestures by matching two-dimensional trajectories made by mark-
ers on the fingertips. Rohr [12] smooths a number of example joint
angle trajectories to build a representation of one walking cycle
parameterized by a pose variable.

Others have concentrated on capturing how the output of vari-
ous image operators change over the course of movement. Darrell
and Pentland [3] use dynamic time warping to match changing nor-
malized image correlation template scores to learned models. The
correlation templates are evenly distributed over the length of the
model gesture so that it is always the case that some template has
a high match score. Murase and Nayar [9] match changing eigen-
vector projection coefficients taken from the image data to deter-
mine the orientation and illumination angle of the object. Bregler
and Omohundro [1] learn a surface representing constraints on
the image sequence for their nonlinear image interpolation task.
Yamato et al. [16] compute a simple region-based statistic from
each frame of an image sequence, which is then vector-quantized.
Sequences of the discrete symbols are then identified by a trained
Hidden Markov Model.
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Lastly, some work has been done in the real time recognition
of simple mouse input device gestures. Tew and Gray [14] use
dynamic programming to match mouse trajectories to prototype
trajectories. Lipscomb [7] concentrates on filtering the mouse
movement data to obtain robust recognition of similarly filtered
models. Mardia et al. [8] compute many features of each trajectory
and use a learned decision tree for each gesture to best utilizes the
features for recognition.

3 Motivation for a Representation

If all the constraints on the motion that make up a gesture were
known exactly, recognition would simply be a matter of determin-
ing if a given movement met a set of known constraints. However,
especially in the case of natural gesture, the exact movement seen
is almost certainly governed by processes inaccessible to the ob-
server. For example, the motion the gesturer is planning to execute
after a gesture will influence the end of the current gesture; this
effect is similar to co-articulation in speech. The incomplete
knowledge of the constraints manifests itself as variance in the
measurements of the movement. A representation for gesture
must quantify this variance and how it changes over the course of
the gesture.

Secondly, we desire a representation that is invariant to nonuni-
form changes in the speed of the gesture to be recognized. These
shifts may also be thought of as non-linear shifts in time. A global
shift in time causedby a slight pauseearly in the gesture should not
affect the recognition of most of the gesture. Let us call the space
of measurements that define each point of an example gesture a
configuration space. The goal of time invariance is motivated by
the informal observation that the important quality in a gesture
is how it traverses configuration space and not exactly when it
reaches a certain point in the space. In particular, we would like
the representation to be time invariant but order-preserving: e.g.
first the hand goes up, then it goes down. Finally, strong time
invariance is probably not required because in the case of natu-
ral gestures, many kinds of time shifts are simply not physically
plausible.

Our basic approach to quantifying the variances in configuration
space and simultaneously achieving sufficient temporal invariance
is to represents a gesture as a sequence of states in configuration
space. Each configuration state is intended to capture the degree
of variability of the motion when traversing that region of con-
figuration space. Since gestures are smooth movements through
configuration space and not a set of naturally defined discrete
states, the configuration states S = fsi; 1 � i � Mg should be
thoughtof as being “fuzzy”, with fuzzinessdefined by the variance
of the points that fall near it. A point moving smoothly through
configuration space will move smoothly among the fuzzy states
defined in the space.

Formally, we define a gesture as an ordered sequence of fuzzy
states si 2 S in configuration space. This contrasts with a tra-
jectory which is simply a path through configuration space repre-
senting some particular motion. A point x in configuration space
has a membership to state si described by the fuzzy membership
function �si(x) 2 [0;1]. The states along the gesture should be
defined so that all examples of the gesture follow the same se-
quence of states. That is, the states should fall one after the other
along the gesture. We represent a gesture as a sequenceof n states,G� = h�1�2::�ni, where states are only listed as they change:�i 6= �i+1.

We can now consider the state membership function of an entire
trajectory. Let Ti(t) be the ith trajectory. We need to choose a

combination rule that defines the state membership of a point x
in configuration space with respect to a group of states. For con-
venience let us choose max, which assigns the combined mem-
bership of x, MS(x), the value maxi (�si(x)). The combined

membership value of a trajectory is a function of time while the
assigned state of the trajectory at each time instant is the state
whose membership is greatest. Thus, a set of configuration states
translates a trajectory into a symbolic description, namely a se-
quence of states.

Defining gestures in this manner provides the intuitive definition
of a prototype gesture: the motion trajectory that gives the highest
combined membership to the sequence of states that define the
gesture. We can invert that logic in the situation in which we
only have several examples of a gesture: first compute a prototype
trajectory, and then define states that lie along that curve that
capture the relevant variances. In the next section we will develop
such a method.

4 Computing the Representation
The technique presented to compute the configuration state rep-
resentation proceeds in three steps. Beginning with the sample
points of a number of example motion trajectories, the first step
computes a single prototype configuration space curve for the en-
semble of trajectories. The prototype curve removes time as an
axis, and is simply parameterized by arc length � as it moves
through configuration space,P (�) 2 <d. The goal of this param-
eterization is to group sample points that are nearby in configu-
ration space and to preserve the temporal order along each of the
example trajectories.

In practice, the prototype curve is represented by a series of
discrete points in configuration space. The second step treats each
of the segments of the prototype curve as vectors in the space.
These vectors are clustered according to their proximity to each
other in configuration space and their similarity in direction.

In the third and last step, each of the clusters of prototype
curve vectors is used to define a fuzzy state. The arc length
parameterization of the prototype curve vectors in each cluster
is known. The trajectory sample points that have the same arc
length projections are collected for each cluster; the distribution
of the points determines the membership function for that state.
By clustering the prototype curve vectors rather than the sample
points directly, we obtain states that fall one after the other along
the prototype. Furthermore, the shape of each state is determined
by the points that project to similar arc lengths of the prototype,
and not simply nearby points.

The following subsections detail the steps of the algorithm for
computing the representation.

4.1 Computing the prototype
Each example of a gesture is a trajectory in configuration space
defined by a set of discrete samples evenly spaced in time. At
first, it is convenient to parameterize the ith trajectory by the time
of each sample: Ti(t) 2 <d.

Our definition of a prototype curve of an ensemble of training
trajectories Ti(t) is a continuous one-dimensional curve that best
fits the sample points in configuration space according to a least
squares criterion. For ensembles of space curves in metric spaces
there are several well known techniques that compute a “principal
curve” [6] that attempts to minimize distance between each point
of each of the trajectories and the nearest point on the principal
curve.
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Figure 1: (a) Example trajectories as a function of time. (b)
Projection of trajectory points into configuration space. Normal
principal curve routines would lose the intersection. (c) Pro-
totype curve recovered using the time-collapsing technique (see
Appendix).

The prototype curve for a gesture removes time as an axis,
and is simply parameterized by arc length � as it moves through
configuration space,P (�) 2 <d. The goal of the parameterization
is to group sample points that are nearby in configuration space
and to preserve the temporal order along each of the example
trajectories.

The problem of computing a prototype curve P in configuration
space is how to collapse time from the trajectories Ti(t). Figure 1
illustrates the difficulty. If the points that make up the trajecto-
ries (a) are simply projected into configuration space by removing
time (b), there is no clear way to generate a connected curve that
preserves the temporal coherence of the path through configura-
tion space. Likewise, if each of the trajectories is projected into
configuration space small variations in temporal alignment make
it impossible to group corresponding sections of the trajectories
without the consideration of time.

The details of our method are presented in an appendix but
we give the intuition here. Our approach is to begin with the
trajectories in a time-augmented configuration space. Since a
trajectory is a function of time, we can construct a corresponding
curve in a space consisting of the same dimensions as configuration
space plus a time axis. After computing the principal curve in
this space, the trajectories and the recovered principal curve are
slightly compressed in the time direction. The new principal curve
is computed using the previous solution as an initial condition for
an iterative technique.

By placing constraints on how dramatically the principal curve
can change at each time step, the system converges gracefully
to a prototype curve in configuration space that minimizes dis-
tance between the example trajectories and the prototype, while
preserving temporal ordering. Figure 1(c) shows the results of
the algorithm. The resulting prototype curve captures the path
through configuration space while maintaining temporal ordering.

An important by-product of calculating the prototype is the
mapping of each sample point xi of a trajectory to an arc length
along the prototype curve �i = �(xi).
4.2 Clustering the sample points
To define the fuzzy states si, the sample points of the trajectories
must be partitioned into coherent groups. Instead of clustering
the sample points directly, we cluster the vectors defining P (�)

and then use the arc length parameterization �(xi) to map sample
points to the prototype P (�). The vectors that define P (�) are
simply the line segments connecting each point of the discretizedP (�), where the length of each line segment is constant.

By clustering the vectors along P (�) instead of all sample
points, every point that projects to a certain arc length along the
prototype will belong to exactly one cluster. One desirable con-
sequence of this is that the clusters will fall one after the other
along the prototype. This ordered sequence of states is recorded
as G� = h�1�2::�ni.

The prototype curve vectors are clustered by a k-means algo-
rithm, in which the distance between two vectors is a weighted
sum of the Euclidean distance between the bases of the vectors and
a measure of the difference in (unsigned) direction of the vectors.
This difference in direction is defined to be at a minimum when
two vectors are parallel and at a maximum when perpendicular.

Clustering with this distance metric groups curve vectors that
are oriented similarly, regardless of the temporal ordering associ-
ated with the prototype. If the prototype visits a part of config-
uration space and then later revisits the same part while moving
in nearly the same (unsigned) direction, both sets of vectors from
each of the visits will be clustered together. The sample points
associated with both sets will then belong to the single state which
appears multiply in the sequence G�. In this way, the cluster-
ing leads to a parsimonious allocation of states, and is useful in
detecting periodicity in the gesture.

Each cluster found by k-means alogorithm corresponds to a
fuzzy state. The number of clusters k must be chosen carefully so
that there are sufficiently many states to describe the movement
in a useful way, but should not be so great that the number of
sample points in each cluster is so low that statistics computed on
the samples are unreliable. Furthermore, the distribution of states
should be coarse enough that all the examples traverse the states
in the same manner as the prototype.

4.3 Determining state shapes
The center of each of the clusters found by the k-means algorithm
is the average location c and average orientation ~v of the prototype
curve vectors belonging to the cluster. The membership function
for the state is computed from these center vectors and the sample
points that map to the prototype curve vectors in each cluster.

For a given state si, the membership function �si(x) should be
defined so that membership is highest along the prototype curve;
this direction is approximated by ~v. Membership should also
decrease at the boundaries of the cluster to smoothly blend into
the membership of neighboring fuzzy states. Call this membership
the “axial” or “along-trajectory” membership. The membership
in directions perpendicular to the curve determines the degree
to which the state generalizes membership to points on perhaps
significantly different trajectories. Call this membership the “cross
sectional” membership.

A single oriented Gaussian is well suited to model the local,
smooth membership function of a fuzzy state. Orienting the Gaus-
sian so that one axis of the Gaussian coincides with the orientation~v of the center of the state, the axial membership is computed
simply as the variance of the sample points in the axial direction.
The cross-sectional membership is computed as the variance of
the points projected on a hyperplane normal to the axis.

The inverse covariance matrix Σ�1 of the oriented Gaussian
can be computed efficiently from the covariance matrix Σ of the
points with the center location subtracted. First, a rotation matrixR is constructed, whose first column is ~v, the axial direction,

3



and whose remaining columns are generated by a Gram-Schmidt
orthogonalization. Next, R is applied to the covariance matrix Σ:

ΣR = RT ΣR = " �2v � � �
...

�
Σproj� #

where �2v is the variance of the points along ~v, and Σproj is the
covariance of the points projected onto the hyperplane normal
to ~v. We can scale each of these variances to adjust the cross
sectional and axial variances independently by the scalars �2c and�2a, respectively. Setting the first row and column to zero except
for the variance in direction ~v:

ΣR0 = 26664 �2a�2v � � � 0 � � �
...
0
...

�2c �Σproj� 37775
Then the new inverse covariance matrix is given by: Σ�1S =(RΣR0RT )�1.

A state si is then defined by c, ~v, and Σ�1S , with �si(x) =e�(x�c)Σ�1S (x�c)T . The memberships of a number of states can
be combined to find the membership �si;sj ;::(x) to a set of statesfsi; sj; ::g. As mentioned, one combination rule simply returns
the maximum membership of the individual state memberships:�si;sj ;::(x) = maxs2fsi;sj;::g �s(x)
5 Recognition
The online recognition of motion trajectories consists of explain-
ing sequences of sample points as they are taken from the move-
ment. More concisely, given a set of trajectory sample pointsx1; x2; ::xN taken during the previous N time steps, we wish to
find a gesture G and a time ts, t1 � ts � tN such that xs::xN
has an average combined membership above some threshold, and
adequately passes through the states required by G.

Given the sequence of sample points at t1::tN , we can computets and the average combined membership for a gesture G� =h�1�2::�ni by a dynamic programming algorithm. The dynamic
programming formulation used is a simplified version of a more
general algorithm to compute the minimum cost path between two
nodes in a graph.

For the dynamic programming solution, each possible state at
time t is a node in a graph. The cost of a path between two nodes
or states is the sum of the cost assigned to each transition between
adjacent nodes in the graph. The cost of a transition between a
state �i at time t and a state �j at time t+ 1 isct(�i; �j) = � 1 for j < i

1 � ��j (T (t)) otherwise

That is, we are enforcing a forward progress through the states of
the gesture and preferring states with high membership.

The dynamic programming algorithm uses a partial sum vari-
able, Cti ;tj (�i; �j) to recursively compute a minimal solution.Cti;tj (�i; �j) is defined to be the minimal cost of a path between
state �i at a time ti and �j at a time tj:Cti ;tj (�k; �m) = min�l2G� �cti(�k; �l) +Cti+1;tj (�l; �m)	

Cti ;ti(�k; �m) = 0

The total cost associatedwith explaining all samples by the gestureG� is then Ct1;tN (�1; �n).
The start of the gesture is not likely to fall exactly at time t1,

but at some later time ts. Given ts, we can compute the average
combined membership of the match from the total cost to give an
overall match score for a match starting at time ts:�̄G� = 1 � Cts;t1 (�1; �n)(tN � ts)

To be classified as a gestureG�, the trajectory must have a high
match score and pass through all the states in G� as well. For the
latter we can compute the minimum of the maximum membership
observed in each state �i in G� . This quantity indicates the
completeness of the trajectory with respect to the model G�. If
the quantity is less than a certain threshold, the match is rejected.
The start of a matching gesture is thents =arg mint Ct; tN (�1; �n); completeness > threshold

Causal segmentation of a stream of samples is performed using
the dynamic programming algorithm at successive time steps. At
a time step t, the highest match score and the match start timets is computed for all samples from t0 to t. If the match score
is greater than a threshold �, and the gesture is judged complete,
then all points up to time t are explained by a gesture model and
so are removed from the stream of points, giving a new valuet0 = t. Otherwise, the points remain in the stream possibly to be
explained at a later time step. This is repeated for all time steps t
successively.

6 Experiments
The configuration-state representation has been computed with
motion trajectory measurements taken from three devices that
are useful in gesture recognition tasks: a mouse input device,
a magnetic spatial position and orientation sensor, and a video
camera. In each case we segment by hand a number of training
examples from a stream of smooth motion trajectories collected
from the device. With these experiments we demonstrate how
the representation characterizes the training examples, recognizes
new examples of the same gesture, and is useful in a segmentation
and tracking task.

In each case, the measurementscollected were uniformly scaled
to fall within the interval from -1 to 1. With this scaling, the same
initial time scaling s of 4.0 was found to work well in computing
the prototype trajectory (see Appendix). The prototype curve
was computed in turn for s = 4,3,2,1,0 in each case. In some
cases it was necessary to change the value of the smoothing kernel
parameterh and the values of�c and�a. Otherwise no adjustment
of parameters was made between the experiments.

6.1 Mouse Gestures
In the first experiment, we demonstrate how the representation
permits the combination of multiple gestures, and generalizes to
unseen examples for recognition. Furthermore, by considering
two dimensional data, the cluster points and the resulting states
are easily visualized.

The (x; y) position of a mouse input device was sampled at a
rate of 20Hz for two different gestures G� and G� . Ten different
examples of each gesture were collected; each consisted of about
one hundred sample points. Half of the examples were used to
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Figure 2: The prototype curves (black) for G� and G� are com-
bined to find a set of states to describe both gestures. The clustering
of the prototype curve vectors for G� and G� gives the clustering
of all sample points. Each of the ten clusters depicted here is used
to define a state centered about each of the white vectors. The
combined membership of the 10 states in G� and G� is depicted
under the curves; darker regions indicate high membership.

compute the prototype curve for each gesture. The smoothing
kernel parameter h had a value of 0.2. The vectors along both
of the curves were then clustered to find a single set of ten states
useful in tracking either gesture. Because the gestures overlap, six
of the states are shared by the two gestures. The prototype curves
and the assignments of the sample points to the clusters are shown
in Figure 2.

The shapes of the states computed from the clustering is shown
in Figure 2. The generalization parameter �c had a value 3.0.
The state sequencesG� andG� were computed by looking at the
sequence of state assignments of the vectors along the prototype.
The sequences G� and G� reflect the six shared states: G� =hs1s2s3s2s4s5s6s7i, G� = hs3s2s4s5s6s7s6s5s8s9s10s8s9i.

The match scores of the hand-segmented test gestures were then
computed using the dynamic programming algorithm outlined in
Section 5. In computing the maximum match score, the algorithm
assigns each point to a state consistent with the sequenceG�. As
described, a match is made only if it is considered complete.

The state transitions and the membership values computed for
each sample are shown for the new examples of G� and G�
in Figure 3. In the plots, the state transitions are marked as
vertical bars; thus all sample points between two adjacent vertical
bars are attributed to the same state. As described in Section
5, a transition to a state is only allowed if it is consistent withG�. A match was considered complete if the minimum of the
maximum memberships between each transition was greater than
0.4. The state transition plots for this experiment and the others
graphically depict the time-invariant but order-preserving nature
of the representation.

The representation thus provides a convenient way to specify
a gesture as an ordered sequence of states while also permitting
the combination of states shared by multiple gestures. By using
the sequence of states in the recognition task, nearby and possibly
overlapping states belonging to another gesture or another part of
the same do not confuse the matching process.
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Figure 4: (a) The membership plot for the prototype curves forGwave show for each of the configuration states how the states lie
along the prototype. (b) Combined membership (maximum) of all
states at each point along the prototype. The prototype for Gpoint
is similar.

6.2 Spatial Position and Orientation Sensor
Gestures

For the second experiment, we compute the representation with
somewhat sparse, higher dimensional data. We show its use in the
automatic, causal segmentation of two different gestures as if the
samples were collected in a real time recognition application.

An Ascension Technology Flock of Birds magnetic position and
orientation sensor was worn on the back of the hand and polled at
20Hz. For each sample, the position of the hand and the normal
vector out of the palm of the hand was recorded (six dimensions).
Ten large wave gestures (about 40 samples each) and ten pointing
gestures (about 70 samples each) were collected. To insure that
there were enough points available to compute the prototype curve,
each example was upsampled using Catmull-Rom [2] splines so
that each wave gesture is about 40 samples and each point gesture
about 70 samples.

The prototype curves for each gesture were computed sepa-
rately. The membership plots for the prototype wave is shown for
each state in Figure 4. The gesture sequence Gwave is found
by analyzing the combined membership function (Figure 4b):Gwave = hs1s2s3s4s3s2s1i. Similarly, Gpoint (not shown) is
defined by hs5s6s7s8s7s6s5i. Note how both the sequences and
the plots capture the similarity between the initiation and retraction
phases of the gesture.

The state transition and membership plots as calculated by the
dynamic programming algorithm are shown for all the example
wave gestures and point gestures in Figure 5. Because the exam-
ple gestures started at slightly different spatial positions, it was
necessary to ignore the first and last states in the calculation to
obtain good matches. This situation can also occur, for example,
due to gesture co-articulation effects that were not observed during
training.

A stream of samples consisting of an alternating sequence of
all the example wave and point gestures was causally segmented
to find all wave and point gestures. For a matching threshold of� = 0:5, all the examples were correctly segmented (Figure 6).

Even with sparse and high dimensional data, the representation
is capable of determining segmentation. Additionally, the repre-
sentation provides a useful way to visualize the tracking process
in a high dimensional configuration space.

6.3 Imagespace Gestures
As a final experiment, we consider a digitized image sequence
of a waving hand (Figure 7). Given a set of smoothly varying
measurements taken from the images and a few hand-segmented
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Figure 3: The state transition and membership plots for the testing examples for G� (a) and G� (b). The state transitions are marked
by vertical bars. The transitions are calculated to maximize the average membership while still giving an interpretation that is complete
with respect to G� and G� . No complete and consistent interpretation could be found for the fourth example of G� .
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Figure 5: The state transition and membership plots for the testing examples for Gwave (a) and Gpoint (b). The state transitions are
marked by vertical bars.
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Figure 6: The causal segmentation of the stream of position
and orientation data, for the wave gesture (top) and point gesture
(bottom). A high value indicates the detection of a single complete
and consistentgesture. All examplesof both gesture were detected
in this test.

example waves, the goal is to automatically segment the sequence
to recover the remaining waves. This example shows how the
measurements do not require a direct physical or geometric inter-
pretation, but should vary smoothly in a meaningful and regular
way.

Each frame of the sequence is point in a 4800-dimensional
space of pixel values, or imagespace. If the motion is smooth and
the images are smooth, then the sequence will trace a smooth path
in imagespace. Rather than approximate trajectories in the 4800-
dimensional space, we instead approximate the trajectories of the
coefficients of projection onto the first few eigenvectors computed
from a part of the sequence.

The first five example waves were used in training. The three
eigenvectors with the largest eigenvalues were computed by the
Karhunen-Loeve Transform (as in [15, 9]) of the training frames,
treating each frame as a column of pixel values. The first three
eigenvectors accounted for 71% of the variance of the pixel inten-
sity values of the training frames.

The training frames were then projected onto the eigenvectors
to give the smooth trajectories shown in Figure 8. The mem-
bership along the prototype curve (h = 0.4) computed from the
projection trajectories is shown in Figure 9. The recovered state
sequenceGwave = hs1s4s3s2s3s4i again shows the periodicity of
the motion. Figure 10 shows the state transitions and membership
values for ten other examples projected onto the same eigenvec-
tors. Again, the first and last states were ignored in the matching
process due to variations in the exact beginning and ending of the
motion. Lastly, Figure 11 shows the automatic causal segmenta-
tion of the whole image sequencewas computed. Of the 32 waves
in the sequence, all but one (the same incomplete example above)
were correctly segmented.

This example demonstrates how the representation may be used
in a broad range of tracking and segmentation tasks; namely, those
in which smoothly varying and meaningful measurements can be
collected from the example gestures.

7 Conclusion
A novel technique for computing a representation for gesture that
is time-invariant but order-preserving has been presented. The
technique proceeds by computing a prototype gesture of a given
set of example gestures. The prototype preserves the temporal
ordering of the samples along each gesture, but lies in a measure-
ment space without time. The prototype offers a convenient arc
length parameterization of the data points, which is then used to
calculate a sequence of states along the prototype. The shape of
the states is calculated to capture the variance of the training ges-
tures. A gesture is then defined as an ordered sequence of states
along the prototype.
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Figure 8: Each of the axes e1, e2, and e3 represents the projection
onto each of the three eigenvectors. The image sequences for the
five training examples project to the smooth trajectories shown
here. A circle represents the end of one example and the start of
the next. The trajectory plots show the coherence of the examples
as a group, as well as the periodicity of the movement.
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Figure 9: The membership along the prototype curve for each
state is shown in the top four plots. The bottom plot shows the
combined membership of all states along the prototype.
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Figure 7: Each row of images depicts a complete wave sequence taken from the larger image sequence of 830 frames, 30 fps, 60 by 80
pixels each. Only 5 frames of each sequence is presented. The variation in appearance between each example (along columns) is typical
of the entire sequence.
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Figure 11: The stream recognition process results in a segmentation of the entire video sequence. A high value indicates a complete
and consistent gesture. All but one of the 32 examples of the wave gesture are correctly identified.
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Figure 10: The state transition and membership plots for testing
examples 16 through 25, taken from the image sequence of 32
examples. The state transitions are marked by vertical bars. The
fifth example was deemed incomplete. On most of the successfully
tracked examples, the dynamic programming algorithm chooses
to make an immediate transition to the second state; this is caused
by an overly high degree of overlap between states, controlled by�a.

A technique based on dynamic programming uses the repre-
sentation to compute a match score for new examples of the ges-
ture. A new movement matches the gesture if it has high average
combined membership for the states in the gesture, and it passes
through all the gestures in the sequence (it is complete). This
recognition technique can be used to perform a causal segmenta-
tion of a stream of new samples. Because the particular form of
the dynamic programming algorithm we use can be implemented
to run efficiently, the causal segmentation with the representation
could be useful in a real time gesture recognition application.

Lastly, three experiments were conducted, each taking data
from devices that are typical of gesture recognition applications.
The variety of inputs addressed demonstrates the general utility
of the technique. In fact, our intuition is that there are only a few
requirements on the measurements for the technique to be useful;
we would like to make these requirements more explicit.

The representation of a gesture as a sequence of predefined
states along a prototype gesture is a convenient symbolic de-
scription, where each state is a symbol. In one experiment we
demonstrated how two gestures can share states in their defining
sequences. This description may also be useful in composing new
gestures from previously defined ones, in detecting and allowing
for periodicity in gesture, and in computing groups of states that
are atomic with respect to a number of gestures. In short, the sym-
bolic description permits a level of “understanding”of gesture that
we have not explored.

There seems to be little consensus in the literature on a useful
definition of “gesture”. Part of the problem in arriving at a concise
notion of gesture is the broad applicability of gesture recognition,
and the difficulty in reasoning about gesture without respect to a
particular domain (e.g., hand gestures). The development of the
configuration state technique presented is an attempt to formalize
the notion of gesture without limiting its applicability to a partic-
ular domain. That is, we wish to find what distinguishes gesture
from the larger background of all motion, and incorporate that
knowledge into a representation.
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A Computation of time collapsed prototype
curve

For each trajectory Ti(t), we have a T̂i(t) = Ti( ts), where s is
a scalar that maps the time parameterization of Ti(t) and T̂i(t).
The time course of all example trajectories are first normalized
to the same time interval [0; s]. The smooth approximation of
the time-normalized sample points gives a rough starting point in
determining which of the sample points correspond to a point on
the prototype. These correspondencescan be refined by iteratively
recomputing the approximation while successively reducing the
time scale s. If the prototype curve is not allowed to change
drastically from one iteration to the next, a temporally coherent
prototype curve in the original configuration space will result.

To compute the prototype curve P (�), we use Hastie and Stuet-
zle’s “principal curves” [6]. Their technique results in a smooth
curve which minimizes the sum of perpendicular distances of each
sample to the nearest point on the curve. The arc length along the
prototype of the nearest point is a useful way to parameterize the
samples independently of the time of each sample. That is, for
each sample xi there is a lambda which minimizes the distance
to P (�): �(xi) =arg min� kP (�) � xik. An example is shown in

Figure 12.
The algorithm for finding principal curves is iterative and begins

by computing the line along the first principal component of the
samples. Each data point is then projected to its nearest point
on the curve and the arc length of each projected point is saved.
All the points that project to the same arc length along the curve
are then averaged in space. These average points define the new

curve. This projection and averaging iteration proceeds until the
change in approximation error is small.

In practice, only one sample point will project to a particular arc
length along the curve. Therefore, a number of points that project
to approximately equal arc lengths are averaged. The approach
suggested by Hastie and Stuetzle and used here is to compute
a weighted least squares line fit of the nearby points, where the
weights are derived from a smooth, symmetric and decreasing
kernel centered about the target arc length. The weight wfor a
sample xi and curve point p = P (�) is given byw = �

1:0 � ( j�(p)� �(xi)jh )3

�3

where h controls the width of the kernel.
The new location of the curve point is then the point on the fitted

line that has the same arc length. For efficiency, if the least squares
solution involves many points, a fixed number of the points may
be selected randomly to obtain a reliable fit.

By starting with a time scaling s which renders the trajectories
slowly varying in the configuration space parameters as a func-
tion of arc length, the principal curve algorithm computes a curve
which is consistent with the temporal order of the trajectory sam-
ples. Then the time scale s can be reduced somewhat and the
algorithm run again, starting with the previous curve. In the style
of a continuation method, this process of computing the curve and
rescaling time repeats until the time scale is zero, and the curve
is in the original configuration space. To ensure that points along
the prototype do not coincide nor spread too far from one another
as the curve assumes its final shape, the principal curve is resam-
pled between time scaling iterations so that the distance between
adjacent points is constant.

The inductive assumption in the continuation method is that
the curve found in the previous iteration is consistent with the
temporal order of the trajectory samples. This assumption is
maintained in the current iteration by a modification of the local
averaging procedure in the principal curves algorithm. When the
arc length of each point projected on the curve is computed, its
value is checked against the point’s arc length computed in the
previous iteration. If the new arc length is drastically different
from the previously computed arc length ( j�t(xi)��t�1(xi)j >threshold), it must be the case that by reducing the time scale
some other part of the curve is now closer to the sample point. This
sample point to prototype arc length correspondence is temporally
inconsistent with the previous iteration, and should be rejected.
The next closest point on the curve P (�) is found and checked.
This process repeats until a temporally consistent projection of the
data point is found.

By repeatedly applying the principal curve algorithm and col-
lapsing time, a temporally consistent prototype P (�) is found in
configuration space. Additionally, the arc length associated with
each projected point, �(xi), is a useful time-invariant but order-
preserving parameterization of the samples. An example of this
time-collapsing process is shown in Figure 13.
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Figure 13: The principal curve is tracked while time is slowly
collapsed in this series: (a) s = 8, (b) s = 5, (c) s = 0. In each
of these graphs, the vertical axis is time. (d) shows the final,
temporally consistent curve.
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