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Semiconductor-superconductor heterostructures represent a promising platform for the detection
of Majorana zero modes and subsequently the processing of quantum information using their exotic
non-Abelian statistics. Theoretical modeling of such low-dimensional heterostructures is generally
based on phenomenological effective models. However, a more microscopic understanding of the
band structure and, especially, of the spin-orbit coupling of electrons in these devices is important
for optimizing their parameters for applications in quantum computing. In this paper, we approach
this problem by first obtaining a highly accurate effective tight-binding model of bulk InSb from ab
initio calculations. This model is symmetrized and correctly reproduces both the band structure
and the wavefunction character. It is then used to simulate slabs of InSb in external electric fields.
The results of this simulation are used to determine a growth direction for InSb nanowires that
optimizes the conditions for the experimental realization of Majorana zero modes.

I. INTRODUCTION

The search for Majorana zero modes (MZMs) in solid-
state systems attracted a lot of interest [1–4] due to the
theoretical prediction that defects binding MZMs mani-
fest non-Abelian quantum statistics [5–8], and, as such,
would open up the possibility to realize topological quan-
tum computing [9–13]. Topological quantum computing
schemes use topological degrees of freedom to encode in-
formation. Since topological degrees of freedom are in-
herently non-local, they do not couple to local operations.
Therefore, the error rates in topological quantum com-
puting schemes are exponentially suppressed with dis-
tance between anyons (i.e. MZMs) and inverse tempera-
ture, providing an enormous advantage over conventional
quantum computing platforms.

In condensed matter physics, MZMs were first
discussed in the context of fractional quantum
Hall effect [14] and topological p-wave superconduc-
tors/superfluids [7, 15–18]. Later on, it was shown that
topological superconductivity can be realized in various
heterostructures [19–25]. In particular, semiconductor-
superconductor heterostructures are very promising, and
arguably the simplest, experimental systems for realiz-
ing MZMs. Indeed, the recipe for engineering topolog-
ical superconductivity in semiconductor-superconductor
heterostructures involves three main ingredients: spin-
orbit coupling (SOC), Zeeman splitting, and proximity
induced s-wave pairing [20–23]. The appropriate combi-
nation of these ingredients leads to an effective Hamilto-
nian equivalent to that of a spinless p-wave superconduc-
tor.

Theoretical predictions for realizing topological super-
conductivity in semiconductor nanowires coupled to con-
ventional s-wave superconductors [22, 23] have sparked
significant experimental activity [24, 26–33]. The first
tunneling spectroscopy experiment aiming to detect
MZMs was performed in Delft with InSb zincblende

nanowires that were proximity-coupled to NbTiN [24].
Later on, the observation of zero-bias peaks in finite mag-
netic field consistent with the theoretical predictions [34–
44] was reported by many other experimental groups [27–
30]. Device fabrication process used in Refs. [24, 27–
30] involved self-assembled nanowires as the basis for the
semiconducting part, contacted with an s-wave supercon-
ductor. It was later found that a better approach is to
use molecular beam epitaxy to grow core-shell nanowires
with a semiconducting core and a metallic shell, which
was successfully implemented in InAs-Al heterostruc-
tures [45, 46].

Realization of MZMs in both contact and epitaxially
proximitized semiconducting wires depends crucially on
the strength of SOC [22, 23]. In particular, of major im-
portance for zincblende (ZB) and wurtzite wires in cur-
rent experimental setups is the size of the spin splitting
∆E in the first conduction band near the band minimum
at the Brillouin zone (BZ) center (see Fig. 1(a)). It is
thus desirable to optimize the heterostructures and pre-
dict the growth conditions for which this spin splitting is
maximized.

In this paper we address this optimization problem us-
ing the example of ZB InSb as a prototypical material for
MZM realization. Although the ZB structure lacks inver-
sion symmetry, the spin splitting of the first conduction
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Figure 1. (a) Spin splitting ∆E. (b) A slab of InSb put in
external electric field, orthogonal to the slab.
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band in the bulk material is only cubic in momentum
k, resulting in negligible ∆E in the bulk [47]. Thus, it
is necessary to generate linear in momentum spin split-
ting terms in the Hamiltonian. Such terms arise in low-
dimensional structures [48] due to bulk inversion asym-
metry (BIA) that gives linear in k contributions to spin
splittings as a result of quantum confinement, and struc-
tural inversion asymmetry (SIA) that is associated with
the effective electric field that arises due to the macro-
scopic asymmetry of the structure [49]. This effective
field can be due to the changes in the crystal potential,
or a real macroscopic electric field, applied, for example
by gating.

In stand-alone slabs or quantum wells of InSb both BIA
and SIA are generally present. The two contributions can
combine constructively or destructively depending on the
direction of the slab [50, 51], as was shown in photogal-
vanic experiments for (001) (that is, orthogonal to the
[001] direction) ZB GaAs quantum wells [52, 53]. In wires
the BIA and SIA terms, being hard to distinguish, com-
bine into a single effective term. It is convenient to think
of the wire as cut out of a slab. In this case the full ef-
fective linear in k splitting becomes a combination of the
term that is present in the slab and an additional term
arising from confinement of a 2D system to 1D.

Various studies of InSb band structure were carried out
since the late fifties [54]. Most of these studies were lim-
ited to symmetry-dictated k · p expansions [55] around
the center of the BZ [56, 57]. These models are tai-
lored to match the experimentally known features of the
band structure exactly, however they are limited to a
close vicinity of a special point in k-space. The next
step of approximation is provided by the tight-binding
(TB) approximation, which is capable of describing se-
lected bands throughout the BZ. A set of models with
short range hoppings, called empirical TB (ETB) mod-
els, which are based on symmetry alone, with the hopping
parameters matched to reproduce experimental data, is
often used in the field of semiconductors [58–63]. These
models have a drawback of not reproducing the wave-
function correctly.

Since the correct representation of the electronic wave-
function is required when aiming to simulate MZMs in a
realistic setup, the TB model in the current work is de-
rived from an ab initio calculation. This model, having
long-range hoppings, accurately reproduces the energy
spectrum of InSb and by derivation is matched to the
wavefunction obtained in the ab initio calculation. To
achieve the required accuracy to reliably extract subtle
effects such as spin splittings, our ab initio simulations
are performed using a modification of the HSE06 hybrid
scheme [64–66], and additional symmetrization of the re-
sultant TB model is done, allowing for a band struc-
ture description on a sub-meV scale. This method of
constructing TB models can be applied generally even
for more complicated materials, for which ETBs are not
readily available, and can be used to compute SOC ef-
fects, as illustrated below. It can also be used for a high-

Figure 2. Crystal structure of InSb. The conventional FCC
unit cell is shown with In in blue and Sb in brown.

throughput search of materials that can be more suitable
for realizing MZMs.

To optimize spin splittings, the obtained TB model
is used to simulate different stand-alone slabs of InSb.
We find that in the absence of surface relaxation confine-
ment alone results in spin splittings that vanish quickly
with increasing slab size. External electric field is fur-
ther applied orthogonal to the slab (see Fig. 1(b)), and
the splitting ∆E is studied in various directions in 2D
momentum space. Arguments are presented that allow
us to draw conclusions about optimal directions for the
wire growth to maximize ∆E. While the actual numbers
provided for the splittings will change depending on the
experimental setup, the dependence of susceptibility of
spin-splittings to the external fields on the wire growth
direction is expected to be a universal property [67].

The paper is organized as follows: In Sec. II we present
our first-principles simulations, followed in Sec. III by the
derivation of TB models. In Sec. IV, we present results
obtained for spin splittings in finite systems. Conclusions
are presented in Sec. V.

II. FIRST-PRINCIPLES CALCULATIONS

The crystal structure of InSb is ZB, which is equivalent
to face-centered cubic (FCC) with one formula unit per
primitive unit cell. The conventional unit cell consists of
four primitive unit cells as shown in Fig. 2. The space
group is Td (#216).

To obtain the TB model of InSb, we carried out first-
principles calculations using hybrid functionals. It is well
known that simpler approximations, like the local density
approximation (LDA) or the generalized gradient approx-
imation (GGA), lead to a metallic band structure that
results from incorrect band ordering at the Γ-point [68].
Hybrid functionals [69] and GW [70, 71] can be used to
fix the band ordering [72–74], and both schemes are gen-
erally accepted to be very reliable for computing band
gaps of semiconductors nowadays.

In particular, the HSE03/HSE06 hybrid function-
als [64–66] proved to be successful in computing band
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structures of ZB semiconductors with SOC taken into
account [72]. These hybrid functionals are constructed
by replacing a quarter of the density functional contri-
bution (in our case the Perdew-Burke-Ernzerhof (PBE)
functional [75]) short-range exchange with its Hartree-
Fock counterpart, leaving the long-range part unchanged.
In the most common HSE06 scheme, the separation into
long- and short-range parts is defined by the screening
parameter µ = 0.2 Å−1. In this work, however, we use
the value µ = 0.23 Å−1, which was reported in Ref. 72 to
fit the band gap of InSb to its experimental value. That
work reported an underestimation by roughly 15% of the
Luttinger parameters obtained from such a calculation
compared to experimentally reported values. Here, how-
ever, we aim at constructing tight-binding models and
the hybrid calculation is an optimal starting point for
this purpose.

Eg ∆SO EΓc
7
− EΓv

8
EΓc

8
− EΓv

8

6× 6× 6 0.241 0.744 3.077 3.488
8× 8× 8 0.236 0.746 3.070 3.481
Experiment [76] 0.235 0.81 [77] 3.141 3.533

Table I. Comparison of our first-principles calculations to
experiments. Results for two mesh-densities (6×6×6 and
8×8×8) are given to illustrate convergence. The labels c and
v refer to conduction and valence bands. All values are given
in units of eV.

First-principles calculations were performed for ex-
perimental lattice constants of Ref. 78 using projector
augmented-wave (PAW) basis sets [79, 80] implemented
within the VASP code [81, 82]. The energy cutoff for
the PAW potentials was taken to be 280 eV. Gaussian
smearing of 0.05 eV width and a Γ-centered 6 × 6 × 6
k-point mesh were used to perform BZ integrations. A
finer 8 × 8 × 8 mesh was used to check the convergence
of our calculations, and we found that it resulted in only
a small ≈ 2% (see Tab. I for actual numbers) decrease of
the band gap, leading to an even better match with the
experimental value. Overall, we see that the 6 × 6 × 6
results are sufficiently converged and, given the signifi-
cant increase in computational cost for finer meshes, we
report results for this mesh throughout this paper.

The bonding p-states and the antibonding s- and p-
states, forming the topmost valence and lowest conduc-
tion bands, are of most interest to us for the present
purpose. Ignoring spin-orbit coupling, the s-states at
the Γ point transform according to a one-dimensional
representation Γ1 of the symmetry group Td, while the
p-states transform as a three-dimensional representation
Γ15, giving rise to the three-fold degenerate multiplets
Γv

15 and Γc
15 of valence and conduction states. When

SOC is switched on, the bands at Γ are classified ac-
cording to double group representations. The s-states
now form a Γ6 representation that roughly corresponds
to the |S, j = 1/2, jz = ±1/2〉 states. The p-states, which
were 6-fold (with spin) degenerate without SOC, now

2

Figure 1. Band structure of InSb with SOC. Fermi level is set
at 0 eV, labels of irreducible representations are also shown.

Figure 3. Band structure of InSb with SOC. The Fermi level
is set at 0eV and labels of irreducible representations at the Γ
point are also shown. Black solid lines are the ab initio band
structure. Red dashed lines are the band structure obtained
from a tight-binding model of Sec. III.

split into a four-dimensional representation Γv,c
8 , which

accommodates the heavy (|P, j = 3/2, jz = ±3/2〉)
and light (|P, j = 3/2, jz = ±1/2〉) holes, and a two-
dimensional representation Γv,c

7 referred to as the split-off
band (|P, j = 1/2, jz = ±1/2〉). The band structure with
SOC taken into account is shown in Fig. 3, and exhibits
the correct band ordering in the BZ center. The results
are in excellent agreement with experiments as shown in
Table I.

The bulk band gap Eg is only within ≈ 2.5% of the
experimental value [76]. Similar agreement is seen for
other experimentally known energy differences, with the
only exception being the spin-orbit splitting of hole states
∆SO = EΓv

8
−EΓv

7
, which is only within ≈ 8% of its gen-

erally accepted value [77]. We noticed that by decreasing
the mixing parameter µ, we can obtain better agreement
for ∆SO, but at the price of increasing the value of the
fundamental gap Eg.

The effective mass that we obtain from this calcula-
tion is m∗ ≈ 0.014me, where me is the electron mass.
This value is within the range of reported experimental
values [77] that is from 0.012me to 0.015me, and agrees
perfectly with the generally accepted value of 0.0135me,
proving the reliability of our first-principles calculation.
In the following we will use this calculation to construct
TB models to study finite-size effects on the spin split-
tings of the first conduction band Γ6.

III. TIGHT-BINDING MODELS

Ab initio simulations with hybrid functionals are com-
putationally very demanding, which renders the direct ab
initio simulation of wires and large heterostructures un-
feasible. To perform such simulations one thus needs to
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employ tight-binding (TB) models, which we introduce
in this section. Being self-consistent, first-principles cal-
culations generally contain much more information than
tight-binding models. However, the tight-binding ap-
proximation is sufficient for many purposes. Aiming to
describe spin splittings, that is, band structure effects,
it is reasonable to assume that a good TB model will
reproduce them correctly.

We first discuss the existing TB schemes, one based on
fitting to experimental data that is widely used in semi-
conductor physics, and another applied more commonly
in materials modeling based on ab initio calculations. We
then introduce a scheme for constructing TB models that
is a hybrid of these two methods, where we aim to de-
scribe both the spectrum and the wavefunctions of the
material reliably. A TB model for InSb obtained with
this hybrid scheme is introduced, which will form the ba-
sis for obtaining the results of subsequent sections.

A. Empirical tight-binding models

Tight-binding modeling of semiconductors is usu-
ally done using ETB models, where the symmetry-
constrained parameters are fitted to experimental data.
A variety of parametrization schemes exists [58–62] and
it is straightforward to generate new ETB models by,
for example, supplementing the experimental data with
the results of first-principles calculations. In the absence
of experimental data, the fitting is done solely based on
first-principles calculations.

For ZB binary materials several standard ETB schemes
have been used. The so-called sp3s∗ model [60] contains
cation and anion s- and p-states, plus one additional s-
state. This model fits the band structure around the
Γ-point reasonably well, giving a good description of the
hole bands. The electronic bands tend to have too large
effective masses, and away from the Γ-point the bands
tend to flatten out. To avoid these problems, the sp3d5s∗

scheme [61] can be used, which includes d-states and al-
lows for a better description of both electron and hole
bands throughout the BZ.

ETB models are simple since they contain only local
and nearest neighbor hoppings. This makes them ideally
suited to simulate the effects of disorder [83–85], and they
are the models of choice for many semiconductor simula-
tions. However, fitting the band structure well is not the
only requirement for a TB model. In particular, a good
TB should reproduce not only the energy spectrum, but
also other observables correctly. Since the calculation of
observables is done using the Bloch eigenstates of the TB
model, a natural requirement for the TB model is to rep-
resent the main features of the wavefunction of electrons
in the material correctly.

Since ETB models are based on fitting the spectrum
only, and since there are many different fits that will rea-
sonably reproduce the band structure but not the wave
function, ETB models do not necessarily satisfy this re-

quirement. Models that incorporate the correct character
of the electronic wave functions can however be derived
from ab initio simulations.

B. Tight-binding models based on Wannier
functions

Here we describe a method used to construct inter-
polated band structures and to extract tight-binding
parameters from ab initio calculations. This method
is based on the works of Refs. 86 and 87 and is im-
plemented numerically in the Wannier90 [88] software
package. Rooted in the construction of Wannier func-
tions (WFs) from the Bloch states obtained from first-
principles calculations, this method guarantees that the
resultant TB model has the correct wavefunction charac-
ter.

We briefly review the concept of maximally localized
WFs [86, 89], focusing on the extraction of TB parame-
ters. The problem is stated like this: given a band struc-
ture obtained by first-principles calculation, construct a
TB model that correctly describes the band structure
and wavefunction character for a set of bands that fall
within some chosen energy window, referred to as the
outer window.

At each k-point, a certain number Nk ≥ N of bands,
where N is the number of bands of the desired TB model,
falls into the outer window. The procedure of Ref. 87 is
initiated by a guess for the N orbitals (or some localized
states) gn(r) that dominate the character of these bands.
These N orbitals are then projected onto the Nk bands,
forming a set of of non-orthonormal states

|φnk〉 =

Nk∑
m=1

Amn|ψmk〉. (1)

where Amn(k) = 〈ψmk|gn〉 is an Nk ×N matrix.
If the set of orbitals was well-chosen, the matrix Smn =
〈φmk|φnk〉 is invertible and a new set of orthonormal
Bloch states can be obtained by Löwdin orthonormal-
ization

|ψ(0)
nk 〉 =

N∑
m=1

(
S−1/2

)
mn
|φmk〉. (2)

Using the lattice-periodic parts of these N states u(0)
nk =

e−ik·rψ
(0)
nk one further disentangles them by minimizing

the spread functional

F =
1

Nkp

∑
k,b

ωb

N∑
m=1

(
1−

N∑
n=1

|〈umk|unk+b〉|2
)

(3)

where Nkp is the number of k-points used for the dis-
cretization of the BZ. The set of vectors b with weights
ωb is used for finite difference discretization of deriva-
tives in k-space (see Ref. 87 for details). Minimization
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is done self-consistently on the whole k-mesh with re-
spect to possible choices of N representatives out of Nk

states [87].
In practice, one often wants to guarantee the presence

of some band character at certain k-points in the model.
For this reason a second (inner) energy window is chosen
within the outer window. This inner window contains
the features of interest and at each k-point encloses Mk

bands. In that case the above disentanglement procedure
is done for Nk −Mk bands only.

The minimization of the spread functional is most intu-
itive in 1D. The functional is obviously minimized when
at each consecutive k-point a set of N states is chosen to
maximize the overlap with the set of states from the pre-
vious k point. Thus, minimizing F leads to the smoothest
possible choice of N unk-functions to represent the states
of interest within the chosen energy window.

Once N Bloch states are disentangled from the rest
of the spectrum, there remains freedom to rotate these
states at each k-point by a unitary (gauge) transforma-
tion Uk(N) to obtain the smoothest possible Bloch states
that span the same Hilbert space, as the initial ones. The
smoother the Bloch states, the better localized WFs are
obtained after Fourier transforming these states. The
optimization is done by minimizing the total real space
spread of the WFs, producing so-called maximally local-
ized WFs [86]. While for trivial band topologies, these
WFs are exponentially localized [86], a non-trivial band
structure can present obstructions to obtaining exponen-
tially localized WFs [90, 91] and special care must be
taken to handle these cases.

After a set of smooth Bloch states, and hence, expo-
nentially localized WFs are obtained, the Hamiltonian
matrix is calculated at each k-point within the chosen
subspace of N states [87]. The TB Hamiltonian becomes

Hnm(R) = 〈wn(0)|H|wm(R)〉 (4)

where wn(R) is the WF obtained as a result of the above
procedure, located in the unit cell indexed by a lattice
vector R.

Unlike ETB, thus obtained TB models usually have
hoppings to distant neighbors, although their magnitude
decreases for well-localized WFs. Such models are used
extensively in condensed matter physics [89]. However,
they have a problem – the WFs do not necessarily have
the symmetry of the chemical orbitals, or of the ba-
sis functions of the corresponding irreducible representa-
tions, leading to small symmetry breaking, which results
in visible absence of symmetry-protected degeneracies in
the TB Hamiltonian.

Being small (typically of order of few tens of meV for
a good model), this symmetry breaking can be neglected
for many applications. But when dealing with subtle low
energy scale effects, like the spin splittings we study in
the present paper, the magnitude of the symmetry break-
ing is often larger than the effects we are after. For this
reason, additional symmetrization of the WFs is required.

C. Symmetric tight-binding models

The symmetry of the WFs in the above procedure al-
ready gets broken in the process of disentangling the
bands of interest from the rest of the spectrum. As a first
indication of this symmetry breaking the charge centers
of WFs

rn = 〈wn(0)|r̂|wm(0)〉 (5)

usually shift away from the positions of the orbitals that
are used for the initial projection. As a result, the Wan-
nier centers form a lattice that is different from the origi-
nal one, usually leading to breaking of lattice symmetries
in the resultant TB model.

Fixing the Wannier centers on the atomic sites im-
proves the symmetry in some cases, as was also men-
tioned in the independent work of Ref. 92, which sug-
gests to use Lagrange multipliers to enforce fixedWannier
charge center position in the minimization scheme. We
notice, however, that the centers shift even before maxi-
mal localization, and thus including such Lagrange mul-
tipliers can prevent the algorithm from finding optimally
localized Wannier orbitals in such cases. Moreover, fixing
the symmetric positions of the Wannier centers does not
guarantee that the resultant TB model becomes symmet-
ric.

Here we solve this problem by identifying an outer en-
ergy window for which the centers do not move as a result
of disentanglement (see Appendix A for details). This
choice of the window also works successfully for other
binary ZB semiconductors. To obtain better similarity
between the WFs and chemical orbitals the symmetry
of the hopping parameters should also be taken into ac-
count. While Lagrange multipliers can also be used to
force hopping terms that violate the symmetry to vanish,
we find that using our approach of appropriately tuning
the outer energy window remedies this problem as well.
In particular, the inter-orbital on-site matrix elements
that break the symmetry become small and the hoppings
within a unit cell are as expected for the orbitals in the
crystal field.

While the TB model used in this paper was obtained
by manipulations with energy windows, Lagrange mul-
tipliers can in principle be introduced when minimizing
the spread of the WFs not only to fix the centers of the
WFs, but also to force the hoppings that would vanish by
symmetry in the case of chemical orbitals, be zero. In-
cluding more and more distant neighbors will eventually
result in WFs that represent very good approximations
to chemical orbitals. It should be stressed that in order
to obtain better localization of the symmetric WFs it is
still necessary to find an energy window, in which the
symmetry conditions are not broken too strongly. Be-
sides, this approach can only work, provided the initial
energy window and projection capture the necessary or-
bital character throughout the BZ.

From this procedure we obtain TB models that have
two desired properties: they correctly reproduce the wave
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functions and are written in the basis that is close to that
of atomic orbitals. If such TB models are created based
on ab initio simulations separately for the bulk materials,
and for interfaces/surfaces using superlattices, then by
gluing them together one can model realistic devices and
heterostructures.

Another benefit of this type of models is that they can
be constructed without SOC taken into account, which
in many cases saves an enormous amount of computa-
tional effort. If the resultant WFs are orbital-like, being
well localized, it is reasonable to approximate the effect
of SOC as an on-site term, constrained by symmetry.
The form of the local SOC for p-, d- and f -orbitals is
known [85, 93, 94], and each of them has only one pa-
rameter that can be fitted to either experimental or first-
principles data. This fitting is in the flavor of ETB but
has much less free parameters and starts with the cor-
rect wave function behavior. Finally, having the correct
wave function behavior, these models are ideally suited
for calculations of g-factors and finite-size induced spin
splittings, being potentially very useful for a wide range
of applications.

The TB model for InSb obtained according to the
above procedure is detailed in Appendix A. The effec-
tive mass obtained with this model is m∗ ≈ 0.015me,
changing slightly from the its first principles value. For
the purposes of the present paper we used only s- and
p-states to create the TB model, and implemented local
approximation (see Appendix A) to the SOC. In ETB
models this approximation in sp3s∗ models is known to
miss small linear in k splittings in the hole bands [95]
due to omission of the d-states, but the description of
the electron bands that are of interest in this work is still
reliable.

IV. SPIN-ORBIT SPLITTINGS

In this section we discuss induced spin splittings in
InSb thin films. For this purpose slabs of various thick-
nesses and orientations are considered. This allows for
the evaluation of the finite size effects on the spin splitting
(Sec. IVB). More importantly, the discussion of the split-
tings induced by applying an external electric field in the
direction, orthogonal to the slab is presented (Sec. IVC).
This allows to identify both BIA and SIA contributions
to the spin splittings in the slab geometry and fit them
to the analytic symmetry-based models. In a wire both
these contributions combine to give the effective splitting

∆E =
m∗α∗2

2~2
(6)

where α∗ is an effective 1D Rashba parameter. Wire
directions, for which this splitting and its susceptibility to
the external electric field is maximized are also identified.

In the seminal work of Dresselhaus [47] it was shown
that no linear in k spin splitting terms appear for the
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Figure 4. Bulk band structure of InSb along the (b) [210]-
direction and (b) [110]-direction. The largest spin splitting of
the conduction band occurs along the [210]-direction.

electronic band in the vicinity of the BZ center. The
splitting is cubic in k and the effective Hamiltonian for
the electronic band can be written as [53]

HZB(k) =
~2k2

2m∗ +HS (7)

where

HS = γ
[
kx(k2

y − k2
z)σx + ky(k2

z − k2
y)σy + kz(k2

x − k2
y)σz

]
(8)

and γ = 760 eV/Å−3 is the generally accepted value [48].
This expression predicts the largest splitting for the bulk
conduction band to appear in the [110] direction. How-
ever, this conclusion holds only for small momenta. For
larger k the largest splitting is found to occur in the [210]
direction, as illustrated in Fig. 4. Similar findings were
previously reported in Ref. 96 for GaAs and GaSb.

A. Method

Inclusion of an electric field into the bulk calculation
is a tedious task [97], since the electrostatic potential
does not have the lattice periodicity and the translation
invariance is broken along the field direction. The con-
sideration is significantly simplified in the case of a slab
calculation, when the electric field is applied orthogonal
to the slab, as illustrated in Fig. 1(b). The two in-plane
momenta are still good quantum numbers and the field-
induced spin splittings are thus most easily accessible in
a slab calculation.

Since ab initio simulations using hybrid functionals are
limited to very small systems, TB models of Section III
need to be used to determine the spin splittings in the
presence of an electric field. We consider two different
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slabs: (001) and (110) ones, which are perpendicular to
the [001] and [110] directions correspondingly. To double
check our conclusions for the (110)-slab, we also consid-
ered a symmetrically equivalent slab (11̄0), orthogonal to
the [11̄0]-direction.

The effect of electrostatic potential is approximated by
a contribution to the on-site potential. This approxima-
tion, generally accepted in the TB modeling [98], requires
some justification here. Unlike the usual TB, where the
orbitals are assumed to be very strongly localized, our
TB model is based on the WFs that have a finite spread.
However, as clarified in the Appendix A, these WFs are
also well localized and their spread is smaller than inter-
atomic distance, so that the local approximation for the
electrostatic potential still holds.

B. Finite size splittings

The surfaces of the slabs cause complications that need
to be properly dealt with. Real material surfaces and
interfaces can be very complex due to lattice reconstruc-
tion, local strains and disorder. These effects are not cap-
tured by the present TB model. While some attempts
to model such effects from-first-principles can be done
for GaAs and AlAs, where GGA still produces the cor-
rect band ordering, the use of hybrid functionals needed
for such a calculation for InSb is extremely demanding
computationally. For the purpose of this paper we are,
however, not interested in a microscopic description of
surfaces and interfaces but rather in bulk effects at a safe
distance from any surface or interface. Changes of the
crystal structure at the surface/interface create an effec-
tive intrinsic (electric) field within the bulk of the slab,
and the magnitude of this field depends on the design
of the heterostructure. Also, in the case of epitaxially
grown devices [45] the effects of interface lattice recon-
struction and interface disorder are minimized, so that
the intrinsic field strength is solely determined by the SIA
of the heterostructure and its material composition. In
what follows we analyze structures that are much thicker
than the region potentially influenced by the changes in
the lattice structure at the surface. This is verified by
checking that the wavefunction of the lowest conduction
band is localized in the bulk of the material of interest,
quickly decaying towards the surface. For this reason
in our study it is sufficient to only study the effects of
intrinsic electric fields on the spin-splittings of the first
conduction band.

We thus approximate the surface by truncating all hop-
pings into the vacuum region. The truncation, however,
generates in-gap surface states due to unsaturated (dan-
gling) covalent bonds for certain surface orientations.
Since InSb is not a topological insulator, all in-gap sur-
face states can be avoided by local changes to the Hamil-
tonian at the surface without much influence on the bulk
wavefunction that is of primary interest. In a real ma-
terial the dangling bond states are usually eliminated

by either surface reconstruction or by saturation with
adatoms. The effect of atoms saturating the dangling
bond can be introduced in a TB model by passivation.
This passivation of the dangling bonds can be done in
several ways [99].

For the slab orientations considered in this paper, dan-
gling bonds are most visible at the (001)-surface, as illus-
trated in Fig. 5 for a 50 unit cells thick slab. Changing
the on-site energy of s and px orbitals of In atoms on the
bottom surface by ε(In)

s = ε
(In)
px = 5 eV, and the energy

of py and pz orbitals of Sb atoms on the top surface by
ε
(Sb)
py = ε

(Sb)
pz = −5 eV removes the dangling bond states

from the gap region with negligible influence on the rest
of the spectrum. The choice of these orbitals for passi-
vation is dictated by their dominating spectral weight in
the dangling bond surface states. For the (110) and (11̄0)
surfaces, the effect of the dangling bonds is not as drastic.
Passivation was done for the (110) surface by changing
the on-site energy by ε

(In)
s = ε

(In)
py = ε

(In)
pz = 1.67 eV

and ε
(Sb)
py = ε

(Sb)
pz = −2.5 eV at both surfaces. Simi-

larly, the on-site energy on both surfaces was changed by
ε
(In)
s = 5 eV and ε(Sb)

px = ε
(Sb)
py = ε

(Sb)
pz = −1.67 eV for the

(11̄0) slab.
The illustration of Fig. 6 shows the finite-size-induced

spin splitting with the above described passivations. The
surface-induced effect clearly disappears with growing
slab widths. Since the wires used in Majorana experi-
ments are typically thick (of order 50− 100nm [24]), we
neglect this splitting in the following.

C. Field-induced spin-orbit splitting

Applying the electric field to TB-modeled slab allows
one to scan the band structure in momentum directions
perpendicular to the field. The calculations were done
for the slabs of 35 unit cell thickness ( ≈ 115 Å) for
the (001) slab, and of 50 unit cells (≈ 113Å) for the
(110) and (11̄0) slabs. As discussed above, the finite size
induced SO splitting becomes negligibly small at these
slab thicknesses and, therefore, we concentrate on the
electric field induced contribution, subtracting the finite-
size induced contribution. That is, ∆E = ∆EU −∆E0,
where ∆EU is the full splitting seen in the slab subject to
the potential difference U , and ∆E0 is the finite-size (zero
external field) contribution. We note that for each slab
direction the application of an external potential leads
to a decrease of the band gap, and a critical value of U
exists, for which the band gap closes.

We induce a electric field in the nanostructure by ap-
plying a potential difference of 0.2 or 0.4 V between the
upper and lower surface of the slab. The effects of screen-
ing are not taken into account here, and the electric field
inside the slab is simply given by the voltage difference
divided by the thickness d. The corresponding electric
field strengths |E| are 1.75 mV/Å and 3.5 mV/Å for the
three directions. We now proceed to the detailed analysis
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Figure 5. Band structure of a ≈162Å-thick [001]-slab of InSb.
Color scheme describes the contribution of the atoms from
the top (red) and bottom (green) surfaces to the weight of
the subband wavefunction. Top panel: without passivation.
Bottom panel: with passivation. X refers to the point (π, 0)
and M to (π, π) of the 2D BZ of the slab.

of the numerical results.

1. (001)-slab

The crystal structure of this slab has the point group
symmetry D2d. When the electric field is added orthogo-
nal to the slab the symmetry reduces to C2v, which con-
sists of two mirror symmetries and a C2-rotation, which
is the product of the mirrors. Taking the x (y) axis in
the slab to be along the [100] ([010]) direction, as illus-
trated in Fig. 1(a), the mirror symmetries are the ones
taking M1 : (x, y)→ (y, x) and M2 : (x, y)→ (−y,−x).
In addition to point group symmetries, time-reversal
should be taken into account. The spin components
si = (~/2)σi transform according to C2 : (sx, sy, sz) →
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Figure 6. Scaling of surface-induced (no external electric field)
part of the spin splittings ∆E0 along the kx||[100] direction
with slab thickness. (a) [001]-slab. (b) [110]-slab. (c) [11̄0]-
slab. In each case, the zero-field contribution decays with
increasing number of layers.

(−sx,−sy, sz), M1 : (sx, sy, sz) → (−sy,−sx, sz) and
M2 : (sx, sy, sz) → (sy, sx, sz). Taking into account
that spin flips under time-reversal, and that momentum k
transforms as a vector, the linear in k spin spitting part of
the Hamiltonian can be uniquely determined. The resul-
tant Hamiltonian for the conduction band in the vicinity
of the Γ point to the second order in k is [53]

H(001) =
~2(k2

x + k2
y)

2m∗ +α(kxσy−kyσx)+β(kyσy−kxσx)

(9)
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where kx and ky correspond to the 〈10〉 and 〈01〉 direc-
tions in the reciprocal space of the slab. The first spin
splitting term, called the Rashba term [49], describes
SIA. The second spin splitting term is the Dresselhaus
term describing BIA [48, 53]. The Rashba coefficient α
can be manipulated by electric fields [52], while the coef-
ficient β, according to the Eq. 8 is (assuming only linear
in k terms in the spin splitting) β = γ〈k2

z〉, where the
average is taken with respect to the full 3-dimensional
lowest electronic subband wavefunction.

The dispersion is given by

ε± =
~2(k2

x + k2
y)

2m∗ ±
√

(αky + βkx)2 + (αkx + βky)2

(10)
Setting kx = k cosφ and ky = k sinφ the analytic expres-
sion for the spin splitting can be obtained

∆E =
m∗

2~2
(α2 + β2 + 2αβ sin 2θ) (11)

This expression can be fitted to the results of the TB cal-
culation illustrated in Fig. 7 to give numerical estimates
for α and β. For this estimation we subtract the sur-
face contribution ∆E0 to ∆E, since passivation used to
saturate the surface dangling bonds is not a good approx-
imation for the realistic surface effects. The results are
summarized in Tab. II. It can be seen that not only α, but
β as well is influenced by the electric field. This can be
expected since the full 3D-wavefunction is changed by the
presence of the electric field. Moreover, the dependence
of ∆E on the direction within the slab is apparent in
Fig. 7: the splitting for the [110] direction is twice larger
than that in the [−110] direction. This result is espe-
cially important for gate-defined nanowires [100, 101] in
two-dimensional electron systems. The optimal direction
for such wires created in (001) thin films is [110].

E [meV /Å] 0 1.75 3.5

[meV Å]
(001) |α| 108 385 730

|β| 20.4 120 139

[meV2 Å2]
(110) α2

1 58.4 1.81× 105 6.41× 105

α2
2 + β2 − α2

1 3.54× 104 1.88× 104 1.75× 104

[meV2 Å2]
(11̄0) α2

1 25.2 2.05× 105 7.51× 105

α2
2 + β2 − α2

1 7.17× 104 8.41× 104 1.15× 105

Table II. The values of spin splitting parameters obtained
from fitting ∆E of Eqs. 11 and 14. The slab thickness is
≈ 115Å in all cases.

From the Fig. 7 it can be seen that the largest spin
splitting occurs along the [110] direction, where Dressel-
haus and Rashba terms combine to give an effective 1D
Hamiltonian

H[110] =
~2k2

2m∗ ±
α∗
√

2
k(σy − σx) (12)

where α∗ = |α| + |β|. This Hamiltonian can be used
to describe [110]-wires of ZB InSb subject to the [001]
electric field. The variation of the crystal potential at
the wire interface creates an effective electric field, whose
direction can be manipulated by choosing varying the
growth direction.

It should be noted, that in the Hamiltonian of Eq. 12,
obtained from the 2D dispersion, an additional term that
appears due to confinement of the wire in 1D is neglected.
The motivation for this is the following. As described
above, in the absence of an external electric field the
splitting decays quickly with increasing wire thickness,
and the corresponding Dresselhaus term tends to zero.
Application of the electric field significantly modifies the
shape of the subband wavefunction in the direction of the
field, but in the transverse direction one can expect it to
be the same. Thus, one can argue that if the confinement
effect induces negligible spin splitting in wide slabs, the
confinement of the thick wire can also generate only very
small spin splitting. This argument is also supported
by the calculations of the Ref. [102], where no linear in
momentum spin splitting of the first conduction band
was found in [100] and [111] ZB GaAs wires, and the
splitting in the [110] direction was found to be small and
decreasing with the radius of the wire.

2. (110)-slab

The point group for this slab [51, 53] in the pres-
ence of external field is Cs, with only one mirror plane
(x, y) → (−x, y), where x is along the [11̄0]-direction of
the conventional unit cell and y is along [001]. This mir-
ror symmetry takes (sx, sy, sz) → (sx,−sy,−sz). The
linear in k terms consistent with this symmetry and time-
reversal are kxσz, kxσy and kyσx. The corresponding
Hamiltonian is

H(110) =
~2(k2

x + k2
y)

2m∗ + α1kyσx + α2kxσy + βkxσz (13)

where α1,2 now includes also contributions due to the
bulk inversion asymmetry, since averaging the bulk split-
ting of Eq. 8 with respect to the 3D-wavefunction gives
α2 = γ〈k1〉/(2

√
2), where k1 is along the [110]-direction

of the conventional unit cell. The corresponding spin
splitting is given by

∆E =
m∗

2~2

(
α2

1 + (α2
1 − α2

2 + β2) cos2 θ
)

(14)

where θ is the angle in the (110)-slab counted from the
[11̄0]-direction. The values of ∆E corresponding to this
slab obtained from a TB simulation are illustrated in
Fig. 8. The fit for α1,2 and β is given in Tab. II. While
the angle dependence of ∆E is less apparent in this case
than for the (001) slab, a comparison with the results of
Fig. 7 for the [−100] direction suggests that ∆E depends
on the field direction for the structures in question: for
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[110] [100][-2-10]
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∆
E
U
−

∆
E

0
[m

eV
]

1.75 meV/Å
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Figure 7. Spin splitting ∆E − ∆E0 induced by an applied
electric field for the (001)-slab (35 layers, 115 Å). The field
(blue: 1.75 mV/Å; red: 3.5 mV/Å) is oriented along [001]. θ
of Eq. 11 is the angle from the kx-axis in the slab BZ. High-
symmetry directions within the slab are marked.

approximately the same slab thicknesses the correspond-
ing splitting in the [110] field is slightly larger than that
in the [001] field for the illustrated field strengths.

There appears to be little dependence of ∆E on the
angle for this slab direction. To verify this we simulated
a symmetry-equivalent (11̄0) slab. The illustration of the
corresponding spin splittings is given in Fig. 9. Apart
from the finite size zero-field effects, mediated by the
differences in passivation, this simulation also predicts
little variation of ∆E with θ.

The (11̄0)-slab also contains the [111]-wire that was
used in the original MZM experiment [24]. The data
presented in Figs. 7-9 indicates that this wire direction
should have almost optimal spin splitting (see Fig. 10
for the illustration of several optimal wire directions).
Magnetoconductance measurement were performed re-
cently [103] to estimate the size of the spin splitting in the
[111]-wires grown in a setup relevant for MZM. The mea-
sured range for the spin splitting is ∆E ≈ 0.25− 1meV.
These values can be compared to the data obtained in
the present TB simulation to give an estimate for the
strength of electric field inside the wire.

Figure 13 in Appendix B shows that ∆E ∝ |E|2 for
|E| → 0. The dependence is almost the same for all
directions within the (110) slab. Using the effective mass
of m∗ = 0.015me obtained in the TB model and the
experimentally reported range of ∆E, one can back out
the electric field needed to generate such a SOC: e|E| ≈
2 − 4meV/Å. Thus, the method presented in this work
can be used to estimate the size of electric field inside a
material, which is important for the experiments trying
to control SOC couplings by gating the nanowire.
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Figure 8. Spin splitting ∆E − ∆E0 induced by an applied
electric field for the (110)-slab (50 layers, 113 Å). The field
(blue: 1.75 mV/Å; red: 3.5 mV/Å) is oriented along [110].
θ of Eq. 14 is the angle from kx-axis in the slab BZ. High-
symmetry directions within the slab are marked.

V. CONCLUSIONS AND OUTLOOK

The problem of optimizing spin splittings in the semi-
conductor is one of the main ingredients for the possible
realization of MZMs in proximity coupled semiconductor
nanowires. In this work we addressed this problem using
a TB model of InSb derived from the modified version
of the highly accurate HSE06 hybrid functional. This
allowed for the detailed study of finite-size and field-
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Figure 9. Spin splitting ∆E − ∆E0 induced by an applied
electric field for the (11̄0)-slab (50 layers, 113 Å). The field
(blue: 1.75 mV/Å; red: 3.5 mV/Å) is oriented along [11̄0]. θ
is the angle from kx-axis in the slab BZ (see Eq. 14). High-
symmetry directions within the slab are marked.
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(a)
<110>

<111>

<1-10>
<1-10>

(b)

Figure 10. Some of the optimal wire/field directions. (a) A
[110]-wire in in the [11̄0] field. (b) A [111]-wire in in the [11̄0]
field.

induced spin splitting in slabs of InSb. These results
are used to argue about the optimal growth directions
for the wires.

The method presented in this work is based on the
TB models matched not only to reproduce the band
structure, but also the correct wavefunction throughout
the BZ. Although local approximation to SOC was used
here, these models can be straightforwardly extended (to
be reported elsewhere) to include non-local SOC effects.
The method can be easily extended beyond ZB com-
pounds, and can for example be applied to wurzite InAs
nanowires, which are of particular interest in the light of
the epitaxially-grown superconductor-semiconductor in-
terfaces [45].

This method is also optimally suited for the search
of other semiconductor materials, suitable for spintron-
ics [104] or Majorana experiments. Further validation
of these models versus experimental results suggests the
possible route for reliable simulation of realistic devices,
similar to those used for realizing exotic topological states
which are not accessible to the ab initio approaches.
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Appendix A: Parameters for the 14×14
tight-binding model

Here we provide the details on the TB model used in
this paper. The model is 7×7 (14×14) in the absence
(presence) of SOC. It gives a very good description (see
Fig. 3) of the three topmost valence and four lowest con-
duction bands throughout the BZ.

We describe the way to obtain the model with sym-
metric parameters using wannier90 [88] and the hybrid
functionals for InSb. However, the same scheme, with
little adjustments of the energy window width, that take
into account the differences in bandwidths and the fun-
damental energy gap, works for other binary zincblende
semiconductors. For all materials, experimental lattice
constants were used, and the screening parameters of the
hybrid functional calculations were adjusted for the best
fit of the fundamental gap.

For all the TB models the adopted convention is

Hnm(k) =
∑
R

eik·R〈0n|Ĥ|Rm〉, (A1)

where the matrix element in the sum stands for the prob-
ability amplitude of an electron hopping from orbital m
of unit cell R to orbital n of the unit cell at the origin
0. The summation is limited to local, first- and second-
neighbor hoppings. The complete tight binding parame-
ters are available as Supplementary Material.

A hybrid functional calculation is first carried out with-
out SOC. Following the discussion of the Sec. III B the
outer energy window is fixed to be from −9 eV to 10.5 eV
relative to the Fermi level. The inner window is from
−0.3 eV to 3.1 eV relative to the Fermi level. The local
orbitals for the projection are chosen to be the s- and 3p-
orbitals put on the In site at (0, 0, 0) and 3p-orbitals put
on the Sb site at ( 1

4 ,
1
4 ,

1
4 ) in the units of lattice constant,

taken to be a = 6.479Å according to the Ref. 78. No
maximal localization is done, only the disentanglement.

As a result one obtains a 7×7 model for InSb without
SOC, which is also provided as supplementary material.
The resultant WFs are well-localized having the maxi-
mum spread 〈r2〉 − 〈r〉2 = 4.84 Å2. Given that the dis-
tance to the nearest neighbor is 4.58Å, this means that to
a good approximation the SOC coupling can be consid-
ered to be on-site and it also motivates the implementa-
tion of external electric field as an on-site energy change.

Local SOC allows to fix time-reversal symmetry by
considering a representation to be block block diagonal in
spin space. The SOC is generated only by the p-orbitals
and in the present basis takes the form [93]

HSO =
λj
2



0 −i 0 0 0 1

i 0 0 0 0 −i
0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0


(A2)



12

where j stands for either In or Sb and the matrix is writ-
ten in {px ↑, py ↑, pz ↑, px ↓, py ↓, pz ↓}. The two param-
eters λj are then fitted to the ab initio band structure
with SOC included. We used the values λIn = 0.226 eV
and λSb = 0.5181 eV.

Appendix B: Scaling of spin splittings with field and
slab size

In this Appendix we present additional data showing
how the Rashba SO splitting discussed in Sec. IV de-

pends on slab thickness (Fig. 11) and strength of the ap-
plied field (Fig. 12 and Fig. 13). It can be seen that the
thickness dependence data suggests that the wire thick-
ness should also be taken into account for optimizing spin
splittings for realizing MZMs.
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Figure 11. Scaling of the field-induced part of the spin split-
tings ∆EU−∆E0 with slab thickness. In each case, a potential
of 0.4 V was applied, meaning the field strength was weaker
in thicker slabs. The number of unit cells in each slab is 30
(blue) 50 (red) and 80 (green). (a) (001)-slab in in the [001]
field. (b) (110)-slab in in the [110] field. (c) (11̄0)-slab in the
[11̄0]-field.
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Figure 12. Scaling of spin splittings with field. The slab is 50
unit cells wide in all cases. The potential differences across
the slab are 0V (blue), 0.2V (red) and 0.4V (green). (a) (001)-
slab in in the [001] field. (b) (110)-slab in in the [110] field.
(c) (11̄0)-slab in the [11̄0]-field.
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Figure 13. Scaling of the total spin splitting ∆E with field,
for a slab of 50 layers orthogonal to the [110]-direction. The
splitting is measured in the [100] direction.
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