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a b s t r a c t

An efficient algorithm for time-domain solution of the acoustic wave equation for the purpose of room
acoustics is presented. It is based on adaptive rectangular decomposition of the scene and uses analytical
solutions within the partitions that rely on spatially invariant speed of sound. This technique is suitable
for auralizations and sound field visualizations, even on coarse meshes approaching the Nyquist limit. It
is demonstrated that by carefully mapping all components of the algorithm to match the parallel process-
ing capabilities of graphics processors (GPUs), significant improvement in performance is gained com-
pared to the corresponding CPU-based solver, while maintaining the numerical accuracy. Substantial
performance gain over a high-order finite-difference time-domain method is observed. Using this tech-
nique, a 1 s long simulation can be performed on scenes of air volume 7500 m3 till 1650 Hz within
18 min compared to the corresponding CPU-based solver that takes around 5 h and a high-order finite-
difference time-domain solver that could take up to three weeks on a desktop computer. To the best
of the authors’ knowledge, this is the fastest time-domain solver for modeling the room acoustics of large,
complex-shaped 3D scenes that generates accurate results for both auralization and visualization.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Computational methods in room acoustics have been an active
area of research and developed in conjunction with diverse fields,
such as seismology, geophysics, meteorology and for almost half a
century. The goal of computational acoustic methods in games and
interactive applications, in room acoustics computation, is aural-
ization: generating audio that, when played, mimics the aural
experience of actually being in the space. Nevertheless, achieving
good acoustics in large complex structures remains a major com-
putational challenge [1]. Since numerical acoustic computations
are usually not possible in real-time, especially for frequencies in
the kilohertz range, auralization is usually a two-stage process:
precomputation of impulse responses from the space and real-time
convolution of the impulse responses with dry (i.e. anechoically
recorded or synthetically generated) source signals. The impulse
response computation requires an accurate calculation of wave
propagation for modeling the time-varying spatial sound field.
Another important goal in room acoustic modeling is visualization
of this sound field. The ability to visualize and animate transient
acoustic phenomena is extremely helpful in intuitively under-
standing physically complex acoustic effects such as diffraction,
scattering and interference [2] and forms an effective tool for
ll rights reserved.

: +1 919 962 1799.
educational purposes. In future, it could even be used for practical
engineering applications like noise control and architectural acous-
tics, by helping engineers to quickly locate the geometric features
responsible for acoustical defects.

1.1. Acoustic wave equation

The physics of room acoustics, as well as many other areas, is
described by the well known time-domain formulation of the wave
equation:

@2p
@t2 � c2r2p ¼ f ðx; tÞ: ð1Þ

The wave equation models sound waves as a time-varying pressure
field, p(x, t). While the speed of sound in air (denoted c) exhibits
slight fluctuations within a room due to variations in temperature
and humidity, we ignore the acoustic effects of such small fluctua-
tions in this paper, i.e. we assume uniform media. We chose a value
of c = 340 ms�1 corresponding to dry air at 20 �C. Volume sound
sources in the scene are modeled by the forcing field denoted
f (x, t) on the right hand side in the Eq. (1). The operator
r2 ¼ @2

@x2 þ @2

@y2 þ @2

@z2 is the Laplacian in 3D. The wave equation suc-
cinctly captures wave phenomena such as interference and diffrac-
tion that are observed in reality. Both the goals of acoustic
auralization and visualization, can be fulfilled by time-domain solv-
ers for the acoustic wave equation.
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1 We use NVIDIA GTX 480 as the GPU and Intel Xeon X5560 (8 M Cache, 2.80 GHz)
as the CPU.

84 R. Mehra et al. / Applied Acoustics 73 (2012) 83–94
1.2. Computational challenges

One of the key challenges in time-domain wave-based acoustic
simulation is the computational and memory requirements of an
accurate solver. Finite difference solvers, in order to maintain
low errors, require the spatial discretization to contain 6–10 sam-
ples per wavelength for the highest usable frequency of interest
[3–5]. Errors manifest themselves as numerical dispersion, where
higher frequencies travel slower on the numerical grid than lower
frequencies, leading to phase errors [5]. To give a quick example of
the resulting requirements, if the entire frequency range of human
hearing needs be simulated (i.e. up to 22 kHz), then the spacing be-
tween the nodes would have to be 1.5–2.5 mm. As a result, a cubic
meter of acoustic space needs to be filled with 64–300 million grid
cells, and the complexity increases proportionally with the volume
of the acoustic space. Due to this, prior numerical solvers for the
acoustic wave equation have very high computational demands,
especially for broadband simulations extending into the kilohertz
range, requiring a cluster of machines for execution. Thus, tradi-
tional room acoustic simulation systems have largely relied on
geometric acoustic techniques. But these techniques are accurate
only for higher frequencies and early reflections, and face consider-
able difficulties for modeling wave diffraction effects.

Our formulation is based on the adaptive rectangular decompo-
sition (ARD) technique proposed by Raghuvanshi et al. [6]. ARD re-
sults in little numerical dispersion error as compared to finite
difference methods, allowing for execution on a very coarse grid,
approaching the Nyquist limit. This leads to substantial speedups
[6]. The ARD technique assumes an isotropic, homogeneous, dissi-
pation-free medium. The assumptions of isotropy and homogene-
ity are critical for the speedup and accuracy of the technique. It
has been demonstrated recently that impulse responses computed
using ARD can be used for perceptually plausible auralizations in
interactive applications such as computer games [7]. These rea-
sons, along with the fact that it has been demonstrated to work
for both auralization [7,8] and visualization purposes [6], moti-
vated our choice of this technique. For auralization and visualiza-
tion videos, please checkout the supplementary materials or the
link [9].

1.3. GPU computing

Over the last decade, Graphics Processing Units or GPUs or
graphics processors have evolved from fixed-function processors
specialized for 3D graphics operations to a fully programmable
computing platform for a wide variety of computationally
demanding applications. Current GPUs are massively data-parallel
throughput-oriented many-core processors capable of providing
teraFLOPS of computing power and extremely high memory band-
width compared to a high-end CPU. On the other hand, due to their
distinctive and peculiar architecture, developing a fast and efficient
algorithm that extracts the maximum performance from the GPU,
is a challenging task. Traditional algorithms designed for scalar
architectures (e.g. CPU) do not translate naturally to parallel archi-
tectures (e.g. GPU). In this paper, we present a fast and efficient
parallel algorithm based on ARD for numerically solving the acous-
tic wave equation in the time-domain, entirely on the GPU.

1.4. Main results

Our main contribution is the utilization of GPU architecture in
combination with an efficient parallel technique, to allow for
numerical wave simulation in the medium to high frequency range
that was earlier extremely slow on a desktop computer. We exploit
different levels of parallelism exhibited by ARD, prevent any host-
device data transfer bottleneck in our algorithm design and
perform a novel computationally optimal rectangular decomposi-
tion, resulting in an extremely fast and efficient solver for the wave
equation. We demonstrate that it is possible to effectively paralle-
lize all steps of our simulator on current GPU architectures and ex-
ploit the computational power of the high number of GPU
processors. Running on current generation GPUs, our algorithm
can yield a speedup of up to 25 times over the optimized CPU-
based ARD solver. Our GPU-based solver is more than three orders
of magnitude faster compared to a high-order CPU-based finite-
difference time-domain (FDTD) solver. We show that the perfor-
mance of our technique scales linearly with the number of GPU
processors. In particular, ours is the first solver that can run a 1 s
long band-limited simulation of 1650 Hz for both auralization
and visualization purposes, on scenes with realistically complex
geometry and air volume in the range of 7500 m3 within 18 min
on a desktop computer. The single-threaded optimized CPU-based
ARD solver presented by Raghuvanshi et al. [6] takes 4 h 40 min
and the CPU-based high-order FDTD solver based upon Sakamoto
et al. [4] takes 20 days to run the same simulation on a desktop
machine.1
2. Related work

2.1. Numerical solvers for the wave equation

Accurate high-frequency wave propagation is a very challeng-
ing computational problem because the smallest wavelength gov-
erns the grid resolution of the numerical methods and the scene
can be thousands of wavelengths long in each dimension. There
is a large body of existing work on solving the wave equation
developed over the past few decades. These methods may be
roughly classified into finite element method (FEM) [10], boundary
element method (BEM) [11], finite-difference time-domain (FDTD)
[5] and spectral methods [12].

Finite element method (FEM) solves for the pressure field on a
volumetric mesh composed of discrete simplical cells. One of the
strengths of FEM is the capability of using unstructured meshes
with cells of different shapes, thus allowing the (potentially com-
plex) boundary of the domain to be represented with much more
accuracy. However, ‘‘skinny’’ cells can lead to inaccurate and/or
unstable simulations. Generating good quality meshes in 3D for
arbitrary domains is a tough problem and a central concern for
FEM methods. Boundary element method (BEM) utilizes a bound-
ary integral formulation that assumes a homogeneous medium and
expresses field values throughout the domain in terms of values
only on the boundary. Thus, BEM only requires a discretization of
the boundary of the domain. Unfortunately, the resultant linear
system is dense as all the surface values interact strongly with
all the others. Both FEM and BEM are usually employed mainly
for the steady-state wave (Helmholtz) equation, as opposed to
the full time-domain wave equation, with FEM applied mainly to
interior and BEM to exterior scattering problems.

Recent work on the fast multipole accelerated frequency-do-
main BEM [13] has obtained very promising results, showing that
an asymptotic performance gain can be achieved for frequency do-
main solution of acoustic problems, yielding performance that
scales linearly with the surface area of the scene, instead of its vol-
ume, as in FEM/FDTD. The combination of BEM and Fast Multipole
Method (FMM), represented as BEM–FMM, is an attractive re-
search direction, since it would allow handling acoustic spaces or
models that are much larger than those handled by the current ap-
proaches [13]. Assuming that further research makes BEM–FMM
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applicable for large, complex scenes, applying this frequency-
domain method for time-domain acoustics still requires a large
number of frequency-domain simulations.

The Finite Difference Time Domain (FDTD) method was explic-
itly designed for solving the time-domain wave equation by Yee
[14], although in the context of electromagnetic simulation [5].
The FDTD method for room acoustics solves for the time-depen-
dent pressure field on a Cartesian grid by making discrete approx-
imations of the spatial derivative operators and using an explicit
time-stepping scheme. Assume that the space has been discretized
into a uniform Cartesian grid with spatial spacing h and the time-
step is Dt. We denote the pressure value p(ih, jh,kh) at time nDt by
pðnÞi;j;k. In the absence of a superscript, it is assumed to be n. The spa-
tial derivative is approximated in finite-difference approaches by
applying a constant linear stencil, b, for some chosen integral value
of d as:

r2p ¼
Xd

l¼�d

blðpiþl;j;k þ pi;jþl;k þ pi;j;kþlÞ þ Oðh2dÞ: ð2Þ

The spatial differentiation error is �s = O(h2d). The stencil has a com-
pact support of 2d + 1. For most FDTD implementations, d = 1, yield-
ing second-order spatial accuracy, with b ¼ 1

h2 f1;�2;1g. The same
analysis can be applied for the time derivative as well. It is typical
in time-domain solvers to use second-order accurate time-
stepping:

@2p
@t2

ðnÞ

¼ 1

h2 ðp
ðnþ1Þ � 2pðnÞ þ pðn�1ÞÞ þ Oðh2Þ: ð3Þ

Standard von Neumann analysis can be used to show that the spa-
tio-temporal errors in FDTD appears as frequency-dependent phase
velocity, known as numerical dispersion – as waves propagate, their
shape is gradually destroyed due to loss of phase-coherence. For
comparison in this paper, we have chosen a sixth-order accurate
solver with d = 3 and b ¼ 1

180h2 f2; �27; 270; �490; 270; �27; 2g,
since it has smaller numerical dispersion error than a second-order
accurate scheme.

Recently, FDTD has been applied to medium-sized scenes in 3D
for room acoustic computations by Sakamoto et al. [3,4]. The
authors calculated typical room acoustic parameters and compared
the calculated parameters with the actual measured values in the
scene. The implementation can take days of computation on a
small cluster. A very recent technique proposed by Savioja [15]
can allow for real-time auralizations till a usable frequency of
roughly 500 Hz on geometries with large volume using the Inter-
polated Wideband (IWB) FDTD scheme running on GPUs. The
IWB-FDTD scheme [16] uses optimized compact stencils for reduc-
ing numerical dispersion while keeping the computational expen-
diture low. This results in schemes that can run on spatial sampling
as low as with ARD, thus allowing for competitive performance as
presented here. However, the results presented in Savioja’s work
[15] assume a high numerical dispersion threshold of 10%, for
reducing computation times. Whether this numerical dispersion
is tolerable for auralization and computation of room acoustic
parameters is an open research problem. Once such thresholds
have been established through listening tests, a direct comparison
between IWB-FDTD, FDTD based upon work of Sakamoto et al. [4]
and ARD, would become possible. For this paper, our comparisons
are restricted to FDTD based upon Sakamoto et al. [4] and ARD.

Spectral techniques achieve much higher accuracy than FEM/
BEM/FDTD by expanding the field in terms of global basis func-
tions. Typically, the basis set is chosen to be the Fourier basis or
Chebyshev polynomials [12] as the fast fourier transform (FFT)
can be employed for the basis transformation. The Fourier Pseu-
do-Spectral Time Domain (PSTD) method is a spectral method pro-
posed by Liu [17] for underwater acoustics as an alternative to
FDTD to control its numerical dispersion artifacts. The key differ-
ence in PSTD compared to FDTD is to utilize spectral approxima-
tions for the spatial derivative [17]:

r2p � F�1ð�k2FðpÞÞ; k2
i;j;k ¼ 4p2 i2

l2
x

þ j2

l2
y

þ k2

l2z

 !
; ð4Þ

where Discrete Fourier Transform is denoted by F . The spatial error
shows geometric convergence �s = O(hn), "n > 0, n 2 Z. This allows
meshes with samples per wavelength approaching 2, the Nyquist
limit, and still allowing vanishingly small dispersion errors in the
spatial derivative. However, this holds only if the pressure field is
periodic which is not commonly the case. Errors in ensuring period-
icity appear as wrap-around effects where waves exiting from one
end of the domain enter from the opposite end. Time update is done
using a second-order explicit scheme, as in Eq. (3). Therefore,
although spatial errors are controlled in PSTD, errors due to tempo-
ral derivative approximation are still present and are of a similar
magnitude as FDTD.

2.2. Geometric methods for the wave equation

In the limit of infinite frequency, the wave equation reduces to
the geometric approximation – expressing wave propagation as
rays of energy quanta. The history of geometric methods for acous-
tics goes back roughly four decades [18]. Most present-day room
acoustics software packages use geometric methods [19]. Recent
work such as AD-FRUSTA [20], edge-diffraction [21], beam tracing
[22,23], are able to accelerate these methods using ray and volume
tracing. There has also been work on accelerating geometric tech-
niques on the GPU [24,25].

2.3. GPU architecture

GPU architecture (see Fig. 2) consists of a scalable array of
streaming multiprocessors (SMs), each of which consists of a
group of streaming processors (SPs), a fast (but small) on-chip
shared memory and a SIMT control unit. All the multiprocessors
are connected to a large off-chip global memory via a intercon-
nection network. In order to effectively solve a problem on a
GPU, first it has to be partitioned into coarse sub-problems that
can be solved independently in parallel by blocks of threads. These
thread blocks are enumerated and distributed to the available SMs.
Each sub-problem is further partitioned in smaller sub-sub-prob-
lems that can be solved on SPs cooperatively in parallel by all the
threads within the block. The SM schedules and executes these
threads in groups of parallel threads (typically 32) called warps.
All the threads of a warp execute a single common instruction at
a time. The first or the second half of a warp is called a half-warp.
GPU memory access pattern is based on half-warps. A parallel task
is executed on the GPU by writing functions called kernels which
are launched by the host-CPU and execute in parallel on the GPU.
GPU API provides the ability to create local and global thread bar-
riers. In a local thread barrier, all the threads in a block must wait
until every thread of the block has finished execution whereas in a
global thread barrier all the threads on the GPU must wait until
every thread has finished execution. The use of these barriers to
synchronize the threads is called as thread synchronization [26].
For more details on parallel computing on GPUs, please read
[27–29].

3. Adaptive rectangular decomposition

In this section, we give an overview of adaptive rectangular
decomposition (ARD) solver [6] and highlight its benefits over prior



(a) Preprocessing (b) Simulation

Fig. 1. Stages of ARD: (a) In the preprocessing stage, the input domain is voxelized into grid cells and adaptively decomposed into rectangular partitions. Artificial interfaces
and PML absorbing layers are created between neighboring partitions and on the scene boundary respectively. (b) During the simulation stage, we start with the current field
and perform interface handling between neighboring partitions to compute forcing terms. We then transform the forcing terms to the cosine spectral basis through DCT.
These are then used to update the spectral coefficients to propagate waves within each partition. Lastly, the field is transformed back from spectral to spatial domain using
IDCT to yield the updated field.
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solvers for the acoustic wave equation for uniform medium. Our
GPU-based wave equation solver is built upon the ARD solver.

3.1. ARD computation pipeline

ARD has two primary stages, Preprocessing and Simulation. In
the preprocessing stage, the input scene is voxelized into grid cells
at grid resolution h determined by the relation h = kmin/s = c/mmaxs
where kmin is the minimum simulation wavelength, s is number
of samples per wavelength, c is the speed of sound and mmax is
the maximum usable simulation frequency.2 This is followed by a
rectangular decomposition step in which grid cells generated during
voxelization are grouped into rectangles (see Fig. 1a). We call these
rectangles air partitions. Partitions created for the perfectly matched
layer (PML) absorbing layer are referred to as PML partitions. PML
absorbing layers are created to model both partially absorbing sur-
faces as well as complete absorption in open scenes. Both air and
PML partitions have the same grid resolution h. Next, we create arti-
ficial interfaces between adjacent air–air and air–PML partitions.
This one-time pre-computation step takes 1–2 min for most scenes.
During the simulation stage, the global acoustic field is computed
with a time-marching scheme. The computation at each time-step
is as follows (see Fig. 1b):

1. For all interfaces: Interface handling to compute force f within
each partition (Eq. (12)).

2. For all air partitions:
(a) Discrete Cosine Transform (DCT) of force f to spectral

domain ~f (Eq. (7)).
(b) Mode update for spectral coefficients ~p (Eq. (9)).
(c) Inverse Discrete Cosine Transform (IDCT) of ~p to pressure p

(Eq. (7)).
(d) Normalize pressure p by multiplying it with a normalization

constant.
3. For all PML partitions: Update pressure field.

During step 1, the coupling between adjacent partitions (air–air
and air–PML) is computed to produce forcing values. In steps 2 and
3, these forcing values are used to update the pressure fields within
the air and PML partitions respectively. While air partitions are
updated in the spectral domain, transforming to and from spatial
domain using IDCT and DCT, PML partitions employ a finite-
2 By maximum usable frequency of X Hz, we mean that our simulation results have
no dispersion error and minimal other numerical errors till X Hz. Therefore, they can
be directly used to compute impulse response for auralization and produce sound
field visualization. So mmax = X kHz means that the useful range of the result is from
0 Hz till X kHz and the excitation is broadband, containing frequencies from 0 to X
kHz
difference implementation of a fictitious, highly dissipative wave
equation [30] to perform absorption. DCT and IDCT steps are
implemented using a generalized 3D FFT.
3.2. Accuracy and computational aspects

A direct performance comparison of FDTD and ARD for the same
amount of error is difficult since both techniques introduce differ-
ent kinds of errors. Since the final goal in room acoustics is to
auralize the sounds to a human listener, it is natural to set these
error tolerances based on their auditory perceivability. This is com-
plicated by the absence of systematic listening tests for perceivable
errors with both, FDTD and ARD. However, it is possible to compare
them by assuming conservatively low errors with both the tech-
niques. We briefly discuss how we set the parameters in both tech-
niques for keeping the errors conservatively low and then present a
theoretical comparison to motivate why ARD is more compute and
memory efficient than FDTD.

In recent work, Sakamoto et al. [4] show that FDTD calculations
of room-acoustic impulse responses on a grid with s = 6–10 agree
well with measured values on a real hall in terms of room acoustic
parameters such as reverberation time. Remember that grid size
h = kmin/s. This mesh resolution is also commonly used with the fi-
nite difference method applied to electromagnetic wave propaga-
tion to control phase errors resulting from numerical dispersion
[5]. Motivated from these applications, we set the mesh resolution
conservatively at s = 10 for FDTD throughout this paper, assuming
that this safely ensures that numerical dispersion errors are inau-
dible in auralizations. ARD results in fictitious reflection errors at
the artificial interfaces. As shown by Raghuvanshi et al. [6], using
s = 2.6 with ARD, the fictitious reflection errors can be kept at a
low level of �40 dB average over the whole usable frequency range
by employing a sixth-order finite difference transmission operator.
This means that for a complex scene with many interfaces, the glo-
bal errors stay 40 dB below the level of the ambient sound field,
rendering them imperceptible as demonstrated in the auralizations
[6,8,7]. Therefore, we assume sampling of s = 2.6 for ARD.

Table 1 shows the performance and memory comparison of
FDTD and ARD. The update cost for sixth-order accurate FDTD in
3D is about 55 FLOP per cell per step including the cost of PML
boundary treatment for a stencil width of 7. The total cost for
ARD per step can be broken down as: DCT and IDCT (assuming a
DCT and IDCT take 2Nlog2N FLOP count each) = 4Nlog2N, mode up-
date = 9N, interface handling = (300 � 6N2/3) and PML boundary
treatment = (390 � 6N2/3) (the 6N2/3 term approximates the sur-
face area of the scene by that of a cube with equivalent volume.
Due to the cartesian grid, this estimate is the lower bound of the
surface area). PML boundary treatment cost per cell is the same



Table 1
Floating-point operation (FLOP) count comparison of FDTD vs ARD on a scene of
volume V = 10,000 m3 with maximum usable frequency mmax = 1 kHz (minimum
wavelength kmin = c/mmax = 34 cm) for the simulation of duration t = 1 s. The number
of cells (in Millions M) with either technique is given by N = V/h3 where h = kmin/s is
the grid size and s is number of samples per wavelength. The simulation time-step is
restricted by the CFL condition Dt 6 h=c

ffiffiffi
3
p

with smaller cell sizes requiring
proportionally smaller time-steps. Theoretically, ARD which uses s = 2.6 is nearly
hundred times more compute efficient and 50 times more memory efficient than
FDTD (s = 10) on account of using a much coarser grid. ‘‘FLOP per cell per step’’ is
defined as the ratio of the total FLOP count and the total number of cells N times the
number of steps S.

s #
cells
N = V/h3

#
steps
S = t/Dt

FLOP count
(TeraFLOP)

Total FLOP
count
(TeraFLOP)

FLOP per
cell per
step

FDTD 10 254 M 17000 FDTD: 221.55,
PML: 15.95

�237 55

ARD 2.6 4.5 M 4500 Interface: 0.22,
DCT + IDCT:
1.79, mode update:
0.18, PML: 0.29

�2.5 120
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for both FDTD and ARD. As can be seen in the table, theoretically
ARD is nearly 100 times more compute efficient and 50 times more
memory efficient than FDTD. In practice, the CPU-based ARD is 50–
75 times faster than FDTD implementation, as discussed in detail in
Section 5. Since ARD is highly memory efficient, an order of magni-
tude more than FDTD, this makes it possible to perform simula-
tions on much larger scenes than FDTD without overflowing
main memory or GPU memory. GPUs can easily become mem-
ory-bound, in which case the performance is dictated by memory
bandwidth rather than the FLOP numbers. In these cases as well,
ARD, on account of being more memory efficient, is more suitable
for the GPUs.

3.3. Mathematical background

ARD achieves high accuracy for both spatial and temporal deriv-
atives within rectangular volumes, nearly eliminating numerical
dispersion. This is done by employing the eigendecomposition for
the wave equation on rectangular domains, which, assuming spa-
tially constant speed of sound, can be computed analytically, incur-
ring no numerical computation or error, as follows:

r2Ui;j;k ¼ �k2
i;j;kUi;j;k;

Ui;j;k ¼ cos p i
lx

x
� �

cos p j
ly

y
� �

cos p k
lz

z
� �

;

k2
i;j;k ¼ p2 i2

l2x
þ j2

l2y
þ k2

l2z

� �
:

ð5Þ
Fig. 2. The graphics processing unit (GPU) architecture (image � Savioja [15]): Current ge
streaming processors (SPs), a fast on-chip shared memory and a single-instruction multi
and to a larger off-chip global memory via a fast interconnection network.
Note that the eigen-functions, Ui,j,k, coincide with the basis func-
tions for the 3D Discrete Cosine Transform. This follows from
assuming sound-hard boundary conditions for the volume. The re-
sult is that to transform to and from the spectral basis, one can
leverage memory and compute-efficient Discrete Cosine Transform
(DCT) and inverse Discrete Cosine Transform (iDCT) implementa-
tions. The pressure and forcing fields are expressed in this basis as:

pðx; y; z; tÞ ¼
P
i;j;k

~pi;j;kðtÞUi;j;kðx; y; zÞ;

f ðx; y; z; tÞ ¼
P
i;j;k

~f i;j;kðtÞUi;j;kðx; y; zÞ:
ð6Þ

The above equations are equivalent to:

~pi;j;kðtÞ ¼ DCTðpðx; y; z; tÞÞ;
~f i;j;kðtÞ ¼ DCTðf ðx; y; z; tÞÞ;
pðx; y; z; tÞ ¼ IDCTð~pi;j;kðtÞÞ;
f ðx; y; z; tÞ ¼ IDCTð~f i;j;kðtÞÞ:

ð7Þ

Substituting Eq. (6) into the wave Eq. (1) leads to a independent
set of Ordinary Differential Equations:

d2~pi;j;k

dt2 þx2
i;j;k~pi;j;k ¼ ~f i;j;k;where xi;j;k ¼ cki;j;k: ð8Þ

By recognizing that the above is the equation of a forced simple har-
monic oscillator having solutions of the form, ~pðtÞ ¼ aeixt þ �ae�ixt

and assuming f is constant over a time-step, the following update
rule is obtained (subscripts have been suppressed and are (i, j,k)
for all terms):

~pðnþ1Þ ¼ 2~pðnÞ cosðxDtÞ � ~pðn�1Þ þ 2~f ðnÞ

x2 ð1� cosðxDtÞÞ: ð9Þ

The above update rule is derived from the analytical solution by
requiring time-symmetry and reversibility. In the absence of forcing
terms, this scheme incurs no numerical errors.

3.3.1. Interface handling
For handling non-rectangular scenes with ARD, the scene’s air

volume is decomposed into a disjoint set of coordinate axis-aligned
rectangular partitions that touch each other at artificial interfaces,
as illustrated in Fig. 1. Interface handling is used to ensure sound
propagation between the partitions. Although we do not present
the detailed mathematical derivation here, we highlight the con-
ceptual motivation behind interface handling, as well as the inter-
face operator we use. For more details, please refer to [6].

Consider two partitions in 1D, [ �1,0] and [0,1], with an inter-
face lying on the origin. This analysis extends straightforwardly to
neration GPUs have many streaming multiprocessors (SMs), each containing several
ple-thread (SIMT) control unit. All the multiprocessors are connected to each other



Fig. 3. (Color online) Interfaces 1 and 2 update forcing values of cells lying in their
neighboring partitions. There is a concurrent write (CW) hazard in the hatched
corner region (labeled ‘‘Collision’’).
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3D since all the partition boundaries, and thus interfaces, are axis
aligned. The boundary condition assumed for the internal solution
within each partition is @p

@x

��
x¼0 ¼ 0 (sound-hard boundary condition

assumption), which results in full reflections from the origin. Con-
sider the right partition: the local solution corresponds to a discrete
differential operator, r2

local, that satisfies the mentioned boundary
condition. Representing the global (correct) operator by r2

global,
Eq. (1) can be re-written as:

@2p
@t2 � c2r2

globalp ¼ f ðx; tÞ;
@2p
@t2 � c2r2

localp ¼ f ðx; tÞ þ fIðx; tÞ;

fIðx; tÞ ¼ c2 r2
global �r2

local

� �
p ¼ c2r2

resp:

ð10Þ

In this way, the actual global operatorr2
global is expressed as the sum

of an operator local to the partition r2
local and a residual operator

r2
res ¼ r2

global �r2
local

� �
. The latter is accounted for in the forcing

term on the RHS. At each step, the forcing term is computed as in
the equation above as the sum of source terms f(x,t) and interface
contributions fI(x,t), and the remaining computation is identical to
what was described in Eqs. (5)–(9). All that remains is the form of
the interface operator discussed above. Denoting xi ¼ iþ 1

2

� 	
h,

where h is the cell size for the Cartesian grid, the forcing terms (de-
note fI(xj,t) with fI(xj)) for the right partition for perfect, error-free
interfacing is given by:

fIðxjÞ ¼
P�1

i¼�1
pðxiÞs½j� i� �

P1
i¼0

pðxiÞs½jþ iþ 1�

where j 2 ½0;1Þ;

s½i� ¼ sinc00ðihÞ ¼ 1
h2 �

�p2

3 i ¼ 0

ð�1Þi�1 2
i2

i – 0; i 2 Z

(

sincðxÞ ¼
sin p

hxð Þ
p
hxð Þ x – 0

1 x ¼ 0

8<
: :

ð11Þ

This exact operator is highly compute-intensive owing to its
non-compact support. For partitions with N cells, its computational
complexity is O(N2). Therefore, approximate interface handling is
performed by using the following stencil derived by assuming that
the discrete operator r2

global corresponds to a sixth-order accurate
finite-difference scheme. This leads to a compact operator, thus
allowing faster computation, which is given as follows:

fIðxjÞ ¼
P�1

i¼j�3
pðxiÞs½j� i� �

P2�j

i¼0
pðxiÞs½iþ jþ 1�

where j 2 ½0;1;2�;
fIðxjÞ ¼ 0; j > 2;
s½�3 . . . 3� ¼ 1

180h2 f2;�27;270;�490;270;�27;2g:

ð12Þ

Its computational complexity depends on the number of cells lying
on the interface (a) 1D: O(1) (b) 2D: O(N1/2) (c) 3D: O(N2/3) (as dis-
cussed in Section 3.2). This approximate operator results in low-
amplitude fictitious reflections from the interface. However, these
errors are roughly 40 dB below the incident sound-field, thus mak-
ing them inaudible [6]. Lower errors could be obtained by opti-
mized compact finite difference schemes, or even directly using
the exact operator described above.

The ARD technique is quite similar to PSTD in that it allows sim-
ilar spectral accuracy and thus, similarly coarse mesh while calcu-
lating the spatial derivatives. The crucial difference lies in how
temporal derivatives are handled. PSTD uses a second-order accu-
rate explicit time-stepping scheme. This means that numerical dis-
persion errors are still introduced due to errors in the time
derivative. On the other hand, ARD which is based on partitioning
the domain into rectangles and assuming sound-hard walls for the
partitions, handles the temporal derivative with spectral accuracy
by using the analytical solution to the wave equation for rectangu-
lar spaces. Thus, numerical dispersion is completely eliminated
with ARD for propagation within rectangular partitions. Some dis-
persive error is still introduced for waves propagating across parti-
tion interfaces, but this error is much smaller than with FDTD or
even PSTD, where waves accumulate dispersive errors of similar
magnitude at each time-step (Fig. 3).

4. GPU-based acoustic solver

In previous sections, we discussed the computational efficiency
and mathematical background of ARD. In this section, we describe
our parallel GPU-based acoustic wave equation solver built on top
of ARD. We discuss key features of our approach and some of the
issues that arise in parallelizing it on many-core GPU architecture.

4.1. Our GPU approach

4.1.1. Two levels of parallelism
The ARD technique exhibits two levels of parallelism (a) a

coarse-grained and (b) a fine-grained. Coarse grained parallelism is
due to the fact that each of the partitions (air or PML) solves the
wave equation independently of each other. Therefore, each parti-
tion can be solved in parallel at the same time. Fine grained paral-
lelism is achieved because within each partition all the grid cells
are independent of each other with regards to solving the wave
equation at a particular time-step. For solving the wave equation
at the current time-step, a grid cell may use p; f ; ~p;~f values of its
neighboring cells computed at previous time-step but is com-
pletely independent of their p; f ; ~p;~f values at the current time-
step. In other words, because ARD uses explicit time-stepping,
there is no need for solving a linear system. Therefore within each
partition, all the grid cells can run in parallel exhibiting fine
grained parallelism. Our GPU-based acoustic solver exploits both
these levels of parallelism. We launch as many tasks in parallel
as there are partitions. Each task is responsible for solving the wave
equation for a particular partition. Within each task, each grid cell
corresponds to a thread and we create as many threads as the
number of grid cells in that partition. All these threads are grouped
into blocks and scheduled by the runtime environment on the GPU.

4.1.2. Avoiding host-device data transfer bottleneck
The host-device data link between CPU and GPU via PCI express

or Infiniband, is a precious resource that has a limited bandwidth.
Many prior GPU-based numerical solvers were based upon the hy-
brid CPU–GPU design. This design suffers from data-transfer bot-
tleneck as it has to transfer large amounts of data between host
(CPU) and device (GPU) at each simulation step. We have designed
our GPU-based solver to ensure that the data-transfer between the
CPU-host and GPU-device is minimal. In our case, we avoid the hy-
brid CPU–GPU approach and instead parallelize the entire ARD
technique on the GPU. The only host-device data transfer that is
required is to store the pressure grid p after each simulation step.
Recent work on interactive auralization has shown that storing and
processing the results of simulation on a spatial grid subsampled



3 By highly parallelizable, we mean that there should be no dependence between
the threads, each thread has a very local and small memory access pattern and all of
them can be computed in parallel.
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by retaining every fourth, eighth or sixteenth sample, can be used
for convincing auralizations for moving sources and listener, after
careful interpolation [7]. This results in a memory reduction by a
factor of 1/43, 1/83, 1/163 of the original size respectively, resulting
in negligible overall cost for transferring the simulation results
from GPU to CPU.

To provide an intuition of host-device data transfer, consider a
room of air volume 10,000 m3 for which we solve the wave equa-
tion at mmax = 2 kHz. We consider a hybrid CPU–GPU system of Rag-
huvanshi et al. [8] where only the DCT/IDCT steps of the technique
are parallelized on GPU. In this case, at each time-step the grid f is
transferred from CPU to GPU for DCT, ~f is returned back by the
GPU, ~p is transferred from CPU to GPU for IDCT and the final pres-
sure p is returned to the CPU. An important point to note here is
that the p; f ; ~p;~f grids cannot be subsampled and transferred in this
hybrid CPU–GPU system because the steps of the algorithm that
reside on the CPU and GPU require the values on the complete grid
to solve wave equation. Since the size of p; f ; ~p;~f is equal to number
of grid cells, the total data transfer cost per time-step is 4 � # grid
cells � size of (float) ¼ 4V smmax

c

� 	3 � 4 bytes ¼ 4� 10000�
2:6�2000

340

� 	3 � 4 bytes = 145 MB. On the other hand, in our technique
since all the computational steps are performed on the GPU, we do
not need to transfer the p; f ; ~p;~f grids to the CPU for the purpose of
the simulation. The only transfer that is required is of the subsam-
pled pressure grid p from GPU to CPU for storage on the disk, per-
haps for auralization later. For visualization applications, one
might not need to perform any transfer at all because the data is
already present on the GPU and can be displayed directly to the
screen. As explained above, for the purpose of auralization, the
subsampling of pressure grid is usually done at a lower resolution
(1/83). Thus our data transfer per time-step = 1/83 � # grid
cells � 4 bytes = 3 kB. For such a small size, data-transfer is almost
immediate (<1 ms).

4.1.3. Computationally optimal decomposition
Rectangular decomposition proposed by Raghuvanshi et al. [6]

uses a greedy heuristic to decompose the voxelized scene into rect-
angular partitions. Specifically, they place a random seed in the
scene and try to find the largest fitting rectangle that can be grown
from that location. This is repeated until all the free cells of the
scene are exhausted. The cost of DCT and IDCT steps implemented
using FFT depends on the number of grid cells in each partition. FFT
operations are known to be extremely efficient if the number of
grid cells are powers of 2. The proposed heuristic may produce par-
titions with irregular number of grid cells (not necessarily powers
of 2) significantly increasing the cost of the DCT and IDCT
operations.

We propose a new approach to perform the rectangular decom-
position that takes into account the computational expenditure of
FFTs and its efficiency with powers of 2. Specifically, while per-
forming rectangular decomposition, we impose the constraint that
the number of grid cells in each partition should be a power of 2.
Similar to the original approach, we try to fill the largest possible
rectangle that could fit within the remaining air volume of the
scene. But instead of directly using it we shrink its size in each
dimension to the nearest power of 2 and declare the remaining
cells as free. We repeat this step until all the free cells of the scene
are exhausted. This increases the efficiency of the FFT computa-
tions and results in a speedup of 3 times in the running time of
DCT and IDCT steps. For typical scenes, our rectangular decompo-
sition approach produces higher number (2–3 times) of rectangu-
lar partitions, but since the total number of grid cells in the
entire volume of domain remains constant (N = V/h3), it does not
increase the total FLOP count except the interface handling step.
Since more partitions result in larger interface area, the interface
handling cost increases by 25–30%. But since on the CPU, DCT
and IDCT are the most time-consuming steps of the ARD technique
compared to the cost of interface handling (Fig. 5a: CPU time), the
gain achieved by faster powers-of-two DCT and IDCT far outweighs
this increased interface handling cost.

4.2. Details

Among ARD’s two main stages, the pre-processing is performed
only once in the beginning and its contribution to the total running
time is negligible (1–2 min) compared to the cost of the simulation
step. Therefore, we keep this stage on the CPU itself and parallelize
the simulation stage on the GPU. Thus, the voxelization and rectan-
gular decomposition is performed on the CPU. Once we have the
rectangular partitions, we create the pressure p, force f, spectral
pressure ~p and spectral force ~f data-structures on the GPU. The
simulation stage has 6 main steps (see Section 3.1) and each of
them is performed in sequential order. We now discuss the parall-
elization of all these steps on the GPU in detail.

4.2.1. Interface handling
This step is responsible for computing forcing terms f at the arti-

ficial interfaces between air–air and air–PML partitions. These
forces account for the sound propagation between partitions by
applying a finite-difference stencil given in Eq. (12). The overall
procedure consists of iterating over all interfaces, applying the fi-
nite difference stencils to compute forcing values and additively
accumulating them at the affected cells. This step is data parallel
– to compute the forcing term at a cell, only values in its spatial
neighborhood are read. Thus, all interfaces could potentially be
processed in parallel as long as there are no collisions and no
two interfaces update the forcing value at the same cell. This can
happen at corners (as shown below).

Interfaces 1 and 2 both update the forcing values 3-cells deep of
their shared partitions. However, for partition P, cells lying in the
hatched region (marked ‘‘Collision’’) are updated by both interfaces
1 and 2. These corner cases need to be addressed to avoid race con-
ditions and concurrent memory writes. The GPU and its runtime
environment places the burden of avoiding concurrent write
(CW) hazards on the programmer. Fortunately, collisions can be
avoided completely by using a conceptually simple technique. All
interfaces are grouped into 3 batches consisting of interfaces with
their normals in the X, Y and Z directions, respectively. Since all
partitions are axis-aligned rectangles, every interface has to fall
into one of these batches. By processing all interfaces within each
batch in parallel and separating batches by a synchronization
across all threads, all collisions in the corners are avoided com-
pletely. Our approach is more general and well-supported on all
GPUs.

DCT(f). The DCT step converts the force f from the spatial
domain to the spectral domain ~f . DCTs are efficiently computed
using FFTs. Typical FFT libraries running on GPU are an order of
magnitude faster than optimized CPU implementations [31].
Since DCT and IDCT steps are among the slowest steps of the
ARD technique (see Fig. 5a), parallelization of these steps
results in a great improvement in the performance of the entire
technique.
Mode update ~p. The Mode update step uses the pressure and
force in the spectral domain ~p;~f of the previous time-step to
calculate ~p at the current time-step. This step consists of linear
combinations of ~p;~f terms (see Eq. (9)) and is highly
parallelizable3.



Table 2
‘‘Total volume’’ is volume of the bounding box of the scene whereas ‘‘Air volume’’ is volume of the air medium in which we perform the simulation. mmax is the maximum usable
simulation frequency. Number of partitions counted are generated using our computationally optimal decomposition. Number of pressure values updated at each time-step is
equal to the number of grid cells (in millions M).

Scene Air/Total volume (m3) mmax Hz # partitions (air + pml) # cells (air + pml)

L-shaped room 6998/13520 1875 424 + 352 (22 + 5) M
Cathedral 7381/15120 1650 6130 + 12110 (16 + 6) M
Walkway 6411/9000 1875 937 + 882 (20 + 6) M
Train station 15000/83640 1350 3824 + 4945 (17 + 8) M
Living room 5684/7392 1875 3228 + 4518 (18 + 5) M
Small room 124/162 7000 3778 + 5245 (20 + 5) M

Fig. 4. We investigate the performance of ARD solver on varying mmax and scene volume. (a) Simulation time per time-step of CPU-based and GPU-based ARD solver with
varying mmax for the L-shaped room scene. Note that the GPU-based solver is 24 times faster at highest mmax. (b) Speedup (=CPU time/GPU time) achieved by our GPU-based
ARD solver over the CPU-based solver with varying mmax for the different test scenes. For higher mmax, we achieve a speedup of 15–25 times. (c) Simulation time per time-step
of both ARD solvers with varying scene volume for L-shaped room scene. We scale the original volume of the test scenes by the Scaling Factor. Note that the GPU-based solver
is 25 times faster at highest scaling factor. (d) Speedup (=CPU time/GPU time) achieved by our GPU-based ARD solver over the CPU-based solver with varying scene volume
for the different test scenes. As the scene volume increases, we achieve a higher speedup. For 64 times the original volume, the speedup becomes 12–25 times.
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Pressure normalize p. This step multiplies a constant value to
the pressure p, which is also highly parallelizable.
IDCT ð~pÞ. This step converts the pressure in the spectral domain
~p back to pressure in spatial domain p. Similar to DCTs, the
IDCTs are also efficiently computed using FFTs on GPU.
PML absorption layer. The PML absorbing layer is responsible
for sound wave absorption by the surfaces and walls of the
3D environment. It is applied on a 5–10 cell thick partition
depending on the desired accuracy [30,6]. We use a 4th order
finite-difference stencil (5 cell thickness) for PML computation
(see Eq. (2)). Based upon the distance of the grid cell from the
interface, PML performs different computations for different
grid cells. Due to this, there are a lot of inherent conditionals
in the algorithm. An efficient implementation of PML depends
on minimizing the effect of these conditionals, as discussed in
the next section.
4.3. Optimization

The performance of the GPU-based ARD algorithm described
above can be improved by means of following optimizations.
4.3.1. Batch processing
Interface handling, DCT, IDCT, Mode update and Pressure nor-

malize steps form the main components of our GPU-based solver,
where each step corresponds to a GPU-function called kernel. Ker-
nels are functions that are executed in parallel on the GPU (see Sec-
tion 2.3). To run these steps on all the partitions and interfaces, one
possible way is to launch a new kernel for each individual air par-
tition, PML partition and interface. In typical scenes, there are
thousands of partitions and interfaces (see Table 2). Since each ker-
nel launch has an associated overhead, launching thousands of ker-



Fig. 5. (a) Simulation steps – Interface handling, DCT, Mode update, IDCT, Pressure normalize and PML, and the corresponding time spent in the CPU-based and GPU-based
ARD solver for the Walkway scene. Speedups achieved by individual steps of the GPU-based ARD over the CPU-based simulator – PML (30 times), Mode update (28 times),
Pressure normalize (16 times), DCT (14 times), IDCT (14 times) and interface handling (3 times). (b) We plot speedup achieved by CPU-based and our GPU-based ARD solver
over CPU-based finite-difference time-domain (FDTD) solver with varying mmax for the small room benchmark scene. Our CPU-based FDTD solver is based upon the work
proposed by Sakamoto et al. [4]. The CPU-based ARD solver achieves a maximum speedup of 75 times over CPU-based FDTD whereas our GPU-based ARD solver achieves a
maximum speedup of 1100 times. (c & d) We run simulations on four different NVIDIA GPU’s with different number of CUDA processors (also called cores) – GeForce 9600 M
GT (32 cores), GeForce 8800GTX (128 cores), Quadro FX 5800 (240 cores) and Geforce GTX 480 (480 cores). Speedup on GPU with X cores = (Simulation time on 32-cores
GPU)/(Simulation time on X-cores GPU). We achieve linear scaling in performance at higher values of mmax.
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nels can have a drastic impact on the overall runtime. To avoid this
overhead, we group together partitions and interfaces into inde-
pendent groups (also called batches) and launch a kernel for each
batch. We call this batch processing. Therefore, instead of launching
P + I kernels where P is the number of partitions and I is the num-
ber of interfaces, we launch as many kernels as there are the num-
ber of batches. This grouping of partitions into batches depends on
the number of independent groups that can be formed. If all the
partitions are independent, they can grouped into a single batch.
For DCT and IDCT kernels, partitions are grouped into batches by
using the BATCH FFT scheme of the GPU-FFT library [31]. Mode up-
date and Pressure normalize steps have no dependency between
different partitions, and are grouped in a single batch resulting in
just one kernel launch each. For PML step also, we can group all
the PML partitions into a single batch and launch a single kernel.
But to minimize the effect of conditionals, we launch more than
one kernel, as discussed later. For interface handling, we group
the interfaces into three separate independent batches as dis-
cussed in Section 4.2. A kernel launch for each batch is followed
by a call to synchronize all the threads.
4.3.2. Maximizing coalesced memory access
The global memory access pattern of the GPU can have a signif-

icant impact on its bandwidth. GPU accesses memory in group of
threads called a half-warp (see Section 2.3). Global memory acces-
ses are most efficient when memory accesses of all the threads of a
half-warp can be coalesced in a single memory access. Our p; f ; ~p;~f
data-structures and their memory access patterns for the mode up-
date and pressure normalize kernels are organized in a way such
that each thread of index i accesses these data-structures at posi-
tion i itself. Thus the memory access pattern of a half-warp is per-
fectly coalesced. DCT and IDCT kernels based upon FFT library [31]
use memory coalescing as well. Our PML handling kernel for thread
i accesses memory at locations a + i where a is constant. This type
of access results in a coalesced memory access on current genera-
tion GPUs [27]. The interface handling step can access p, f from
many partitions and therefore achieving coalesced memory access
for this kernel is difficult.

4.3.3. Minimizing path divergence
The impact of conditionals (if/else statements) on the perfor-

mance of a GPU kernel can be very severe. The PML absorbing layer
steps have conditionals that are based upon the distance of the grid
cells from the interface and special cases like outer edges and cor-
ners. In our implementation, we take specific care in minimizing
the effect of conditional branching. Instead of launching a single
kernel with conditional branching, we launch separate small ker-
nels corresponding to different execution paths of the code. The
number of different execution paths is limited and can be refor-
matted in 2–3 unique paths. Thus, the increase in the number of
kernel launches is minimal (2 or 3). These additional kernel
launches do not adversely impact the performance.
5. Implementation and results

The original CPU-based ARD solver used a serial version of
FFTW library for computing DCT and IDCT steps. The CPU code uses
two separate threads – one for air partitions and other for PML



(a) Cathedral (35m x 16m x 27m)

(b) Walkway (30m x 30m x 10m)

(c) Train station (34m x 82m x 30m)

(d) Living room (22m x 28m x 12m)

Fig. 6. Benchmark scenes, videos and more pictures available in the supplementary
materials or at the link [9].
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partitions, and performs both these computations in parallel. For
simplicity of comparison with our GPU-based implementation,
we measure the sequential performance of the CPU-based solver
by using only a single thread. The CPU-based ARD code has been
demonstrated to be sufficiently accurate in single precision [8,6].
Since the calculations performed in our GPU-based approach are
the same as the CPU-based approach, the results of the GPU-based
solver match the CPU-based solver up to single-precision accuracy.
We implemented our GPU-based wave equation solver using NVI-
DIA’s parallel computing API, CUDA 3.0 with minimum compute
capability 1.0. The following compiler and optimization options
are used for our GPU code:

nvccCUDA v3:0 : MaximizeSpeedð=O2Þ:

Our DCT and IDCT kernels are based upon the FFT library developed
by Govindaraju et al. [31]. We use CUDA routine cudaThreadSyn-
chronize () for synchronizing threads.

We compare our GPU-based acoustic wave equation solver with
the well-optimized CPU implementation provided by the authors
of ARD [6]. We use NVIDIA Geforce GTX 480 graphics card with a
core clock speed of 700 MHz, graphics memory of 1.5 GB with
480 CUDA processors (also called cores). CPU timings are reported
for an Intel Xeon X5560 (8 M Cache, 2.80 GHz) machine. We em-
ploy only a single core for the CPU-based implementation. Timings
are reported by running the simulation over 100 time-steps and
taking the average. We use five benchmark scenes varying in both
size and complexity (see Table 2 and Fig. 6). Please listen to the
videos in the supplementary materials or at the link [9] for
auralization results on these benchmarks.

In Fig. 4a, we compare the performance of the CPU-based solver
with our GPU-based solver on L-shaped room benchmark with
varying mmax. Fig. 4b shows the speedup achieved by our GPU-
based solver on different benchmarks. For smaller frequencies,
the amount of work available is considerably less resulting in
under-utilization of GPU and nominal speedup. But for higher fre-
quencies4, all the cores of the GPU are fully utilized. Our GPU-based
solver becomes a lot faster and outperforms its CPU counterpart by a
factor of 15–25 times on different scenes. We also analyze the per-
formance of our solver with varying scene volume. We take our
benchmark scenes and scale their volume uniformly in the range
of 1–64 times. In Fig. 4c, we observe again that as the amount of
work increases with increasing scene volume, the performance of
GPU-based solver scales better. Speedup achieved by our GPU-based
solver for varying scene volume also shows a similar behavior (see
Fig. 4d). As the scaling factor reaches 64 times, we achieve a speedup
of 12–25 times on different scenes. For simple scenes like L-shaped
room, rectangular decomposition gives fewer air partitions (see
Table 2 column 4) resulting in fewer DCT and IDCT batches. Since
each batch corresponds to a kernel call, fewer batches mean fewer
kernel calls reducing the total overhead of kernel launches. Fewer
batches also mean that individual batch is of larger size. For each
batch, the GPU gets fully utiliized and the DCT and IDCT kernels
based on GPU-FFT are much more efficient resulting in higher speed-
ups for simpler scenes.

Fig. 5a shows the breakdown of the time spent on various steps
of the simulation stage. In the original CPU-based ARD solver, the
DCT/IDCT and the PML steps heavily dominate the computation
time. But for the GPU-based solver, as can be seen, all the steps
of the simulator are more or less balanced except Mode update,
Pressure normalize and PML, whose costs become negligible com-
pared to other steps. Our DCT and IDCT kernels implemented using
FFT library [31], give us a speedup of 14 times on the GPU. PML
boundary treatment, Mode update and Pressure normalize achieve
4 The amount of work increases with increasing frequency (number of grid cells
N / m3

max).
a higher speedup of 30 times, 28 times and 16 times, respectively.
The last stage of ARD, interface handling, involves a lots of unco-
alesced memory accesses resulting in a nominal speedup of three
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times. But since the contribution of interface handling to the over-
all running time is far less than DCT/IDCT steps, it does not become
a bottleneck.

We performed scalability analysis of our solver on four different
NVIDIA GPUs with different number of CUDA cores: GeForce
9600 M GT, GeForce 8800GTX, Quadro FX 5800 and Geforce GTX
480, each with 32, 128, 240 and 480 CUDA cores, respectively.
Fig. 5c and d shows the performance of our solver on the cathedral
and the small room scene as the number of CUDA cores increase.
As can be seen, our GPU-based solver scales linearly with the num-
ber of cores. Increasing the number of CUDA cores 4 times from 32
to 128 results in a speedup of 3–4 times, from 32 cores to 240 cores
(7.5 times) gives 7–7.5 times speedup and from 32 to 480 cores (15
times) we get a speedup of 14–15 times. As the amount of work in-
creases with increasing mmax, the performance scaling becomes
perfectly linear. This shows that our GPU-based ARD solver is com-
pute-bound rather than limited by memory bandwidth. In future,
as GPU’s continue their super-Moore’s law growth [32,33], our
GPU-based solver will exhibit super-exponential performance
improvement.

We also perform a performance comparison of CPU-based FDTD
solver, CPU-based ARD solver and our GPU-based ARD solver with
varying mmax. Our CPU-based FDTD solver is based upon the FDTD
work proposed by Sakamoto et al. [4]. As can be seen in Fig. 5b,
CPU-based ARD-solver achieves a maximum speedup of 50–75
times over the CPU-based FDTD solver. Our GPU-based ARD solver
achieves a speedup of over 1100 times over CPU-based FDTD solver
for the same scene. Since FDTD runs out of memory for
mmax > 3750 Hz, we use the timings below 3750 Hz and the fact that
simulation time varies as fourth power of mmax, to calculate the pro-
jected timings for FDTD above 3750 Hz.
6. Conclusion and future work

In this paper, we have presented an efficient GPU-based time-
domain solver for the acoustic wave equation. We observe more
than three orders of magnitude improvement over prior solvers
based on FDTD. Moreover, the use of GPUs can accelerate the com-
putation by more than an order of magnitude as compared to the
CPU-based ARD solver. We also show that our technique scales lin-
early with the number of GPU processors. Our approach has some
limitations. Our current implementation assumes that the entire
spatial decomposition fits into GPU memory and is based on single
precision arithmetic. In terms of future work, given a reformulation
of the BEM–FMM solution technique in time-domain, a very inter-
esting possibility would be to combine our ARD approach with
BEM–FMM – utilizing FMM based solutions for partitions with
large volume and our current domain-based ARD method for smal-
ler partitions. Comparing detailed impulse response measure-
ments of full-sized 3D concert halls against wave-based
numerical simulation is a very new and exciting method of inves-
tigation, which has opened up because of the increased computa-
tional power and memory on today’s computers. Our present
work opens up the possibility of doing such detailed comparisons
on a desktop computer in the mid-high frequency range (1–4
kHz) in the near future, along with visualizations of the propagat-
ing wavefronts. It would also be interesting to apply our approach
to more complex acoustic spaces such as CAD models and large
outdoor scenes, and extend it to multi-GPU clusters as well.
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