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Abstract—Accurate sound rendering can add significant realism to complement visual display in interactive applications, as well as

facilitate acoustic predictions for many engineering applications, like accurate acoustic analysis for architectural design [27]. Numerical

simulation can provide this realism most naturally by modeling the underlying physics of wave propagation. However, wave simulation has

traditionally posed a tough computational challenge. In this paper, we present a technique which relies on an adaptive rectangular

decomposition of 3D scenes to enable efficient and accurate simulation of sound propagation in complex virtual environments. It exploits

the known analytical solution of the Wave Equation in rectangular domains, and utilizes an efficient implementation of the Discrete Cosine

Transform on Graphics Processors (GPU) to achieve at least a 100-fold performance gain compared to a standard Finite-Difference

Time-Domain (FDTD) implementation with comparable accuracy, while also being 10-fold more memory efficient. Consequently, we are

able to perform accurate numerical acoustic simulation on large, complex scenes in the kilohertz range. To the best of our knowledge, it

was not previously possible to perform such simulations on a desktop computer. Our work thus enables acoustic analysis on large scenes

and auditory display for complex virtual environments on commodity hardware.

Index Terms—Sound propagation, computational acoustics, auralization, FDTD.

Ç

1 INTRODUCTION

SOUND rendering, or auditory display, was first introduced
to computer graphics more than a decade ago by Takala

and Hahn [44], who investigated the integration of sound
with interactive graphics applications. Their work was
motivated by the observation that accurate auditory display
can augment graphical rendering and enhance human-
computer interaction. There have been studies showing that
such systems provide the user with an enhanced spatial sense
of presence [14]. Auditory display typically consists of two
main components: sound synthesis that deals with how sound
is produced [13], [49], [29], [33], [6] and sound propagation that
is concerned with how sound travels in a scene. In this paper,
we address the problem of sound propagation, also referred
to as computational acoustics.

The input to an acoustic simulator is the geometry of the
scene, along with the reflective properties of different parts of
the boundary and the locations of the sound sources and
listener. The goal is to auralize—predict the sound the listener
would hear. Computational acoustics has a very diverse
range of applications, from noise control and underwater
acoustics [21] to architectural acoustics and acoustics for
virtual environments (VEs) and games. Although each
application has its own unique requirements from the
simulation technique, all applications require physical
accuracy. For noise control, accuracy translates directly into
the loudness of the perceived noise, for architectural
acoustics, accuracy has implications on predicting how much

an orchestra theater enhances (or degrades) the quality of
music. For interactive applications like VEs and games,
physical accuracy directly affects the perceived realism and
immersion of the scene. This is because we are used to
observing many physical wave effects in reality and their
presence in the scene helps to convince us that the computer-
generated environment is indeed real. For example, we
observe every day that when a sound source is occluded from
the listener, the sound becomes “muffled” in reality. For light,
the source would become invisible, casting a shadow, which
does not happen for sound because it bends, or diffracts,
around the occluder. In fact, this is one of the major reasons
that sound compliments sight, both in reality and in virtual
environments—it conveys information in places where light
cannot. Our simulation technique naturally captures these
subtle phenomena occurring in nature.

For most acoustic simulation techniques, the process of
auralization can be further broken down into roughly two
parts: 1) preprocessing and 2) (acoustic) sound rendering.
During preprocessing, an acoustic simulator does computa-
tions on the environment to estimate its acoustical properties,
which facilitate fast rendering of the sound at runtime. The
exact precomputation depends on the specific approach
being used. For our approach, the preprocessing consists of
running a simulation from the source location, which yields
the impulse responses at all points in the scene in one
simulation. The rendering at runtime can then be performed
by convolving the source signal with the calculated impulse
response at the listener’s location, which is a very fast
operation as it can be performed through an FFT. The main
focus of this paper is on the preprocessing phase of acoustic
prediction. We present a novel and fast numerical approach
that enables efficient and accurate acoustic simulations on
large scenes on a desktop system in minutes, which would
have otherwise taken many days of computation on a small
cluster. An example is shown in Fig. 1.
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The problem of acoustic simulation is challenging mainly
due to some specific properties of sound. The wavelength of
audible sound falls exactly in the range of the dimensions of
common objects, in the order of a few centimeters to a few
meters. Consequently, unlike light, sound bends (diffracts)
appreciably around most objects, especially at lower
frequencies. This means that unlike light, sound does not
exhibit any abrupt shadow edges. As discussed earlier,
from a perceptual point of view, capturing correct sound
diffraction is critical. In addition, the speed of sound is
small enough that the temporal sequence of multiple sound
reflections in a room is easily perceptible and distinguish-
able by humans. As a result, a steady-state solution, like in
light simulation, is insufficient for sound—a full transient
solution is required. For example, speech intelligibility is
greatly reduced in a room with very high wall reflectivity,
since all the echoes mix into the direct sound with varying
delays. Therefore, the combination of low speed and large
wavelength makes sound simulation a computational
problem with its own unique challenges. Numerical
approaches for sound propagation attempt to directly solve
the Acoustic Wave Equation, which governs all linear
sound propagation phenomena, and are thus capable of

performing a full transient solution which correctly
accounts for all wave phenomena, including diffraction,
elegantly in one framework. Since we use a numerical
approach, our implementation inherits all these advantages.
This is also the chief benefit our method offers over
geometric techniques, which we will discuss in detail in
the next section.

Applicability. Most interactive applications today, such
as games, use reverb filters (or equivalently, impulse
responses) that are not physically based and roughly
correspond to acoustical spaces with different sizes. In
reality, the acoustics of a space exhibits perceptibly large
variations depending on the wall material, room size, and
geometry, along with many other factors [24]. A handful of
reverb filters common to all scenes cannot possibly capture
all the different acoustical effects which we routinely
observe in real life, and thus, such a method at best
provides a crude approximation of the actual acoustics of
the scene. Moreover, an artist has to assign these reverb
filters to different parts of the environment manually, which
requires a considerable amount of time and effort.

One way to obtain realistic filters would be to do actual
measurements on a scene. Not only it is difficult and time-
consuming for real scenes, but also for virtual environments
and games, where one would need to physically construct
scale physical prototypes which would be prohibitively
expensive. This is even more impractical considering that
most games today encourage users to author their own
scenes. Numerical approaches offer a cheap and effective
alternative to alleviate all of these problems by computing
the filters at different points in the scene directly from
simulation and are thus capable of at once automating the
procedure, as well as providing much more realistic and
immersive acoustics which account for all perceptually
important auditory effects, including diffraction. However,
this realism comes at a very high computational cost and
large memory requirements. In this paper, we offer a highly
accelerated numerical technique that works on a desktop
system and can be used to precompute high-quality reverb
filters for arbitrary scenes without any human intervention.
These filters can then be employed as-is in interactive
applications for real-time auralization. For example, given
that the artist specifies a few salient locations where the
acoustics must be captured, one just needs to store the
reverb filters obtained from simulation at those locations.
Current game engines already use techniques to associate
reverb filters with physical locations [2]. Our technique
would provide the actual values in the reverb filters, and
the audio pipeline need not change at all. The artist would
thus be relieved from the burden of figuring out and
experimenting exactly what kind of reverb captures the
acoustics of the particular space he/she has modeled.
Another advantage of our approach is that since we are
solving for the complete sound field in a scene, a sound
designer can visualize how the sound propagates in the
scene over time, to help him/her make guided decisions
about what changes need to be made to the scene to counter
any perceived acoustic deficiencies. Refer to the accompa-
nying video, which can be found on the Computer Society
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Fig. 1. Sound simulation on a Cathedral. The dimensions of this scene
are 35 m� 15 m� 26 m. We are able to perform numerical sound
simulation on this complex scene on a desktop computer and
precompute a 1-second-long impulse response in about 29 minutes,
taking less than 1 GB of memory. A commonly used approach that we
compare against, Finite-Difference Time Domain (FDTD), would take a
projected 1 week of computation and 25 GB of memory for this scene to
achieve competitive accuracy. The auralization, or sound rendering at
runtime, consists of convolution of the calculated impulse responses
with arbitrary source signals, which can be computed efficiently.



Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2009.28, for examples of such visualizations.

Main results. Our technique takes at least an order of
magnitude less memory and two orders of magnitude
less computation compared to a standard numerical
implementation, while achieving competitive accuracy at
the same time. It relies on an adaptive rectangular
decomposition of the free space of the scene. This approach
has many advantages:

1. The analytical solution to the wave equation within a
rectangular domain is known. This enables high
numerical accuracy, even on grids approaching the
Nyquist limit, which are much coarser than those
required by most numerical techniques. Exploiting
these analytical solutions is one of the key reasons
for the significant reduction in compute and mem-
ory requirements.

2. Due to the rectangular shape of the domain
partitions, the solution in their interior can be
expressed in terms of the Discrete Cosine Trans-
form (DCT). It is well known that DCTs can be
efficiently calculated through an FFT. We use a
fast implementation of FFT on the GPU [17], which
effectively maps the FFT to the highly parallel
architecture of the GPU to gain considerable
speed-ups over CPU-based libraries. This imple-
mentation drastically reduces the computation time
for our overall approach.

3. The rectangular decomposition can be seamlessly
coupled with other simulation techniques running in
different parts of the simulation domain.

We have also implemented the Perfectly Matched Layer
(PML) Absorber to model partially absorbing surfaces, as
well as open scenes. We demonstrate our algorithm on
several scenarios with high complexity and validate the
results against FDTD, a standard Finite-Difference techni-
que. We show that our approach is able to achieve the
same level of accuracy with at least two orders of
magnitude reduction in computation time and an order
of magnitude less memory requirements. Consequently, we
are able to perform accurate numerical acoustic simulation
on large scenes in the kilohertz range which, to the best of
our knowledge, has not been previously possible on a
desktop computer.

Organization. The rest of the paper is organized as
follows: In Section 2, we review related work in the field.
Section 3 presents the mathematical background, which
motivates our approach described in Section 4. We show
and discuss our results in Section 5.

2 PREVIOUS WORK

Since its inception [36], computational acoustics has been a
very active area of research due to its widespread practical
applications. Depending on how wave propagation is
approximated, techniques for simulating acoustics may be
broadly classified into Geometric Acoustics (GA) and
Numerical Acoustics (NA). For a general introduction to
room acoustics, the reader may refer to [24], [21] or a more
current survey [26].

Geometric acoustics. All GA approaches are based on
the basic assumption of rectilinear propagation of sound
waves, just like light. Historically, the first GA approaches
that were investigated were Ray Tracing and the Image
Source Method [23], [3]. Most room acoustics software use a
combination of these techniques to this day [35]. Another
efficient geometric approach that has been proposed in
literature, with emphasis on interactive graphics applica-
tions, is Beam Tracing [16], [4]. On the lines of Photon
Mapping, there has been work on Phonon Tracing [5], [12]
in acoustics. Also, researchers have proposed applying
hierarchical radiosity to acoustical energy transfer [46], [18].
All GA approaches assume that sound propagates rectili-
nearly in rays, which results in unphysical sharp shadows
and some techniques must be applied to ameliorate the
resulting artifacts and include diffraction into the simula-
tion, especially at lower frequencies. Most of such
approaches rely on the Geometrical Theory of Diffraction
[48] and, more recently, the Biot-Tolstoy-Medwin model of
diffraction [10] which result in improved simulations.
However, accurately capturing diffraction still remains a
challenge for GA approaches and is an active area of
research. In the context of interactive systems, most acoustic
techniques explored to date are based on GA, simply
because although numerical approaches typically achieve
better quality results, the computational demands were out
of the reach of most systems.

Numerical acoustics. Numerical approaches, in contrast
to GA, solve the Wave Equation numerically to obtain the
exact behavior of wave propagation in a domain. Based on
how the spatial discretization is performed, numerical
approaches for acoustics may be roughly classified into:
Finite-Element Method (FEM), Boundary-Element Method
(BEM), Digital Waveguide Mesh (DWM), Finite-Difference
Time Domain (FDTD), and Functional Transform Method
(FTM). In the following, we briefly review each of these
methods in turn.

FEM and BEM have traditionally been employed mainly
for the steady-state frequency-domain response, as opposed
to a full time-domain solution, with FEM applied mainly to
interior and BEM to exterior scattering problems [22]. FEM
and BEM approaches are general methods applicable to any
Partial Differential Equation, the Wave Equation being one
of them. DWM approaches [50], on the other hand, use
discrete waveguide elements, each of which is assumed to
carry waves along its length along a single dimension [20],
[40], [28].

The FDTD method, due to its simplicity and versatility,
has been an active area of research in room acoustics for
more than a decade [7], [8]. Originally proposed for
electromagnetic simulations [41], FDTD works on a uniform
grid and solves for the field values at each cell over time.
Initial investigations into FDTD were hampered by the lack
of computational power and memory, limiting its applica-
tion to mostly small scenes in two dimensions. It is only
recently that the possibility of applying FDTD to medium
sized scenes in three dimensions has been explored [37],
[39], [38]. Even then, the computational and memory
requirements for FDTD are beyond the capability of most
desktop systems today [39], requiring days of computation
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on a small cluster for medium-sized 3D scenes for
simulating frequencies up to 1 kHz.

Another aspect of our work is that we divide the
domain into many partitions. Such approaches, called
Domain Decomposition Methods (DDM), have wide-
spread applications in all areas where numerical solution
to partial differential equations is required and it would
be hard to list all areas of numerical simulation where
they have been applied. For a brief history of DDM and
its applications, we refer the reader to the survey [11]. For
an in-depth discussion of DDM, the reader is referred to
the books [31], [45]. Also, the Web site [1] has many
references to current work in the area. It is interesting to
note that the main motivation of DDM when it was
conceptualized more than a century ago was to divide the
domain into simpler partitions which could be analyzed
more easily [11], much like in our work. However, in
nearly all Domain Decomposition approaches today,
specifically for wave propagation, the principal goal is
to divide and parallelize the workload across multiple
processors. Therefore, the chief requirement in such cases
is that the partitions be of equal size and have minimal
interface area, since that corresponds to balancing the
computation and minimizing the communication cost.

The motivation of our approach for partitioning the
domain is different—we want to ensure that the partitions
have a particular rectangular shape even if that implies
partitions with highly varying sizes since it yields many
algorithmic improvements in terms of computation and
numerical accuracy for simulation within the partitions.
Our approach leads to improvements even in sequential
performance by exploiting the analytical solution within a
rectangular domain. In contrast to prior work in high-
performance computing, parallelization is not the driving
priority in our work. Decomposing the domain into
partitions and performing interface handling between them
are very well known techniques and by themselves are not
the main contribution of this work. Of course, it is still
possible to parallelize our approach by allocating the
partitions to different cores or machines, and doing inter-
face handling between them, and would be the way to scale
our approach to very large scenes with billions of cells.

Another method which is related to our work, although
in a different mathematical framework, is the FTM [30], [32].
Our technique has the advantage of being very simple to
formulate and works directly on the second-order Wave
Equation, instead of casting it as a first-order system as in
the FTM, and just requires one mathematical transforma-
tion, the Discrete Cosine Transform. Also, we demonstrate
our results on general scenes in 3D, along with detailed
error analysis.

Spectral techniques are a class of very high-order
numerical schemes in which the complete field is expressed
in terms of global basis functions. Typically, the basis set is
chosen to be the Fourier or Chebyshev polynomials [9] as
fast, memory-efficient transforms are available to transform
to these bases from physical space and vice versa. Our
method may also be regarded as a spectral method.
However, there are some important differences which we
discuss later in the paper.

It is interesting to note here that GA and NA approaches
may be regarded as complimentary with regard to the range
of frequencies they can simulate efficiently—With geo-
metric approaches, it is hard to simulate low-frequency
wave phenomena like diffraction because they assume that
sound travels in straight lines like light, while with
numerical approaches, simulating high frequencies above
a few kilohertz becomes prohibitive due to the excessively
fine volume mesh that must be created.

We wish to emphasize at this point that it is possible
to integrate more elaborate techniques for modeling the
surface properties and scattering [47] characteristics of the
scene boundary into our technique. Also, we assume all
sound sources to be monopole, or point source, but
complex emission patterns resulting from many monopole
and dipole sources [19] can also be easily integrated in
our framework.

3 MATHEMATICAL BACKGROUND

In this section, we first briefly present the FDTD method.
We do this for two reasons: First, this is the simulator we
use as a reference to compare against and its details serve to
illustrate the underlying mathematical framework used
throughout this paper. Second, this discussion illustrates
numerical dispersion errors in FDTD and motivates our
technique which uses the analytical solution to the Wave
Equation on rectangular domains to remove numerical
dispersion errors.

3.1 Basic Formulation

The input to an acoustics simulator is a scene in three
dimensions, along with the boundary conditions and the
locations of the sound sources and listener. The propaga-
tion of sound in a domain is governed by the Acoustic
Wave Equation

@2p

@t2
� c2r2p ¼ F x; tð Þ: ð1Þ

This equation captures the complete wave nature of sound,

which is treated as a time-varying pressure field p x; tð Þ in

space. The speed of sound is c ¼ 340 ms�1 and F x; tð Þ is the

forcing term corresponding to sound sources present in the

scene. The operatorr2 ¼ @2

@x2 þ @2

@y2 þ @2

@z2 is the Laplacian in 3D.

The Wave Equation succinctly explains wave phenomena

such as interference and diffraction that are observed in

reality. We briefly mention a few physical quantities and their

relations, which will be used throughout the paper. For a

wave traveling in free space, the frequency � and wavelength

� are related by c ¼ ��. It is also common to use the angular

counterparts of these quantities: angular frequency ! ¼ 2��

and wavenumber k ¼ 2�
� . Because frequency and wavenum-

ber are directly proportional to each other, we will be using

the two terms interchangeably throughout the paper.
In the next section, we briefly discuss the FDTD method

for numerically solving the Wave Equation. To avoid
confusion, we note here that while the term FDTD is
sometimes used to specifically refer to the original algo-
rithm proposed by Yee [51] for Electromagnetic simulation,
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it is common to refer to any Finite-Difference-based
approach which computes the complete sound field in time
domain as an FDTD method. In this paper, we use the latter
definition.

3.2 A (2,6) FDTD Scheme

FDTD works on a uniform grid with spacing h. To capture
the propagation of a prescribed maximum frequency �max,
the Nyquist theorem requires that h � �max

2 ¼ c
2�max

. Once the
spatial discretization is performed, the continuum Lapla-
cian operator is replaced with a discrete approximation of
desired order of accuracy. Throughout this paper, we
consider the sixth-order accurate approximation to the
Laplacian, which approximates the second-order differen-
tial in each dimension with the following stencil:

d2pi
dx2
� 1

180h2
2pi�3 � 27pi�2 þ 270pi�1 � 490pið

þ 270piþ1 � 27piþ2 þ 2piþ3Þ þOðh6Þ;
ð2Þ

where pi is the ith grid cell in the corresponding dimension.
Thus, the Laplacian operator at each cell can be represented
as a Discrete Laplacian Matrix K and (1) becomes

@2P

@t2
� c2

h2
KP ¼ F tð Þ; ð3Þ

where P is a long vector listing the pressure values at all the
grid cells and F is the forcing term at each cell. Hard walls
may be modeled with the Neumann Boundary Condition
� @p

@n̂ ¼ 0, where n̂ is the normal to the boundary.

The next step is to discretize (3) in time at some time step

�t, which is restricted by the CFL condition �t < h
c
ffiffi
3
p . Using

the Leapfrog integrator in time, the complete update rule is as

follows:

Pnþ1 ¼ 2Pn � Pn�1 þ c�t

h

� �2

KPn þO �t2
� �

þO h6
� �

:

Since the temporal and spatial errors are second and
sixth order respectively, this is a (2,6) FDTD scheme. In the
next section, we discuss the nature of the numerical errors
in FDTD schemes and the resulting performance issues.

3.3 Numerical Dispersion in FDTD
and Efficiency Considerations

As was previously discussed, the spatial cell size h for FDTD
is chosen depending on the maximum simulated frequency
�max and is limited by the Nyquist sampling theorem.
However, due to numerical errors arising from spatial and
temporal discretization, accurate simulation with FDTD
typically requires not 2 but 8-10 samples per wavelength
[43]. These errors manifest themselves in the form of
Numerical Dispersion—Waves with different wavenumbers
(or equivalently, different frequencies) do not travel with the
same speed in the simulation. This error may be quantified by
finding the wavenumber-dependent numerical speed c0 kð Þ,
where k is the wavenumber. This speed is then normalized by
dividing with the ideal wave speed c, yielding the dispersion
coefficient � kð Þ. Ideally, the dispersion coefficient should be
as close to 1 as possible for all wavenumbers. Fig. 2 shows a
plot of the dispersion coefficient for FDTD against frequency

on a 3D grid and compares the error for different cell sizes.
Observe that at 1,000 Hz, the dispersion coefficient for FDTD
is about 0:01c, while for FDTD running on a 2.5� refined
mesh the error is about 0:001c. This is because the spatial
sampling increases from 4 samples per wavelength to
10 samples per wavelength.

Consider a short-time signal containing many frequen-
cies, for example, a spoken consonant. Due to Numerical
Dispersion, each of the frequencies in the consonant will
travel with a slightly different speed. As soon as the phase
relations between different frequencies are lost, the signal is
effectively destroyed and the result is a muffled sound.
From the above values of the dispersion coefficient, it can be
shown that with FDTD, a signal would have lost phase
coherence after traveling just 17 m, which is comparable to
the diameter of most scenes.

To increase accuracy, we need to increase the mesh
resolution, but that greatly increases the compute and
memory requirements of FDTD—Refining the mesh r times
implies an increase on memory by a factor of r3 and the
total compute time for a given interval of time by r4. In
practice, memory can be a much tighter constraint because
if the method runs out of main memory, it will effectively
fail to produce any results.

3.4 Wave Equation on a Rectangular Domain

A lot of work has been done in the field of Spectral/Pseudo-
spectral methods [25] to allow for accurate simulations with
two to four samples per wavelength while still allowing for
accurate simulations. Such methods typically represent the
whole field in terms of global basis functions, as opposed to
local basis functions used in Finite-Difference or Finite-
Element methods. With a suitable choice of the spectral
basis (typically Chebyshev polynomials), the differentiation
represented by the Laplacian operator can be approximated
to a very high degree of accuracy, leading to very accurate
simulations. However, spectral methods still use discrete
integration in time which introduces temporal numerical
errors. In this paper, we use a different approach and
instead exploit the well-known analytical solution to the
Wave Equation on rectangular domains [24], which enables
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Fig. 2. Numerical dispersion with a (2,6) FDTD scheme for different
mesh resolutions. Increasing the sampling reduces the numerical
dispersion errors. Our method suffers from no dispersion errors in the
interior of rectangular partitions, while FDTD accumulates errors over
each cell a signal propagates across. Reducing these errors with FDTD
requires a very fine grid.



error-free propagation within the domain. It is important to
note here that we are able to do this because we assume that
the speed of sound is constant in the medium, which is a
reasonable assumption for architectural acoustics and
virtual environments.

Consider a rectangular domain in 3D, with its solid
diagonal extending from the ð0; 0; 0Þ to ðlx; ly; lzÞ, with
perfectly rigid, reflective walls. It can be shown that any
pressure field pðx; y; z; tÞ in this domain may be repre-
sented as

pðx; y; z; tÞ ¼
X

i¼ðix;iy;izÞ
miðtÞ�iðx; y; zÞ; ð4Þ

where mi are the time-varying mode coefficients and �i are
the eigenfunctions of the Laplacian for a rectangular
domain, given by

�iðx; y; zÞ ¼ cos
�ix
lx
x

� �
cos

�iy
ly
y

� �
cos

�iz
lz
z

� �
:

Given that we want to simulate signals band-limited up
to a prescribed smallest wavelength, the above continuum
relation may be interpreted on a discrete uniform grid with
the highest wavenumber eigenfunctions being spatially
sampled at the Nyquist rate. Note that as long as the
simulated signal is properly band-limited and all the modes
are used in the calculation, this discretization introduces no
numerical errors. This is the reason it becomes possible to
have very coarse grids with only two to four samples per
wavelength and still do accurate wave propagation simula-
tions. In the discrete interpretation, (4) is simply an inverse
Discrete Cosine Transform (iDCT) in 3D, with �i being the
Cosine basis vectors for the given dimensions. Therefore,
we may efficiently transform from mode coefficients (M) to
pressure values (P ) as

P ðtÞ ¼ iDCT ðMðtÞÞ: ð5Þ

This is the main advantage of choosing a rectangular
shape—because the eigenfunctions of a rectangle are Cosines,
the transformation matrix corresponds to applying the DCT,
which can be performed in � n lognð Þ time and � nð Þmemory
using the Fast Fourier Transform algorithm [15], where n is
the number of cells in the rectangle, which is proportional to
its volume. For general shapes, we would get arbitrary basis
functions, and these requirements would increase to � n2ð Þ in
compute and memory, which quickly becomes prohibitive
for large scenes, withn ranging in millions. Reinterpreting (1)
in a discrete-space setting, substitutingP from the expression
above and rearranging, we get

@2Mi

@t2
þ c2k2

iMi ¼ DCT ðF ðtÞÞ;

k2
i ¼ �2 i2x

l2x
þ
i2y
l2y
þ i

2
z

l2z

 !
:

ð6Þ

In the absence of any forcing term, the above equation
describes a set of independent simple harmonic oscilla-
tors, with each one vibrating with its own characteristic
frequency, !i ¼ cki. The above analysis may be equiva-
lently regarded as Modal Analysis applied to a rectan-
gular domain. However, our overall approach is different

from Modal Analysis because the latter is typically
applied to a domain as a whole, yielding arbitrary basis
functions which do not yield to efficient transforms, and
extracting all the modes is typically intractable for
domains with millions of cells.

We model arbitrary forcing functions, for example, due
to a volume sound sources as follows. Assuming that the
forcing function F tð Þ is constant over a time step �t, it may
be transformed to mode-space as

eF ðtÞ � DCT ðF ðtÞÞ ð7Þ

and one may derive the following update rule

Mnþ1
i ¼ 2Mn

i cosð!i�tÞ �Mn�1
i þ 2fFn

!2
i

ð1� cosð!i�tÞÞ: ð8Þ

This update rule is obtained by using the closed-form
solution of a simple harmonic oscillator over a time step.
Since it is a second-order equation, we need to specify one
more initial condition, which we choose to be that the
function computed over the time step evaluates correctly to
the value at the previous time step Mn�1. This leads to a
time-stepping scheme which has no numerical errors for
propagation in the interior of the rectangle, since we are
directly using the closed-form solution for a simple
harmonic oscillator. The only error introduced is in
assuming that the forcing term is constant over a time step.
This is not a problem for input source sounds, as the time
step is necessarily below the sampling rate of the input
signal. However, the communication of sound between two
rectangular domains is ensured through forcing terms on
their interface and this approximation introduces numerical
errors at the interface. We discuss these issues in detail in
the next section.

4 TECHNIQUE

In the previous section, we discussed the errors and
efficiency issues of the FDTD method and discussed a
method to carry out numerical solution of the Wave
Equation accurately and efficiently on rectangular domains.
In this section, we discuss our technique which exploits
these observations to perform acoustic simulation on
arbitrary domains by decomposing them into rectangular
partitions. We end with a discussion of the numerical errors
in our approach.

4.1 Rectangular Decomposition

Most scenes of interest for the purpose of acoustic simulation
necessarily have large empty spaces in their interior.
Consider a large scene, for example, a 30-m-high cathedral
in which an impulse is triggered near the floor. With FDTD,
this impulse would travel upward and would accumulate
numerical dispersion error at each cell it crosses. Given that
the spatial step size is comparable to the wavelength of the
impulse, which is typically a few centimeters, the impulse
accumulates a lot of error, crossing hundreds to thousands of
cells. In the previous section, we discussed that wave
propagation on a rectangular domain can be performed very
efficiently while introducing no numerical errors. If we fit a
rectangle in the scene extending from the bottom to the top,
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the impulse would have no propagation error. This is the
chief motivation for Rectangular Decomposition—since
there are large empty spaces in typical scenes, a decomposi-
tion of the space into rectangular partitions would yield
many partitions with large volume and exact propagation
could be performed in the interior of each.

We perform the rectangular decomposition by first
voxelizing the scene. The cell size is chosen based on the
maximum frequency to be simulated, as discussed pre-
viously. Next, the rectangular decomposition is performed
using a greedy heuristic, which tries to find the largest
rectangle it can grow from a random seed cell until all free
cells are exhausted. We note here that the correctness of our
technique does not depend on the optimality of the
rectangular decomposition. A slightly suboptimal partition-
ing with larger interface area affects the performance only
slightly, as the interface area is roughly proportional to the
surface area of the domain, while the runtime performance
is dominated by the cost of DCT, which is performed on
input proportional to the volume of the domain.

4.2 Interface Handling

Once the domain of interest has been decomposed into
many rectangles, propagation simulation can be carried out
inside each rectangle, as described in Section 3.4. However,
since every rectangle is assumed to have perfectly reflect-
ing walls, sound will not propagate across rectangles. We
next discuss how this communication is performed using a
Finite-Difference approximation. Without loss of general-
ity, let us assume that two rectangular partitions share an
interface with normal along the X-axis. Recall the discus-
sion of FDTD in Section 3.2. Assume for the moment that
(2,6) FDTD is running in each rectangular partition, using
the stencil given in (2) to evaluate d2pi

dx2 . Further, assume that
cell i and iþ 1 are in different partitions and thus lie on
their interface. As mentioned previously, Neumann bound-
ary condition implies even symmetry of the pressure field
about the interface and each partition is processed with this
assumption. Thus, the Finite-Difference stencil may also be
thought of as a sum of two parts—The first part assumes
that the pressure field has even symmetry about the
interface, namely, pi ¼ piþ1; pi�1 ¼ piþ2 and pi�2 ¼ piþ3, and
this enforces Neumann boundary conditions. The residual
part of the stencil accounts for deviations from this
symmetry caused by the pressure in the neighboring
partition. Symbolically, representing the Finite-Difference
stencil in (2) as S

Si ¼ S0
i þ S0i; where

S0
i ¼

1

180h2
2pi�3 � 25pi�2 þ 243pi�1 � 220pið Þ

S0i ¼
1

180h2
ð�2pi�2 þ 27pi�1 � 270pi þ 270piþ1

� 27piþ2 þ 2piþ3Þ:

Since S0i is a residual term not accounted for while
evaluating the LHS of equation (3), it is transferred to the
RHS and suitably accounted for in the forcing term, thus
yielding

Fi ¼ c2S0i: ð9Þ

Similar relations for the forcing term may be derived for
all cells near the partition boundary which index cells in
neighboring partitions. If we were actually using (2,6)
FDTD in each partition, this forcing term would be exact,
with the same numerical errors due to spatial and temporal
approximations appearing in the interior as well as the
interface. However, because we are using an exact solution
in the interior, the interface handling described above
introduces numerical errors equivalent to a (2,6) FDTD on
the interface. We will discuss these errors in more detail
shortly. We would like to note here that a sixth-order
scheme was chosen as it gives sufficiently low interface
errors, while being reasonably efficient. Lower (second/
fourth) order schemes would be more efficient and much
easier to implement, but as we have experimented, they
result in much higher errors, which results in undesirable,
audible high frequency noise. One may use an even higher
order scheme if more accuracy is required for a particular
application, at the expense of computation and implemen-
taion effort. An interesting point to note at this point is that
the interface handling does not need to know how the field
inside each partition is being updated. Therefore, it is easy
to mix different techniques for wave propagation in
different parts of the domain, if so required.

4.3 Absorbing Boundary Condition

Our discussion till this point has assumed that all scene
boundaries are perfectly reflecting. For modeling real
scenes, this is an unrealistic assumption. Moreover, since
the computation is carried out on a volumetric grid, it is
necessary to truncate the domain and model emission into
free space. It is necessary to have absorbing boundaries for
this purpose. For this work, we have implemented the PML
absorber [34], which is commonly employed in most
numerical wave propagation simulations due to its high
absorption efficiency. PML works by applying an absorbing
layer which uses coordinate stretching to model wave
propagation in an unphysical medium with very high
absorption, while ensuring that the impedance of the
medium matches that of air at the interface to avoid
reflection errors. The interfacing between the PML medium
and a partition in our method is simple to implement—
Since PML explicitly maintains a pressure field in the
absorbing medium, the PML medium can also be treated as
a partition and the same technique described above can be
applied for the coupling between PML and other partitions.
Variable reflectivity can be easily obtained by multiplying
the forcing term calculated for interface handling by a
number between 0 and 1, 0 corresponding to full reflectivity
and 1 corresponding to full absorption.

4.4 Putting Everything Together

In this section, we give a step-by-step description of all the
steps involved in our technique. Fig. 3 shows a schematic
diagram of the different steps in our approach, which are as
follows:

1. Preprocessing

a. Voxelize the scene. The cell size is fixed by the
minimum simulated wavelength and the re-
quired number of spatial samples per wave-
length (typically 2-4).
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b. Perform a rectangular decomposition on the
resulting voxelization, as described in Sec-
tion 4.1.

c. Perform any necessary precomputation for the
DCTs to be performed at runtime. Compute all
interfaces and the partitions that share them.

2. Simulation loop

a. Update modes within each partition using (8).
b. Transform all modes to pressure values by

applying an iDCT as given in (5).
c. Compute and accumulate forcing terms for each

cell. For cells on the interface, use (9), and for
cells with point sources, use the sample value.

d. Transform forcing terms back to modal space
using a DCT as given in (7).

4.5 Numerical Errors

Numerical errors in our method are introduced mainly
through two sources—boundary approximation and inter-
face errors. Since we employ a rectangular decomposition to
approximate the simulation domain, there are staircasing
errors near the boundary (see Fig. 7). These staircasing errors
are identical to those in FDTD because we do a rectangular
decomposition of a uniform grid—there is no additional
geometry approximation error due to using rectangular
partitions. In most room acoustic software, it is common
practice to approximate the geometry to varying degrees [42].
The reason for doing this is that we are not as sensitive to
acoustic detail as much as we are to visual detail. Geometric
features comparable or smaller than the wavelength of sound
(34 cm at 1 kHz) lead to very small variations in the overall
acoustics of the scene due to the presence of diffraction. In
contrast, in light simulation, all geometric details are visible
because of the ultrasmall wavelength of light, and thus,
staircasing is a much more important problem.

The net effect of staircasing error for numerical simula-
tors is that for frequencies with wavelengths comparable to
the cell size (1 kHz), the walls act as diffuse instead of

specular reflectors. For frequencies with large wavelengths
(500 Hz and below), the roughness of the surface is
effectively “invisible” to the wave, and the boundary errors
are small with near-specular reflections. Therefore, the
perceptual impact of boundary approximation is lesser in
acoustic simulation.

However, if very high boundary accuracy is critical for a
certain scene, this can be achieved by coupling our approach
with a high-resolution grid near the boundary, running
FDTD at a smaller time step. As we had mentioned earlier, as
long as the pressure values in neighboring cells are available,
it is easy to couple the simulation in the rectangular partitions
with another simulator running in some other part of the
domain. Of course, this would create extra computational
overhead, so its an efficiency-accuracy trade-off.

As we discussed theoretically in Section 3.4 and also
demonstrate with experiments in the next section, our
technique is able to nearly eliminate numerical dispersion
errors. However, because the interpartition interface hand-
ling is based on a less accurate (2,6) FDTD scheme, the
coupling is not perfect, which leads to erroneous reflections
at the interface. Fig. 4 shows the interface error for a simple
scene. The Nyquist frequency on the mesh is 2,000 Hz. The
table at the bottom of the figure shows the interface
reflection errors for different frequencies, in terms of sound
intensity. Although the interface errors increase with
increasing frequency, it stays �� 40 dB for most of the
spectrum. Roughly, that is the difference in sound intensity
between normal conversation and a large orchestra.

Since most scenes of practical interest have large empty
spaces in their interior, the number of partition interfaces
encountered by a wave traveling the diameter of the scene
is quite low. For example, refer to Fig. 7—a wave traveling
the 20 m distance from the source location to the dome at
the top encounters only about 10 interfaces. Also, it is
important to note that this is a worst-case scenario for our
approach, since many rectangles are needed to fit the
curved dome at the top. This is the chief advantage of our
approach—numerical dispersion is removed for traveling
this distance and it is traded off for very small reflection
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Fig. 3. Overview of our approach. The scene is first voxelized at a
prescribed cell size depending on the highest simulated frequency. A
rectangular decomposition is then performed and impulse response
calculations then carried out on the resulting partitions. Each step is
dominated by DCT and inverse DCT calculations within partitions,
followed by interface handling to communicate sound between
partitions.

Fig. 4. Measurements of numerical error due to interface handling and
PML absorbing boundary conditions. The interface handling errors stays
near –40 dB for most of the frequency spectrum, which is not
perceptible. The absorption error stays around –25 dB which introduces
very small errors in the reflectivity of different materials.



errors which are imperceptible. Hear the accompanying
video for examples of audio rendered on complex scenes
with numerous interfaces.

Fig. 4 also shows the absorption errors for the PML
Absorbing Boundary Condition. The absorption errors
range from �20 to �30 dB, which works well for most
scenes, since this only causes a slight deviation from the

actual reflectivity of the material being modeled. However,
if higher accuracy absorption is required, one might
increase the PML thickness. We have used a five-cell-thick
PML in all our simulations.

5 RESULTS

5.1 Sound Rendering

The input to all audio simulations we perform is a Gaussian-
derivative impulse of unit amplitude. Given the maximum

frequency to be simulated �max, we fix the width of the
impulse so that its maxima in frequency domain is at �max

2 ,
giving a broadband impulse in the frequency range of
interest. This impulse is triggered at the source location and
simulation performed until the pressure field has dropped off
to about �40 dB, which is roughly the numerical error of the
simulation. The resulting signal is recorded at the listener
position(s). Next, deconvolution is performed using a simple
Fourier coefficient division to obtain the Impulse Response

(IR), which is used for sound rendering at a given location.
Auralizing the sound at a moving listener location is

performed as follows. First, note that running one simula-
tion from a source location yields the pressure variation at
all cell centers because we are solving for the complete field
on a volume grid. For auralizing sound, we first compute
the IRs at all cells lying close to the listener path. Next, the
sound at the current position and time is estimated by
linearly interpolating the field values at neighboring cell
centers. To obtain the field value at a given cell center, a

convolution of the IR at the corresponding location and the
input sound is performed. We would like to emphasize here
that there are more efficient ways of implementing the
auralization, but that is not the focus of this paper.

Most of the simulations we have performed are band-
limited to 1-2 kHz due to computation and memory
constraints. However, this is not a significant limitation.
Although audible sounds go up to 22 kHz, it is important to
realize that only frequencies up to about 5 kHz are

perceptually critical [24] for acoustics simulation. Moreover,
the frequency perception of humans is logarithmic, which
reflects in the frequency doubling between musical octaves.
This means that most of the perceptually important
frequencies are contained till about 2 kHz. For example,
the frequency of a typical 88-key piano goes from about
30 Hz to 4 kHz, covering seven octaves, out of which six
octaves are below 2 kHz. However, even though we do not
have accurate perception of higher frequencies, their

complete absence leads to perceptual artifacts, and there-
fore, there must be some way of accounting for higher
frequencies, even if approximately. One way of doing that
would be to combine our technique with a Geometrical
Acoustic simulator for the higher frequency range. In this

paper, we have used a much simpler technique that gives
good results in practice.

To auralize sounds in the full audible range up to 22 kHz,
we first up-sample the IR obtained from the simulation to
44 kHz and run a simple peak detector on the IR which works
by searching for local maxima/minima. The resulting IR
contains peaks with varying amplitudes and delays, corre-
sponding to incoming impulses. This is exactly the kind of IR
that geometrical approaches compute by tracing paths for
sound and computing the attenuation and delay along
different paths. Each path yields a contribution to the IR.
The difference here is that numerical simulation does not
explicitly trace these paths. Instead, we extract this informa-
tion from the computed impulse response through peak
detection. We use an IR thus computed for higher frequen-
cies. The approximation introduced in this operation is that
the diffraction at higher frequencies is approximated since
the peak detector does not differentiate between reflection
and diffraction peaks. Intuitively, this means that high
frequencies may also diffract like low frequencies, which is
the approximation introduced by this technique. This IR filter
is then high-passed at the simulation cutoff frequency to yield
a filter to be used exclusively for higher frequencies. As a final
step, the exact low-frequency IR and approximate high-
frequency IR are combined in frequency domain to yield the
required IR to be applied on input signals. We must
emphasize here that this technique is applied to obtain an
approximate response exclusively in the high-frequency
range and it is ensured that numerical accuracy for lower
frequencies till 1-2 kHz is maintained.

The reference solution for comparing our solution is the
(2,6) FDTD method described in Section 3.2 running on a
fine mesh that ensures 10 samples per wavelength. Since the
main bottleneck of our approach is DCT, which can be
performed through an FFT, we used the GPU-based FFT
implementation described in [17], to exploit the compute
power available on today’s high-end graphics cards.
Combining optimized transforms with algorithmic im-
provements described in the paper is the reason we gain
considerable speed-ups over FDTD. All the simulations
were performed on a 2.8 GHz Intel Xeon CPU, with 8 GB of
RAM. The FFTs were performed on an NVIDIA GeForce
GTX 280 graphics card.

In the following sections, to clearly demarcate the
algorithmic gain of our approach over FDTD and the
speed-ups obtained due to using the GPU implementation
of FFT, we provide three timings for each case: the running
time for computing the reference solution with FDTD,
the time if we use a serial version of FFTW [15], and the
time with the GPU implementation of FFT. In general, we
obtain a 10-fold performance gain due to algorithmic
improvements and another 10-fold due to using GPU FFT.
The 10-fold gain in memory usage is, of course, purely due
to algorithmic improvements.

5.2 Numerical Dispersion: Anechoic Corridor

We first demonstrate the lack of numerical dispersion in our
scheme. Refer to Fig. 5. The scene is a 20 m� 5 m� 5 m
corridor in which the source and listener are located 15 m
apart, as shown in the figure. To measure just the accumula-
tion of numerical dispersion in the direct sound and isolate
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any errors due to interface or boundary handling, we
modeled the scene as a single, fully reflective rectangle. The
simulation was band-limited to 4 kHz, and the IR was
calculated at the listener and only the direct sound part of the
impulse response was retained. As Fig. 5 shows, our
method’s impulse response is almost exactly the same as
the ideal response. FDTD running on the same mesh
undergoes large dispersion errors, while FDTD running on
a refined mesh with s ¼ 10 samples per wavelength, (the
reference) gives reasonably good results. Note that since there
is only direct transmission from the source to the listener, the
magnitude of the ideal frequency response is constant over all
frequencies. This is faithfully observed for our method and

the reference, but FDTD undergoes large errors, especially for
high frequencies. Referring to the video, this is the reason that
with FDTD, the sound is “muffled” and dull, while with the
reference solution and our technique, the consonants are clear
and “bright.” Therefore, as clearly demonstrated, our method
achieves competitive accuracy with the reference while
consuming 12 times less memory. The reference solution
takes 365 minutes to compute, our technique with FFTW
takes 31 minutes, and our technique with GPU FFT takes
about 4 minutes.

5.3 House Scene

It is a physically observed phenomenon that lower
frequencies tend to diffract more around an obstacle than
higher frequencies. To illustrate that the associated gradual
variation in intensity is actually observed with our method,
we modeled a House scene, shown in Fig. 6. Listen to the
accompanying video to listen to the corresponding sound
clip. Initially, the listener is at the upper right corner of the
figure shown, and the sound source at the lower left corner
of the scene. The source is placed such that initially, there is
no reflected path from the source to the listener. As the
listener walks and reaches the door of the living room, the
sound intensity grows gradually, instead of undergoing an
unrealistic discontinuity as with geometric techniques
which do not account explicitly for diffraction. This shows
qualitatively that diffraction is captured properly by our
simulator.

The dimensions of the House are 17 m� 15 m� 5 m and
the simulation was carried out till 2 kHz. The wall
reflectivity was set to 50 percent. The acoustic response
was computed for 0.4 second. The total simulation time on
this scene for the reference is about 3.5 days, 4.5 hours with
our technique using FFTW and about 24 minutes with our
technique using GPU FFT. The simulation takes about
700 MB of memory with our technique. This corresponds to
speed-ups of about 18� due to algorithmic improvements
and an additional 11� due to using GPU FFT.

To validate the diffraction accuracy of our simulator, we
placed the source and listener as shown in Fig. 6, such that the
dominant path from the source to the listener is around the
diffracting edge of the door. The middle of the figure shows a
comparison of the frequency response (FFT of the Impulse
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Fig. 5. Numerical results on the corridor scene, comparing numerical
dispersion errors in FDTD and in our method. The reference FDTD
solution has a mesh with s ¼ 10 samples per wavelength. Note that only
the magnitudes of the Fourier coefficients are plotted. Our method
suffers from very little numerical dispersion, reproducing the ideal
impulse response very closely, while FDTD suffers from large amounts
for numerical dispersion. We take an order of magnitude less memory
and nearly two orders of magnitude less computation time to produce
results with accuracy comparable to the reference solution.

Fig. 6. The House scene demonstrates diffraction of sound around obstacles. All the scene geometry shown was included in the simulation. Our

method is able to reproduce the higher diffraction intensity of sound at lower frequencies, while reducing the memory requirements by about an order of

magnitude and the computational requirements by more than two orders of magnitude. The reference solution is computed on a mesh with

s ¼ 10 samples per wavelength.



Response) at the listener location, between the reference
(FDTD on a fine mesh with s ¼ 10 samples per wavelength)
and our solution. Note that both responses have a similar
downward trend. This corroborates with the physically
observed fact that lower frequencies diffract more than
higher frequencies. Also, the two responses agree quite well.
However, the slight discrepancy at higher frequencies is
explained by the fact that there are two partition interfaces
right at the diffraction edge and the corresponding interface
errors result in the observed difference. Referring to Fig. 6,
observe that our method takes 12� less memory and 200�
less computation than the reference to produce reasonably
accurate results.

5.4 Cathedral Scene

As our largest benchmark, we ran our sound simulator on a
Cathedral scene (shown in Fig. 1) of size 35 m� 26 m� 15 m.
The simulation was carried out till 1 kHz. The impulse
response was computed for 2 seconds with absorptivity set to
10 and 40 percent, consuming less than 1 GB of memory with
our technique. We could not run the reference solution for this
benchmark because it would take approximately 25 GB of
memory, which is not available on a desktop systems today,
with a projected 2 weeks of computation for this same scene.
The running times for this case are: 2 weeks for the reference
(projected), 14 hours with our technique using FFTW, and

58 minutes with our technique using GPU FFT. This scenario
highlights the memory and computational efficiency of our
approach, as well as a challenging case that the current
approaches cannot handle on desktop workstations. Fig. 7
shows the rectangular decomposition of this scene. Observe
that our heuristic is able to fit very large rectangles in the
interior of the domain. The main advantage of our approach
in terms of accuracy is that propagation over large distances
within these rectangles is error free, while an FDTD
implementation would accumulate dispersion errors over
all cells a signal has to cross. The bottom of the figure shows
the impulse response of the two simulations with low and
high absorptivity in decibels. Note that in both cases, the
sound field decays exponentially with time, which is as
expected physically. Also, with 40 percent absorption, the
response decays much faster as compared to 10 percent
absorption, decaying to �60 dB in 0.5 seconds. Therefore, in
the corresponding video, with low absorption, the sound is
less coherent and individual notes are hard to discern,
because strong reverberations from the walls interfere with
the direct sound. This is similar to what is observed in
cathedrals in reality.

Also note that we are able to capture high-order
reflections, corresponding to about 30 reflections in this
scene. This late reverberation phase captures the echoic trail-
off of sound in an environment. Geometric techniques
typically have considerable degradation in performance
with the order of reflections and are therefore usually
limited to a few reflections. We are able to capture such
high-order reflections because of two reasons: First, we are
using a numerical technique which works directly with the
volumetric sound field and is thus insensitive to the
number of reflections. Second, as discussed in Section 5.2,
our technique has very low numerical dispersion and thus
preserves the signal well over long distances. For 30 reflec-
tions in the Cathedral, the signal must travel about
600 meters without much dispersion. As discussed earlier,
with FDTD running on the same mesh, the signal would be
destroyed in about 20 meters.

6 CONCLUSION AND FUTURE WORK

We have presented a computation- and memory-efficient
technique for performing accurate numerical acoustic simu-
lations on complex domains with millions of cells, for sounds
in the kilohertz range. Our method exploits the analytical
solution to the Wave Equation in rectangular domains and is
at least an order of magnitude more efficient, both in terms of
memory and computation, compared to a reference (2,6)
FDTD scheme. Consequently, we are able to perform
physically accurate sound simulation, which yields percep-
tually convincing results containing physical effects such as
diffraction. With our technique, we have been able to perform
numerical sound simulations on large, complex scenes,
which, to the best of our knowledge, was not previously
possible on a desktop computer.

One of the areas where our implementation may be
improved is to add a fine-grid simulation near the boundary
to reduce boundary reflection errors. Further, we are actively
looking into the integration of stereo sound in our framework,
which requires the ability to model dynamic objects in the
scene. Also, we would like to model both moving sound
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Fig. 7. The voxelization and rectangular decomposition of the Cathedral
scene. Varying the absorptivity of the Cathedral walls directly affects the
reverberation time. Note that we are able to capture all reflections in the
scene, including later reverberation. The impulse responses shown
above correspond to high-order reflections, in the range of 30 reflections,
which would be prohibitively expensive to compute accurately for
geometric approaches.



sources and listener in the future. Another direction this work

may be extended is to combine it with a geometric technique

for performing the high-frequency part of the simulation,

while our technique simulates frequencies up to 1-2 kHz.

ACKNOWLEDGMENTS

The authors wish to express deep gratitude to Brandon

Lloyd for implementing DCT on the GPU on a short notice

for the purpose of this paper. Also, thanks to Ritesh Kumar

for a useful discussion that lead to a key idea in this paper.

REFERENCES

[1] Domain Decomposition Method, http://www.ddm.org, 2009.
[2] Soundscapes in Half-Life 2, Valve Corporation, http://developer.

valvesoftware.com/wiki/Soundscapes, 2008.
[3] J.B. Allen and D.A. Berkley, “Image Method for Efficiently

Simulating Small-Room Acoustics,” J. Acoustical Soc. Am.,
vol. 65, no. 4, pp. 943-950, 1979.

[4] F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, “Real Time
Modeling of Acoustic Propagation in Complex Environments,”
Proc. Seventh Int’l Conf. Digital Audio Effects, pp. 274-279, 2004.

[5] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen,
“Phonon Tracing for Auralization and Visualization of Sound,”
Proc. IEEE Visualization Conf., 2005.

[6] N. Bonneel, G. Drettakis, N. Tsingos, I.V. Delmon, and D. James,
“Fast Modal Sounds with Scalable Frequency-Domain Synthesis,”
Proc. ACM SIGGRAPH ’08, Aug. 2008.

[7] D. Botteldooren, “Acoustical Finite-Difference Time-Domain
Simulation in a Quasi-Cartesian Grid,” J. Acoustical Soc. Am.,
vol. 95, no. 5, pp. 2313-2319, 1994.

[8] D. Botteldooren, “Finite-Difference Time-Domain Simulation of
Low-Frequency Room Acoustic Problems,” J. Acoustical Soc. Am.,
vol. 98, pp. 3302-3308, Dec. 1995.

[9] J.P. Boyd, Chebyshev and Fourier Spectral Methods, second revised
ed. Dover Publications, Dec. 2001.

[10] P.T. Calamia and P.U. Svensson, “Fast Time-Domain Edge-
Diffraction Calculations for Interactive Acoustic Simulations,”
EURASIP J. Advances in Signal Processing, 2007.

[11] C.A. de Moura, “Parallel Algorithms for Differential Equations,”
technical report, LMGC, Université de Montpellier II, 1994.
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