
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SPM 2008, Stony Brook, New York, June 02–04, 2008.
© 2008 ACM 978-1-60558-106-4/08/0006 $5.00

Accelerated Wave-based Acoustics Simulation

Nikunj Raghuvanshi Nico Galoppo Ming C. Lin

{nikunj, nico, lin}@cs.unc.edu
Department of Computer Science

UNC Chapel Hill

Abstract

We present an efficient technique to model sound propagation accu-
rately in an arbitrary 3D scene by numerically integrating the wave
equation. We show that by performing an offline modal analysis
and using eigenvalues from a refined mesh, we can simulate sound
propagation with reduced dispersion on a much coarser mesh, en-
abling accelerated computation. Since performing a modal analysis
on the complete scene is usually not feasible, we present a domain
decomposition approach to drastically shorten the pre-processing
time. We introduce a simple, efficient and stable technique for han-
dling the communication between the domain partitions. We vali-
date the accuracy of our approach against cases with known analyt-
ical solutions. With our approach, we have observed up to an or-
der of magnitude speedup compared to a standard finite-difference
technique.

CR Categories: H.5.5 [Information Interfaces and Presenta-
tion]: Sound and Music Computing—Modeling, Methodologies
and techniques I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

Keywords: Acoustics, Wave Equation, Domain Decomposition,
Modal Analysis, Finite Difference

1 Introduction

One of the most important considerations in architectural design is
room acoustics and noise control. Computer-aided tools are indis-
pensable for evaluating the acoustic properties of a proposed audi-
torium layout or determining the noise level of any machinery on
a factory floor. Furthermore, the acoustics of a virtual scene can
also affect the sense of immersion in the simulated environment.
Acoustic modeling can provide sound cues to a user’s navigation,
communication, and exploration of a virtual environment.

Humans have a very acute sense for reverberations and other acous-
tical effects and these tend to convey a sense of the geometric qual-
ities of the scene to the listener. For example, delayed, unatten-
uated echoes tend to convey the impression of a big hall. Due
to the sound propagation and the enhanced immersion achievable
with correct acoustics, the problem of modeling sound propaga-
tion accurately and efficiently has traditionally been an active area
of research. A few characteristics pertinent to sound waves make
modeling sound propagation a challenging problem. First of all,
audible sound has wavelength in the range of a few millimeters to a

Figure 1: Efficient sound propagation simulation in an architec-
tural model. We demonstrate our algorithm on a modestly complex
3D environment, enabling realistic interference, diffraction and re-
verberation sound effects. The volume of this scene is ≈ 500m3,
which was partitioned into 290 arbitrary partitions with near-equal
volume. The bottom of the figure shows the partitioning on a hor-
izontal 2D slice of the scene, taken about 1 meter above ground.
Black indicates walls and the free-space partitions are color-coded
with different colors. We are able to generate one sample of audio
on this scene in about 250 ms.

few meters, which is comparable to most objects’ dimensions and
thus capturing diffraction accurately is very important, especially
for low frequencies. Secondly, sound waves are coherent, which
means that two sound waves must be added taking their phases into
account. Therefore, capturing interference is critical for modeling
sound propagation accurately. Thirdly, a full time-domain solution
is needed (as opposed to only a steady-state solution as in global
illumination), at sampling rates in the Kilohertz (kHz) range for
dynamic sound sources and listener.

Prior research in sound propagation modeling falls broadly into two
categories: geometric methods based on a ray/beam approximation
of sound and numerical methods that seek to solve the underlying
wave-equation for sound propagation directly on a discretization of
the domain. The problem with geometric methods is that they of-
ten assume little diffraction and capturing it accurately in such a
framework is quite difficult. Also, capturing higher-order reflec-
tions using such schemes is difficult due to the large number of
propagation paths that must be computed. Numerical methods, in
contrast, elegantly capture all wave phenomena, including higher-
order reflections in a single framework. However, they are compu-
tationally expensive, especially for high frequencies, as the number
of elements depends cubically on the diameter of the scene being
modeled, in 3D.

Main Results: In this paper, we propose a technique based on the
Finite Difference Method (FDM) and modal analysis, which is ca-

91

pable of performing accurate sound propagation simulation for ar-
bitrary static 3D scenes with frequencies up to 1 kHz. The sources
and the listener may move arbitrarily through the scene. The main
idea behind our approach is that the wave-equation on a domain
can be integrated exactly in time once space has been discretized,
by performing modal analysis, which involves computing an offline
matrix diagonalization. However, as we describe later, the pre-
processing for this basic approach is computationally intractable
both in terms of time and memory consumption, especially in 3D
for high-resolution meshes which are required for realistic simula-
tion of frequencies in the kHz range.

In order to remedy this problem and improve the runtime efficiency,
we introduce two acceleration techniques –

1. A domain decomposition technique in which the domain is di-
vided into many non-overlapping partitions and modal anal-
ysis on each partition is performed separately. This makes
pre-processing computationally tractable, as it is typically in-
feasible in 3D to carry out a modal analysis on the complete
scene. At runtime, the sound is simulated within each parti-
tion using a modal technique described later and an explicit
communication step is performed at the partition interfaces at
each time-step. We discuss a simple second-order integration
scheme for performing the communication, that is both effi-
cient and stable.

2. An eigenvalue correction technique that utilizes corrected
eigenvalues precomputed using modal analysis on a refined
mesh and enables accelerated sound propagation simulation
on a coarser mesh at runtime, without much loss of accu-
racy. This technique incurs no additional runtime overhead
and simply offers a trade-off between accuracy at runtime and
slightly increased pre-processing time. We discuss how to find
the best trade-off for a given scene later in the paper. With this
technique we are able to perform reasonably accurate acous-
tic simulations on a mesh with only about 2-4 spatial samples
per the smallest simulated wavelength, instead of 8-10 sam-
ples, as usually used in numerical simulations [Alford et al.
1974].

As we describe later, together, these two techniques offer up to
an order of magnitude improvement in terms of runtime efficiency
over a standard numerical approach, enabling realistic sound simu-
lation on moderately large scenes in 3D.

The main characteristics of our approach are:

• Automatic capturing of all wave phenomena, including
diffraction and reflection, in one unified framework;

• Ability to perform simulations on very coarse meshes while
retaining good accuracy, resulting in large reduction in com-
putational requirements;

• Simple domain decomposition technique for handling large
scenes.

Organization: The rest of the paper is organized as follows. We
review related work in Section 2. We present the problem formu-
lation for modeling sound propagation in 3D scenes along with the
efficiency considerations in Section 3. We then describe our eigen-
value correction and domain decomposition techniques that enable
efficient sound propagation, in Section 4. In Section 5, we discuss
implementation issues and demonstrate the results of our system
on moderately complex scenes, along with the validation of its ac-
curacy and efficiency. Finally, we conclude with possible future
research directions.

2 Previous Work

Room acoustics has been an active area of research for more than
five decades [Sabine 1953]. Depending on the amount of compute
required and achievable accuracy, methods for simulating sound
propagation can be broadly classified into two categories: Geomet-
ric and Numerical methods. In the following, we will discuss these
methods in detail. For a basic treatment of the theory and practice of
room acoustics, the reader is referred to the classic texts [Kuttruff
2000; Kinsler et al. 1999]. For a recent survey of computational
acoustics, please refer to [Lokki 2002].

2.1 Geometric Methods

Geometric methods assume that sound propagates in straight lines
unless obstructed by an object, much like light. However, this ap-
proximation works well only when the wavelength of the sound
is much smaller than the size of the objects in the scene, so that
diffraction can be effectively neglected. Nevertheless, owing to
their simplicity and efficiency, geometric techniques were the first
to be formulated and implemented on a digital computer [Krock-
stadt 1968; Allen and Berkley 1979]. Over the decades, there has
been a significant amount of research on geometric methods, which
only differ from each other in the way sound propagation is approx-
imated. Some salient examples are, the image source method [Allen
and Berkley 1979], ray-tracing [Krockstadt 1968], beam-tracing
[Min and Funkhouser 2000; Tsingos et al. 2001; Funkhouser et al.
2003; Funkhouser et al. 2004; Antonacci et al. 2004], or phonon-
tracing [Bertram et al. 2005; Deines et al. 2006].

2.2 Numerical Methods

In contrast to geometric methods, numerical methods typically
solve for the complete sound field by numerically evaluating the
wave equation after suitable discretization. Since the complete
field is resolved at each time-step, these methods typically scale
poorly as the size of the scene is increased. However, the strength
of numerical methods is that they are very accurate, especially for
low frequencies in the range of a few hundred Hertz, which have
wavelengths in the range of meters and exhibit noticeable diffrac-
tion. Geometric methods, by their basic assumption, do not cap-
ture such effects. Although there have been attempts to account
for diffraction using the Geometric Theory for Diffraction [Tsingos
et al. 2001], integrating accurate diffraction effects in a geometric
solver still remains a challenging problem. Based on the choice
of discretization, numerical methods for acoustics may be roughly
classified into: Finite Element Method (FEM), Boundary Element
Method (BEM), Digital Waveguide Mesh (DWM) and Finite Dif-
ference Time Domain (FDTD) Method.

FEM/BEM is typically used to find the frequency-domain (in other
words, steady state) response of an environment only, as opposed
to the full time-domain response [Kleiner et al. 1993]. DWM was
introduced by Duyne [Van Duyne and Smith 1993] as a method
to perform efficient time-domain simulation of wave propagation.
The basic idea is to model the medium as a mesh of 1D waveg-
uides, which carry waves along them as per the 1D wave equa-
tion, for which the analytical solution is known. The nodes in the
mesh where these waveguides intersect are implemented as scatter-
ing junctions which ensure that the incoming and outgoing acoustic
energy at each junction is distributed properly. Since its introduc-
tion, DWM has been an active area of research for room acous-
tics [Savioja et al. 1994; Savioja et al. 1995; Karjalainen and Erkut
2004]. For a brief survey of different methods for room acoustics
and an introduction to DWM in this context, the reader is referred

92

to [Savioja 1999]. And, for a very recent survey on the state of the
art in DWM, please refer to [Murphy et al. 2007].

The FDTD method was first introduced to room acoustics in [Bot-
teldooren 1994; Botteldooren 1995] and is most closely related to
our work. A typical FDTD scheme begins by first subdividing the
domain into a grid. In most cases, as in this paper, the grid is carte-
sian with uniform cell size. Next, the continuum spatial operators
are approximated by their discrete representation. At each time-
step, the whole sound field in each cell is updated based on the field
values at the previous time-step(s). Different FDTD schemes differ
in the way the spatial operator is approximated and the rules that
are used to update the field values. FDTD for acoustics has been a
very active area of research, especially for low-frequency acoustic
simulation on small rooms [Sakamoto et al. 2004; Sakamoto et al.
2006]. Although DWM and FDTD appear quite different, they are
actually equivalent [Van Duyne and Smith 1993]. In fact, not only
are they equivalent, one can mix the two within the same domain
[Karjalainen and Erkut 2004].

However, both DWM and FDTD face the same computational chal-
lenges: For medium-range frequencies in the range of a Kilohertz
and/or large architectural scenes, the compute requirements grow
super-linearly in higher dimensions and thus quickly become in-
tractable, as both methods require a fine mesh to resolve the small-
est wavelength. In this paper, we present a technique which is able
to perform acoustic simulation on a very coarse mesh, thereby re-
ducing the computational requirements, at the cost of a slight loss
in accuracy. This is done by first dividing the domain into many
non-overlapping partitions and then performing modal analysis on
each separately.

Modal analysis is a very well-known technique and it would be
nearly impossible to mention all the branches of science where it
has been applied. However, an area of research close to this work
where modal analysis has found a lot of application is physically-
based sound synthesis [van den Doel et al. 2001; O’Brien et al.
2002; Raghuvanshi and Lin 2006]. For sound synthesis, modal
analysis is typically performed to find the vibrational modes of an
elastic object and a complex vibration expressed as a linear combi-
nation of these modes. Analogously for acoustics, modal analysis
yields the resonant modes of pressure vibrations in a room, and the
pressure field in the room is expressed as a linear combination of
the resonant modes. The novelty of our work lies in the fact that we
exploit some numerical properties of modal analysis which enables
us to perform runtime simulation on a coarse mesh using corrected
eigenvalues from a refined mesh. Also, we do not apply modal
analysis on the complete scene because that would be computation-
ally infeasible. The domain is first divided into many manageable
partitions, and each one is analyzed separately.

Domain Decomposition is a very-well established area and has
been widely studied in parallelizing various numerical techniques
on many processors [DDM]. Our main contribution in this work is
the combination of a simple domain decomposition technique with
eigenvalue correction, which offers tractable pre-processing times,
efficient running times and improved simulation accuracy.

2.3 Interactive Techniques

Till now we have mainly discussed techniques which focus on the
accuracy of the simulation. There has been a lot of research on
interactive acoustics simulation, where the emphasis is placed on
perceptual correctness, rather than numerical correctness of the
simulation. As was mentioned earlier, most of these techniques
are geometric methods [Funkhouser et al. 2003; Funkhouser et al.
2004; Antonacci et al. 2004]. Most room acoustics software use
a combination of ray-tracing and image source method [Rindel ;

Input Map

h

Partition 1 Partition 2

h

Border

P1

P2

f0
f1
f2

f0
f1
f2

f ’0
f ’1
f ’2

f ’0
f ’1
f ’2

Coarse

Fine

Discretize
& Partition

Modal
Decomposition

Modal Space

Preprocessing

Run-time

Sound Source

Update Modes
& Evaluate Field

Communication
Step

Coarse

Figure 2: A schematic diagram of our technique. During pre-
processing, the map volume is discretized into a uniform grid with
spacing h and then divided into many partitions (two in this case)
such that the border area is minimized. Modal Analysis is per-
formed on the partitions to retrieve their resonant modes of vibra-
tion and the corresponding eigenvalues. After that, the mesh is re-
fined by a user specified amount based on the accuracy require-
ments and available compute and memory, and the corresponding,
more accurate eigenvalues found. These eigenvalues are used to
replace the ones found on the coarse mesh. As we describe in the
paper, this improves the accuracy of the simulator. The runtime
code runs on a coarse mesh. At each time step, the modes are eval-
uated in each partition to update the sound field within the partitions
and an explicit communication step is performed at the borders to
propagate the sound between partitions.

Lokki 2002]. A notable exception in this category is [Tsingos et al.
2007], where the authors discuss an interactive GPU-based tech-
nique to approximate first-order scattering based on the wave equa-
tion. However, at present the technique does not handle higher or-
der reflections and it is mainly applicable to open outdoor scenes
where higher-order reflections are typically not important. Our
work is complementary to these techniques, as we focus on effi-
ciently capturing all types of important wave phenomena, including
diffraction and higher-order reflections, while losing as little accu-
racy as possible.

3 Methodology

In this section, we describe the mathematical formulation and give
a description of our basic approach.

3.1 Mathematical Formulation

As described earlier, we use an FDM-based approach to directly
solve the wave equation. The linear wave equation, on a domain S,
is given by

∂2p

∂t2
− c2∇2p = F (x, t) , (1)

where ∇2 is the Laplacian operator in 3D, c is the speed of wave
propagation, which is about 340 m/s for sound traveling in air at
room temperature and p is the pressure field to be computed1. It is
interesting to note that except the sound speed, c, the exact physical
phenomena resulting in the wave do not affect the above equation,

1From the wave equation, it can be shown directly that for a wave with
constant frequency traveling in free space, c = νλ, where ν is the frequency
and λ the wavelength of the wave

93

so all the techniques we describe in this paper are also applica-
ble to scalar wave propagation simulation in general, for example,
seismic wave propagation. The term on the RHS, F (x, t) is the
forcing term and is non-zero wherever there is a sound source in
the domain. This equation, along with a specification of the bound-
ary conditions, constitute the complete problem we seek to solve. In
this paper, we will only deal with the Neumann boundary condition,
which corresponds to perfectly reflective walls and is imposed as
∂p
∂n

= 0 on δS. It is possible to incorporate walls with arbitrary re-
flectivity in the formulation we present in this paper, but that would
involve much more computation. This is because it is not possible
in this framework to model arbitrary surface impedance completely
in the spatial domain, so that they are incorporated in the discrete
Laplacian operator. In contrast, as we describe later, this is eas-
ily done for the Neumann boundary condition. Thus, the surface
interaction would have to be modeled explicitly at runtime and an
extra forcing term applied at each surface cell, which would incur
an extra computational cost proportional to the surface area of the
scene.

Given the above equation, ideally, we seek a solution for the pres-
sure field, p, in the continuum, which is an intractable mathematical
problem, given the arbitrary geometry of the boundary. Tradition-
ally, this problem is circumvented by discretizing the wave equa-
tion, for which there are many different methods. For this work, we
have used an FDM-based formulation. We discretize the domain of
interest into a Cartesian grid with uniform resolution. The resolu-
tion of the grid fixes the minimum wavelength and by implication,
the maximum frequency that can be accurately simulated. Typi-
cally, the grid spacing should be at least 1/8 to 1/10 of the smallest
wavelength. Since there is no a-priori knowledge of where a high
frequency signal might travel within the domain during simulation,
it is necessary that the grid have sufficient resolution everywhere to
simulate the signal properly. Therefore, we use a uniform grid with-
out employing any adaptive schemes. Once this discretization has
been performed, the wave equation is transformed from a partial
differential equation over space and time into a system of coupled
ordinary differential equations in time alone:

∂2P

∂t2
+ KP = F (t) . (2)

For a given discretization with say, n cells, P is a vector of length n
containing the pressure values at the cell centers. As a result of spa-
tial discretization, the spatial operator,−c2∇2 is transformed into a
symmetric matrix, K of dimension n×n. This is done by approxi-
mating the spatial differentiation by a difference of pressure values
in neighboring cells, resulting in the standard 7-point stencil for the
discrete Laplacian operator in 3D, which is second-order accurate
in the cell size, h. It is important to note that in case of Neumann
boundary condition, ∂p

∂n
= 0 translates to a missing difference term

in the Laplacian matrix, K. In this way, K encodes the discrete
Laplacian operator along with the boundary conditions.

The basic idea behind our approach is to perform a diagonalization
of K, usually referred to as Modal Analysis:

K = EΛET , (3)

where Λ is a diagonal matrix containing the eigenvalues and E is
the eigenvector matrix. The ith column of E is the eigenvector
corresponding to the ith eigenvalue, λi. Since K is symmetric,
E−1 = ET . That is, the eigenvectors are mutually orthonormal.
This leads to a large reduction in pre-computation time since the
inverse need not be computed separately. Also, all the eigenvalues
are real, and hence ordered, because K is symmetric.

Plugging (3) into (2), multiplying by ET throughout and defining,

M = ET P, (4)

F̃ = ET F, (5)

we have the following:

∂2M

∂t2
+ ΛM = F̃ (t) . (6)

Since Λ is a diagonal matrix, the above equation is a system of n
independent ordinary differential equations in time for finding the
mode vector, M . To further simplify analysis, we will assume that
the forcing term, F (t) is a piecewise constant function of time, so
that it may be treated as a constant for a given period of time. Thus,
the equation for the ith mode mi becomes

∂2mi

∂t2
+ λimi = F̃i. (7)

Before we go on to describe the solution of this equation, we must
address how we incorporate damping into the simulation. We intro-
duce frequency-independent, mass-proportional damping to model
viscous dissipation in air by modifying Equation (1) as follows:

∂2p

∂t2
+ α

∂p

∂t
− c2∇2p = F (x, t) , (8)

where α is a constant pertaining to the amount of viscous damping.
Although this is not the most physically accurate method for mod-
eling damping, it is the most computationally inexpensive one and
leads to acceptable results in practice. Performing a similar anal-
ysis on the above equation as in Eqns. (1) through (7), we get the
following equation for the ith mode:

∂2mi

∂t2
+ α

∂mi

∂t
+ λmi = F̃i (t) . (9)

This equation is the standard equation for forced vibration of a sim-
ple harmonic oscillator. We use the second-order in time leapfrog
integrator to solve this equation. The update rule for the leapfrog
scheme is given by:

m+
i =

2− λdt2

1 + αdt
2

mi −
1− αdt

2

1 + αdt
2

m−
i +

dt2

1 + αdt
2

F̃i, (10)

where m−
i , mi and m+

i are the values of the ith mode at the pre-
vious, current and the next time-step respectively. Note that all the
coefficients in the above equation can be pre-calculated during pre-
processing time. Given this solution, the pressure field can be re-
trieved directly from (4):

M = ET P ⇒ P = EM. (11)

The intuition behind the mathematics of modal analysis is as fol-
lows: Any volume of air can be treated as a resonant cavity with
a discrete set of resonant modes of vibration. Modal analysis, as
expressed in Eqn. (3), seeks to extract these modes of vibration
given the physical properties of the resonant cavity, as encoded by
the Laplacian matrix, K. The resulting eigenvalues correspond to
the inverse wavelengths, called wavenumbers, of the modes and the
eigenvectors contained in the columns of E encode the actual spa-
tial pressure distribution of the modes. Moreover, the eigenvectors
form a complete basis in the sense that any pressure distribution in
the cavity can be expressed as a linear combination of the modes.
As expressed in Eqn. (11), the eigenvector matrix E can be inter-
preted as a basis transformation matrix, which takes the scaling fac-
tors for the modes encoded in the Mode Vector, M , and transforms

94

them to the spatial pressure values, P . Similarly, ET performs the
opposite transformation. In short, E does a transformation from
modal basis to spatial basis and ET does the inverse transform.

The basic approach based on modal analysis described above is
computationally infeasible. The pre-processing time, for even a
medium sized scenes that are a few tens of meters across, can easily
run into days, requiring several Terabytes of memory. To illustrate
why this is so and motivate the techniques to be presented later, we
first discuss a basic implementation of the method outlined above
and analyze the computational issues.

3.2 Basic Approach

The input to our algorithm is a closed, polygonal scene in 3D, along
with the position of the listener, the sound sources and the forcing
signals for the sound sources. We assume that the scene is static.
However, the listener as well as the sound sources may move arbi-
trarily.

Pre-processing

1. Discretize the domain of interest into a uniform Cartesian grid
with fixed spacing, h. The value of h is decided based on the
maximum frequency which will be simulated. As a rule of
thumb, h should be such that the maximum frequency, which
corresponds to the smallest wavelength, is sampled at least
about 8-10 times in each dimension.

2. Construct the Laplacian matrix, K, from the spatial dis-
cretization, assuming Neumann boundary condition on the
whole boundary.

3. Diagonalize K, as described in Eqn. (3).

4. Store the resulting eigenvector matrix, E and the correspond-
ing eigenvalues, diag (Λ).

Runtime

1. Based on the maximum frequency to be simulated, νmax, fix
the grid spacing h and set the simulation time step as dt ≤

h

c
√

3
, so that stability is ensured.

2. Initialize all modes, mi = 0.

3. For each time step:

(a) Forcing Term: Clear the forcing vector, F . For each
sound source, use the source’s location to find the cell
it lies in and accumulate its contribution in the corre-
sponding element of the forcing vector. Finally, use
Eqn. (5) to transform the forcing term to modal basis,
F̃ .

(b) Mode Update: Use relation (10) to update each mode,
taking the forcing term computed above into account.

(c) Pressure Evaluation: Use the listener location to find
the cell it is in, say j. Using relation (11), the pressure
in the jth cell can be found as, p = EjM , where Ej is
the jth row of E. This value of pressure is output as the
sound signal value at the listener location at the current
time.

A brute force implementation of the approach described above is
intractable in both storage and computation for most interesting
acoustic domains.

3.3 Computational Issues

Let us calculate the size of a typical domain. Consider an empty
cubical room in 3D with dimensions l × l × l. Assume that the
highest frequency we need to simulate is νmax, which corresponds
to a wavelength of λmin = c

νmax
. The grid spacing, h, should

be sufficient to capture this wavelength. Let us assume we wish to
sample the smallest wavelength at least k times in each direction,
which implies h = λmin

k
. As stated earlier, typically k = 8 to 10.

The number of grid cells can thus be computed as,

n =
(

l

h

)3

=
(

lkνmax

c

)3

. (12)

That is, n increases cubically in both the maximum simulated fre-
quency, νmax and the linear dimension of the room, l. For exam-
ple, for a medium-sized room, with l = 10m, k = 6 and νmax =
1000 Hz, n ≈ 5, 600, 000. Even for this medium-sized scene,
when we are simulating frequencies only up to 1 kHz when the
human audible range goes up to 22 kHz, the number of cells is
more than a million! Also note that the dimensionality appears as
the power in the above expression.

In light of the typical values of n as described above, let us ana-
lyze the computational and space complexity of different steps of
the basic approach. The pre-processing time is dominated by the
diagonalization of the Laplacian matrix, K (step 3). The size of
K is n × n, and a brute-force dense matrix diagonalization would
take O

(
n2
)

space and O
(
n3
)

time. Plugging in n ≈ 1M , it is
easy to see that the compute and memory requirements are in the
range of 109 GFLOPS and 1 Terabyte respectively. To make these
values feasible on the machines available today, we need to reduce
the pre-processing time as well as the memory requirement by at
least a few orders of magnitude. We discuss how we achieve this
using domain partitioning in the next section.

Next we discuss the runtime complexity of the basic approach, step
by step. The bottleneck is, of course, step 3. A naive implementa-
tion of step 3(a) would take Θ

(
n2
)

operations. However, observe
that the number of sound sources in a scene, s, is usually much
smaller than the number of cells, n, and hence the forcing vector F
contains only s non-zero values. Performing multiplications with
only non-zero values, the overall computation can be reduced to
Θ (ns) operations. Both Step 3(b) and 3(c) obviously take Θ (n)
operations. The important point to note from this analysis is that the
computation time is Θ (ns) and the memory requirement is Θ(n2),
since the full matrix E needs to be stored. Thus, the focus of the
rest of this paper will be on reducing the pre-processing time and
the resulting values of n and s at runtime.

4 Acceleration Techniques

In this section, we present our main techniques which enable effi-
cient 3D sound simulation in scenes which would otherwise be in-
tractable with the basic approach described in the previous section.
First, we discuss domain partitioning to make pre-processing com-
putationally tractable, so that it becomes feasible to handle moder-
ately large scenes with hundreds of thousands of elements. To com-
pensate for the resulting degradation in runtime performance due to
domain partitioning, we discuss an eigenvalue correction technique
to perform accurate simulations on a much coarser mesh at runtime,
while using accurate eigenvalues from a finer version of the mesh.

4.1 Domain Partitioning

The basic approach described in Section 3.2 had a computational
complexity of Θ

(
n3
)

but this is still not enough for handling even

95

medium-sized scenes which are a few ten meters in diameter. How-
ever, since the time complexity is super-linear in n, the number of
elements in the scene, we can reduce the running time by making
use of a divide and conquer approach. Suppose we were to parti-
tion the simulation domain into R, connected, non-overlapping par-
titions with roughly equal number of cells and pre-processed each
one independently. The total time for pre-processing would be re-
duced to Tpart ≈ R

(
n
R

)3
= n3

R2 and the memory requirement

reduced to Mpart ≈ R
(

n
R

)2
= n2

R
. Thus, the total pre-processing

time scales down quadratically as we increase the number of par-
titions, R and the memory requirement scales down linearly. For
example, if we use R = 300, the pre-processing time decreases by
90, 000 times, and the memory requirement by 300 times. This is
the chief motivation for Domain Partitioning, as it provides a scal-
able way to manage pre-processing resource requirements. How-
ever, this decrease in pre-processing time is accompanied by a de-
crease in performance at runtime. We address this problem in Sec-
tion 4.4.

Next, we discuss how to perform sound simulation in the presence
of Domain Partitioning. For clarity of presentation, we will dis-
cuss the theory for a 1D simulation with the number of partitions,
R = 2. The mathematics for handling multiple partitions in 3D
follows analogously from this description. Let us consider a 1D
domain with grid spacing h and number of cells 2n. As described
previously, the spatially discretized equation for wave propagation
for this domain is Eqn. (2). Let us consider the equation in more
detail:

∂2P

∂t2
−

c2

h2

. . .
1 −2 1

1 −2 1

1 −2 1

1 −2 1

. . .

P = F (t) . (13)

Suppose we wish to partition the domain into two equal partitions
with n cells each, so that each might be treated independently dur-
ing pre-process. This would mean that K must somehow be decou-
pled into a block diagonal form and the off-diagonal entries must
be accounted for properly. Mathematically, this can be achieved as
follows:

∂2P

∂t2
−

c2

h2

. . .
1 −2 1

1 −1

−1 1

1 −2 1

. . .

P = F (t)+CP, (14)

where the coupling matrix, C is given by

C =
c2

h2

0

. . .
−1 1

1 −1

. . .
0

 . (15)

That is, the pressure coupling at the interface between two parti-
tions is moved into the forcing term on the RHS in the form of the
coupling matrix, C. Also, note that the action of C is to compute

the gradient of pressure on the interface, scaled by (c2

h
). Thus, in

effect, the forcing term is explicitly updated at each time step de-
pending on the gradient of pressure on the interface. This explicit
update may be intuitively seen as a communication step to pass the
sound between the two partitions. From this description, the exten-
sion to general partitioning in 3D is quite intuitive:

• The system on the LHS can be seen as two completely inde-
pendent resonant cavities, each with its own Laplacian matrix.
In general, with R partitions, K is transformed into a block
diagonal form with R blocks, and all the coupling terms are
moved into the coupling matrix, C on the RHS, which are
computed at runtime. The number of coupling terms is equal
to the total number of faces on the partition interfaces.

• Each partition is treated independently while pre-processing
and Neumann boundary condition is applied on the interfaces
when constructing the individual Laplacian Matrices.

• To evaluate the forcing term on the partition interfaces, an ex-
plicit pressure evaluation must be performed at runtime on all
cells having a face on a partition interface, so that the gradient
might be computed.

• Since the partitioning is based on splitting a second-order
Laplacian operator, the interface handling is also second-order
accurate in space.

4.2 Runtime Processing

To perform the communication step, we need to calculate the pres-
sure values of all the cells on the interfaces of the jth partition and
use that to somehow find the appropriate forcing terms for all the
modes in the current partition. We use a simple technique for this:
Use the relation Pj = EjMj , which is Eqn. (11) rewritten with the
subscript denoting the partition number. That is, do a basis trans-
formation from modal space to real space, to retrieve the pressure
field on the interface. Once that is done, the forcing vector, Fj on
the right can be calculated easily for each partition, as described in
Eqns. (14) and (15). Transform this forcing vector back to modal
space as F̃j = ET

j Fj . Use F̃j for the next mode update loop, as
given by equation 10.

4.3 Complexity Analysis

Let us consider the jth partition. The time complexity analysis is
very similar to that presented in Section 3.2, except the presence of
the additional pressure evaluation on the interface, as in Eqn. (10).
Let the number of cells in the jth partition be nj and the number
of cells which have a face on the partition interface be bj and the
number of sound sources be sj . A naive implementation for pres-
sure evaluation would take Θ

(
n2

j

)
time. This can be improved by

observing that we only need to evaluate the pressure on bj cells –
the ones that have a face on the partition interface. That means we
only need to use the corresponding rows in Ej and the time com-
plexity reduces to Θ (njbj) operations. Summing the running time
over all partitions, we have

Truntime = Θ

(∑
j

(nj + njsj + njbj)

)
.

Assuming the maximum number of cells over all partitions is nmax,
and denoting Σbj = B, Σsj = s and noting that Σnj = n, we get
the following upper bound for the runtime performance

Truntime = O (n + nmax (s + B)) .

96

Figure 3: Results of sound simulation for a double slit experiment.
The images show the color-coded pressure field (or equivalently,
the sound) in a 2D domain. A sound source is placed at the center-
left of the domain (shown as a white circle), emitting a sine wave
with fixed frequency of 400 Hz. Note that the sound wave diffracts
considerably at the slits, which act as secondary point sources. The
sound waves from both the slits interfere to generate the classical
interference pattern, with clearly visible maxima and minima. The
graph on the right compares the theoretical and predicted sound in-
tensity levels on a virtual screen placed to the right of the slits. Note
the close agreement between the theoretical and predicted positions
of the extrema.

This expression clearly shows that the runtime performance is sen-
sitive to the total number of cells, n and the total number of inter-
face cells, B. The total number of sound sources, s is usually many
orders of magnitude smaller than B and can be safely disregarded.
We can easily handle ∼ 100 sound sources without changing the
runtime performance much.

It is important to note that instead of computing the coupling in
space, one may attempt to do so directly in modal space. How-
ever, this would be much more costly because every mode of one
partition would interact with every other mode of a neighboring
partition, which would mean that if the number of cells in the two
partitions are ni and nj respectively, the complexity for interface
handling would be ninj . This is much worse than with spatial cou-
pling, since only coupling at the interface cells needs to be com-
puted. That is, if the two partitions share B faces on the interface,
the complexity would be (nibi + njbj), which is much better, since
bi << ni.

In order to ensure that the pre-processing time is uniformly dis-
tributed, the different values of nj should be nearly equal. There
are packages for this task which usually give near-optimal results
for most domains. In particular, we have used METIS [Karypis
and Kumar 1999] for performing the domain partitioning. Based
on the voxelization of the scene, we build an unweighted connec-
tivity graph based on the 6-neighborhood of a voxel in 3D and run
METIS on the resulting graph. METIS makes sure that the par-
titions are near-equal in size and also that the total interface area
between partitions is minimized. However, these constraints are
only meant for increasing efficiency and the techniques presented
in this paper work for any valid partitioning of the domain.

4.4 Accurate Simulations on a Coarse Mesh

The Domain Decomposition technique described above renders the
problem of pre-processing more tractable. At the same time, it
naturally decomposes the problem we are attacking into two parts:
Wave propagation within a partition and communication across the
interface. Intuitively, the numerical behavior of sound traveling in
the domain can be understood in terms of its behavior when it is
within a partition and when it is crossing the interface between two

Figure 4: Accuracy comparison with a Leapfrog finite difference
solver. The numerical dispersion with our technique on a coarse
mesh (blue) follows a similar trend as that of the finite difference
technique on the same mesh. However, with corrected eigenvalues
taken from a 4× refined mesh, our technique exhibits improved dis-
persion characteristics, similar to the finite difference technique on
a refined mesh. Since the eigenvalues can be pre-calculated accu-
rately on a refined mesh, we are able to achieve reduced dispersion
on a coarse mesh.

partitions. As discussed above, the efficiency of our technique is
mainly governed by the number of cells in the scene, n, and the
total number of interface cells, B. Therefore, the efficiency is very
sensitive to the mesh resolution. If a mesh is refined r times in
each dimension in 3D, the number of cells will become nr3 and
the number of interface cells will change to Br2. Therefore, the
runtime performance will reduce by a factor of r5.

Therefore, to increase efficiency, the simplest method would be to
just use a very coarse mesh, which supports about 2 samples per
the smallest wavelength. Any fewer number of samples are not al-
lowed by the Nyquist criterion and the signal cannot possibly be
reconstructed correctly on such a mesh. Compared to a mesh with
say, 6 samples per wavelength, such an implementation would be
35 = 243 times faster. However, working on a coarse mesh reduces
the accuracy of the simulation. The main problem with a coarse
mesh in context of sound simulation is numerical dispersion. Be-
cause we are using a second-order spatial discretization to approxi-
mate the continuum Laplacian operator, there is a third order resid-
ual term, the effect of which is that higher frequencies travel slower
through the medium than lower frequencies. Of course, this is not
physically observed and is a purely numerical artifact. The net ef-
fect of dispersion is that any signal traveling through the medium
gradually loses its shape with time, as the phase relations between
the different frequency components of the wave are lost. Percep-
tually, this means that eventually the sound degrades into a noisy
signal with no coherent information. So, if we are willing to use a
coarse mesh, some method must be found to reduce the resulting
dispersion errors as sound propagates within a partition. Therefore,
in the rest of the discussion in this section, we will restrict our at-
tention to propagation within a single partition.

We will now discuss some important mathematical equivalences to
motivate our technique of using corrected eigenvalues, as well as

97

Figure 5: Performance comparison with a Leapfrog Finite Difference solver. Three different scenarios are shown. From top to bottom: Our
unmodified technique on a coarse mesh, our technique with eigenvalues taken from a 3× refined mesh with runtime computation on a coarse
mesh and, a reference solution with the Leapfrog finite difference technique on a 3× refined mesh. The scene is a 2m × 2m × 2m cube in
3D, which was divided into 10 partitions, with h = 0.125 and the time step set to 20,000 Hz. A 700 Hz pulse (corresponding to 3-4 cells
per wavelength), is introduced at the center. The images show a snapshot of the intensity field on a 2D slice of the cube along Z. Note that
our technique with corrected eigenvalues is able to propagate sound without much dispersion, even though the spatial reconstruction is coarse
because of the coarse mesh it is working on. In comparison, our technique without corrected eigenvalues shows large amounts of dispersion
– the circular shape of the signal is visibly lost. The plots to the right show the pressure at the center as a function of time. Our technique
with corrected eigenvalues reduces the dispersion noticeably and matches the reference numerical solution much more closely, shown as the
dotted line. Note that our technique is about 10× faster than the finite difference implementation on a 3× refined mesh, with slight loss in
accuracy. Also note that the domain decomposition is arbitrary and there are no visible discontinuities in the pressure field due to domain
partitioning.

give the reader an intuition of why it works. We present numeri-
cal results which corroborate our theoretical derivations in the next
section. Consider the discretized equation governing undamped,
unforced wave propagation, which one gets by neglecting the forc-
ing term on the RHS of equation 2:

∂2P

∂t2
+ KP = 0. (16)

Since K is a second-order approximation of the continuum Lapla-
cian operator, one can write the following:

∂2P

∂t2
− c2∇2P ≈ εh2∇3P. (17)

That is, we can see the discrete system as if it was the continuum
system with an extra dispersion term on the RHS. This truncation
error causes any finite difference simulation on a mesh to suffer
from numerical dispersion. In the context of our framework, we
diagonalize the Laplacian matrix, K and transform basis to work
in modal space instead of real space, as given in equation 6. In
light of the fact that we are diagonalizing an approximation of the
continuum operator, the error being O

(
h2
)

, we get the following
relation in modal space:

∂2M

∂t2
+ ΛM ≈ O

(
h2
)

. (18)

Therefore, the residual term in both cases is of the same order, and
both equations correspond exactly to each other, assuming that the
diagonalization is exact to floating point accuracy. The most impor-
tant upshot of this is: For a finite difference scheme, dispersive error
depends on the mesh resolution, while for the modal scheme, dis-
persive error depends on the accuracy of the eigenvalues. It should

be obvious from the above that if the same mesh is used for a fi-
nite difference simulator and the modal scheme described, with the
same time integration method, one would get similar dispersive er-
rors in both simulations. However, consider what happens if we
find the eigenvalues, Λ on a much finer version of the mesh. Since
all eigenvalues are real and ordered, the replacement procedure is
trivial – the first, say, i eigenvalues are replaced by the first i eigen-
values on the finer mesh. Note that this works even in the presence
of degenerate eigenvalues; switching two identical values doesn’t
change anything. It immediately follows that the dispersive error
would correspond to that of the finer mesh, even though the eigen-
vectors correspond to the coarse mesh. Intuitively, this means that
the signal will be reconstructed more approximately in space, but it
will propagate with much less dispersive error, the error being sim-
ilar to that on a fine mesh from which the eigenvalues are derived.

Here is where the main advantage of modal analysis becomes clear.
Calculating the eigenvalues is a one-time operation. We can, for
example, use eigenvalues from a 4x refined mesh (refined 4 times
in each dimension) and get 1

16

th the dispersive error, since the er-
ror is second-order in cell size, h. Since only the eigenvalues have
changed and the computation is just the same, there is absolutely
no change in the runtime performance or the memory requirements.
Contrast this with a finite difference scheme on a 4x refined mesh.
The computation per time step immediately becomes 16 times in
2D, and 64 times in 3D. The finite difference approach, with its
lack of pre-processing, would be more useful for short simulations.
But for long time simulations, where the gain in runtime perfor-
mance justifies the pre-processing time, the modal approach is a
much better choice.

The gain in runtime performance described above is at the cost of
pre-processing time. Consider a scene with n cells, divided into
R partitions and each partition refined r times in each dimension.

98

Also note that we only need the first n
R

eigenvalues of the refined
mesh for each partition. Thus the time taken for each partition is

proportional to n
R

(
nr3

R

)2

. Since this is repeated for R partitions,

the total time becomes n
(

nr3

R

)2

. Observing that a full diagonal-

ization on the coarse mesh would take time proportional to n3, the
net gain in pre-processing performance becomes, Gain = R2/r6.
Thus, given a particular scene, we select the value of R based on the
one which yields the best runtime performance, based on the com-
plexity analysis given in 4.3 and then select a value of r as high as
possible, to get the best accuracy while keeping the above relation
in mind, so that the pre-processing requirements are tractable. This
way, we are able to trade-off between runtime performance, accu-
racy and pre-processing resources. As an implementation detail, in
this work, we have used the ARPACK [Lehoucq et al. 1997] eigen-
value package for computing a selected initial part of the eigenvalue
spectrum.

5 Results

In this section, we present the main results to demonstrate the ac-
curacy and efficiency achievable with our approach. All the simu-
lations were performed on an Intel Xeon Quad-Core 2.79GHz CPU
with 2GB RAM.

5.1 Accuracy: Interference and Diffraction

We evaluated the accuracy of our simulator on the basis of how well
it simulates the wave phenomena of reverberation, interference and
diffraction. As mentioned in the introduction, these phenomena are
critical for a physically correct simulation of sound in general envi-
ronments. We first discuss our results for interference and diffrac-
tion on a 2D double-slit experiment. The setup is shown in Figure 3.
The image on the left shows the color-coded pressure amplitude in
the scene. A sound source is placed at the center-left of the domain
(shown as a white circle), emitting a sine wave with fixed frequency
of 400 Hz. The domain boundary is fully reflective. The grid spac-
ing for the spatial discretization of the domain is h = 1

8
m, which

means we can handle up to ∼ 900 Hz with about k = 3 elements
per wavelength. An obstructing wall is placed in front of the sound
source at a distance of 4m. The wall has two symmetrically placed
slits, each one cell wide (1

8
m). A virtual screen is placed on the

opposite side of the wall, at a distance of 2.5m from the slits.

Sound waves traveling from the source first hit the wall and only a
small portion of it passes through the slits, which act as secondary
point sources on the other side of the wall. This demonstrates that
diffraction is properly captured by our technique. Next, sound from
the two slits interferes throughout the domain, resulting in an in-
terference pattern. The pressure field shows a near-uniform angu-
lar distribution of maxima and minima, depending on where sound
waves interfere constructively and destructively, respectively. This
result clearly demonstrates that interference is also simulated cor-
rectly with our technique. To quantify the accuracy of the resulting
sound field, we compare the observed and theoretical sound inten-
sity (square of the sound amplitude) along the length of the virtual
screen. The right side of Figure 3 shows the graphs for the sound
intensity against the position on the virtual screen. Note the close
agreement between the positions of the expected minima and max-
ima and the numerically computed values.

Figure 6: Visualization of reduced numerical dispersion. Compar-
ison of numerical results from simulation on a coarse mesh with
and without corrected eigenvalues from a 3× refined mesh on a 2D
scene. The images to the left show snapshots in time of the sound
intensity in a square 2D domain with dimensions 6m × 6m and
h=0.125m. The domain was divided into 10 partitions. A 500Hz
Gaussian pulse is triggered at the center and spreads out, reflects
from the walls and interferes with itself at the center. Note that the
coarse simulation has a lot more “ringing,” as the signal shape is
gradually lost over time, which corresponds to numerical disper-
sion. This is more obvious in the last image. The plots to the right
show the pressure at the center of the domain as a function of time.
As shown in the insets, after the initial impulse is fed, the coarse
simulation has a high frequency tail, while for the simulation with
corrected eigenvalues, this is much less so. This shows that with
corrected eigenvalues, the dispersion is reduced.

5.2 Accuracy: Dispersion analysis and comparison
with a finite difference solver

In order to clearly assess the benefit with our approach, it is im-
portant to assess how it compares in terms of accuracy to a standard
finite difference implementation. In this section, we will briefly dis-
cuss a second-order accurate in space and second-order accurate in
time method for solving the wave equation numerically, and com-
pare it against our method. This is done by performing a dispersion
analysis of both methods on a 2D square scene, for undamped, un-
forced wave propagation. This scene has been chosen because it is
easier to perform dispersion analysis on rectangular domains.

We had theoretically motivated in Section 4.4 that the accuracy
of our method with eigenvalues substituted from a refined mesh
should be comparable to the accuracy of a finite difference method
on the refined mesh. The finite difference method we consider in
this work is the standard cell-centered second-order Leapfrog inte-
grator. In particular, consider a square domain of size [0, 1]× [0, 1],
discretized uniformly into N ×N cells. The cell size is thus given
by h = 1

N
. Lets denote the pressure at the cell with coordinate

(ih, jh) at time step n by P n
i,j . Then the finite difference integrator

is given by –

P n+1
i,j = 2P n

i,j − P n−1
i,j

+ c2∆t2

h2

(
P n

i+1,j + P n
i−1,j + P n

i,j−1 + P n
i,j+1 − 4P n

i,j

)
(19)

As a first step in the dispersion analysis, note that the wave equation
can be solved analytically for the square domain with Neumann
boundary conditions. This is done by expressing the pressure in the
domain in the Cosine basis as –

99

P (x, y, t) =

N−1∑
kx=0

N−1∑
ky=0

m (kx, ky, t) cos (πkxx) cos (πkyy) ,

(20)
where kx and ky are the wavenumbers (proportional to the in-
verse of the wavelength) in the X and Y directions respectively
and m (kx, ky, t) is the corresponding scaling coefficient. Plug-
ging this into the wave equation (1) and assuming the forcing term
on the RHS is absent, and solving w.r.t time, we get the important
relation –

m (kx, ky, t) = Aeick(kx,ky)t + Be−ick(kx,ky)t,

k (kx, ky) = π
√

k2
x + k2

y.

(21)

The constants A and B depend on the initial conditions and are not
relevant here. The important quantity is k (kx, ky), which, gives the
analytically computed wavenumber, given the spatial wavenumbers
in the X and Y direction. Carrying out a similar procedure with
equation (19), by plugging in equation (20) and denoting all corre-
sponding variables with a prime, we get –

m′ (kx, ky, t) = Aeick′(kx,ky)t + Be−ick′(kx,ky)t,

k′ (kx, ky) = 2
h

√
sin2 (πkxh/2) + sin2 (πkyh/2).

(22)

Therefore, the numerical speed of propagation for different
wavenumbers is not the same as the analytical expression. Note that
for every wavenumber (kx, ky), Limh→0k

′ = k, which is required
for consistency. The amount of numerical dispersion for a given
wavenumber, k =

√
k2

x + k2
y can be quantified by k′

k
, called the

dispersion coefficient. Intuitively, the dispersion coefficient mea-
sures how slow or fast a wave with a particular wavenumber would
travel on the mesh, compared to the speed of sound, c. Ideally, the
dispersion coefficient should be 1 for all wavenumbers. Figure 4
shows the dispersion coefficient of the finite difference scheme de-
scribed above for increasing wavenumbers, k. Note that when the
cell size, h is large, as on the coarse mesh, the dispersion is really
large for higher wavenumbers. This improves considerably on a
mesh which has been refined 4 times in both dimensions.

Till now we have discussed the Finite Difference technique we
compare against and its dispersion analysis. The dispersion anal-
ysis of our method closely parallels the above discussion. Consider
Equation (7) and assume the forcing term is 0. It is easy to see that

one gets a solution very similar as (21), with k′′i =

√
Λi

c
. Again,

one can obtain the dispersion coefficient by dividing by the analyt-
ical expression for k given by (21). Figure 4 shows a comparison
of the dispersion coefficients obtained for our method and the fi-
nite difference method for different cases. Firstly, note that as was
theoretically discussed in Section 4.4, the dispersion coefficients
on a coarse mesh for our technique and the finite difference tech-
nique follow the same trend, exhibit large amounts of dispersion for
higher wavenumbers. The most important fact to note, however, is
that the dispersion coefficients for the finite difference method on a
4x refined mesh are very similar to that of our technique on a coarse
mesh with eigenvalues derived from a 4x refined mesh. This cor-
roborates the theoretical claims made in Section 4.4 that the accu-
racy of the eigenvalues determines the dispersion of our technique
and demonstrates that substituting eigenvalues from a refined mesh
does reduce the dispersion error with our technique without incur-
ring extra runtime cost. At this point we emphasize again that this is

the chief advantage and main motivation for working in the modal
basis instead of real space.

5.3 Efficiency

To compare the performance and accuracy of our approach with
the finite difference scheme described above, we implemented both
in a common code-base. For the test scene, we considered a
2m× 2m× 2m cube in 3D, with h = 0.125m and divided the do-
main into 10 arbitrary partitions and initiated a 700 Hz pulse at the
center. We would like to emphasize here that the partitioning need
not have any specific structure. Figure (5) illustrates the results we
obtained. There are three cases we have considered: the bottom
row shows the results obtained with the finite difference scheme on
a 3x refined mesh, and can be treated as a reference solution, the
top row shows our technique on a coarse mesh without using cor-
rected eigenvalues, which can be considered a basic implementation
and the middle row shows our technique with corrected eigenvalues
from a 3x refined mesh. Note that the accuracy of our technique is
intermediate between the two. Although dispersion is still present,
visible as the wavy tail after the initial signal, it is much smaller
compared to the basic approach. The important thing to note is that
this gain in accuracy comes at almost no reduction in performance.
The timings on the right side of the figure show the time taken to
generate 1 sample of audio with the different techniques. It is clear
that our technique is about 10x faster for this scene. Also, note that
there are no visible discontinuities in the field at the partition in-
terfaces, which shows that partitioning is being handled accurately.
Another demonstration of reduced dispersion with our technique
with corrected eigenvalues on a 2D scene is shown in Figure 6.

5.4 3D Environment

To demonstrate the efficiency and robustness of our approach, we
have implemented our algorithm and tested it on a moderately com-
plex architectural model. Figure 7 shows the results for a sound
simulation on the building. The user may move freely through the
model and all the sounds in the scene are passed in to a sound sim-
ulator which implements all the techniques described in this paper.
The physical dimensions of the building are 12m × 13m × 7m,
which is about the size of a large hall. The grid spacing for spatial
discretization on the coarse mesh is h = 1

8
m. The total air volume

of the scene is approximately 600m3, which corresponds to about
300,000 cells. The map was first partitioned into 300 partitions,
each having about 1000 cells. For each partition, the eigenvalues
were corrected by using the eigenvalues from a 3x refined mesh,
each with about 27,000 cells. The refinement factor was fixed so
that the matrix diagonalization did not take more than 2GB of mem-
ory. The pre-processing was performed on a cluster, with each par-
tition being processed on a separate node, in parallel. Each node
has a 2.3GHz Intel EM64T processor with 4M L2 cache. The total
time for pre-processing this scene was about 50 minutes.

Even though the pre-processing is expensive, it is still tractable.
Following the analysis in Section 4.4, observe that dividing the
scene into 300 partitions and then taking eigenvalues from a 3x re-
fined mesh reduces the pre-processing time by 3002

36 ≈ 100 times.
Therefore, the pre-processing requirements are reduced consider-
ably, even though we are sacrificing some pre-processing efficiency
for improved accuracy at runtime. The simulator takes about 300
ms per sample of audio, at an audio update rate of 5000 Hz, while
consuming about 1GB of memory. Note that the compute require-
ments are high even when we are using a coarse mesh which is
close to the Nyquist threshold. In comparison, a finite difference
implementation would require a 3x refined mesh, which would have
27× 300, 000 = 8.1M cells.

100

Sound Signal Frequency Spectrum

!!"#

!

!"#

!!"#

!

!"#

!!"#

!

!"#

!

"#

"!

$%"#
!&

'

(

)

$%"#
!&

'

(

)

*

"#

"'

"(

$%"#
!&

Small Scene:

Large Scene:

Source Signal:

Figure 7: Results for sound simulation on a complex architectural scene in 3D. The physical dimensions of the map are 12m× 13m× 7m
and it has an air volume of 300,000 cells, which we partition into 300 partitions. We are able to perform simulations for frequencies up to
1kHz on this map. The listener is at the player’s location. Note that the input sound is modified considerably by the environment depending
the size of the space (small or large). Also note that the frequency content of the input signal is effectively filtered depending on the resonant
properties of the area of the map where the listener is located. Note the “reverberant tail” in both the simulated sounds.

The input signal was band-passed below 1kHz, since that is the
maximum simulated frequency. Note the marked difference be-
tween the input sound and the signal received by the listener. This
shows that the input sound is modified considerably by the environ-
ment depending the size of the space (small or large). The “tail” of
the response shows that late reverberations (corresponding to hun-
dreds of reflections) are being captured by the simulator. Also note
that the frequency content of the input signal is markedly different
depending on how it interferes with itself after multiple reflections,
which is crucially influenced by the area of the map where the lis-
tener is located. To show the generality of our approach, we have
also performed the simulations on a different environment, shown
in Figure 1. This map has about 290,000 elements and was parti-
tioned into 290 partitions. The pre-processing for this scene took
about 65 minutes. The sound simulation was carried out at an up-
date rate of 5000 Hz. The time taken to generate one sample of
audio at runtime was about 250 ms.

6 Conclusion

We have proposed an efficient and accurate technique for modeling
sound propagation in an arbitrary 3D environment by directly inte-
grating the wave equation. Our results show that important acoustic
effects like interference, diffraction and reverberation are accurately
captured by our technique. Moreover, due to the combination of a
simple and stable domain decomposition technique and a technique
to reduce the dispersion on a coarse mesh by utilizing the eigenval-
ues from a refined mesh, we are able to handle complex 3D scenes
with∼ 300, 000 elements and frequencies up to 1 kHz, while many
previous numerical techniques have been demonstrated simulating
frequencies only up to a few hundred Hz. We believe that further
optimization combined with the increased computing power of the
upcoming many-core processors will enable our technique to per-
form interactive simulation on 3D scenes with millions of elements
in the foreseeable future, enabling rapid design and simulation of
building acoustics and offering a much more immersive auditory
experience for virtual environments.

7 Acknowledgements

This work was supported by the Army Research Office, Defense
Advanced Research Project Agency, National Science Foundation,
RDECOM and Intel Corporation.

References

ALFORD, R. M., KELLY, K. R., AND BOORE, D. M. 1974. Accu-
racy of finite-difference modeling of the acoustic wave equation.
Geophysics 39, 6, 834–842.

ALLEN, J. B., AND BERKLEY, D. A. 1979. Image method for
efficiently simulating small-room acoustics. J. Acoust. Soc. Am
65, 4, 943–950.

ANTONACCI, F., FOCO, M., SARTI, A., AND TUBARO, S. 2004.
Real time modeling of acoustic propagation in complex environ-
ments. Proceedings of 7th International Conference on Digital
Audio Effects, 274–279.

BERTRAM, M., DEINES, E., MOHRING, J., JEGOROVS, J., AND
HAGEN, H. 2005. Phonon tracing for auralization and visual-
ization of sound. In IEEE Visualization 2005.

BOTTELDOOREN, D. 1994. Acoustical finite-difference time-
domain simulation in a quasi-cartesian grid. The Journal of the
Acoustical Society of America 95, 5, 2313–2319.

BOTTELDOOREN, D. 1995. Finite-difference time-domain sim-
ulation of low-frequency room acoustic problems. Acoustical
Society of America Journal 98 (December), 3302–3308.

DDM. http://www.ddm.org.

DEINES, E., MICHEL, F., BERTRAM, M., HAGEN, H., AND
NIELSON, G. 2006. Visualizing the phonon map. In Eurovis.

FUNKHOUSER, T., TSINGOS, N., AND JOT, J.-M. 2003. Survey
of methods for modeling sound propagation in interactive virtual
environment systems. Presence and Teleoperation.

FUNKHOUSER, T., TSINGOS, N., CARLBOM, I., ELKO, G.,
SONDHI, M., WEST, J. E., PINGALI, G., MIN, P., AND NGAN,
A. 2004. A beam tracing method for interactive architectural
acoustics. The Journal of the Acoustical Society of America 115,
2, 739–756.

KARJALAINEN, M., AND ERKUT, C. 2004. Digital waveguides
versus finite difference structures: equivalence and mixed mod-
eling. EURASIP J. Appl. Signal Process. 2004, 1 (January), 978–
989.

KARYPIS, G., AND KUMAR, V. 1999. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing 20, 1, 359–392.

101

KINSLER, L. E., FREY, A. R., COPPENS, A. B., AND SANDERS,
J. V. 1999. Fundamentals of Acoustics. Wiley, December.

KLEINER, M., DALENBCK, B.-I., AND SVENSSON, P. 1993. Au-
ralization - an overview. JAES 41, 861–875.

KROCKSTADT, U. 1968. Calculating the acoustical room response
by the use of a ray tracing technique. Journal of Sound Vibration.

KUTTRUFF, H. 2000. Room Acoustics. Taylor & Francis, October.

LEHOUCQ, R., SORENSEN, D., AND YANG, C. 1997. Arpack
users’ guide: Solution of large scale eigenvalue problems with
implicitly restarted arnoldi methods. Tech. rep.

LOKKI, T. 2002. Physically-based Auralization. PhD thesis,
Helsinki University of Technology.

MIN, P., AND FUNKHOUSER, T. 2000. Priority-driven acoustic
modeling for virtual environments. In EUROGRAPHICS 2000.

MURPHY, D., KELLONIEMI, A., MULLEN, J., AND SHELLEY,
S. 2007. Acoustic modeling using the digital waveguide mesh.
Signal Processing Magazine, IEEE 24, 2, 55–66.

O’BRIEN, J. F., SHEN, C., AND GATCHALIAN, C. M. 2002. Syn-
thesizing sounds from rigid-body simulations. In The ACM SIG-
GRAPH 2002 Symposium on Computer Animation, ACM Press,
175–181.

RAGHUVANSHI, N., AND LIN, M. C. 2006. Interactive sound
synthesis for large scale environments. In SI3D ’06: Proceedings
of the 2006 symposium on Interactive 3D graphics and games,
ACM Press, New York, NY, USA, 101–108.

RINDEL, J. H. The use of computer modeling in room acoustics.

SABINE, H. 1953. Room acoustics. Audio, Transactions of the IRE
Professional Group on 1, 4, 4–12.

SAKAMOTO, S., YOKOTA, T., AND TACHIBANA, H. 2004. Nu-
merical sound field analysis in halls using the finite difference
time domain method. In RADS 2004.

SAKAMOTO, S., USHIYAMA, A., AND NAGATOMO, H. 2006. Nu-
merical analysis of sound propagation in rooms using the finite
difference time domain method. The Journal of the Acoustical
Society of America 120, 5, 3008–3008.

SAVIOJA, L., RINNE, T., AND TAKALA, T. 1994. Simulation
of room acoustics with a 3-d finite difference mesh. Proc. Int.
Computer Music Conf , 463–466.

SAVIOJA, L., BACKMAN, J., JRVINEN, A., AND TAKALA, T.
1995. Waveguide mesh method for low-frequency simulation
of room acoustics. In 15th International Congress on Acoustics
(ICA’95), vol. 2, 637–640.

SAVIOJA, L. 1999. Modeling Techniques for Virtual Acoustics.
Doctoral thesis, Helsinki University of Technology, Telecom-
munications Software and Multimedia Laboratory, Report TML-
A3.

TSINGOS, N., FUNKHOUSER, T., NGAN, A., , AND CARLBOM, I.
2001. Modeling acoustics in virtual environments using the uni-
form theory of diffraction. In Computer Graphics (SIGGRAPH
2001).

TSINGOS, N., DACHSBACHER, C., LEFEBVRE, S., AND
DELLEPIANE, M. 2007. Instant sound scattering. In Render-
ing Techniques (Proceedings of the Eurographics Symposium on
Rendering).

VAN DEN DOEL, K., KRY, P. G., AND PAI, D. K. 2001. Foleyau-
tomatic: physically-based sound effects for interactive simula-
tion and animation. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 537–544.

VAN DUYNE, S., AND SMITH, J. O. 1993. The 2-d digital waveg-
uide mesh. In Applications of Signal Processing to Audio and
Acoustics, 1993. Final Program and Paper Summaries., 1993
IEEE Workshop on, 177–180.

102

