INDRA Note 1530

INDRA
Working
Paper

Arbitrary precision arithmetic using continued fractions

ABSTRACT:

Simon L Peyton Jones

Functional languages supporting lazy
evaluation invite novel applications, where
conventional languages do not provide
appropriate support for the problem. 1In
this paper we present an application of
functional languages to arbitrary precision
real arithmetic, using an unusual technique
based on continued fractions, and depending
crucially on lazy evaluation.

The precision of computer arithmetic
calculations is normally decided by the
programmer in advance, and is often hard to
alter subsequently. Furthermore, without a
formal analysis of the calculation, answers
may be produced to spurious accuracy, and
the computer gives no help in establishing
error bounds for the result. The technique
presented here performs real arithmetic
with guaranteed error bounds, in which the
precision of the result can be arbitrarily
increased without recommencing the
calculation.

Department of Computer Science

University College London

Continued fractions

1. Introduction

Lazy evaluation, a feature provided by some functional languages,
is to some extent a solution in search of a problem. It is well
known that lazy evaluation allows the construction and
manipulation of infinite data structures, but the new

applications thus opened up are still being explored.

In this paper, we present a novel application of functional
. languages to arbitrary precision real arithmetic, where real
values are represented by a possibly infinite sequence of terms
of a continued fraction. These terms are only computed when
required to give further accuracy to the final result, so that no
unnecessary work is done. This demand-driven evaluation would be
hard to implement in any other way, but fits very naturally into
a lazy functional context. A further application of lazy

evaluation within this system is that of performing arithmetic on

infinite series.

In addition, expressing the computation in a functional form
opens up the possibility of parallel evaluation of

subcomputations. This area will not be explored in this paper.

Typical computer arithmetic packages offer single or double
precision integer and floating point arithmetic. Using these
facilities effectively requires the programmer to ensure that the
range of values he wishes to represent falls within the range
provided, and, more importantly, that all intermediate values
will be held to sufficient precision. Errors in this latter

respect are quite common, and give results which are sometimes

cf.paper V1.1 27th January 1984 Page 1

Continued fractions

totally spurious, though no indication is given by the machine.

The problem is normally solved by "overkill", that is performing
the calculations to a precision so great that all the
intermediates will be held to sufficient precision, and then only
printing the significant digits of the final result. The machine
does not help in establishing the error bounds for the result,

and this task has to be performed by the programmer.

aThe method presented here performs real arithmetic with a
guaranteed error bound £for the result, and allows this error
bound to be arbitrarily decreased until it is acceptably small,
without recommencing the calculation. Furthermore, the technique
allows approximate quantities to be specified (eg 6.34 +- 0.04),
in which case the error bound on the result will appropriately
reflect this uncertainty. Calculations involving only rational
numbers will be computed exactly, when sufficient precision is
demanded (this is untrue of floating point systems, in which many
rationals have recurring expansions). No unnecessary work is
done (as is the case with multiprecision arithmetic), and no

information is discarded (as with roundoff and truncation).

The method is based on continued fractions, whose elegant
properties have long been known (see for example [Hard38] or
[Khin64]). However, the classical material does not seem to
address the question of performing arithmetic on continued
fractions. The only work that has been done on continued
fraction arithmetic, to the author's knowledge, is that of Gosper

([Gosp8#] and [Gosp8l]), whose ideas are seminal to this paper.

cf.paper V1.1 27th January 1984 Page 2

Continued fractions

The idea of performing arithmetic using infinite objects has also

been addressed in [Wied88#], though from a more theoretical point

of view.

A primitive package based on this method has been written 1in
sasl, a functional language, and a more sophisticated one is
under construction. The primitive package is very short, and is
included as an appendix. This is believed to be the first time
.that lazy evaluation has been brought together with continued

fraction arithmetic.

2. Continued fractions
In this section, we give a basic introduction to continued
fractions, beginning with an example. The continued fraction for

2,31 is

This may be more compactly written [2, 3, 4, 2, 3]. We may
regard this as saying that 2.31 is
about 2
but not really 2, rather 2 + 1/3
but the denominator is not really 3, rather 3 + 1/4
but the denominator is not really 4, rather 4 + 1/2
but the denominator is not really 2, rather 2 + 1/3

A general continued fraction is of the form

a(@) + b(#)/(a(l) + b(l)/(a(2) + b(2)/(«..)))

cf.paper V1.1 27th January 1984 Page 3

Continued fractions

and it may be finite or infinite. A regular continued fraction
is one whose b terms are all equal to 1, and whose a terms are
all integers greater than or equal to 1 (except a(f), which may

be # or negative). Regular continued fractions can be denoted

[a(@), a(l), a(2), ...].

Regular continued fractions have the following desirable

properties:

(i) There is a unique regular continued fraction for each real
number. Even infinity has a continued fraction, [], the
empty one.

(ii) All rationals have finite continued fraction expansions.

(iii) We may truncate a continued fraction £ = [a(@), a(l),
a(2), ...] by taking a finite initial segment [a(8), a(l),
.+. a(n)]. Then the rational, s(n), whose expansion is
[a(B), a(l), ... a(n)] is the closest rational to f with
such a small denominator. These rationals, are called
the approximants of f, and form a sequence of better and
better rational approximations to £, each of which is
"best" in the sense just defined.

(iv) The approximants s(n) = p(n)/q(n) can be generated by a
pair of recurrence equations thus:

a(n)*p(n-1) + p(n-2)
a(n)*q(n-1) + q(n-2)

p(n)
q(n)

These approximants are automatically in their 1lowest

terms.
All these properties are in the classical 1literature, and of
themselves suggest that continued fractions might be a good
number representation for computers. In particular, in a lazy
functional 1language, a continued fraction may be represented by
a lazy list, or stream, which may be infinite or finite. This
list may be produced by one function, and consumed by another in

a demand-driven way. Terms of the continued fraction will only

cf.paper V1.1 27th January 1984 Page 4

Continued fractions

be produced when the consumer needs the extra precision which
they provide. Periodic continued fractions can be represented
by 1lists with loops in them, and even non-periodic infinite
fractions can often be generated by simple functions (e, for

instance).

However, all this is only useful if we can perform arithmetic on
continued fractions; fortunately this can be done by a method

.due to Gosper [Gosp8#, Gosp8l].

3. Continued fraction arithmetic (Gosper)

The challenge is to produce functions which will peform
arithmetic operations on continued fractions, producing a
continued fraction as their output, in such a way that the terms
of the operands are consumed only when necessary to produce terms
of the result, so that result terms begin to appear as early as

possible.

The method for the four arithmetic operations (+, -, *, /) |is

little known, and so will be presented here. The trick is to

calculate not x+y, x*y etc, but rather

axy + bx + cy + d
exy + £x + gy + h
or (a becd/(e £ gh) for short
where a..h are integers. This function clearly specialises to

give the four operations by suitable choice of a..h.

Now, X is a continued fraction, [x(8), x(1), ...] say. Hence

cf.paper V1.1 27th January 1984 Page 5

Continued fractions

X = x(0) + 1/x'
where

x' = [x(1), x(2), ...]
So we can rewrite z as a function of x':

a(x(@) + 1/x'")y + b(x(8) + 1/x') + cy + d

e(x(9) + 1/x")y + £(x(0) + 1/x') + gy + h
(#) = (ax(@)+c bx(@)+d a b)/(ex(B)+g £x(0)+h e £)
JNote that this operation preserves the basic form of z. This
operation corresponds to ingesting a term of x, and expressing
the dependency of the result on the rest of x, viz x'. Since the
value of x can vary between x(0) and x(@)+1 as x' varies between
1 and infinity (we know that all the x(i) are in this range), we
would expect 2z to vary over a range which reflects this. We

might say that z "knows that x is in the range x(#) to x(8)+1".

The range of variation of z as we vary x' between 1 and infinity
thus gives us some knowledge of the value of the result. We can

narrow this range by ingesting another term of x, since

x' = x(1) + 1/x"!
where

x'' = [x(2), x(3), ...]

This will incorporate knowledge about the range of x' into z (ie

it varies between x(1) and x(1)+1).

Since z is linear in x, we know that z(x',y) must vary between

z(l,y) and z(infinity,y) as x' varies between 1 and infinity; it

cf.paper V1.1 27th January 1984 Page 6

Continued fractions

is always inside this range if the denominator does not change
sign, and always outside it if the denominator does change sign.
Thus we can establish the range of variation of z by considering

its value at the extreme values of X.

z is a function of two arguments, x and y, and the above scheme
applies equally well to y, so we can compute the entire possible
range of z over all variations in x and y by taking the union of
.the four intervals:

(z11, zlh), (zlh, zhh), (zhh, zhl), (zhl, z1ll)

where
z(l,infinity)
z(infinity, infinity)

z1l1l
zhl

z(1,1) zlh
z(infinity,1) zhh

Now suppose that the integer part of z, which we will write {z},

is constant over its entire range. Then
z = {z} + 1/2°

where z' > 1. Thus the first term of the continued fraction for

z is {z}. Let us egest this term, and find z'.

(*) = (e £ g h) / (a-{z}e b-{z}f c-{z}g d-{z}h)
So the operation of egesting a term of z also preserves the basic

form of z; indeed 2z was chosen precisely to be preserved over

ingestion and egestion.

Summary

In summary, the method works in the following way. The

cf.paper V1.1 27th January 1984 Page 7

Continued fractions

multiplication (for example) program consumes terms of x and y,
and produces terms of the product x*y. 1Its state consists of the
values of the 8 integers a..h. The program examines the range of
z over the extremes of x and y, and if =z's integer part is
constant, it outputs a term of the result, giving a new state
defined by (*). 1If the range of z is too large, it narrows the
range by ingesting a term of x or y, using (#) to compute the new

state.

There are various strategies for choosing which of x or y to

ingest; for example, choose the one which causes the widest

variation in z.

4. Evaluation and enhancements of the method

The method we have described fulfills the requirements stated at
the beginning of the last section. In this section, we discuss
some of the shortcomings of the method, and suggest possible

solutions.

4.1 Control of precision

One drawback of the method is that the increase in accuracy of
the result with each successive term 1is dependent on the
particular numbers involved. For instance, if the result of a
calculation is 2.0001, it may well be produced as [2,1000], and
all the accuracy comes at once. On the other hand, a continued
fraction for 2.31 is [2,3,4,2,3], which supplies its increasing
precision in smaller doses. Since the result may only be
required to 2 decimal places, say, the extra precision in the

first example represents wasted work.

cf.paper V1.1 27th January 1984 Page 8

Continued fractions

The reason for this "lumpy precision" is that the range of z has
to be restricted to include a single integer, whereas in fact the
information that z is in the interval (16,15), say, might be all
we need to know. A possible solution would therefore be to
replace each term in a continued £fraction by a sequence of
intervals converging on the term. Thus instead of

[2,
1000]

.we might have

[((8,4), (1,3), 2),
((0,10000), (500,14008), (996, 1610), 1000)]

This would give us 7 successive approximations to the result,
instead of only 2. It is also fairly simple to adapt the method
of the last section to use such a representation of continued
fractions. Instead of assuming that x (and y) varies in
(1,infinity), we use the interval given by the next element of x,
and only ingest a term when we have consumed all the
approximating intervals. Likewise, on the output, we can emit a
better approximation to =z whenever we compute its range,
regardless of whether its integer part is constant. Finally,
when z's integer part is closely enough bounded, we can egest a

term; and then start computing approximations to the next term.

It should be noted that the endpoints of the intervals are
integers (no fractional part is required). The whole system can
then be regarded as an interval arithmetic package with variable
"magnification®, where each term of the continued fraction "turns

up the magnification", so that we can still work with integers.

cf.paper V1.1 27th January 1984 Page 9

Continued fractions

The net effect is to produce a new approximation to the final
result of a calculation, however complex, in constant time, where
the constant is determined only by the static complexity of the
calculation, and not by the particular numbers involved. This
must surely be as desirable a state of affairs as we could wish

for.

One extremely pleasant consequence of using intervals in this way
.is that we can now represent approximate quantities by allowing
the sequence of approximations to a term to stop before it has
converged on a particular term. For instance 2.75 +- 0.25 can be
represented as [(2), ((1,2))], which says "my value 1is between
[2,1] and [2,2]". The result will be computed to as much
accuracy as can be guaranteed, and no more, giving an automatic

error bound system for engineering calculations.

4.2 Transcendental functions
The author knows of no good way to compute functions such as
exp(x), log(x), and sin(x). The ideal method would be based on

the same principles as the one given for basic arithmetic.

It is possible to use an infinite Taylor series, though at first
sight it looks as if an infinite amount of work would need to be
done to ensure that a late term did not swamp earlier ones (wg
can hardly expect the system to work out that the series is
convergent!). This is easily dealt with, however, by appending
on the front of the rest of the series an (analytically derived)
interval giving a bound on the size of rest of the series -

another benefit of using the interval method.

cf.paper V1.1 27th January 1984 Page 10

Continued fractions

5. Iterative calculations

As a further illustration of the way a lazy functional language
supports the use of arbitrary precision calculations, consider an
iterative technique, such as Newton-Raphson, for finding a root
of an equation. Typically we make a guess, g, of the root, and
iteratively improve the guess by repeatedly applying some
function, £, to successive guesses, halting the process when we
believe we are sufficiently close to the root. We may illustrate

"this:

However, in our continued fraction world, we can feed back the
terms of the improved guess (output from f) directly as the

subsequent terms of the "previous guess" (input to f), thus:

l I I
> g ==—==>| £ |-~ > Final result

The initial guess, g, must be an interval in this case. This
feedback trick gives the terms of the final result directly,
together with their implicit error bounds, without requiring the
programmer to pay attention to how many iterations are required.
It should be clear that lazy semantics are necessary for this

trick to work.

6. Conclusions

As a novel application of a functional language providing lazy

cf.paper V1.1 27th January 1984 Page 11

Continued fractions

evaluation, an arithmetic package has been described which has

the following characteristics:

(i) Arbitrary precision real arithmetic.
(ii) Successive approximations to result produced in constant
time.
(iii) Approximate quantities can be specified as inputs.
(iv) Results produced with guaranteed error bounds.
(v) No unnecessary work performed.

(vi) The ability to compute with infinite series.

A preliminary version of such a package has been implemented in
Ssasl [Turn], a functional programming language, and a more
sophisticated version is under construction. While the cost of
the operations is significant, the rewards are also, and the area
merits further study, particularly to address the transcendental

functions.

7. References

[Gosp8@] "Continued fraction arithmetic”. HAKMEM Item
191b.

[Gosp8l] "Continued fraction arithmetic". Unpublished
paper.

[Hard38] Hardy and Wright. "An introduction to the theory
of numbers". Oxford 1960 (4th ed).

[Khin64] AY Khinchin. "Continued fractions". Chicago
1964.
[Turn] DA Turner. "The Sasl manual". University of

Kent, England.

cf.paper V1.1 27th January 1984 Page 12

Continued fractions

[Wied80] E Wiedmer. "Computing with infinite objects".
Theoretical Computer Science 10 (1980), ppl33-155,
North Holland.

cf.paper V1.1 27th January 1984 Page 13

IRV OV OV V VAV VV VYV VY VMV VVV VYV Yy vy v Wy VIV VMV VVV VMV V VM VMV VYV VIV VIV VMV VYV VIV VMV VI VMV IV V VM VIV WV VMV VMV IV VRV VVV Y VW WV VYV VWV VWV WV VWV VW

list sasd

1 def aul “inf" b = “inf"
2 wul a ‘inf" = “inf"
3 nul a b = asb
4 add “inf" b = “inf"
5 add a ‘“inf" = “int"
] add a b = atb
7 sub “inf® b = ‘int®
8 sub a ‘inf" = Zinf®
9 sub a b = a-b
10 div “inf" b = ‘inf®
t div a 0 = “inf"
12 div a “inf" = 0
13 divakb = a/kb
14 rendr ‘inf" b = ¢
15 remdr 3 0 = 0
16 rendr a b = a -~ (a/b)sb
17
18 cfrat “inf" Zinf" = ()
19 cfrat 0 0 = ()
20 cfrat a b = (div a b) ¢ (cfrat b (readr a b))
20.1
21 rate? x = xil{ratcft x)
21.1 ratcft h t = (hyl)i(ratct2 t h 1 1 0)
21.2 ratcf2 “inf":() pal qal pn2 gu2 = ()
21,3 ratc?2 h:t pnt gnl pn2 qa2 = (p,q):iratct2 t p q pnl gnl)
21.4 where p = h*pal + pn2
21,5 q = h¥gnl + ¢n2
21.61
22 expand coeffs x y = expandev coeffs x y {(cornervalues coeffs)
23 expandcy coeffs x y cvs = (alleq cvs) -> enit coeffs x y (hd cvs);
24 refinexy coeffs % vy
25 refinexy coeffs xatxb () = expand (refinex coeffs xa) xb ()
26 refinexy coeffs () yatyb = expand (refiney coeffs ya) () yb
27 refinexy coeffs xa:xb ya:yb = expand (refinex (refiney coeffs ya) xa) xb yb
28
29 refinex (a,b,c,d,e,?,q,h) “int* = (0,0,a,b,0,0,e, f)
30 refinex (a,b,c,d,e,f,g,h) t =
N (add (nul t a) ¢,
32 add (nmul t b) d, a, b,
33 add (nul t @) g,
34 add (nul t) h, e, f)
35
36 refiney {a,b,c,d,e,?,g,h) “inf* = (0,a,0,c,0,e,0,9)
37 refiney (a,b,c,d,e,?,g,h) t =
37.1 (add (mul t a) b, a,
37.2 add (nul t c) d, c, BT
37.3 add (wul t e) ?, e,
37.4 add {(wul t g) h, @)
38
38.1 enit coeffs x y “inf" = “inf":()
39 enit coeffs x y t = t ¢ (expand (shrug coeffs t) x y)
40 shrug (a,b,c,d,e,f,g9,h) t =
41 . (e, f, g, hy
42 sub a (mul t e),
43 sub b (mul t ?),
44 sub ¢ {mul t g),
43 sub d (nul t h))
46
47 cfadd x y = expand (0,1,1,0,0,0,0,1) x vy
48 cfsub x y = expand (0,1,-1,0,0,0,0,1) %y
49 cfaul x y = expand (1,0,0,0,0,0,0,1) x y
50 tfdiv x y = expand (0,1,0,0,0,0,1,0) x y
51
51.1
1.2 cornervalues (0,0,0,d,0,0,0,h) = {u,u,u,u)
51.3 where w = div d h
1.4 cornervalues (0,0,c,d,0,0,9,h) = {v,u,v,u)
51.5 where v = div (add c d) (add g h)
a9l1.6 w=diveg
91.81 cornervalues (0,b,0,d,0,7,0,h) = (v,v,u,¥)
S1.62 uhere v = div (add b d) (add ? h)
51.63 =divb P
52 cornervalues (a,b,c,d,e,?,9,h) =
53 (div (add & (add b (add c d)))
54 (add e (add ? (add g h))),
55 div (add a c) (add e g),
56 div (add a b) (add e f),
57 div a e)
57.1
7.2 alleq (cli,clx,cxt,cxx) = (c11=cix) & {cxi=cxx) & (cli=cxt)
57.3
57.4 1
58
59
&0
41
END OF FILE

XPLEASE ENTER TERNINAL TYPE.. tty43
ZWHICH SERVICE? nts

ZCALLING WTS

ACONNECTED TO HTS

HTS(01019)<=>N.CNTR2 (003)
fissig yz74
HEnter user password.
TXXXXX
HCHARGING RATE = UNIVERSITY, TERMINAL
HexLAST SIGNON WAS: 13:15:00
USER "YZF4" SIGNED ON AT 14:09:42 ON FRI 31~JUL-B1
>New “phone nos. :- N’cle Camp Lab 329233, Poly 324002,
H¥sou gcfOssasl
HSCON *+MSINKs LC
HIR YZBO:INTERSASL SCARDS=*NSOURCE* PAR=“CORE=25P‘GCF0:SASL.PRELUDE
HEXECUTION BEGINS
New environnent loaded from QCFO:SASL,PRELUDE
The following funtions are defined:

hd tl abs
length reverse SUM
product and or
cqunt fron hap
for zip while
until menber union
intersection digitval spaces
width Ljustify Rjustify
Cjustify show append
conpose digit lettier
code decode list
function logical thar
nusber

hello from sasl
87

B

nu?

get sasl

nu?

nu?
n?

show {ratc? (cfadd {(cfrat 45 34) (cfrat 253 17)))7
((16,4,1,6.’inf"),(16,1),(65,4),(81,5),(551,34))

nu?

show (ratct (ctadd (ctrat 1427 1932) (cPrat (9253 3143)))7

Syntax:) expected where ? found in:
show (rate? (cfadd (cfrat 1427 1932) (cfrat (9253 3143)))%

nu?
show ¥ratc? (ctadd (ctrat 1427 1932) (ctrat((9253 3142)))%

Syntax:) expected wheve ? found in:
show (ratct (cfadd (cfrat 1427 1932) (cfrat (9253 3162)))?

nu?

show (ratef (cfadd (cfrat 295 394) (cfrat 824 534)))7
((2,3,2,2,1,16,1,3,2.2,1,2,’inf"),(2,1),(7,3),(16,7),(39,17),(55,24),(919,401),(974,425),(3841,1676),(8656,3777),(21153,9230),(298
09,13007),(80771,35244))

nu?

shouw (ratcf (cfadd (cfrat 142 23) (cfrat 29 425)))7
((6,4,7,1,2,2,4,2,4,’inf"),(6,1),(25,4),(181,29),(206,33),(593,95),(1392,223),(6161,987),(13714,2197),(61017,9775))

nu?

show {ratc? (cfmul (ctrat 1234 3454) (ctrat 3241 3144)))7
((0,2,1,2,1,3,5,2,4,1,22,2,6,’inf"),(0,1),(1,2),(1,3),(3,8),(4,11),(15,41),(79,216),(173,473),(771,2108),(944,2591),(21539,58890),
(44022,120361),(285671,781056))

nu?

show (ratct (cfdiv (cfrat 147 297) (cfrat 425 924)))7

(01,13,6,1,13,7int"), (1,1),(14,13),(85,79), (99,92),(1372,1275))

nu?

show(cfadd (cfvat 123 454) (cfrat 789 123)))7

(8,1,2,5,1,16,2,2,1,2,”inf")

nu?

Syntax: Expression expected where 7 for ' in:

nu?

show (hd (ctadd (cfrat 123 454) (cfrat(™9 123)))7
6

nu?

