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ABSTRACT
Behavior in classroom-based courses is hard to measure at
large-scale. In this paper, we propose the EDUM (EDUca-
tion Measurement) system to help characterize educational
behavior through data collected from WLANs (WiFi networks)
on campuses. EDUM characterizes students’ punctuality
(attendances, late arrivals, and early departures) for lectures
using longitudinal WLAN data, and further characterizes the
attractiveness of lectures using mobile phone’s interactive
states at minute-scale granularity. EDUM is easy to deploy
and extensible for new types of data. We deploy EDUM at
Tsinghua University where ⇠700 volunteer students’ data are
measured during a 9-week period by ⇠2,800 APs and two
popular mobile apps. Our results show that EDUM makes it
possible to obtain large-scale observations on punctuality, dis-
traction and study performance, and quantitatively confirm or
disprove numerous assumptions about educational behavior.
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INTRODUCTION
As the major and formal way for compulsory and higher
education, traditional classroom based courses are still irre-
placeable for students. In recent years, its on-line counterpart
MOOCs (Massive Open On-line Courses) provide a brand
new opportunity to measure education at large scale with fine-
grained web user behaviors [4]. In contrast, measuring the
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effectiveness of traditional classroom teaching is notoriously
hard. Most studies on classroom education are still done
through traditional methods by recruiting a small number of
volunteers, or conducting costly, intrusive and sometimes
subjective observations, surveys and tests. For example,
in [26] smartphone sensing data collected from 30 under-
graduate students of a course are used to inspect traditional
education performance; while surveys, small-scale tracking
and lab experiments are common in educational psychology
research [9]. In order to better understand classroom education
of a dense population and to compare with other forms
of education, large-scale in-situ measurements of accurate
classroom behavior are essential.

With wireless technologies – especially 802.11 WiFi networks
(WLANs) increasingly becoming ubiquitous [7], and mobile
devices becoming widely carried by students [19], there is a
tremendous opportunity to gain a deeper insight into behaviors
in classroom courses. First, lecture attendance can be derived
from mobility traces of the devices. The mobility of carry-on
mobile devices is a good approximation to the mobility of their
owners, and can thus help us estimate re-occurring patterns in
traditional courses. This is especially true given the ever-dense
deployments of access points (APs) on campuses, yielding
richer traces, better coverage and finer details to derive the
mobility of the dense population on campus. Second, with
the ease of accessing Internet through WLAN during lectures,
the usage of wireless mobile devices has become a common
sign for student distractions. To understand distractions during
courses, Internet accessing traces from WLAN and sensor data
from smartphones can lead to new measurable indicators.

In this paper, we realize the above ideas in practice, and
use WiFi measurements and mobile data to study the lec-
ture punctuality (i.e., skip, late arrival, early departure) and
attractiveness at large-scale. Through the WLAN and mobile
data, we determine whether a student attended a registered
course, from when to when, and how much the student is
using his smartphone during the lecture. To the best of our
knowledge, this problem has not been previously tackled in
depth and scale. Several non-trivial challenges exist: First,
educational ground truths — e.g., the schedule (classroom
venue and time span) of courses and their registered students
— are fundamentally hard to collect. Not all school offices and



Table 1. Data Sources and Intermediate Measurements of EDUM.
Measurements Data sources at Tsinghua University Example alternative data sources

(1) The mapping from a sid (student ID or campus account) Crowd-sourcing TUNet and TUNow Retrieved from web-based authentication
to his smartphone (identified by its MAC address)

(2) The registered courses (with coarse-grained schedule) of a sid Crowd-sourced from TUNow From university registration office
(3) AP closeness Derived from SNMP polls
(4) A smartphone’s location at a specific time (mobility) Derived from (3)+SNMP polls and traps Vendor provided indoor localization services
(5) A course’s venue (as WiFi RSSI fingerprint) Derived from (1)+(2)+(3)+(4)
(6) A course’s fine-grained schedule Derived from (1)+(2)+(3)+(4)+(5)
(7) A smartphone’s ON/OFF states at a specific time (usages) TUNet Other usages, e.g. WiFi traffic statistics from SNMP polls

students are willing nor able to provide data easily. Second,
using WLAN data to determine a course’s venue and whether
a student is at the scheduled location draws another challenge.
Typically on campuses, there exists neither a mapping from
physical locations to WiFi data, nor (usually expensive and
immature) indoor localization services.

To tackle the above challenges, we propose the EDUM
(EDUcation Measurement) system integrated for schools,
institutes and universities that have public WLAN infrastruc-
tures. EDUM addresses the challenges through either data
analyses (e.g., automatically detect course schedule) or crowd
sourcing (e.g., inquiring students to contribute timetables), and
outputs educational metrics and reports. We deploy EDUM
on the large campus of Tsinghua University where 2,786 APs
provide essentially complete coverage across a diverse set of
114 buildings. Our crowd-sourcing mobile apps TUNet and
TUNow also attract thousands of users. From November 2015
to January 2016, WiFi traces of ⇠700 mobile devices (out of
201,230 appeared client devices on the campus) of mobile app
volunteers are tracked by EDUM using the campus WLAN.

By analyzing outputs of EDUM, numerous interesting findings
are observed, such as: 1) Attendance ratio and late arrival ratio
to courses both show that Wednesday is the most hard-working
day. 2) Class attendance is at its highest in the morning, and
gradually drops as the day progresses. Meanwhile, fewer
students arrive late to classes as the day progresses. 3)
The more years a student stays at school, the lower his/her
attendance ratio becomes, and the more frequently s/he arrives
late to classes or leaves early from classes. Also, the ratio of
“night owls” in the 2nd and 4th year is higher than those among
1st and 3rd year students. 4) On average students with higher
GPA attend class more. However, they are also more likely to
be late compared to low-performance students. 5) Students
are more easily distracted as the day progresses. Device usage
is highest at the beginning of a lecture, then drops, and then
slowly increases as the lecture progresses.

In summary, our main contributions are:

• We design a scalable, non-intrusive, extensible and easy-to-
deploy classroom education measurement system EDUM.

• To the best of our knowledge, the deployment of EDUM
at Tsinghua is one of the largest-scale classroom education
measurements via WLAN on a densely-populated campus.

• Multiple punctuality and attractiveness metrics are derived
from WiFi and mobile data to characterize courses and the
behavior of students.

• New observations and confirmation of some common senses
are done by analyzing the metrics and correlating them with
other properties of courses and students.

DATA COLLECTION AND MEASUREMENTS
As discussed in the previous section, a fundamental task for
EDUM is to determine whether and how a student attended a
registered lecture, based on which more metrics can be derived.
To this end, at a high level, EDUM needs to conduct several
intermediate measurements as listed in Table 1 – which also
lists the data sources and their alternatives. Using the data in
(1), (2), (4), (5), (6), we can measure the lecture punctuality; by
adding the data in (7), we can measure lecture attractiveness;
(3) AP closeness is an automatically generated metric to filter
out the noise in the raw device RSSI.

In the rest of this section, we first briefly overview the three
primary data sources used in our deployment of EDUM as
shown in Table 1: the readily available SNMP polls and traps
of the existing operational WLAN, and two crowd-sourcing
mobile Apps TUNet and TUNow. We then present some
necessary data details for each of the measurements in Table 1,
except for (5) and (6) whose details will be discussed later in
§Course Schedules with Students’ Mobility.

Overview of Data Sources
From November 2015 to January 2016, 11 weeks of data
(including 9 normal weeks and 2 exam weeks out of 18 weeks
of the whole autumn semester) are collected from WLAN
and TUNet. In this paper we mainly focus on the observation
period of the 9 normal weeks. Non-time-sensitive static data
(e.g. device MAC addresses and course time tables) are also
collected from both TUNet and TUNow.

SNMP Polls and Traps

The campus of Tsinghua University covers an area of ⇠4.4km2

on which ⇠45,000 students and ⇠12,000 faculty and staff
members are living. By January 2016, there are 2,786 Cisco
enterprise APs in 114 buildings (9 of them are dedicated
classroom buildings while tens more are department buildings
which also have some classrooms) on the campus, providing a
dense deployment in most areas. At peak, there are ⇠20,000
devices concurrently connected to the campus WLAN. The
total number of unique devices surpass 60,000 each day,
which means on average everyone uses at least one wireless
device. WLAN data, namely polled SNMP (Simple Network
Management Protocol) objects and SNMP trap messages, from
all APs are provided by the network administrators. With the
fast expansion of WiFi infrastructures, these data are readily
available at the wireless controllers of most vendors [22, 28].

Mobile Apps: TUNet and TUNow

In addition, our mobile client WLAN tool app TUNet (Ts-
inghua University Network, developed by a student interest
group led by the authors) has been installed on more than
8,600 Android devices and 6,500 iOS client devices until



January 2016. (The first Android version was released in
October 2013, the first iOS version was released in June 2015.)
TUNet helps users manage their network account on their
mobile phones, and also automatically login onto the campus
WLAN in the background for a smooth Internet experience.

TUNow (Tsinghua Now, developed by the same team) is
another mobile app which helps students view their course
announcements and homework at the E-learning platform of
Tsinghua University. GPA calculator, course timetable viewer
and a few other plugins are also provided in the app. Since the
first Android release in December 2015, it has been installed
on more than 1,200 smartphones until March 2016.

(1) The mapping from a sid to smartphone MAC address
To track the students and conduct further analysis, we need
to fill the gap between device unique IDs — such as MAC
(media access control) addresses from WLAN and mobile data
— and student identities such as campus accounts or student
IDs. This can be done in multiple ways. E.g., for WLAN that
requires login with account, network operators can easily track
the mapping between MAC addresses and campus accounts.
For schools and universities that have mobile apps based on
campus accounts, crowd-sourcing is another solution.

At Tsinghua, we crowd-sourced the mapping between 2,483
MAC addresses and 2,363 campus accounts from volunteers
of our popular apps TUNet and TUNow. There are two
possible problems to determine the mapping through mobile
data: 1) More and more Android and iOS devices block
the access to MAC address for mobile apps [1]; 2) Multiple
accounts can be used duplicately on multiple devices, which
no longer yield one-to-one relation. For the two problems, we
adopt the solutions in [28]: 1) Develop a web API for devices
to query their MAC address through SNMP according to the
SSID and BSSID of connected AP (of campus WLAN) and
the obtained IP address; 2) Assign each MAC address to the
most frequently used account on the device. Thus for a student
that add new devices during the observation period, old and
new devices will all be mapped to the same account.

Together with the mapping, from the volunteers we also collect
several personal attributes attached to campus accounts — gen-
der, grade, department, class (undergraduates are grouped into
classes for each department), category (undergraduate, master
and PhD students), living apartment and dorm. Attributes
like these are useful but not necessary for deeper analysis on
education metrics produced by EDUM.

(2) Registered courses (with coarse schedule) of a sid
Besides the device to account mapping, for EDUM to work,
we need additional information about the attended courses of
the sampled account and the basic schedules of the courses. A
direct solution is to get detailed course schedules and accounts
of a sampled population of each course from the school office.
At Tsinghua, we adopt another approach: we crowd-source
course timetables of volunteers from the TUNow app. By
March 2016, a total of 723 students contributed their course
timetables of the autumn semester to us. In this paper, we
focus on the tracking results — mobility (4) and usages (7) —
of the smartphones of these 723 accounts.
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Figure 1. Number of Courses v.s. Number of Tracked Students.

From the school website, we crawled public curricula infor-
mation of all 4,233 courses of autumn semester. Additional
course information (not necessary in EDUM) including name,
teacher, department, capacity, credit, category, etc. are thus
available for further analysis of education metrics. The 723
volunteers of TUNow registered to 1,721 different courses out
of the 4,233. On average each student takes about 10 courses.
As shown in Fig. 1 (“All” rectangles), we track � 5 students
in 444 courses, and � 10 students in 179 courses.

(3) AP closeness
Before deriving (4) mobility, (5) course venue and (6) sched-
ule, we first introduce the AP closeness metric as defined in
[28]. As we will discuss in upcoming sections, the mobility of
devices and course venue are derived through WiFi data. In
other words, locations are represented and compared through
RSSI fingerprints. To map real-world location to virtual
WiFi fingerprints, to smooth the flucationation in raw RSSI
data, and to avoid the costly and prone-to-error process of
manual labelling, we need an automatic generated metric to
characterize how close are the nearby APs.

The AP closeness metric is calculated based on the fact that
nearby APs can hear probe request scans of individual devices
at almost the same time consistently over a long period of
time. The more scans of common devices can be heard
simultaneously by two APs, the closer these two APs are.
From probe scan history of all devices in SNMP polls, a
closeness threshold is chosen to determine whether two APs
are “close” based on the overall distribution [28].

(4) Mobility: a smartphone’s location at a specific time
To track regular indoor events, mobility information of each
device is useful [12]. The mobility of a device can be used to
derive the lecture punctuality behaviors of its owner.

There are multiple ways to derive mobility traces of devices.
One straightforward approach would be to employ indoor
WiFi localization techniques [15, 27] to locate a student’s
position, and compare it with the course venue. However,
indoor positioning techniques are still not mature and typically
not available in university campus.

In fact, to infer whether a student attends a lecture, we only
need to know if his/her devices are close (as measured by the
WiFi data) to the lecture venue (also as measured by the WiFi
data) at the scheduled time. It is quite rare that a student stays
around the APs near the course location but does not actually
attend the class. Thus we adopt a relatively coarse but simple
algorithm instead of excessively accurate, complex and costly
localization methods.



Labelling-free Mobility Detection

With the assumption that no location labels (e.g. 3D coordi-
nates, nearby rooms, manual fingerprinting) are available on
APs (since they are hard to collect and prone to variations), we
utilize an easy-to-adopt and cost-effective mobility detection
algorithm [28] which is based on WiFi traces from relatively
dense-deployed APs.

Similar to traditional syslog events [13] which report the AP
association process of client devices, SNMP traps messages
are sent in UDP packages in real-time. Prior studies [5, 28]
has shown that the raw AP association trace alone is a bad
estimator of device location and mobility. Thus for mobility
detection we also utilize records of packet signal strengths.

Signal strength records of three types of packets — probe scan
request packets, data packets sent from device to a campus AP
or a rogue AP1 — can be polled from SNMP objects (which
include timestamps and MAC addresses). Probe and rogue
RSSI records allow tracking of a device even when it is not
connected to the WLAN. Association events and RSSI records
are complementary to each other. They together lead to higher
coverage and finer granularity in mobility detection [28].

The “mobility” of a device is defined as the interval (start
time, end time) and location (RSSI fingerprint, i.e. a set of
APs with corresponding packet RSSI and heard time) where it
appeared. The detection algorithm takes the following steps:

1. To smooth the fluctuations and flip-flops in raw WiFi data,
fingerprint snapshots of each device are generated from its
packet RSSI records and association events. The snapshots
are generated by using a sliding window and continuously
kicking out deprecated records and records of far-away
(w.r.t. the AP closeness metric) APs.

2. Continuous similar fingerprint snapshots are merged into
large fingerprints to represent the location of where the
device appeared. Two RSSI fingerprints are considered
“similar” if most APs in the records are close to each other
and the fluctuation on RSSI values of each AP is limited.

3. The first and last recorded time of each merged fingerprint
defines the appeared interval. One can further simplify the
merged fingerprint by accumulating the RSSI value and
packet count of each AP, and only keep the top APs to
represent the location.

During the 9 weeks of observation at Tsinghua, 201,230 client
devices appeared in the campus WLAN. The granularity of the
mobility detection depends on the density of APs. At Tsinghua,
on average a client device can be heard by 3.59 APs, which
means that there are enough APs to continuously monitor the
location of each device. For most buildings on the campus,
APs divide the indoor space into regions with granularity finer
than 10⇠17m (region diameter) — in other words, at room
level. This is sufficient for fingerprint comparison in classroom
education, where courses are separated by signal-blocking
obstacles such as walls and corridors.
1Rogue APs are WiFi access points that are installed not by network
operators, e.g. by graduate students in their labs through wired
network. Thus they are not directly accessible for data collection.

(5) Course venue and (6) fine-grained schedule
Education resources are often scarce and set with access
limitations. For example, at Tsinghua, the classroom location
of each course is only accessible to registered students, not
to the general public, thus we cannot download all lectures’
venue information in a batch unless working directly with the
registration office. Together with the requirement that EDUM
does not depend on AP location information (see §Labelling-
free Mobility Detection), in EDUM we do not assume prior
knowledge on the classroom location of each course.

We will discuss in §Course Schedules with Students’ Mobility
how EDUM derives (5) course locations as RSSI fingerprints
using data (1)+(2)+(3)+(4), and further (6) fine-grained course
schedules using data (1)+(2)+(3)+(4)+(5).

(7) Smartphone’s interactive state at a specific time
From the volunteer users of the TUNet Android app, their
phone interactive states (SCREEN_ON and SCREEN_OFF in
Android [2], indicating interactive and asleep/doze modes),
WiFi supplicant events [3], and corresponding timestamps
are uploaded. By comparing the WiFi supplicant event
COMPLETED with SNMP trap event association and
associated at the moment of successful association, we
align the phone epoch time to the server epoch time.

During the 11 weeks, in total 12,568,138 interactive state
intervals are derived from the ⇠2,500 devices. The total
duration of interactive mode is 319,856 hours and the total
duration of asleep mode is 861,185 hours.

COURSE SCHEDULES WITH STUDENTS’ MOBILITY
Before generating and analyzing the educational metrics,
EDUM tries to infer accurate schedules on (5) course location
(as RSSI fingerprint) and (6) start and ending time (row (5)
and (6) as in Table 1) based on the WiFi and mobility traces.
At the same time, whether a student did appear at a course
location is also derived by comparing (5) course location with
(4) the mobility trace of the student.

For detection of course schedules and students’ attendance
to lectures, currently EDUM assumes the following common
characteristics of traditional courses:

• Time-space uniqueness: A course or a student can only
occur at one place at a time.

• Fixed time spans: Normally, each day in a school is divided
into chunks of non-overlapping timeslots. Then all courses
are scheduled to fit into the timeslots.

• Fixed location: Each course has a designated venue (class-
room for majority cases) which is rarely changed.

• Fixed participants: From the longitudinal view, the group of
people attending the lectures of a course is relatively stable.
Although there are occasional changes (e.g. when a student
skips a lecture or quits the course), the majority of the group
remains largely unchanged.

• Repeating patterns: Students of a course regularly return
to the course location. The re-occurring pattern is in
accordance with the schedule of the course.



Table 2. Sessions (S.), timeslots (T.) and durations at Tsinghua.
In each timeslot the number of courses that have valid fingerprint location is shown.

(The number of tracked students of the courses are also shown in parentheses.)
S. T. Duration Mon Tue Wed Thu Fri Sat Sun

1
1 08:00-08:45 33 47 39 44 48 2 1

(312) (297) (282) (289) (318) (34) (5)

2 08:50-09:35 33 47 39 44 47 2 1
(312) (297) (282) (289) (314) (34) (5)

2

3 09:50-10:35 59 75 71 70 61 6 1
(437) (443) (475) (393) (390) (47) (5)

4 10:40-11:25 57 75 70 67 59 6 1
(409) (443) (443) (369) (336) (47) (5)

5 11:30-12:15 36 30 34 23 34 6 1
(305) (235) (257) (139) (189) (47) (5)

3
6 13:30-14:15 38 46 48 4 24 6 1

(195) (292) (301) (24) (165) (35) (4)

7 14:20-15:05 37 44 47 4 23 6 1
(177) (265) (286) (24) (120) (35) (4)

4
8 15:20-16:05 42 55 45 9 28 7 2

(303) (289) (265) (35) (177) (39) (63)

9 16:10-16:55 35 51 43 9 23 1 1
(276) (255) (260) (35) (134) (4) (59)

5
10 17:05-17:50 10 5 8 1 3 0 1

(43) (16) (51) (2) (11) (0) (4)

11 17:55-18:40 3 4 2 1 0 0 1
(7) (11) (4) (2) (0) (0) (4)

6

12 19:20-20:05 19 33 24 23 9 0 1
(121) (201) (159) (115) (89) (0) (4)

13 20:10-20:55 19 33 22 23 9 0 1
(121) (201) (155) (115) (89) (0) (4)

14 21:00-21:45 6 12 12 7 2 0 1
(42) (87) (63) (39) (19) (0) (4)

As shown in Table 2, at Tsinghua University, each day during
a semester is divided into 14 45min-long timeslots. These
14 timeslots are merged into 6 sessions. Each course takes
several scheduled timeslots each week. In this paper, we call
each series of continuous timeslots of a course a “lecture”. At
Tsinghua, lectures always start at the first timeslot of a session,
i.e. the 1st , 3rd , 6th, 8th, 10th and 12th timeslot. Each course
has at most one lecture in each day.

Course Fingerprint Location v.s. Students’ Mobility
To determine the RSSI fingerprint location of a course ((5)
in Table 1), we merge all the RSSI packet records of the
students’ devices during the approximate lecture time. The
merging of RSSI records into fingerprints is the same as the
method used in mobility detection (§Labelling-free Mobility
Detection). We only keep the top 6 records (ranked by the
accumulated RSSI value Âi (200+RSSIi)). To ensure the
merged fingerprint is valid, we skip the courses with too few
samples (< 3 tracked students or < 4 days they did appear
in WLAN range). Furthermore, inconsistent RSSI records
are eliminated from merged fingerprint. (Two RSSI records
are considered consistent if their APs are close — same
definition as in mobility detection — with each other.) Only
the fingerprints with enough (� 3) nearby APs are kept.

Finally, fingerprint locations of 775 courses are derived. We
check the fingerprints by comparing the top one AP (The
deployed or nearest room is marked on each AP at Tsinghua.)
with the actual classroom location of 495 of these courses
(collected from part of TUNow users, as shown in Fig. 1.).
86.3% top APs are the exact ones in the classrooms. 12.3%
are APs deployed near the course venue — common cases for
areas with low AP density and some outdoor physical courses.

With (5) the course fingerprint location available, (4) the
mobility trace of a student can be easily converted into a

sequence of “appear at course location” and “appear at other
locations” labels. Since it is rare that a student appears near
the course location but does not attend the lecture, we can
approximate students’ attendances using also the fingerprint
determination method in mobility detection.

Time Span of a Lecture
The students’ digital timetables at Tsinghua is at the granular-
ity of a session. The actual number of timeslots of a lecture is
decided by the course teacher. Thus we need to derive accurate
schedules at timeslot granularity ((6) in Table 1).

After knowing whether students appear at their course loca-
tions, we can heuristically derive the timeslot-level schedules
of each lecture of a course. A dramatic drop (40% in our case)
of the number of appeared students in a timeslot indicates the
lecture is finished. Data can be further accumulated since in
most courses the lectures are repeated weekly. With starting
timeslot directly known, the time span of the lecture is derived.

For all the lectures of the 775 courses that have fingerprint
locations, 15 last for 1 timeslot, 673 last for 2 timeslots, 233
last for 3 timeslots, 27 last for 4, and 12 last for 5 timeslots,
which is in line with the actual lecture length distribution on
the campus. Only 2 lab courses have 2 lectures on Monday
and Wednesday take � 6 timeslots. In total, these 775 courses
cover 691 students with devices being tracked by EDUM.

One can extend our algorithms in this section to deal with
the cases that course time schedules are not available. For
example, regular co-location of a group of devices during
lecture timeslots of different weeks indicates a course is
scheduled there, leading to various group event detection
algorithms [6, 21]. However, this is out of the scope of this
paper and we currently assume approximate time schedule
information is available to EDUM.

LECTURE PUNCTUALITY
With information about the students’ attendance at their
courses, we can answer several important questions on educa-
tion. To better understand educational behavior, to improve
teaching and to give improvement suggestions, in this section
we first focus on problems related to punctuality, including:

1. When do students choose to skip a lecture? Morning,
afternoon or evening? How does the time schedule of a
course impact attendance and late arrival to its lectures?

2. Besides time variations, do other properties of a course also
influence the punctuality of students?

3. When focusing on individuals, are there patterns in different
groups of students? E.g., do graduate students skip classes
more than undergraduates?

4. Do punctuality patterns correlate with study performance?

In EDUM we try to tackle these punctuality measurement prob-
lems by defining automatically generated metrics, including
lecture attendance ratios and late arrival / early departure ratios.
From essentially the server-side WLAN data, EDUM can
evaluate students’ punctuality more effectively than manual
processes such as prone-to-cheat check-ins.
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Figure 3. Aggregated Patterns of Attendance Ratios.

Attendance Ratios
We define the attendance ratio of lectures and timeslots as:

#(attended students)
#(appeared students on campus)

. (1)

Here “attended” means the students’ devices appeared at the
course location during the scheduled duration. However, to
measure whether a student appeared on the campus is not
a trivial task. A straightforward problem is that the student
may stay away at places with no campus WLAN coverage.
E.g., at Tsinghua, APs are not deployed in the apartments of
undergraduate students by January 2016. Sometimes students
may choose to turn off WiFi and use the cellular data network,
thus disappearing from the campus WLAN. So it is not a good
approach to directly divide the number of attended students by
the total number of tracked students of the course. Instead, we
define an upper bound approach and a lower bound approach
to the actual attendance ratio by two definitions of the number
of appeared students on campus: 1) count all the students
whose devices appeared anywhere on the campus during only
the lecture or the timeslot (leading to the upper bound); 2)
count all the students whose devices appeared anywhere during
the whole day (leading to the lower bound). The first definition
of the denominator gives a smaller value than the second one,
and also approaches an optimistic attendance ratio while the
second one is much more conservative.

In Fig. 2, the upper and lower bounds are plotted for the
9 studied weeks. One may expect an increasing trend of
attendance ratio towards the final weeks2 because of more
check-ins, addressing of exams and important summaries
during lectures. However, the opposite occurs. The overall
class attendance is decreasing for both upper and lower bounds.
Possible reasons for this can be: First, after mid-terms students
are not as hard-working as before; Second, towards the ending
of a long semester and the upcoming of a brand new year,
students are distracted and join more parties and go-outs.
Notice that Friday, January 1, 2016 is New Year’s Day. All
courses are cancelled on this holiday, leading to an abnormal
drop of attendance ratios towards zero.
2At Tsinghua, the mid-term week is the 8th week starting on 11-02,
and the last normal week is the 16th week starting on 12-28. Starting
from 01-04 are two weeks dedicated for exams.
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(a) Upper Bound (ranked by median).

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

0.00

0.25

0.50

0.75

1.00

47 2 1 4 9 5 3 8 12273010231613201543251432331844261129 6 24172119363534462837404241 7 2245383931
Department

At
te

nd
an

ce
 R

at
io

(b) Lower Bound (ranked by median).

Figure 4. Course Attendance Ratios v.s. Departments.
Lower and upper hinges are 1st and 3rd quartiles. Whiskers are observations within

range of 1.5⇤IQR (inter-quartile range) to hinges.

Weekly patterns are also interesting (Fig. 2). We can see
an obvious drop of attendance ratio for lectures on weekends
compared to weekdays. At Tsinghua, a number of unimportant
secondary courses for minor and second degrees are scheduled
on weekends. Also students may be more relaxed on weekends
and choose to skip lectures easily. A common saying is that
on Mondays and Fridays people are not in the state of working
compared to middle week. To further understand weekly
attendance patterns, we aggregate the attendance samples of 9
weeks into Fig. 3(a). It is clearly visible that attendance ratio
drop from Wednesday to Friday. However, it seems that on
Monday students are in the state of hard studying — Monday
has the 2nd highest ratio on average, just after Wednesday.
It is surprising to see a clear drop on Tuesday, rather than
a continuous increase to the climax on Wednesday, in both
Fig. 3(a) and Fig. 2. The reasons for this somewhat mystifying
behavior should be studied further.

We also study the intra-day patterns of attendance. Based
on our past experience as college students, the authors would
have expected that attendance might be higher in the afternoon,
rather than in the morning. However, as Fig. 3(b) shows that
the overall attendance ratio steadily decreases from morning
to afternoon to evening (ratios are calculated for each timeslot,
not lecture). Even for the earliest 1st timeslot starting at 8AM,
the average attendance ratio is much higher than the evening
timeslots. It would be interesting to conjecture what might
cause this effect. Clearly, there must be a counter-force to the
“stay- in-bed”-effect in the morning. Maybe students gradually
lose self-control as the day progresses, eventually leading them
to skip classes in the process.

Beside time variations, other course properties can also be
analyzed with attendance ratios. As an example, we consider
the offering department of the course (i.e. the department
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Figure 6. Aggregated Patterns of Late and Escape Ratios.

or institute that offers the course). The attendance ratio of a
course is aggregated for all 9 weeks based on Equation (1).
The basic distribution of attendance ratios of each department
is shown in Fig. 4 where department numbers are ranked
according to upper bound attendance ratio. The ranks by upper
bound and lower bound are consistent to a large extent. Out
of 1081 department pairs, 778 are ranked in the same order by
both upper and lower bound. The two definitions of attendance
ratio share 10 common departments from bottom-15 ones of
both, and 11 from of top-15 ones. To the authors’ knowledge,
the rank observed in the data fits what we would expect at
Tsinghua. For example, the median attendance ratio of courses
opened by the Department of Mathematics (numbered 34)
and the Department of Foreign Languages (numbered 40)
are ranked high in both definitions. Student interactions are
common in language courses and hard efforts are required in
math courses. From this point of view, attendance ratios can be
considered as a first approximation to a course attractiveness
measure, which we will discuss in §Lecture Attractiveness.

Yet another view is to measure the attendance ratio for
individual students. We calculate a student’s attendance ratio
during a period as:

#(lectures attended)
#(lectures that s/he appeared on campus)

(2)

Same as Equation (1), there are two definitions of time
span on “appeared on campus”: 1) appeared anywhere in
campus WLAN range during the lecture (or similarly, during
a timeslot), which leads to the upper bound; 2) appeared
anywhere during the day, which leads to the lower bound.

Ratios are calculated for each tracked student from the whole
9-week period mobility traces. In the “upper” and “lower”
columns of Table 3, personal attributes including grade (the
year entering school), type (undergraduate, master and PhD
student) and gender (female and male) are considered for
comparing different groups of students. A clear trend of
decreasing attendance ratio is shown from lower grade of 2015
(freshmen) to higher grade 2012 students (4th year). Master
students have the highest attendance ratio, which can be caused
by the course-based qualifying requirement for them. No large
gap exists between female and male students.

Table 3. Punctuality of different Groups of Students.
All values are shown in percentage as mean(sd).
upper lower late escape owls

G
ra

de

2012 67.6(23.2) 37.9(23.5) 28.8(31.3) 28.9(23.4) 21.1
2013 86.8(15.0) 58.0(20.9) 21.9(18.6) 14.8(14.2) 12.2
2014 86.4(14.2) 55.8(19.1) 24.0(19.4) 17.1(15.3) 22.0
2015 91.5(9.9) 62.7(19.0) 16.0(14.1) 14.9(14.8) 13.0

Ty
pe

Under. 87.7(14.2) 58.1(20.1) 20.4(18.4) 15.9(15.1) 16.0
Master 93.3(11.6) 71.6(22.8) 16.1(15.8) 25.2(27.9) 18.2
Ph.D. 86.8(19.2) 63.7(25.9) 23.7(24.5) 24.6(23.1) NA

Se
x Female 87.1(12.4) 61.6(16.9) 19.0(14.2) 13.9(13.5) 18.1

Male 88.0(14.3) 57.8(20.8) 20.4(18.7) 16.8(16.0) 15.5

Late Arrival and Early Escape
When taking a closer look at the mobility traces, another set of
punctuality metrics can be derived to characterize the late
arrival and early escape of students in a lecture. We say
a student has a “late" arrival to a lecture when his device
appeared at the lecture later than 15min (one third of a timeslot
length at Tsinghua University) after the beginning of the
lecture. Similarly, we define an early “escape” from a lecture
when the device disappears from the course location 15min
before the ending of the lecture. Thus the late ratio and escape
ratios can be defined as:

late ratio =
#(late arrived students)

#(attended students)
(3)

and

escape ratio =
#(early escaped students)

#(attended students)
. (4)

The overall pattern of late and escape ratios are shown in Fig. 5.
Similar to what we have discovered in Fig. 2, towards the end
of both year and term, more students are late to lectures or
escape early from lectures. We also look at the weekly pattern
closer in Fig. 6(a), here we can see the interesting pattern
that both late and escape ratios drop a little from Monday to
Wednesday, and then rise during the rest of the week.

However, in Fig. 6(b) (late arrival ratios are only counted for
starting timeslots of lectures, while early escape ratios are only
aggregated in the ending timeslots of lectures; zero values are
omitted), we can see clearly a reduction of the late arrival ratio
as the day progresses. Together with Fig. 3(b), this further
confirms the “hardness of getting up early”. Hard to wake up
in morning, easy to be distracted as day progress. The data
suggests that this is the common tragedy for today’s college
students. The escape ratio of timeslots in Fig. 6(b) shows
a more complex pattern. We can see that the escape ratio
is lowest at the starting timeslot of each session — namely
the 1st , 3rd , 6th, 8th, 10th and 12th timeslot. Otherwise as
the lectures progress, or comes near lunch (5th) and dinner
(10th,11th) time, more students escape from lectures.



So a natural question arises: Why and what students are late
for lectures or escape from them? We try to partially answer
the question by looking at the overall late and escape ratios
of different categories of students. As shown in the “late”
and “escape” columns of Table 3, we can see again the less
punctual trend of students of higher grades — the late and
escape ratios become highest in the group of 4th-year students.
A conflicting trend of low late ratio and high escape ratio is
shown for master students. By comparing with the trends
in attendance ratio, one possible explanation is that a lot of
master courses have check-ins or in-class quizzes early during
lectures, but students are still reluctant to finish them. Finally,
compared to female students, male students are slightly more
frequently late for or escape from classes.

In the above analysis of attendance, late and escape ratios, we
find the counter-intuitive trend that in general class attendance
is higher in the morning. Another observation which meets
common sense is that students face heavy late arrival problems
in the morning. Despite one possible explanation that students
wake up too late for classes, an alternative possible fact is that
different life patterns are mixed in our aggregated metrics in
Fig. 3(b) and Fig. 6(b). Besides the morning people and those
who can well fit the schedule of the university, there are night
owls who sleep late and become efficient in the afternoon
and evening. We try to identify these students by student
punctuality metrics.

Attendance ratios of a student are already defined in Equa-
tion (2). Similarly we define the late and escape ratios of a
student over a period as:

student late ratio =
#(lectures that arrived lately)

#(lectures attended)
(5)

and

student escape ratio =
#(lectures that departured early)

#(lectures attended)
.

(6)

We consider the aggregated daily patterns of attendance
and late ratios of a student. A “night owl” student should
have a decreasing trend of late ratio and increasing trend
of attendance ratio. To determine the trend within a day,
attendance and late ratios are aggregated over 14 timeslots
of the day. Then we apply linear regression to the sequence
of timeslot ratios. The slope of the fitted line is then an
indicator of an increasing trend (when the slope � 0.5%, which
means 6.5% increase in ratio from first to last timeslot) or a
decreasing trend (when the slope  0.5%, which means 6.5%
decrease in ratio from first to last timeslot). We classify a
student as a night owl if the trend of the upper and lower
bound attendance ratios are both increasing and the late ratio
trend is decreasing. Out of 639 students whose ratio sequences
has length � 3, 103 are identified as night owls. In Table 3, the
percentage of night owls in each category of students is shown.
We can see that 2nd and 4th year students are more likely to be
night owls. Maybe surprisingly, the fraction of night owls in
female students is higher than that in male students.
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Figure 7. Students’ Attendance Ratio v.s. GPA.
Lower bound and upper bound are compared with students’ GPA respectively.

X-axis of GPA is discretized into bins of size 10 for aggregation.
Lower and upper hinges of plotted boxes present the 1st and 3rd quartiles.
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Figure 8. Estimated Density Distributions of Students’ Late Arrival and
Early Escape Ratios with High and Low Performances.

Study Performance
The results on punctuality metrics of EDUM can be used to
get deeper insights into student performance. Giving scores
is a common evaluation method for student performance in
most courses. Thus here we calculate the GPA (grade point
average) of the autumn semester as an overall study quality
indicator for each tracked student (635 TUNow volunteers)
from 718 scored courses out of the 775.

In general, students with higher GPA attend lectures more. As
shown in Fig. 7, we can see the increasing trend of attendance
ratio for groups of students that have higher GPA. The Pearson
correlation between student punctuality ratios (Equation (5)
and Equation (6) aggregated over all 9 weeks) and their GPA
are: upper bound attendance ratio has 0.167 (p-value < 0.001),
lower bound attendance ratio has 0.133 (p-value = 0.001), late
ratio has 0.075 (p-value = 0.078), escape ratio has �0.027 (p-
value = 0.536). It is not so clear whether late arrival and
early escape correlates with performance.

To further understand the relationship between punctuality
and GPA, we look at the distributions of late and escape
ratios from students with high performance (GPA > 90) and
low performance (GPA < 80). (Tsinghua University adopts
a hundred-point grading policy.) As shown in Fig. 8(a),
estimated kernel density [23] distributions are plotted. We can
see a clear difference of late ratio between high-performance
and low-performance students. We also conduct the K-S test
(Kolmogorov-Smirnov Test) with a set to level 0.05. The
test rejects the null hypothesis that the late ratios of low-
performance students is larger than those of high-performance
students (with p-value = 0.033). In other words, while high-
performance students have higher attendance ratios, when
appearing at class, they are more likely to be late than
appearing low-performance students. Finally, in Fig. 8(b) we
find no clear difference regarding the escape ratios between
high-performance and low-performance students.
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Figure 9. Aggregated Patterns of Phone ON Ratio.
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Figure 10. Phone ON Ratio as Lecture Progress.

Further prediction of study performance and support for bad
study behaviors are possible based on metric modules of
EDUM. Our study is scratching the surface only at this point.
For example, it would be interesting to try and predict course
score ranking based on punctuality and other EDUM metrics.

LECTURE ATTRACTIVENESS
It is hard to measure how good or attractive a course is.
Nowadays course ratings are collected via a combination of
surveys, anecdotal feedbacks of students, occasional audit of
school officers, and teacher peer reviews. In this section, we
show how to extend EDUM system by new data to contribute
measurements that indicate the attractiveness of courses.

We approximate attractiveness as the absence of distractions
in EDUM. Usage of mobile devices is a good indicator for
distractions during a class. Collected from TUNet users, the
device interactive and asleep mode intervals [2] are added to
EDUM system. Then interactive distraction ratio (ON ratio)
can be straightforwardly defined as:

Total ON duration
Total ON duration+Total OFF duration

(7)

which is intuitive and can be interpreted as the device usage
ratio during the measured time span. ON ratio is accumulated
only for students who appeared at class.

The weekly and daily patterns of distraction is shown in Fig. 9
by aggregating all data on the numerator and denominator
of Equation (7) in each weekday and timeslot. As Fig. 9(a)
shows, distraction metrics increase from Wednesday to Friday,
and drop on Saturday. In Fig. 9(b), the overall pattern of ON
ratio is increasing as the day progresses, which aligns with our
observations regarding the drop of attendance ratio we have
observed in §Lecture Punctuality. Similar to the escape ratio
in Fig. 6(b), the ON ratio also drops around lunch and dinner
(6th and 11th) timeslots, and increases as the day progresses.

Compared to short videos of on-line educations, classroom
courses are sometimes criticized for their long length and
low efficiency. Thus we further aggregate data to lecture

Table 4. Correlations (p-value) among All Course Metrics in EDUM.
upper lower late escape

ON -0.079
(0.032)

-0.093
(0.011)

0.067
(0.069)

0.026
(0.482)

upper 0.715
(<0.001)

-0.183
(<0.001)

-0.250
(<0.001)

lower -0.123
(<0.001)

-0.208
(<0.001)

late 0.277
(<0.001)

scale to see how distraction varies minute by minute as a
lecture progresses. In Fig. 10 the metric is shown for the most
common 2-to-3-timeslot (each timeslot lasts 45min) lectures.
The lecture break time is removed that only class time is left in
the plot. We can see a clear trend of high device usage at the
start of each time slot, which quickly drops in the first 10min
of a timeslot. The implications are clear. During the first
few minutes of a timeslot, students are attracted by teachers
and stop using their devices. In general, from the first to the
last timeslot, the distraction ratio increases, indicating that
students gradually lose attention during the class. However,
interestingly near the end of the lectures, i.e. usually near
90min or 135min, the device usage again slightly decreases.

Finally, we look at the Pearson correlations among all the
course metrics. As shown in Table 4, we see clear correlations
among punctuality metrics. Attendance ratios negatively
correlate with late and escape ratios. But there is no significant
correlation between ON ratio and the punctuality metrics.

DISCUSSION AND FUTURE WORK
Limitations of EDUM: First, one assumption of measure-
ments in EDUM is that device owners leave traces in WLAN.
However, students may turn WiFi off during a lecture. Further
challenges are that some devices lazily do WiFi scan and
connect; bad WiFi conditions of too little APs, too many
devices and outdoor situations; varying density of APs. For
deeper and finer analysis exceeding our work, these concerns
may become critical and require further data analysis.

Second, without prior knowledge of course schedules, EDUM
requires longitudinal data to seek accurate course schedules.
Thus our current implementation does not support dynamic
outputs as courses progress. However, classroom fingerprints
can be generated based on historical data from past semesters.
In the next version of EDUM we will introduce real-time
measurements and thus allow real-time monitoring.

Third, our deployment is currently limited at Tsinghua Uni-
versity by tracking volunteers from Android users of our
mobile apps. This may introduce unexpected biases and noises
in our results. In other environments where the access to
additional information — such as the device-account mapping
and timetable samples — is limited, further development on
algorithms might be necessary.

Fourth, it is fundamentally hard to get ground truths of
educational behavior. In EDUM we try to derive metrics for
the behavior to improve the foundation of education studies.
On the other hand, our metrics currently lack evaluations from
manually collected data. As future work we will verify the
accuracy and variation of our metrics.



Extensions of EDUM: First, we design EDUM to be extensi-
ble and scalable. EDUM could be ported to other settings, e.g.
large organizations where WLAN data is available, to conduct
similar metrics as in education scenarios.

Second, more interesting data sources can enable additional
measurements, and more kinds of educational metrics. For
example, semantic knowledge from deep packet inspections
(DPI) could be used to characterize the content of each course.
More detailed behavior can be also measured through various
sensors of mobile devices.

Third, better and more accurate results could be obtained if
EDUM has access to detailed alternative data (as shown in
Table 1), e.g. the accurate location of APs, more education
ground truths from school office.

Fourth, the tracking and observation could include more than
just the lectures. Behavior out of class, such as group-studying,
could be analyzed with new techniques such as socio-physical
networks.

More applications: In this paper we only show a basic set of
applications based on EDUM’s output. There are numerous
more potential applications, e.g. feedbacks to students, course
recommendations and personalization, optimization of course
scheduling, etc. EDUM could also enable new research oppor-
tunities based on its in-situ large-scale measurements. Finally,
EDUM could ultimately help us reflect on the effectiveness of
traditional education methods compared to MOOCs.

RELATED WORK
There are generally three ways to collect mobility traces [5]:
monitoring location (e.g. GPS, RFID based, Bluetooth, GSM
and 802.11 beacons, etc.) [15, 14], monitoring communi-
cation (signal strength of base station/access point and the
connectivity events of the device) [13] and monitoring contacts
(use mobile devices with Bluetooth, WiFiDirect, etc. to sniff
other nearby devices) [20, 17]. [18] uses WiFi sniffers to aid
instructors in identifying who is in the classroom. We choose
to monitor WiFi communication of devices in EDUM through
mainly server-side SNMP data, because this is non-intrusive
and easy to scale based on existing infrastructures.

The Ubicomp community has shown a great interest in under-
standing human behaviors through data related with mobile
devices, such as mobility, online v.s. offline social networks,
group behaviors, event detection, phone usage [8, 24, 16].
Recently, the StudentLife project [25, 26] and LiveLabs
testbed [11, 12] have advanced our understanding of individual
and group behaviors in campus environment settings. The
StudentLife project involved 48 graduate and undergraduate
students. Fine grained mobile data and psychological surveys
are collected directly from their devices. Correlations and
predictions with study performance is well-studied in the
StudentLife project. We adopt a different approach in this
paper (based on WLAN), and introduce several new metrics
from the view of both courses and students for different
purposes. The LiveLabs testbed is more similar to our setting
— but it did not focus on education and was at a much smaller
scale (156 smart phones) than ours.

Large-scale educational measurements have recently become
popular for MOOCs (Massive Open On-line Courses) which
are hosted by web platforms like EdX [10], Coursera [4],
Udacity, etc. Many web interactions and Internet metrics have
been studied for on-line courses, including video watching
behaviors, on-line homework and quiz performance, forum
participations [4], etc. In contrast, studies under classroom
settings are mostly done through intrusive methodologies at
small scale, preventing the possibility of a comparably large-
scale analysis as in MOOCs. We try to design EDUM to
work automatically, non-intrusively, scalably and extensibly,
thereby showing the possibility to do educational research for
traditional classroom courses at scale.

CONCLUSION
By tracking devices through WiFi traces, our proposed EDUM
system provides a new way to measure student behavior and
the effectiveness of classroom-based courses. Through a
large-scale deployment, we show that EDUM is scalable,
non-intrusive and extensible for new types of data and mea-
surements. Our measurement results show that EDUM
enables new observations on aspects such as punctuality, study
performance and lecture attractiveness (or student distraction),
and quantifies aspects of education that have up to now been
notoriously hard to measure.

We believe this paper makes an important first step towards
automatic, data-driven, quantitative, and objective classroom
education measurements. As our future work, we plan to
further explore the directions sketched in the §Discussion and
Future Work section.
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