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ABSTRACT
Models such as latent semantic analysis and those based on neural
embeddings learn distributed representations of text, and match
the query against the document in the latent semantic space. In
traditional information retrieval models, on the other hand, terms
have discrete or local representations, and the relevance of a docu-
ment is determined by the exact matches of query terms in the body
text. We hypothesize that matching with distributed representations
complements matching with traditional local representations, and
that a combination of the two is favourable. We propose a novel
document ranking model composed of two separate deep neural
networks, one that matches the query and the document using a
local representation, and another that matches the query and the
document using learned distributed representations. The two net-
works are jointly trained as part of a single neural network. We show
that this combination or ‘duet’ performs significantly better than
either neural network individually on a Web page ranking task, and
significantly outperforms traditional baselines and other recently
proposed models based on neural networks.
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1. INTRODUCTION
Neural text embedding models have recently gained significant

popularity for both natural language processing (NLP) and informa-
tion retrieval (IR) tasks. In IR, a significant number of these works
have focused on word embeddings [6, 8, 10, 11, 27, 28, 34, 41] and
modelling short-text similarities [15, 16, 29, 35–37]. In traditional
Web search, the query consists of only few terms but the body text
of the documents may typically have tens or hundreds of sentences.
In the absence of click information, such as for newly-published or
infrequently-visited documents, the body text can be a useful signal
to determine the relevance of the document for the query. Therefore,
extending existing neural text representation learning approaches to
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The President of the United States of America (POTUS) is the elected
head of state and head of government of the United States. The
president leads the executive branch of the federal government and is
the commander in chief of the United States Armed Forces. Barack
Hussein Obama II (born August 4, 1961) is an American politician
who is the 44th and current President of the United States. He is the
first African American to hold the office and the first president born
outside the continental United States.

(a) Local model
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(b) Distributed model

Figure 1: Visualizing the drop in the local and the distributed
model’s retrieval score by individually removing each of the
passage terms for the query “united states president”. Darker
green signifies a bigger drop. The local model uses only exact
term matches. The distributed model uses matches based on a
learned representation.

long body text for document ranking is an important challenge in IR.
However, as was noted during a recent workshop [4], despite the re-
cent surge in interests towards applying deep neural network (DNN)
models for retrieval, their success on ad-hoc retrieval tasks has been
rather limited. Some recent papers [30, 34] report worse perfor-
mance of neural embedding models when compared to traditional
term-based approaches, such as BM25 [33].

Traditional IR approaches consider terms as discrete entities.
The relevance of the document to the query is estimated based on,
amongst other factors, the number of matches of query terms in
the document, the parts of the document in which the matches oc-
cur, and the proximity between the matches. In contrast, latent
semantic analysis (LSA) [5], probabilistic latent semantic analysis
(PLSA) [14] and latent Dirichlet allocation (LDA) [2, 39] learn low-
dimensional vector representations of terms, and match the query
against the document in the latent semantic space. Retrieval models
can therefore be classified based on what representations of text they
employ at the point of matching the query against the document. At
the point of match, if each term is represented by a unique identifiers
(local representation [13]) then the query-document relevance is a
function of the pattern of occurrences of the exact query terms in
the document. However, if the query and the document text is first



projected into a continuous latent space, then it is their distributed
representations that are compared. Along these lines, Guo et al. [12]
classify recent DNN models for short-text matching as either interac-
tion-focused [15, 22, 31] or representation-focused [15, 16, 35–37].
They claim that IR tasks are different from NLP tasks, and that it is
more important to focus on exact matching for the former and on
learning text embeddings for the latter. Mitra et al. [27], on the other
hand, claim that models that compare the query and the document
in the latent semantic space capture a different sense of relevance
than models that focus on exact term matches, and therefore the
combination of the two is more favourable. Our work is motivated
by the latter intuition that it is important to match the query and the
document using both local and distributed representations of text.
We propose a novel ranking model comprised of two separate DNNs
that model query-document relevance using local and distributed
representations, respectively. The two DNNs, referred to henceforth
as the local model and the distributed model, are jointly trained as
part of a single neural network, that we name as a duet architecture
because the two networks co-operate to achieve a common goal.
Figure 1 demonstrates how each subnetwork models the same docu-
ment given a fixed query. While the local model captures properties
like exact match position and proximity, the distributed model de-
tects synonyms (e.g. ‘Obama’), related terms (e.g. ‘federal’), and
even well-formedness of content (e.g. ‘the’, ‘of’).1

In this paper, we show that the duet of the two DNNs not only
outperforms the individual local and distributed models, but also
demonstrates large improvements over traditional baselines and
other recently proposed models based on DNNs on the document
ranking task. Unlike other recent work [30, 34], our model signifi-
cantly outperforms classic IR approaches by using a DNN to learn
text representation.

Deep neural network models are known to benefit from large
training data, achieving state-of-the-art performance in areas where
large scale training corpora are available [19, 20]. Some of the lack
of positive results from neural models in ad-hoc retrieval is likely
due to the scarce public availability of large quantity of training data
necessary to learn effective representations of text. In Section 6,
we will present some analysis on the effect of training data on the
performance of these DNN models. In particular, we found that–
unsurprisingly–the performance of the distributed model improves
drastically in the presence of more data. Unlike some previous
work [16, 36, 37] that train on clickthrough data with randomly
sampled documents as negative examples, we train our model on
human-judged labels. Our candidate set for every query consists
of documents that were retrieved by the commercial search engine
Bing, and then labelled by crowdsourced judges. We found that
training with the documents that were rated non-relevant by the
human judges as the negative examples is more effective than ran-
domly sampling negative examples from the corpus. To summarize,
the key contributions of this work are:

1. We propose a novel duet architecture for a model that jointly
learns two deep neural networks focused on matching using
local and distributed representations of text, respectively.

2. We demonstrate that this architecture out-performs state-of-
the-art neural and traditional non-neural baselines.

3. We demonstrate that training with documents judged as non-
relevant as the negative examples is more effective than ran-
domly sampling them from the corpus.

1While surprising, this last property is important for detecting qual-
ity web content [42].

Query: big deal derby carpet

✓

✗

✗

✓

✗

✗

Query: rosario trainer

1 1000
Document terms

rosario

trainer

rosario

trainer

rosario

trainer

Big

Deal

Derby

carpet

Big

Deal

Derby

carpet

Big

Deal

Derby

carpet

Figure 2: Visualizing patterns of query term matches in doc-
uments. Query terms are laid out along the vertical axis, and
the document terms along the horizontal axis. The short ver-
tical lines correspond to exact matches between pairs of query
and document terms. For both queries, the first document was
rated relevant by a human judge and the following two as non-
relevant. The query term matches in the relevant documents
are observed to be more clustered, and more localized near the
beginning of the document.

2. DESIDERATA OF DOCUMENT RANK-
ING

Before describing our ranking model, we first present three prop-
erties found across most effective retrieval systems. We will then
operationalize these in our architecture in Section 3.

First, exact term matches between the query and the document are
fundamental to all information retrieval models [7]. Traditional IR
models, such as BM25 [33], are based on counts of exact matches
of the query terms in the document text. They can be employed with
minimal (or no) need for training data, sometimes directly on new
tasks or corpora. Exact matching can be particularly important when
the query terms are new or rare. For example, if new documents
appear on the Web with the television model number ‘SC32MN17’
then BM25 can immediately retrieve these pages containing pre-
cisely that model number without adjusting any parameters of the
ranking model. A good ranking model needs to take advantage of
exact matches to perform reliably on queries containing terms with
rare or no occurrences in the data the model is trained on.

Second, match positions of the query terms in the document not
only reflect where potentially the relevant parts of the document
are localized (e.g. title, first paragraph, closing paragraph) but also
how clustered the individual query term matches are with each other.
Figure 2 shows the position of matches on two different queries
and a sample of relevant and non-relevant documents. In the first
query, we see that the query term matches in the relevant document
are much more clustered than in the non-relevant documents. We
observe this behaviour also in the second query but in addition
notice that the clustered matches are localized near the beginning of
the relevant document. Match proximity serves as a foundation for
effective methods such as sequential dependence models [23].

Finally, inexact term matches between the query and the document
refer to techniques for addressing the vocabulary mismatch problem.
The main disadvantage of term matching is that related terms are
ignored, so when ranking for the query ‘Australia’ then only the term
frequency of ‘Australia’ is considered, even though counting terms



like ‘Sydney’ and ‘koala’ can be good positive evidence. Mitra
et al. [27] anecdotally demonstrate that a distributed representation
based retrieval model that considers all document terms can better
distinguish between a passage that is truly relevant to the query
“Cambridge” from a passage on a different topic (e.g., giraffes) with
artificially injected occurrences of the term “Cambridge”. They
claim that any IR model that considers the distribution of non-
matching terms is likely to benefit from this additional evidence of
relevance, and be able to tell “Cambridge” apart from “an African
even-toed ungulate mammal”.2

In practice, the most effective IR methods leverage combinations
of these techniques. Dependence models combine exact matching
with proximity [23]. LDA-based document models combine exact
matching with inexact matching [39]. Query hypergraphs capture
all three [1]. Our method also combines these techniques but, unlike
prior work, jointly learns all the free parameters of the different
components within a single deep neural network architecture.

3. THE DUET ARCHITECTURE
Figure 3 provides a detailed schematic view of the duet architec-

ture. The distributed model projects the query and the document text
into an embedding space before matching, while the local model
operates over an interaction matrix comparing every query term to
every document term. The final score under the duet setup is the
sum of scores from the local and the distributed networks,

f(Q,D) = f`(Q,D) + fd(Q,D) (1)

where both the query and the document are considered as ordered
list of terms, Q = [q1, . . . ,qnq ] and D = [d1, . . . ,dnd ]. Each
query term q and document term d is a m× 1 vector where m is
the input representation of the text (e.g. the number of terms in the
vocabulary for the local model).

We fix the length of the inputs across all the queries and the
documents such that we consider only the first 10 terms in the query
and the first 1000 terms in the document. If either the query or the
document is shorter than these target dimensions, then the input
vectors are padded with zeros. The truncation of the document body
text to the first 1000 terms is performed only for our model and its
variants, but not for the baseline models. For all the neural and the
non-neural baseline models we consider the full body text.

3.1 Local Model
The local model estimates document relevance based on patterns

of exact matches of query terms in the document. To this end, each
term is represented by its one-hot encoding in a m`-dimensional
space, where m` is the size of the vocabulary. The model then
generates the nd × nq binary matrix X = DTQ, capturing every
exact match (and position) of query terms in the document. This
interaction matrix is similar to the visual representation of term
matches in Figure 2, and therefore captures both the exact term
matches and the match positions. It is also similar to the indicator
matching matrix proposed previously by Pang et al. [31]. While the
interaction matrix X perfectly captures every query term match in
the document, it does not retain any information about the actual
terms themselves. Therefore, the local model cannot learn term-
specific properties from the training corpus, nor model interactions
between dissimilar terms.

The interaction matrix X is first passed through a convolutional
layer with c filters, a kernel size of nd × 1, and a stride of 1. The

2A Python implementation of this visualization is available
at https://github.com/bmitra-msft/Demos/blob/
master/notebooks/DESM.ipynb
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Figure 3: The duet architecture is composed of the local model
(left) and the distributed model (right). The local sub-network
takes an interaction matrix of query and document terms as in-
put, whereas the distributed sub-network learns embeddings of
the query and the document text before matching. The param-
eters of both models are optimized jointly during training.

output Zi corresponding to the ith convolutional window over X is
a function of the match between the qi term against all the terms in
the document,

Zi = tanh
(
XT

i W
)

(2)

where Xi is the row i of X, tanh is performed elementwise, and
the nd × c matrix W contains the learnable parameters of the
convolutional layer. The output Z of the convolutional layer is a
matrix of dimension c×nq. We use a filter size (c) of 300 for all the
evaluations reported in this paper. The output of the convolutional
layer is then passed through two fully-connected layers, a dropout
layer, and a final fully-connected layer that produces a single real-
valued output. All the nodes in the local model uses the hyperbolic
tangent function for non-linearity.

https://github.com/bmitra-msft/Demos/blob/master/notebooks/DESM.ipynb
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3.2 Distributed Model
The distributed model learns dense lower-dimensional vector rep-

resentations of the query and the document text, and then computes
the positional similarity between them in the learnt embedding space.
Instead of one-hot encoding of terms, as in the local model, we use
a character n-graph based representation of each term in the query
and document. Our n-graph based input encoding is motivated by
the trigraph encoding proposed by Huang et al. [16], but unlike their
approach we don’t limit our input representation to n-graphs of a
fixed length. For each term, we count all the n-graphs present for
1 ≤ n ≤ G. We then use this n-graph frequency vector of length
md to represent the term.

Instead of directly computing the interaction between the md×nq

matrix Q and the md × nd matrix D, we first learn a series of
nonlinear transformations to the character-based input. For both
the query and the document, the first step is convolution. The
md × 3 convolution window has filter size of 300. It projects 3
consecutive terms to a 300-dimensional vector, then takes a stride by
1 position, and projects the next 3 terms, and so on. For the query,
the convolution step generates a tensor of dimensions 300× 8. For
the document, it generates one of dimensions 300× 998.

Following this, we conduct a max-pooling step. For the query
the pooling kernel dimensions are 1 × 8. For the document, it is
1 × 100. Thus, we get one 300 × 1 matrix Q̃ for the query and a
300×899 matrix D̃ for the document. The document matrix D̃ can
be interpreted as 899 separate embeddings, each corresponding to
different equal-sized spans of text within the document. Our choice
of a window-based max-pooling strategy, instead of global max-
pooling as employed by CDSSM [37], is motivated by the fact that
the window-based approach allows the model to distinguish between
matches in different parts of the document. As posited in Section 2,
a model that is aware of match positions may be more suitable when
dealing with long documents, especially those containing mixture
of many different topics.

The output of the max-pooling layer for the query is then passed
through a fully-connected layer. For the document, the 300× 899
dimensional matrix output is operated on by another convolutional
layer with filter size of 300, kernel dimensions of 300 × 1, and a
stride of 1. The combination of these convolutional and max-pooling
layers enable the distributed model to learn suitable representations
of text for effective inexact matching.

To perform the matching, we conduct the element-wise or Hadamard
product between the embedded document matrix and the extended
or broadcasted query embedding,

X̃ = (Q̃ . . . Q̃︸ ︷︷ ︸
899 times

) ◦ D̃ (3)

After this, we pass the matrix through fully connected layers,
and a dropout layer until we arrive at a single score. Like the local
model, we use hyperbolic tangent function here for non-linearity.

3.3 Optimization
Each training sample consists of a query Q, a relevant document

D∗ and a set of non-relevant documentsN = {D0, . . . ,DN}. We
use a softmax function to compute the posterior probability of the
positive document given a query based on the score.

p(D∗|Q) =
exp(f(Q,D∗))∑

D∈N exp(f(Q,D))
(4)

and we maximize the log likelihood log p(D∗|Q) using stochas-
tic gradient descent.

Table 1: Statistics of the three test sets randomly sampled from
Bing’s search logs. The candidate documents are generated by
querying Bing and then rated using human judges.

queries documents documents
query

training 199,753 998,765 5

weighted test 7,741 171,302 24.9
unweighted test 6,808 71,722 10.6

4. MATERIALS AND METHODS
We conducted three experiments to test: (1) the effectiveness

of our duet model compared to the local and distributed models
separately, and (2) the effectiveness of our duet model compared
to existing baselines for content-based web ranking, (3) the effec-
tiveness of training with judged negative documents compared to
random negative documents. In this section, we detail our experi-
ment setup and baseline implementations.

4.1 Data
The training dataset consisted of 199,753 instances in the format

described in Section 4.2. The queries in the training dataset were
randomly sampled from Bing’s search logs from a period between
January 2012 and September 2014. Human judges rated the docu-
ments on a five-point scale (perfect, excellent, good, fair, and bad).
The document body text was retrieved from Bing’s Web document
index. We used proprietary parsers for extracting the body text from
raw HTML content. All query and document text were normalized
by down-casing and removing all non-alphanumeric characters.

We considered two different test sets, both sampled from Bing
search logs. The weighted set consisted of queries sampled per
their frequency in the search logs. Thus, frequent queries were well-
represented in this dataset. Queries were sampled between October
2014 and December 2014. The unweighted set consisted of queries
sampled uniformly from the entire population of unique queries.
The queries in this samples removed the bias toward popular queries
found in the weighted set. The unweighted queries were sampled
between January 2015 and June 2015.

Because all of our datasets were derived from sampling real query
logs and because queries will naturally repeat, there was some over-
lap in queries between the training and testing sets. Specifically,
14% of the testing queries in the weighted set occurred in the train-
ing set, whereas only 0.04% of the testing queries in the unweighted
set occurred in the training set. We present both results for those
who may be in environments with repeated queries (as is common
in production search engines) and for those who may be more in-
terested in cold start situations or tail queries. Table 1 summarizes
statistics for the two test sets.

4.2 Training
Besides the architecture (Figure 3), our model has the following

free parameters: the maximum order of the character-based rep-
resentation for the distributed model (G), the number of negative
documents to sample at training time (N), the dropout rate, and the
learning rate.

We used a maximum order of five for our character n-graphs in the
distributed model. Instead of using the full 62,193,780-dimensional
vector, we only considered the top 2,000 most popular n-graphs,
resulting 36 unigraphs (a-z and 0-9), 689 bigraphs, 1149 trigraphs,
118 4-graphs, and eight 5-graphs.

When training our model (Section 3.3), we sampled four negative
documents for every one relevant document. More precisely, for



each query we generated a maximum of one training sample of
each form, (1) One excellent document with four fair documents
(2) One excellent document with four bad documents (3) One good
document with four bad documents. Pilot experiments showed that
treating documents judged as fair or bad as the negative examples
resulted in significantly better performance, than when the model
was trained with randomly sampled negatives. For training, we
discarded all documents rated as perfect because a large portion of
them fall under the navigational intent, which can be better satisfied
by historical click based ranking signals.

The dropout rate and the learning rate were set to 0.20 and 0.01,
respectively, based on a validation set. We implemented our model
using CNTK [40] and trained the model with stochastic gradient
descent based optimization (with automatic differentiation) on a
single GPU.3 It was necessary to use a small minibatch size of 8 to
fit the whole data in GPU memory.

4.3 Baselines
Our baselines capture the individual properties we outlined in

Section 2. Exact term matching is effectively performed by many
classic information retrieval models. We used the Okapi BM25 [33]
and query likelihood (QL) [32] models as representative of this class
of model. We used Indri4 for indexing and retrieval.

Match positions are handled by substantially fewer models. Met-
zler’s dependence model (DM) [23] provides an inference network
approach to modeling term proximity. We used the Indri implemen-
tation for our experiments.

Inexact term matching received both historic and modern treat-
ments in the literature. Deerwester et al. originally presented latent
semantic analysis (LSA) [5] as a method for addressing vocabu-
lary mismatch by projecting words and documents into a lower-
dimension latent space. The dual embedding space model (DESM)
[27, 28] computes a document relevance score by comparing ev-
ery term in the document with every query term using pre-trained
word embeddings. We used the same pre-trained word embeddings
dataset that the authors made publicly available online for down-
load5. These embeddings, for approximately 2.8M words, were
previously trained on a corpus of Bing queries. In particular, we use
the DESMIN-OUT model, which was reported to have the best per-
formance on the retrieval task, as a baseline in this paper. Both the
deep structured semantic model (DSSM) [16] and its convolutional
variant CDSSM [37] consider only the document title for matching
with the query. While some negative results have been reported for
title-based DSSM and CDSSM on the ad hoc document retrieval
tasks [12, 30], we included document-based variants appropriately
retrained on the same set of positive query and document pairs as
our model. As with the original implementation we choose the
non-relevant documents for training by randomly sampling from
the document corpus. For the CDSSM model, we concatenated the
trigraph hash vectors of the first T terms of the body text followed by
a vector that is a sum of the trigraph hash vectors for the remaining
terms. The choice of T was constrained by memory requirements,
and we pick 499 for our experiments.

The DRMM model [12] uses a DNN to perform term matching,
with few hundred parameters, over histogram-based features. The
histogram features, computed using exact term matching and pre-
trained word embeddings based cosine similarities, ignoring the ac-

3A CNTK implementation of the Duet model is available at
https://github.com/bmitra-msft/NDRM/blob/
master/notebooks/Duet.ipynb
4http://www.lemurproject.org/indri/
5https://www.microsoft.com/en-us/download/
details.aspx?id=52597

Table 2: Performance on test data. All duet runs significantly
outperformed our local and distributed model (p < 0.05). All
duet runs also outperformed non-neural and neural baselines.
The difference between the duet model and the best performing
baseline per dataset and position (italics) is statistically signifi-
cant (p < 0.05). The best NDCG performance on each dataset
and position is highlighted in bold.

(a) weighted

NDCG@1 NDCG@10

Non-neural baselines
LSA 22.4 44.2
BM25 24.2 45.5
DM 24.7 46.2
QL 24.6 46.3

Neural baselines
DRMM 24.3 45.2
DSSM 25.8 48.2
CDSSM 27.3 48.2
DESM 25.4 48.3

Our models
Local model 24.6 45.1
Distributed model 28.6 50.5
Duet model 32.2 53.0

(b) unweighted

NDCG@1 NDCG@10

Non-neural baselines
LSA 31.9 62.7
BM25 34.9 63.3
DM 35.0 63.4
QL 34.9 63.4

Neural baselines
DRMM 35.6 65.1
DSSM 34.3 64.4
CDSSM 34.3 64.0
DESM 35.0 64.7

Our models
Local model 35.0 64.4
Distributed model 35.2 64.9
Duet model 37.8 66.4

tual position of matches. We implemented the DRMMLCH×IDF vari-
ant of the model on CNTK [40] using word embeddings trained on
a corpus of 341,787,174 distinct sentences randomly sampled from
Bing’s Web index, with a corresponding vocabulary of 5,108,278
words. Every training sample for our model was turned into four
corresponding training samples for DRMM, comprised of the query,
the positive document, and each one of the negative documents.
This guaranteed that both models observed the exact same pairs of
positive and negative documents during training. We adopted the
same loss function as proposed by Guo et al.

4.4 Evaluation
All evaluation and empirical analysis used the normalized dis-

counted cumulative gain (NDCG) metric computed at positions one
and ten [18]. All performance metrics were averaged over queries
for each run. Whenever testing for significant differences in perfor-
mance, we used the paired t-test with a Bonferroni correction.

https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb
https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb
http://www.lemurproject.org/indri/
http://approjects.co.za/?big=en-us/download/details.aspx?id=52597
http://approjects.co.za/?big=en-us/download/details.aspx?id=52597
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Figure 4: The duet model demonstrates significantly better
NDCG performance (p < 0.05) on both test sets when trained
with judged non-relevant documents as the negative examples,
instead of randomly sampling them from the document corpus.
The distributed model also shows statistically significant NDCG
gain (p < 0.05) on the weighted set, and a non-statistically sig-
nificant NDCG gain on the unweighted set.

5. RESULTS
Table 2 reports NDCG based evaluation results on two test datasets

for our model and all the baseline models. Our main observation is
that the duet model performs significantly better than the individual
local and distributed models. This supports our underlying hypothe-
sis that matching in a latent semantic space can complement exact
term matches in a document ranking task, and hence a combination
of the two is more appropriate. Note that the NDCG numbers for the
local and the distributed models correspond to when these DNNs
are trained individually, but for the ‘duet’ the two DNNs are trained
together as part of a single neural network.

Among the baseline models, including both traditional and neural
network based models, CDSSM and DESM achieve the highest
NDCG at position one and ten, respectively, on the weighted test
set. On the unweighted test set DRMM is our best baseline model
at both rank positions. The duet model demonstrates significant
improvements over all these baseline models on both test sets and at
both NDCG positions.

We also tested our independent local and distributed models
against their conceptually closest baselines. Because our local model
captures both matching and proximity, we compared performance
to dependence models (DM). While the performance in terms of
NDCG@1 is statistically indistinguishable, both NDCG@10 results
are statistically significant (p < 0.05). We compared our distributed
model to the best neural model for each test set and metric. We
found no statistically significant difference except for NDCG@10
for the weighted set.

We were interested in testing our hypotheses that training with
labeled negative documents is superior to training with randomly
sampled documents presumed to be negative. We conducted an
experiment training with negative documents following each of the
two protocols. Figure 4 shows the results of these experiments.
We found that, across all our models, using judged nonrelevant
documents was more effective than randomly sampling documents
from the corpus and considering them as negative examples.

6. DISCUSSION
Our results demonstrated that our joint optimization of local

and distributed models provides substantial improvement over all
baselines. Although the independent models were competitive with
existing baselines, the combination provided a significant boost.

We also confirmed that using judged negative documents should
be used when available. We speculate that training with topically-
similar (but non-relevant) documents allows the model to better
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Figure 5: NDCG performance of different models by length of
query and how rare the rarest query term is in the training
data. For the rare term analysis, we place all query terms into
one of five categories based on their occurrence counts in the
training data. Then we then categorize each query in the test
dataset based on the frequency of the rarest term belongs in the
query. We include a category for queries with at least one term
which has no occurrences in the training data.

discriminate between the confusable documents provided by an
earlier retrieval stage. This sort of staged ranking, first proposed
by Cambazoglu et al. [3], is now a common web search engine
architecture.

In Section 4.3 we described our baseline models according to
which of the properties of effective retrieval systems, that we out-
lined in Section 2, they incorporate. It is reasonable to expect that
models with certain properties are better suited to deal with certain
segments of queries. For example, the relevant Web page for the
query “what channel are the seahawks on today” may contain the
name of the actual channel (e.g., “ESPN” or “FOX”) and the actual
date for the game, instead of the terms “channel” or “today”. A
retrieval model that only counts repetitions of query terms is likely
to retrieve less relevant documents for this query – compared to a
model that considers “ESPN” and “FOX” to be relevant document
terms. In contrast, the query “pekarovic land company”, which
may be considered as a tail navigational intent, is likely to be better
served by a retrieval model that simply retrieves documents con-
taining many matches for the term “pekarovic”. A representation
learning model is unlikely to have a good representation for this
rare term, and therefore may be less equipped to retrieve the correct
documents. These anecdotal examples agree with the results in in
Table 2 that show that on the weighted test set all the neural mod-
els whose main focus is on learning distributed representations of
text (duet model, distributed model, DESM, DSSM, and CDSSM)
perform better than the models that only look at patterns of term
matches (local model and DRMM). We believe that this is because
the DNNs can learn better representations for more popular queries,
and perform particularly well on this segment. Figure 5 provides
further evidence towards this hypothesis by demonstrating that the
distributed model has a larger NDCG gap with the local model for
queries containing more popular terms, and when the number of
terms in the query is small. The duet model, however, is found to
perform better than both the local and the distributed models across
all these segments.

To better understand the relationship of our models to existing
baselines, we compared the per-query performance amongst all
models. We conjecture that similar models should perform similarly
for the same queries. We represented a retrieval model as a vector
where each position of the vector contains the performance of the
model on a different query. We randomly sample two thousand
queries from our weighted test set and represent all ranking models
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Figure 6: Principal component analysis of models based on re-
trieval performance across testing queries. Models using exact
term matches (M), proximity (◦), and inexact matches (O) are
presented. Our models are presented as black squares.

as vectors of their NDCG values against these two thousand queries.
We visualized the similarity between models by projecting using
principal component analysis on the set of performance vectors. The
two-dimensional projection of this analysis is presented in Figure
6. The figure largely confirms our intuitions about properties of
retrieval models. Models that use only local representation of terms
are closer together in the projection, and further away from models
that learn distributed representations of text. Interestingly, the plot
does not distinguish between whether the underlying model is based
on a neural network based or not – with neural networks of different
retrieval properties appearing in each of the three clusters.

Another interesting distinction between deep neural models and
traditional approaches is the effect of the training data size on the
performance of the model. BM25 has very few parameters and can
be applied to new corpus or task with almost no training. On the
other hand, DNNs like ours demonstrate significant improvements
when trained with larger datasets. Figure 7 shows that the effect
of training data size particularly pronounced for the duet and the
distributed models that learns representations of text. The trends in
these plots indicate that training on even larger datasets may result
in further improvements in model performance over what is reported
in this paper. We believe this should be a promising direction for
future work.

A last consideration when comparing these models is runtime
efficiency. Web search engines receive tens of thousands of queries
per second. Running a deep neural model on raw body text at that
scale is a hard problem. The local sub-network of our model operates
on the term interaction matrix that should be reasonable to generate
using an inverted index. For the distributed model, it is important
to note that the 300 × 899 dimensional matrix representation of
the document, that is used to compute the Hadamard product with
the query, can be pre-computed and stored as part of the document
cache. At runtime, only the Hadamard product and the subsequent
part of the network needs to be executed. Such caching strategies, if
employed effectively, can mitigate large part of the runtime cost of
running a DNN based document ranking model at scale.

7. RELATED WORK
Representations of data can be local or distributed. In a local

representation, a single unit represents an entity, for example there
is a particular memory cell that represents the concept of a grand-
mother. That cell should be active if and only if the concept of a

grandmother is present. By contrast, in a distributed representation,
the concept of grandmother would be represented by a pattern of
active cells. Hinton et al. [13] provides an overview contrasting dis-
tributed and local representations, listing their good and bad points.
In a distributed representation, an activation pattern that has some
errors or other differences from past data can still be mapped to the
entity in question and to related entities, using a similarity function.
A local representation lacks this robustness to noise and ability to
generalize, but is better at precisely storing a large set of data.

This paper considers local and distributed representations of
queries and documents for use in Web page ranking. Our mea-
sure of ranking quality is NDCG [17], which rewards a ranker for
returning documents with higher gain nearer to the top, where gain
is determined based on labels from human relevance assessors. We
describe different ranking methods in terms of their representations
and how this should help them achieve good NDCG.

Exact term matching models such as BM25 [33] and query likeli-
hood [32] tend to rank a document higher if it has a greater number
of query term matches, while also potentially employing a variety
of smoothing, weighting and normalization approaches. Such exact
matching is done with a local representation of terms. Exact match
systems do not depend on a large training set, since they do not need
to learn a distributed representation of queries and documents. They
are useful in cases where the relevant documents contain exactly the
query terms entered by the user, including very rare or new vocab-
ulary, since new terms can be incorporated with no adjustments to
the underlying model. They can also be extended to reward matches
of query phrases and proximity [23].

To deal with the vocabulary mismatch problem that arises with
local representations, it is possible to do document ranking using a
distributed representation of terms. Mikolov et al. [24] developed
the popular word2vec embedding approach that has been used in
several retrieval studies. Zheng and Callan [41] use term embed-
dings as evidence for term weighting, learning regression models to
optimize weighting in a language modeling and a BM25 retrieval
model. Ganguly et al. [8] used term embeddings for smoothing in
the language modeling approach of information retrieval. Nalis-
nick et al. [28] used dual embeddings, one for document terms and
one for query terms, then ranked based on the all-pairs similarity
between vectors. Diaz et al. [6] used term embeddings to gener-
ate query expansion candidates in the language modelling retrieval
framework, also finding better performance when training a special-
ized term embedding. Other papers incorporating word embeddings
include [10, 11, 34].

Pang et al. [31] propose the use of matching matrices to repre-
sent the similarity of short texts, then apply a convolutional neural
network inspired by those in computer vision. They populate the
matching matrix using both local and distributed term representa-
tions. In the local representation, an exact match is used to generate
binary indicators of whether the ith term of one text and jth term
of the other are the same, as in our local model. In the distributed
representation, a pre-trained term embedding is used instead, pop-
ulating the match matrix with cosine or inner product similarities.
The method works for some problems with short text, but not for
document ranking [30]. However, by using the match matrix to
generate summary statistics it is possible to make the method work
well [12], which is our DRMM baseline.

These term embeddings are a learned representation of language,
but in most cases, they are not learned on query-document relevance
labels. More often they are trained based on a a corpus, where a
term’s representation is learned from its surrounding terms or other
document context. The alternative, learning a representation based
on NDCG labels, is in keeping with recent progress in deep learning.
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(b) Distributed model
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(c) Duet model

Figure 7: We study the performance of our model variants when trained with different size datasets. For every, dataset size we train
two models – one for exactly one epoch and another one with multiple epochs such that the total number of training samples seen by
the model during training is 131,072.

Deep models have multiple layers that learn distributed representa-
tions with multiple levels of abstraction. This kind of representation
learning, along with other factors such as the availability of large
labelled data sets, has yielded performance improvements on a va-
riety of tasks such as speech recognition, visual object recognition
and object detection [20].

This paper learns a text representation end-to-end based on query-
document ranking labels. This has not been done often in related
work with document body text, but we can point to related papers
that use short text such as title, for document ranking or related tasks.
Huang et al. [16] learn a distributed representation of query and
title, for document ranking. The input representation is character
trigraphs, the training procedure asks the model to rank clicked
titles over randomly chosen titles, and the test metric is NDCG
with human labels. Shen et al. [36] developed a convolutional
version of the model. These are our DSSM and CDSSM baselines.
Other convolutional models that match short texts using distributed
representations include [15, 35], also showing good performance on
short text ranking tasks.

Outside of document ranking, learning text representations for
the target task has been explored in the context of other IR scenarios,
including query classification [21], query auto-completion [26], next
query prediction [25, 38], and entity extraction [9].

8. CONCLUSION
We propose a novel document ranking model composed of two

separate deep neural network sub-models, one that matches using
a local representation of text, and another that learns a distributed
representation before matching. The duet of these two neural net-
works demonstrated a higher performance than the solo models on
the document ranking task as well as significant improvements over
all baselines, including both traditional IR baselines and other re-
cently proposed models based on shallow and deep neural networks.
Our analysis indicate that these models may achieve even more
substantial improvements in the future with much larger datasets.
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