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In a recent letter [1] a model of attractive spinless
fermions on the honeycomb lattice at half filling has been
studied by mean-field theory, where distinct homogenous
phases at rather large attraction strength V > 3.36, sep-
arated by (topological) phase transitions, have been pre-
dicted. In this comment we argue that without additional
interactions the ground states in these phases are not sta-
ble against phase separation. We determine the onset of
phase separation at half filling Vps ≈ 1.7 by means of in-
finite projected entangled-pair states (iPEPS) [2–4] and
exact diagonalization (ED).

The Hamiltonian of the model reads

Ĥ = −t
∑
〈i,j〉

ĉ†i cj +h.c.−V
∑
〈i,j〉
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2
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2
)−µ

∑
i

n̂i

(1)
with t = 1 the hopping amplitude, and V > 0 the attrac-
tion strength. We work in the grand-canonical ensemble,
i.e. we use a chemical potential µ to control the particle
density n(µ) in the system. Setting µ = 0 corresponds
to a half-filled state, n = 0.5, if the state at half filling is
stable towards phase separation.

Intuitively, at half filling, if the attraction V is much
stronger than the hopping t, the fermions can minimize
their energy by clustering, leading to phase separation,
where half of the system is empty and the other half is oc-
cupied by the fermions. In the grand-canonical ensemble,
such an instability can be identified as a discontinuity (a
jump) in the particle density n(µ) at µ = 0.

Figure 1(a) summarizes our numerical results obtained
with ED on finite systems and with iPEPS, a tensor net-
work ansatz to simulate the model directly in the ther-
modynamic limit. The accuracy of the iPEPS can be
systematically controlled by the so-called bond dimen-
sion D. Details on the method can be found in refs. [4, 5].

Figure 1(a) shows an example of a jump in n(µ) for
V = 1.72 between the two densities n1 ≈ 0.11 and
n2 ≈ 0.89 obtained with iPEPS. For densities in between
these two values there is no stable homogenous solution,
because it is energetically favorable for the system to split
into two regions, one with density n1 and the other one
with n2. Since iPEPS is an ansatz for a homogeneous
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FIG. 1: (a) Particle density n as a function of the chem-
ical potential µ obtained with iPEPS with a bond dimen-
sion D = 8. For V = 1.3 the density increases continuously
with increasing chemical potential. For V = 1.72 the particle
density exhibits a jump at µ = 0 between the two densities
n1 ≈ 0.11 and n2 ≈ 0.89, which indicates an unstable region
(phase separation) between these two densities. (b) Energy as
a function of interaction strength V for µ = 0 obtained with
iPEPS and ED. The full symbols for V < Vps ≈ 1.71 corre-
spond to stable solutions at half filling, whereas open symbols
for V > Vps correspond to states away from half filling with
a density of either n1(V ) or n2(V ) = 1 − n1(V ). The dashed
line corresponds to the energy of a completely filled or empty
state. (c) Density as a function of V for µ = 0 obtained with
iPEPS and ED. For each state with density n1(V ) < 0.5 there
is a degenerate state with a density n2(V ) = 1 − n1(V ).

phase, we either obtain a state with density n1 or a state
with density n2 for µ = 0, if there is no homogenous solu-
tion at half filling. For very large attraction, V & 1.9, the
system splits into a completely empty and a completely
filled region, i.e. n1 = 0, n2 = 1. The dependence of n1
as a function of V is shown in fig. 1(c).

The full symbols in fig. 1(b) for V < 1.71 show the
iPEPS energy of stable solutions at half filling for µ = 0,
whereas the open symbols for V > 1.71 correspond to
states away from half-filling, where the state at half-filling
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is unstable. The value for the onset of phase separation
Vps ≈ 1.71 depends only weakly on the bond dimension.

A similar result is found with ED, where we considered
different system sizes up to N = 38 lattice sites. Phase
separation can already be seen for small systems, e.g. for
N = 14 as shown in fig. 1(b-c). The value Vps ≈ 1.7
depends only weakly on the system size.

In conclusion, we obtained consistent results with
iPEPS and ED which clearly show that for attractions
stronger than V ≈ 1.7 the half-filled state is not stable,
but that the system phase separates into a low-density
and a high-density region. For attractions stronger than
V ≈ 1.9 the system phase separates into a completely
filled, and a completely empty region. This suggests that
the homogenous phases for V > 3.36 found in ref. [1] are
not stable ground state solutions of the Hamiltonian (1).
We note, however, that these phases may possibly be
stabilized by including longer-ranged (repulsive) interac-

tions in the Hamiltonian.
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