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We theoretically obtain the phase diagram of localized magnetic impurity spins arranged in a one-dimensional
chain on top of a one- or two-dimensional electron gas. The interactions between the spins are mediated by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism through the electron gas. Recent work predicts that such
a system may intrinsically support topological superconductivity without spin-orbit coupling when a helical
spin-density wave is spontaneously formed in the spins, and superconductivity is induced in the electron gas.
We analyze, using both analytical and numerical techniques, the conditions under which such a helical spin state
is stable in a realistic situation in the presence of disorder. We show that (i) it appears only when the spins are
coupled to a (quasi-) 1D electron gas, and (ii) it becomes unstable towards the formation of (anti) ferromagnetic
domains if the disorder in the impurity spin positions δR becomes comparable with the Fermi wave length. We
also examine the stability of the helical state against Gaussian potential disorder in the electronic system using a
diagrammatic approach. Our results suggest that in order to stabilize the helical spin state and thus the emergent
topological superconductivity under realistic experimental conditions, a sufficiently strong Rashba spin-orbit
coupling, giving rise to Dzyaloshinskii-Moriya interactions, is required.

PACS numbers: 73.21.Hb, 71.10.Pm, 74.78.Fk

Magnetism originating from interactions between magnetic
atoms mediated by delocalized electrons (the so-called RKKY
interaction) represents an important problem in modern con-
densed matter physics [1] and has been a subject of intense
research [2–7]. In this Letter, we consider the specific case
of a helical spin density wave (SDW) that might appear in
a one-dimensional chain of magnetic atoms that are coupled
to a metal or a superconductor. The issue of RKKY-induced
magnetism has recently taken on a new and unexpected in-
teresting perspective in the physics of non-Abelian Majorana
bound states (Majoranas) [8, 9], with the recent claims of the
natural (i.e. self-tuned) emergence of Majorana modes in a
chain of Yu-Shiba-Rusinov [10–12] states induced by mag-
netic atoms at the surface of a superconductor, see Fig. 1. A
Majorana-carrying topological superconducting phase should
emerge in this system without the tuning of any external pa-
rameters due to the existence of an RKKY-stabilized helical
order in conjunction with s-wave superconductivity [13–16].
If correct, this is a breakthrough in the prospective realiza-
tion of non-Abelian topological phases of matter, and hence of
great importance. A helical spin texture is a crucial ingredient
also in most other proposals for topological superconductiv-
ity [17–22].

In these recent Majorana proposals, the presence of the he-
lical order was either assumed a priori [13, 23–28] or shown
to exist in rather limited situations [14–16]. In this Letter,
we revisit the claims of the emergent self-tuned topological
superconductivity in magnetic chains in realistic experimen-
tal conditions. Specifically, we address the question whether
the helical SDW in the perfectly ordered chain survives in the
presence of disorder invariably present in physical systems.
We consider two types of disorder: the positional disorder of
the magnetic atoms and potential impurity scattering in the
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FIG. 1. (Color online) Schematic plot of the experimental setup:
magnetic impurity atoms are placed on top of a thin film supercon-
ductor with strong Rashba spin-orbit interaction, e.g., ultrathin Pb
film on Si(111) substrate [29–32]. The distance between impurity
atoms is a. Rashba spin-orbit coupling in 2D electron system leads
to a formation of the helical spin density wave in the 1D magnetic
impurity chain.

substrate. We find that the existence of the SDW necessary for
creating Majoranas in the chain becomes severely constrained
by disorder, and in fact, the SDW (and therefore, the topolog-
ical superconductivity) is unlikely to emerge unless a strong
spin-orbit (SO) interaction is present in the system.

Our main results are the following: In the case of an im-
purity chain coupled to a 1D conductor, we show that the he-
lical SDW emerging due to the well-known 2kF instability
is stable provided that the fluctuations of the impurity posi-
tions are smaller than the Fermi wavelength of the underlying
metallic substrate, which is an important constraint to satisfy
since this means that the impurity atoms must form a periodic
chain to better than a few angstroms precision. In the opposite
regime, where the positional disorder becomes comparable to
the Fermi wavelength, the impurity spins form ferro- or anti-
ferromagnetic domains. In the case where the impurity chain
is coupled to a 2D conductor (2DEG), see Fig.1, the effective
range of the RKKY interaction becomes smaller and the heli-
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cal SDW does not form spontaneously. Nevertheless, it is pos-
sible to stabilize the helical SDW if the 2D conductor breaks
inversion symmetry, allowing Dzyaloshinskii-Moriya (D-M)
interactions between the impurity spins. The latter favors a
helical SDW with a pitch angle that depends on the relative
strength of RKKY and D-M interactions. In order to study the
robustness of the helical SDW in the 2D setup we consider a
minimal model that generates D-M interaction, a 2D electron
gas with Rashba SO coupling [33]. We study the magnetic or-
dering in such a system in the presence of potential impurities
in the 2DEG, and show that the helical SDW is stable in such
a system provided the interatomic distance between impurity
spins is smaller than the effective carrier mean-free path in
the conductor. This result suggests that magnetic chains with
D-M interactions coupled to a thin film superconductor (see
Fig.1) can be used to create Majorana zero-energy states and
study their properties.

We consider a 1D chain of magnetic impurity atoms cou-
pled to 1D or 2D conduction electrons with Rashba interac-
tions. The schematic picture of the experimental system is
shown in Fig. 1. The corresponding effective Hamiltonian is
given by (~ = 1)

H=

∫
dr

[
c†α

(
p2

2m∗
−µ+αẑ ·(p×σ)

)
αβ

cβ+JS(r)·s(r)

]
(1)

where c†α (cα) are the conduction electron creation (annihila-
tion) operators with spin α, σi are Pauli matrices, p = −i∇
is the momentum operator; S and s are impurity and electron
spin operators. m∗ is the effective mass of electrons and J is
the coupling strength. We assume that magnetic atoms such as
Co, Gd or Fe have large spin so that one can neglect quantum
effects and treat the impurity spins as classical. By integrating
out conduction electrons, one arrives at the following Hamil-
tonian for the impurity spins

HRKKY = −J2
∑
ij

∑
α,β

χαβ(Rij)S
α
i S

β
j . (2)

Here χαβ(Rij) is spin-spin susceptibility with Rij = |Ri −
Rj | being the distance between two impurity spins. The real-
space spin-spin correlation function χαβ(R) is given by

χαβ(R) = −
∫
dω

2π
Tr [σαG(ω,R)σβG(ω,−R)], (3)

where G(ω,R) is the Green’s function for the conduction
electrons.

We first consider the model without SO coupling α = 0,
in which case the spin susceptibility is isotropic χαβ(R) ∝
δαβF (kFR). Here the range function F (kFR) describes
RKKY interaction between impurity spins. The function
F (x) for 1D/2D conductor is well-known [34]:

F1D(x)=−
(
Si(2x)− π

2

)
, (4)

F2D(x)=−
π

4
[J0(x)N0(x) + J1(x)N1(x)] .

FIG. 2. (Color online) The energy E(q) vs variational parameter q
for 1D (solid black) and 2D (dashed red) RKKY interaction. 2kF
instability in 1D spin-spin susceptibility leads to the formation of
helical spin density wave with 2kF a pitch angle. Here we used
2kF a = 1.9. For 2D RKKY interaction, the minimum of the func-
tion E(q) is at q = 0, and, thus, the system favors ferromagnetic
spin alignment.

Here Si(x) is the sine integral function, J0(x) and N0(x) are
Bessel functions of the first and second kind, respectively, and
x = kFR with kF being the Fermi momentum. In the limit
x� 1, F1D(x) ≈ cos(2x)

2x and F2D(x) ≈ sin(2x)
(2x)2 .

We can make an ansatz for the ground state configura-
tion where all spins lie in the same plane (for example the
XY plane), but rotate by a pitch angle q with respect to
each other, Si = (cos(qRi), sin(qRi), 0); we will later show
numerically that such an ansatz is justified. We thus have
Si · Sj = cos(q|Ri − Rj |). In order to find the ground
state spin configuration, one has to minimize the energy,
−
∑∞
j=1 cos(qaj)F (aj). In the limit kFa� 1,

E(q)

E0
=

{
1
2

[
log
∣∣∣2 sin [ (2kF−q)a2

]∣∣∣+ (q → −q)
]

1D
i
4

[
Li2(e

i(2kF−q)a) + Li2(e
i(2kF+q)a)− c.c.

]
2D

(5)
with Li2(x) being the polylogarithm function and E0 =
J2m∗k2F /2π

2. The plot of the functions E1D/2D(q) is shown
in Fig. 2. One can notice that E1D(q) is sharply dipped at
q = ±2kF , which is simply a reflection of the long-range na-
ture of the RKKY interaction in 1D, see Eq. (4), since the sum
in Eq. (5) diverges at these values. This is the reflection of 2kF
divergence in the spin susceptibility χ(q). On the other hand,
the function F2D(x) decays much faster, the sum in Eq. (5) is
convergent for any value of q. As follows from Fig. 2, the spin
configuration that minimizes the energy function corresponds
to the ferromagnetic spin alignment. Thus, the spontaneous
SDW formation [14–16] is a purely 1D effect, which criti-
cally relies on Fermi surface nesting. This observation rules
out most of 2D or 3D metals and superconductors, where the
Fermi surface does not generically have any nesting, for hav-
ing 2kF singularity. One interesting possibility is to consider
a magnetic spin chain coupled to a quasi-1D superconductor
with an open Fermi surface where tunneling matrix elements
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FIG. 3. (Color online) Main panel: Average pitch angle vs dR · kF
for F (R) = F1D(R) of Eqn. (4) for L = 96 sites. Inset: Histogram
of the pitch angle for the same model as the main panel for kF ·δR =
0.07 (purple), 0.2 (blue), 0.33 (turqouise), 0.66 (green), 1.65 (black).

along the chain t|| are much stronger than perpendicular to the
chain t⊥, i.e. |t||| � |t⊥|.

We now investigate the stability of the helical SDW in
1D structures against disorder in realistic experimental con-
ditions, e. g., taking into account positional disorder of the
magnetic impurities. The relevant length scale to which the
positional disorder must be compared is the Fermi wave-
length. This may be particularly short in a metal, typically
few angstroms, potentially making this problem a crucial one.
In this case even small deviations of the impurity positions
from perfect periodicity may lead to frustration of the mag-
netic interaction which would ultimately destroy the helical
SDW. We study this question numerically using a simulated
annealing procedure which allows us to identify the ground
state spin configuration of the system in the presence of po-
sitional disorder. In our simulations, positional disorder is
characterized by a scale δR, and atom positions are chosen
as Ri = ai + r, where r ∈ [−δR, δR] is uniformly cho-
sen. We consider 50 disorder realizations for each parameter
set, and for each disorder realization perform annealing with
a local-update Monte Carlo procedure followed by a gradient-
based energy optimization for 400 initial configurations. We
analyze the lowest-energy configurations we obtain using the
pitch angle of adjacent spins, θi = arccos(Si ·Si+1). Further-
more, we confirm that all spins lie in a plane by calculating
Ti = (Si×Si+1) ·Si+2 and confirming that 〈|Ti|〉 = 0 within
error bars; this justifies the ansatz chosen above.

In the main panel of Fig. 3, we show the pitch angle av-
eraged over position within each system and different disor-
der realizations for various values of kF and δR. Our results
confirm that the effect of disorder is governed by the product
kF ·δR, as indicated by the collapse of all curves in the figure.

To understand in more detail how positional disorder af-
fects the low-energy configurations, consider the histograms
shown in the inset of Fig. 3. For kF · δR ≤ 0.2, the histogram

is sharply peaked around the pitch angle of the clean case. For
larger values of kF · δR, the peak height is drastically reduced
and the peak is broadened. Upon further increasing disorder,
the peak is rapidly split into two peaks at θ = 0 and θ = π,
where the peak at θ = 0 is higher. This is indicative of con-
figurations with ferromagnetic clusters separated by domain
walls. As the size of these clusters is reduced, the peaks at
θ = 0, π become more balanced and ultimately have the same
height. This is reflected by the mean pitch angle approaching
π/2. A key observation is that already for small values of the
disorder kF · δR � 1, where the mean value is well away
from π/2, the system is not in a helical phase but instead is
composed of ferromagnetic clusters. This is different from
the heuristic disorder model assumed in Ref. 23.

Our calculation for positional disorder establishes posi-
tional disorder to be a severe constraint restricting the sponta-
neous emergence of a helical SDW in the system of impurity
spins coupled to a 1D metal. Even assuming that one might
be able to reduce disorder in the positions of the magnetic
impurities through very careful sub-nm control of the impu-
rity placement, there are further effects such as thermal fluc-
tuations and potential disorder in the 1D metal itself which
generically suppress helical magnetic ordering. Furthermore,
all Majorana proposals ultimately require a sizeable coupling
to a bulk s-wave superconductor. However, the interaction of
the impurity spins with superconducting electrons in 2D or
3D favors an (anti-)ferromagnetic ground state and competes
with helical ordering. Thus, we conclude that the observation
of a spontaneously formed helical SDW in 1D systems is quite
challenging and unlikely unless special care is taken in reduc-
ing all types of disorder in the system – the self-tuned helical
SDW is only possible in an ideal theoretical model, not in the
laboratory where disorder is inherently present.

The experimental observation of helical ordering in Fe
chains deposited on Ir (001) surface [35] indicates that D-M
interaction is necessary to stabilize the helical SDW. The mi-
croscopic origin of the D-M interaction is complex and often
associated with the presence of SO coupling. Therefore, we
now consider an impurity spin chain coupled to a 2D conduc-
tor with Rashba SO interaction α 6= 0, see Eq. (1). After
integrating out the conduction electrons that mediate the in-
teractions between impurity spins, we arrive at the anisotropic
model for impurity spins [33]

H=−2J2m∗q2F
π2

∑
i,j

F2D(qFRij) (cos(2kRRij)Si ·Sj

+ sin(2kRRij)ŷ ·(Si×Sj)+[1−cos(2kRRij)]Syi S
y
j

)
.

(6)

Here the function F2D(Rij) is defined in Eq. (4); qF =√
k2F + k2R with kR = m∗α. In order to understand

ground state properties of the Hamiltonian (6), it is instruc-
tive to perform the following local transformation: S̃x/zi =

cos(2kRRi)S
x/z
i ± sin(2kRRi)S

z/x
i and S̃yi = Syi which

is simply an SO(3) rotation around the y axis by the angle
2kRRi. In the new rotated basis, the Hamiltonian (6) contains



4

only the RKKY interaction. As argued above, the ground state
of an impurity chain coupled to a 2D conductor is ferromag-
netic. Thus, one can unwind the rotation to obtain the actual
spin ordering. A simple calculation indicates that the ground
states in this case corresponds to a helical SDW with a pitch
angle 2kRa. This result should be contrasted with the sponta-
neous helical SDW with the pitch angle given by 2kFa. Thus,
strong SO coupling is essential for the helical RKKY Majo-
rana proposals to be realized in magnetic impurity chains.

We now analyze the effect of potential disorder scattering,
which is relevant for the RKKY Majorana proposals involving
disordered superconductors. As previously mentioned, poten-
tial disorder scattering randomizes magnetic interactions and
therefore affects ordering of magnetic atoms. Before consid-
ering the case with SO coupling, it is useful to first discuss the
RKKY case which has been extensively studied in the litera-
ture [3, 4, 36–43]. It is well-known that the disorder-averaged
spin susceptibility χ(r) decays exponentially with the decay
length lc. At large distances r � lc, however, the susceptibil-
ity χαβ(r) does not represent interactions between impurity
spins in a given sample. Indeed, the fluctuations of the in-
teraction are considerably larger than its typical value. Thus,
one has to consider sample-specific interactions which decay
much slower than χ(r), i.e. as a power law. As shown below,
the situation is qualitatively similar in disordered metals with
Rashba interactions. Therefore, at small distances between
magnetic atoms (a � lc) the short range nature of spin-spin
interactions dominates and the system forms a helical spin
density wave, similar to the clean case, whereas at large dis-
tances between magnetic impurity atoms (a � lc) random
RKKY interactions cause frustration and destroy magnetic or-
der. In this sense, substrate random disorder scattering is simi-
lar to the positional disorder in the magnetic chain itself which
drives the system into a paramagnetic phase, see Fig. 3.

In order to estimate the characteristic decay length lc, we
calculate the spin-spin susceptibility tensor χαβ(r) in the
presence of SO coupling. We employ a standard disorder dia-
grammatic technique, see Supplementary Material for details.
We consider a model with Gaussian random disorder, where
the disorder potential V (r) is δ-correlated: 〈V (r)V (r′)〉 =
(2πνF τ)

−1δ(r− r′) where νF and τ are the density of states
at the Fermi level and impurity scattering time, respectively.
Our main results are summarized in Fig. 4. Since SO coupling
breaks the SU(2) symmetry, we now have four non-zero spin-
spin correlation functions χxx(q), χyy(q), χzz(q) and χxz(q).
Their spatial dependence is characterized by an oscillatory
pre-factor and an exponentially-decaying envelope function,
see Fig. 4. The prefactor has a spatial dependence which is
very similar to the spin-spin interaction in the clean limit, see
Eq. (6). The characteristic decay length lc can be obtained by
fitting the envelope function. In the limit of kR � kF , lc is
very weakly dependent on the SO interaction strength, and is
determined by the mean-free path l (up to a numerical prefac-
tor of order one).

Having established the limitations on the stability of the he-
lical SDW, we now discuss the helical RKKY Majorana pro-
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FIG. 4. Spatial dependance of the spin susceptibilities χ0
xx(R) and

χ0
xz(R) in the presence of Rashba SO coupling. Here different colors

correspond to different values of the SO interaction for a fixed kF l =
10, see legend in the top left panel. Both functions have spatially
oscillating prefactor and exponentially decaying envelop. The fit of
the exponential decay allows one to extract lc, see the bottom panel.

posals [13–16, 27] and compare them with the semiconduc-
tor nanowire ones [20, 21] which have recently been studied
extensively experimentally [44–49]. As shown above, sponta-
neous formation of the helical SDW with a pitch angle 2kFa
critically relies on one-dimensionality. One of the systems
that has been put forward involves nuclear spins coupled to
1D semiconductor electrons [14, 15]. However, the crossover
temperature T ∗ above which helical order disappears is very
low in this system (T ∗ ∼ 1mK) due to the small hyperfine
coupling. When coupled to a higher-dimensional conductor,
the ground state magnetic ordering is ferromagnetic in the ab-
sence of D-M interaction. Therefore, in realistic experimental
situations a large SO coupling is necessary for the realization
of the helical SDW. In this case, the pitch angle of the heli-
cal order is set by the SO wave length. The only evidence
for helical order in chains of magnetic atoms comes from the
experiment [35] involving Fe atoms placed on an Ir(001) sur-
face. This supports our conclusion, since the D-M interaction
is very large in this experiment.

Using a thin film superconductor with strong SO cou-
pling one can realize Majorana bound states in the mag-
netic atom chains on top of it. A particularly promising sys-
tem involves an ultrathin Pb film deposited on Si(111) sub-
strate which has the superconducting transition temperature
Tc ≈ 6K [31, 32] as well as a large Rashba SO coupling of
kR = 0.035Å−1 [30]. Also, one can grow atomically uni-
form Pb films on Si(111) surface[29], so the mean free path
is expected to be much larger than the interatomic spacing.
Thus, this system satisfies the minimal conditions necessary
to realize topological superconductivity. However, the pitch
angle is now determined by the SO coupling strength rather
than the “sweet spot” value 2kFa. Therefore, some tuning
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is generically necessary in order to drive the system into the
topological superconducting phase [13, 27, 28], which might
be quite challenging in the aforementioned setup. This is to
be contrasted with the semiconductor-based Majorana propos-
als [18–21] where one can tune the magnetic field to drive the
system into a topological superconducting phase. We empha-
sized the role of random disorder scattering on the stability of
the helical order; however, it also has a detrimental effect on
the stability of the topological superconducting state [50–53].
Our finding that magnetic impurities form ferromagnetic do-
mains has implications for helical RKKY Majorana proposals
since such ordering affects proximity-induced superconduct-
ing pairing and therefore suppresses the topological phase. On
the positive side, we believe that a big advantage of the RKKY
Majorana proposal is the ability to detect zero-energy bound
states directly using STM rather than tunneling transport mea-
surements as suggested originally in Ref. [22].

This work is supported by Microsoft Q and JQI-NSF-PFC.
We thank A. Bernevig, L. Glazman and A. Yazdani for dis-
cussions. Simulations were performed using the ALPS li-
braries [54].
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denko, S. Blügel, S. Heinze, K. von Bergmann, A. Kubetzka,
and R. Wiesendanger, Phys. Rev. Lett. 108, 197204 (2012).

[36] A. Y. Zyuzin and B. Z. Spivak, Soviet Journal of Experimental
and Theoretical Physics Letters 43, 234 (1986).
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