Bilinear Logistic Regression for Factored Diagnosis Problems

Sumit Basu¹, John Dunagan^{1,2}, Kevin Duh^{1,3}, and Kiran-Kumar Munuswamy-Reddy^{1,4}

¹Microsoft Research ²Microsoft ³NTT Labs ⁴Harvard University

Note: if you use content from these slides in your presentations/papers, please attribute it to: S. Basu, J. Dunagan, K. Duh, and K-K. Munuswamy-Reddy. "Bilinear Logistic Regression for Factored Diagnosis Problems." In *Proceedings of SLAML 2011*. Cascais, Portugal. October, 2011.

Goals of this Talk

- A New Way of Looking at Diagnosis
 - For problems with a large number of uniform entities with uniform features that fail as a whole
 - "Factored Diagnosis"
 - A method, BLR-D, for approaching such problems
- Some Useful Statistical Tools (for any method)
 - Figuring out which parameters matter
 - Estimating false alarm rates without labels

Forms of Diagnosis Problems

- "Clinical" Diagnosis
 - "Bob has stomach cramps and a high fever"
 - J diseases and K symptoms

Goal: given symptoms, compute posterior over

Forms of Diagnosis Problems 2

- "Factored" Diagnosis
 - J entities, each with the same
 K features (J*K features)
 - Hundreds of machines in a datacenter, each with the same performance counters, occasional faults
 - Hundreds of processes on a machine, each with the same performance counters, occasional hangs
 - Occasional labels on the ensemble
 - Goal: given labels, find the true causes of the faults

How Can We Solve Such Problems?

- Naïve Approach: train a classifier on the faults and try to interpret the feature weights
 - Logistic Regression each weight is a parameter
 - Problem: J*K parameters w_i (10,000's)
 - Only hundreds of labels
 - Use L1 regularization for sparsity?

An Alternative Approach: Factorize!

- Leverage factored nature of the problem
 - Parameterize J*K parameters as the product of J entity weights α_i and K feature weights β_k
 - Only J+K parameters!
 - So: $w_{jK+k} = \alpha_j \beta_k$
 - (more intuition coming soon...)

Highlights of Prior Work

- Long history of diagnosis work in ML, including using Logistic Regression along with Wald's Test for significance
- Bilinear Logistic Regression for Classification (Dyrhom et al. 2007)
- Diagnosis in Systems
 - Heuristics (Engler et al. 2003)
 - Hierarchical Clustering (Chen et al. 2002)
 - Metric Attribution (Cohen et al. 2005)
 - Bayesian Techniques (Wang et al. 2004)
 - Factor Graphs (Kremenek et al. 2006)
 - Many, many more...
- Our contribution: leveraging factored structure for diagnosis problems

Ordinary Logistic Regression: Intuition

Ordinary Logistic Regression

Probability Model

$$P(y_i) = \frac{1}{1 + e^{-z_i}} = \sigma(z_i)$$

$$z_i = \sum_i \alpha_j f_{ij} + \delta$$

Likelihood

$$P(Y) = \prod_{i} (\sigma(z_i))^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

Negative Log Likelihood

$$-\log P(Y) = -\sum_{i} y_{i} \log \sigma(z_{i}) - \sum_{i} (1 - y_{i}) \log(1 - \sigma(z_{i}))$$

Bilinear Logistic Regression: Intuition

$$\begin{bmatrix}
N_0 \\
N_1
\end{bmatrix}$$

$$\begin{bmatrix}
N_0 \\
N_1 \\
N_2 \\
N_1 \\
N_2 \\
N_3 \\
N_4 \\
N_5 \\
N$$

Bilinear Logistic Regression

Probability Model

$$P(y_i) = \frac{1}{1 + e^{-z_i}} = \sigma(z_i)$$

$$z_i = \sum_{j} \sum_{k} \alpha_j \beta_k f_{ijk} + \delta$$

Likelihood

$$P(Y) = \prod_{i} (\sigma(z_i))^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

Negative Log Likelihood

$$-\log P(Y) = -\sum_{i} y_{i} \log \sigma(z_{i}) - \sum_{i} (1 - y_{i}) \log(1 - \sigma(z_{i}))$$

• Enforce Positive α_j for interpretability

$$\alpha_j = \gamma_i^2$$

Now for the Statistics

- Question 1: How can we determine whether a parameter is significant?
- Question 2: How can we tell how valid our "discovered" causes are if we don't have ground truth labels for causes?
- These questions come up in many, many problems, so even if you never use BLR-D, this will be useful in your future

Common Principle for Both Questions: the "Does my boss like me?" Problem

The data world's equivalent of seeing the difference in how your boss will act with you and with other people:

Efron's Bootstrap and **False Labels**

Question 1: When are Parameters Significant?

- Why not just use a threshold?
- Friends don't let friends use thresholds

What's the Statistical Approach?

- Compute population of parameter values under both true and false labels
 - True labels: perform multiple bootstraps
 - False labels: multiple bootstraps, permute labels
- Compare the two populations with a statistical test (Mann-Whitney)
- Yes, it's expensive!

Question 2: Are the Discoveries Meaningful?

- How can you tell if you're getting false alarms without labels for the true causes?
- Intuition: what would the method do when given random labels?
 - Consider the algorithm "a" which reports a certain number of parameters as "guilty"
 - Compute how often "a" reports guilty parameters under false vs. true labels
 - Formally, the "False Discovery Rate" (FDR):

$$FDR(a) = E\left[\frac{F(a)}{S(a)}\right] \cong \frac{E[F(a)]}{E[S(a)]} \cong \frac{\sum_{q=1}^{Q} \frac{N(D^q, a)}{Q}}{N(D, a)}$$

The Overall Procedure: BLR-D

- Bilinear Logistic Regression for Diagnosis
 - Factor parameters into bilinear form
 - Train BLR classifier with overall faults as labels
 - Test individual parameters for significance with bootstrap and Mann-Whitney Test
 - Estimate False Discovery Rate (when ground truth labels on causes are not available)
 - Adjust Mann-Whitney threshold until FDR is reasonable
 - Report significant parameters

P(FA) vs. Number of False Alarms

 The probability of False Alarms doesn't capture the true cost to the analyst when the number of parameters/causes is very large

Experiment 1: Machines in a Datacenter

- Synthetic Model of Datacenter
 - J machines (base: 30)
 - Each has K normally-distributed features (base: 30), some of which are fault-causing (5)
 - Some machines are fault-prone (base: 5)
 - When a fault-prone machine has a fault-causing feature exceed a probability threshold, a system fault (label) is generated)
 - Data publicly available (see URL in paper)
- Goal: Identify fault-prone machines and fault-causing features
- Baseline: LR-D (with L1 regularization)
 - Use same statistical tests as BLR-D

Experimental Variations

- Number of Data Samples/Frames
- Number of Machines in Datacenter
- Fraction of Fault-Prone Machines

Experiment 1a

Performance vs. Number of Samples

Experiment 1b

Performance vs. Fraction of Faulty Machines

Experiment 1c

Performance vs. Number of Machines

False Alarms vs. Number of Machines

Experiment 2: Processes on a Machine

- Typical Windows PC has 100+ processes running at all times
- Subject to occasional, unexplained hangs
- Which process is responsible?
- Our Experiment
 - Record all performance counters for all processes
 - User UI for lableling hangs
 - "WhySlowFrustrator" process that chews up memory, causing a hang
 - One month of data, 2912 features per timestep (once per minute)
 - 63 labels (many false negatives)

Experiment 2: Processes on a Machine

Results

- Adjusted Mann-Whitney threshold to achieve 0 FDR
- 2 processes were "significant": WhySlowFrustrator and PresentationFontCache; no features were "significant"

Extensions: Multiple Modes

- Analogy to SVD
- $\alpha \beta^T$ is a rank 1 approximation to the w (in matrix form)...
- So why not $\alpha_0 \beta_0^T + \alpha_1 \beta_1^T + \cdots$?
 - Handle multiple modes of failure
 - J+K additional parameters per term
 - But... identifiability issues become a problem

Take-Home Messages

- Is your problem factorable?
 - Factor it!
- Which parameters are important?
 - Test them statistically, not with a threshold!
- Wondering how valid your "causes" are?
 - Use FDR!