
ar
X

iv
:1

10
1.

28
83

v1
 [

cs
.G

T
]

 1
4

Ja
n

20
11

Dueling algorithms

Nicole Immorlica∗† Adam Tauman Kalai‡ Brendan Lucier§† Ankur Moitra¶†

Andrew Postlewaite‖† Moshe Tennenholtz∗∗

January 17, 2011

Abstract

We revisit classic algorithmic search and optimization problems from the perspective of
competition. Rather than a single optimizer minimizing expected cost, we consider a zero-
sum game in which an optimization problem is presented to two players, whose only goal is
to outperform the opponent. Such games are typically exponentially large zero-sum games, but
they often have a rich combinatorial structure. We provide general techniques by which such
structure can be leveraged to find minmax-optimal and approximate minmax-optimal strategies.
We give examples of ranking, hiring, compression, and binary search duels, among others. We
give bounds on how often one can beat the classic optimization algorithms in such duels.

∗Department of Electrical Engineering and Computer Science, Northwestern University
†Part of this work was performed while the author was at Microsoft Research
‡Microsoft Research New England
§Department of Computer Science, University of Toronto
¶Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Supported

in part by a Fannie Hurts Fellowship.
‖Department of Economics, University of Pennsylvania

∗∗Microsoft R&D Israel and the Technion, Israel

0

http://arxiv.org/abs/1101.2883v1

1 Introduction

Many natural optimization problems have two-player competitive analogs. For example, con-
sider the ranking problem of selecting an order on n items, where the cost of searching for a
single item is its rank in the list. Given a fixed probability distribution over desired items, the
trivial greedy algorithm, which orders items in decreasing probability, is optimal.

Next consider the following natural two-player version of the problem, which models a user
choosing between two search engines. The user thinks of a desired web page and a query and
executes the query on both search engines. The engine that ranks the desired page higher is cho-
sen by the user as the “winner.” If the greedy algorithm has the ranking of pages ω1, ω2, . . . , ωn,
then the ranking ω2, ω3, . . . , ωn, ω1 beats the greedy ranking on every item except ω1. We say
the greedy algorithm is 1 − 1/n beatable because there is a probability distribution over pages
for which the greedy algorithm loses 1 − 1/n of the time. Thus, in a competitive setting, an
“optimal” search engine can perform poorly against a clever opponent.

This ranking duel can be modeled as a symmetric constant-sum game, with n! strategies,
in which the player with the higher ranking of the target page receives a payoff of 1 and the
other receives a payoff of 0 (in the case of a tie, say they both receive a payoff of 1/2). As in all
symmetric one-sum games, there must be (mixed) strategies that guarantee expected payoff of
at least 1/2 against any opponent. Put another way, there must be a (randomized) algorithm
that takes as input the probability distribution and outputs a ranking, which is guaranteed to
achieve expected payoff of at least 1/2 against any opposing algorithm.

This conversion can be applied to any optimization problem with an element of uncertainty.
Such problems are of the form minx∈X Eω∼p[c(x, ω)], where p is a probability distribution over
the state of nature ω ∈ Ω, X is a feasible set, and c : X × Ω → R is an objective function.
The dueling analog has two players simultaneously choose x, x′; player 1 receives payoff 1 if
c(x, ω) < c(x′, ω), payoff 0 if c(x, ω) > c(x′, ω), payoff 1/2 otherwise, and similarly for player 2.1

There are many natural examples of this setting beyond the ranking duel mentioned above.
For example, for the shortest-path routing under a distribution over edge times, the correspond-
ing racing duel is simply a race, and the state of nature encodes uncertain edge delays.2 For
the classic secretary problem, in the corresponding hiring duel two employers must each select a
candidate from a pool of n candidates (though, as standard, they must decide whether or not to
choose a candidate before interviewing the next one), and the winner is the one that hires the
better candidate. This could model, for example, two competing companies attempting to hire
CEOs or two opposing political parties selecting politicians to run in an election; the absolute
quality of the candidate may be less important than being better than the other’s selection.
In a compression duel, a user with a (randomly chosen) sample string ω chooses between two
compression schemes based on which one compresses that string better. This setting can also
model a user searching for a file in two competing, hierarchical storage systems and choosing
the system that finds the file first. In a binary search duel, a user searches for a random element
in a list using two different search trees, and chooses whichever tree finds the element faster.

Our contribution. For each of these problems, we consider a number of questions related
to how vulnerable a classic algorithm is to competition, what algorithms will be selected at
equilibrium, and how well these strategies at equilibrium solve the original optimization problem.

Question 1. Will players use the classic optimization solution in the dueling setting?

Intuitively, the answer to this question should depend on how much an opponent can game
the classic optimization solution. For example, in the ranking duel an opponent can beat the
greedy algorithm on almost all pages – and even the most oblivious player would quickly realize
the need to change strategies. In contrast, we demonstrate that many classic optimization

1Our techniques will also apply to asymmetric payoff functions; see Appendix D.
2 We also refer to this as the primal duel because any other duel can be represented as a race with an appropriate

graph and probability distribution p, though there may be an exponential blowup in representation size.

1

solutions – such as the secretary algorithm for hiring, Huffman coding for compression, and
standard binary search – are substantially less vulnerable. We say an algorithm is β-beatable
(over distribution p) if there exists a response which achieves payoff β against that algorithm
(over distribution p). We summarize our results on the beatability of the standard optimization
algorithm in each of our example optimization problems in the table below:

Optimization Problem Upper Bound Lower Bound
Ranking 1− 1/n 1− 1/n
Racing 1 1
Hiring 0.82 0.51
Compression 3/4 2/3
Search 5/8 5/8

Question 2. What strategies do players play at equilibrium?

We say an algorithm efficiently solves the duel if it takes as input a representation of the
game and probability distribution p, and outputs an action x ∈ X distributed according to
some minmax optimal (i.e., Nash equilibrium) strategy. As our main result, we give a general
method for solving duels that can be represented in a certain bilinear form. We also show how
to convert an approximate best-response oracle for a dueling game into an approximate minmax
optimal algorithm, using techniques from low-regret learning. We demonstrate the generality of
these methods by showing how to apply them to the numerous examples described above. For
many problems we consider, the problem of computing minmax optimal strategies reduces to
finding a simple description of the space of feasible mixed strategies (i.e. expressing this set as
the projection of a polytope with polynomially many variables and constraints). See [18] for a
thorough treatment of such problems.

Question 3. Are these equilibrium strategies still good at solving the optimization problem?

As an example, consider the ranking duel. How much more time does a web surfer need
to spend browsing to find the page he is interested in, because more than one search engine is
competing for his attention? In fact, the surfer may be better off due to competition, depending
on the model of comparison. For example, the cost to the web surfer may be the minimum of
the ranks assigned by each search engine. And we leave open the tantalizing possibility that
this quantity could in general be smaller at equilibrium for two competing search engines than
for just one search engine playing the greedy algorithm.

Related work. The work most relevant to ours is the study of ranking games [4], and
more generally the study of social context games [1]. In these settings, players’ payoffs are
translated into utilities based on social contexts, defined by a graph and an aggregation function.
For example, a player’s utility can be the sum/max/min of his neighbors’ payoffs. This work
studies the effect of social contexts on the existence and computation of game-theoretic solution
concepts, but does not re-visit optimization algorithms in competitive settings.

For the hiring problem, several competitive variants and their algorithmic implications have
been considered (see, e.g., [10] and the references therein). A typical competitive setting is a
(general sum) game where a player achieves payoff of 1 if she hires the very best applicant and
zero otherwise. But, to the best of our knowledge, no one has considered the natural model of
a duel where the objective is simply to hire a better candidate than the opponent. Also related
to our algorithmic results are succinct zero-sum games, where a game has exponentially many
strategies but the payoff function can be computed by a succinct circuit. This general class has
been showed to be EXP-hard to solve [6], and also difficult to approximate [7].

Finally, we note the line of research on competition among mechanisms, such as the study
of competing auctions (see e.g. [5, 15, 16, 17]) or schedulers [2]. In such settings, each player
selects a mechanism and then bidders select the auction to participate in and how much to bid
there, where both designers and bidders are strategic. This work is largely concerned with the
existence of sub-game perfect equilibrium.

2

Outline. In Section 2 we define our model formally and provide a general framework for
solving dueling problems as well as the warmup example of the ranking duel. We then use these
tools to analyze the more intricate settings of the hiring duel (Section 3), the compression duel
(Section 4), and the search duel (Section 5). We describe avenues of future research in Section 6.

2 Preliminaries

A problem of optimization under uncertainty, (X,Ω, c, p), is specified by a feasible set X , a
commonly-known distribution p over the state of nature, ω, chosen from set Ω, and an objective
function c : X×Ω → R. For simplicity we assume all these sets are finite. When p is clear from
context, we write the expected cost of x ∈ X as c(x) = Eω∼p[c(x, ω)]. The one-player optimum
is opt = minx∈X c(x). Algorithm A takes as input p and randomness r ∈ [0, 1], and outputs
x ∈ X . We define c(A) = Er[c(A(p, r))] and an algorithm A is one-player optimal if c(A) = opt.

In the two-person constant-sum duel game D(X,Ω, c, p), players simultaneously choose
x, x′ ∈ X , and player 1’s payoff is:

v(x, x′, p) = Pr
ω∼p

[c(x, ω) < c(x′, ω)] +
1

2
Pr
ω∼p

[c(x, ω) = c(x′, ω)].

When p is understood from context we write v(x, x′). Player 2’s payoff is v(x′, x) = 1− v(x, x′).
This models a tie, c(x, ω) = c(x′, ω), as a half point for each. We define the value of a strategy,
v(x, p), to be how much that strategy guarantees, v(x, p) = minx′∈X v(x, x′, p). Again, when p
is understood from context we write simply v(x).

The set of probability distributions over set S is denoted ∆(S). Amixed strategy is σ ∈ ∆(X).
As is standard, we extend the domain of v to mixed strategies bilinearly by expectation. A
best response to mixed strategy σ is a strategy which yields maximal payoff against σ, i.e.,
σ′ is a best response to σ if it maximizes v(σ′, σ). A minmax strategy is a (possibly mixed)
strategy that guarantees the safety value, in this case 1/2, against any opponent play. The
best response to such a strategy yields payoffs of 1/2. The set of minmax strategies is denoted
MM(D(X,Ω, c, p)) = {σ ∈ ∆(X) | v(σ) = 1/2}. A basic fact about constant-sum games is that
the set of Nash equilibria is the cross product of the minmax strategies for player 1 and those
of player 2.

2.1 Bilinear duels

In a bilinear duel, the feasible set of strategies are points in n-dimensional Euclidean space, i.e.,
X ⊆ Rn, X ′ ⊆ Rn′

and the payoff to player 1 is v(x, x′) = xtMx′ for some matrix M ∈ Rn×n′

.
In n × n bimatrix games, X and X ′ are just simplices {x ∈ Rn

≥0 |
∑

xi = 1}. Let K be the
convex hull of X . Any point in K is achievable (in expectation) as a mixed strategy. Similarly
define K ′. As we will point out in this section, solving these reduces to linear programming
with a number of constraints proportional to the number of constraints necessary to define the
feasible sets, K and K ′. (In typical applications, K and K ′ have a polynomial number of facets
but an exponential number of vertices.)

Let K be a polytope defined by the intersection of m halfspaces, K = {x ∈ Rn | wi · x ≥
bi for i = 1, 2, . . . ,m}. Similarly, let K ′ be the intersection of m′ halfspaces w′

i · x ≥ b′i. The
typical way to reduce to an LP for constant-sum games is:

max
v∈R,x∈Rn

v such that x ∈ K and xTMx′ ≥ v for all x′ ∈ X ′.

The above program has a number of constraints which is m+ |X ′|, (m constraints guaranteeing
that x ∈ K), and |X ′| is typically exponential. Instead, the following linear program has
O(n′ + m + m′) constraints, and hence can be found in time polynomial in n′,m,m′ and the
bit-size representation of M and the constraints in K and K ′.

max
x∈Rn,λ∈Rm′

m′

∑

1

λib
′
i such that x ∈ K and xtM =

m′

∑

1

λiw
′
i. (1)

3

Lemma 1. For any constant-sum game with strategies x ∈ K,x′ ∈ K and payoffs xtMx′, the
maximum of the above linear program is the value of the game to player 1, and any maximizing
x is a minmax optimal strategy.

Proof. First we argue that the value of the above LP is at least as large as the value of the game
to player 1. Let x, λ maximize the above LP and let the maximum be α. For any x′ ∈ K ′,

xtMx′ =

m′

∑

1

λiw
′
i · x

′ ≥
m′

∑

1

λib
′
i = α.

Hence, this means that strategy x guarantees player x at least α against any opponent response,
x′ ∈ K. Hence α ≤ v with equality iff x is minmax optimal. Next, let x be any minmax optimal
strategy, and let v be the value of the constant-sum game. This means that xtMx′ ≥ v for all
x′ ∈ K ′ with equality for some point. In particular, the minmax theorem (equivalently, duality)
means that the LP minx′∈K′ xtMx′ has a minimum value of v and that there is a vector of

λ ≥ 0 such that
∑m′

1 λiw
′
i = xtM and

∑m′

1 λib
′
i = v. Hence α ≥ v.

2.2 Reduction to bilinear duels

The sets X in a duel are typically objects such as paths, trees, rankings, etc., which are not
themselves points in Euclidean space. In order to use the above approach to reduce a given duel
D(X,Ω, c, p) to a bilinear duel in a computationally efficient manner, one needs the following:

1. An efficiently computable function φ : X → K which maps any x ∈ X to a feasible point
in K ⊆ Rn.

2. A payoff matrix M demonstrating such that v(x, x′) = φ(x)tMφ(x′), demonstrating that
the problem is indeed bilinear.

3. A set of polynomially many feasible constraints which defines K.

4. A “randomized rounding algorithm” which takes as input a point in K outputs an object
in X .

In many cases, parts (1) and (2) are straightforward. Parts (3) and (4) may be more challenging.
For example, for the binary trees used in the compression duel, it is easy to map a tree to a
vector of node depths. However, we do not know how to efficiently determine whether a given
vector of node depths is indeed a mixture over trees (except for certain types of trees which are
in sorted order, like the binary search trees in the binary search duel). In the next subsection,
we show how computing approximate best responses suffices.

2.3 Approximating best responses and approximating minmax

In some cases, the polytope K may have exponentially or infinitely many facets, in which case
the above linear program is not very useful. In this section, we show that if one can compute
approximate best responses for a bilinear duel, then one can approximate minmax strategies.

For any ǫ > 0, an ǫ-best response to a player 2 strategy x′ ∈ K ′ is any x ∈ K such that
xtMx′ ≥ miny∈K yTMx′ − ǫ. Similarly for player 1. An ǫ-minmax strategy x ∈ K for player 1
is one that guarantees player 1 an expected payoff not worse than ǫ minus the value, i.e.,

min
x′∈K

v(x, x′) ≥ max
y∈K

min
x′∈K

v(y, x′)− ǫ.

Best response oracles are functions from K to K ′ and vice versa. However, for many appli-
cations (and in particular the ones in this paper) where all feasible points are nonnegative, one
can define a best response oracle for all nonnegative points in the positive orthant. (With ad-
ditional effort, one can remove this assumption using Kleinberg and Awerbuch’s elegant notion
of a Barycentric spanner [3].) For scaling purposes, we assume that for some B > 0, the convex
sets are K ⊆ [0, B]n and K ′ ⊆ [0, B]n

′

and the matrix M ∈ [−B,B]n×n′

is bounded as well.

4

Fix any ǫ > 0. We suppose that we are given an ǫ-approximate best response oracle in the
following sense. For player 1, this is an oracle O : [0, B]n

′

→ K which has the property that
O(x′)tMx′ ≥ maxx∈K xtMx′ − ǫ for any x′ ∈ [0, B]n

′

. Similarly for O′ for player 2. Hence, one
is able to potentially respond to things which are not feasible strategies of the opponent. As
can be seen in a number of applications, this does not impose a significant additional burden.

Lemma 2. For any ǫ > 0, n, n′ ≥ 1, B > 0, and any bilinear dual with convex K ⊆ [0, B]n

and K ′ ⊆ [0, B]n
′

and M ∈ [−B,B]n×n′

, and any ǫ-best response oracles, there is an algorithm
for finding

(

24(ǫmax(m,m′))1/3B2(nn′)2/3
)

-minmax strategies x ∈ K,x′ ∈ K ′. The algorithm
uses poly(β,m,m′, 1/ǫ) runtime and make poly(β,m,m′, 1/ǫ) oracle calls.

The reduction and proof is deferred to Appendix A. It uses Hannan-type of algorithms,
namely “Follow the expected leader” [11].

We reduce the compression duel, where the base objects are trees, to a bilinear duel and use
the approximate best response oracle. To perform such a reduction, one needs the following.

1. An efficiently computable function φ : X → K which maps any x ∈ X to a feasible point
in K ⊆ Rn.

2. A bounded payoff matrix M demonstrating such that v(x, x′) = φ(x)tMφ(x′), demon-
strating that the problem is indeed bilinear.

3. ǫ-best response oracles for players 1 and 2. Here, the input to an ǫ best response oracle
for player 1 is x′ ∈ [0, B]n

′

.

2.4 Beatability

One interesting quantity to examine is how well a one-player optimization algorithm performs in
the two-player game. In other words, if a single player was a monopolist solving the one-player
optimization problem, how badly could they be beaten if a second player suddenly entered. For
a particular one-player-optimal algorithm A, we define its beatability over distribution p to be
Er[v(A(p, r), p)], and we define its beatability to be infp Er[v(A(p, r), p)].

2.5 A warmup: the ranking duel

In the ranking duel, Ω = [n] = {1, 2, . . . , n}, X is the set of permutations over n items, and
c(π, ω) ∈ [n] is the position of ω in π (rank 1 is the “best” rank). The greedy algorithm, which
outputs permutation (ω1, ω2, . . . , ωn) such that p(ω1) ≥ p(ω2) ≥ · · · ≥ p(ωn), is optimal in the
one-player version of the problem.3

This game can be represented as a bilinear duel as follows. Let K and K ′ be the set of doubly
stochastic matrices, K = K ′ = {x ∈ Rn2

≥0 | ∀j
∑

i xij = 1, ∀i
∑

j xij = 1}. Here xij indicates the
probability that item i is placed in position j, in some distribution over rankings. The Birkhoff-
von Neumann Theorem states that the set K is precisely the set of probability distributions
over rankings (where each ranking is represented as a permutation matrix x ∈ {0, 1}n

2

), and
moreover any such x ∈ K can be implemented efficiently via a form of randomized rounding.
See, for example, Corollary 1.4.15 of [14]. Note K is a polytope in n2 dimensions with O(n)
facets. In this representation, the expected payoff of x versus x′ is

∑

i

p(i)

(

1

2
Pr[Equally rank i] + Pr[P1 ranks i higher]

)

=
∑

i

p(i)
∑

j

xij

1

2
x′
ij +

∑

k>j

x′
ik

 .

The above is clearly bilinear in x and x′ and can be written as xtMx′ for some matrix M with
bounded coefficients. Hence, we can solve the bilinear duel by the linear program (1) and round
it to a (randomized) minmax optimal algorithm for ranking.

3In some cases, such as a model of competing search engines, one could have the agents rank only k items, but
the algorithmic results would be similar.

5

We next examine the beatability of the greedy algorithm. Note that for the uniform prob-
ability distribution p(1) = p(2) = . . . = p(n) = 1/n, the greedy algorithm outputting, say,
(1, 2, . . . , n) can be beaten with probability 1 − 1/n by the strategy (2, 3, . . . , n, 1). One can
make greedy’s selection unique by setting p(i) = 1/n + (i − n/2)ǫ, and for sufficient small ǫ
greedy can be beaten a fraction of time arbitrarily close to 1− 1/n.

3 Hiring Duel

In a hiring duel, there are two employers A and B and two corresponding sets of workers
UA = {a1, . . . , an} and UB = {b1, . . . , bn} with n workers each. The i’th worker of each set has
a common value v(i) where v(i) > v(j) for all i and j > i. Thus there is a total ranking of
workers ai ∈ UA (similarly bi ∈ UB) where a rank of 1 indicates the best worker, and workers are
labeled according to rank. The goal of the employers is to hire a worker whose value (equivalently
rank) beats that of his competitor’s worker. Workers are interviewed by employers one-by-one
in a random order. The relative ranks of workers are revealed to employers only at the time
of the interview. That is, at time i, each employer has seen a prefix of the interview order
consisting of i of workers and knows only the projection of the total ranking on this prefix.4

Hiring decisions must be made at the time of the interview, and only one worker may be hired.
Thus the employers’ pure strategies are mappings from any prefix and permutation of workers’
ranks in that prefix to a binary hiring decision. We note that the permutation of ranks in a
prefix does not effect the distribution of the rank of the just-interviewed worker, and hence
without loss of generality we may assume the strategies are mapings from the round number
and current rank to a hiring decision.

In dueling notation, our game is (X,Ω, c, p) where the elements of X are functions h :
{1, . . . , n}2 → {0, 1} indicating for any round i and projected rank of current interviewee j ≤ i
the hiring decision h(i, j); Ω is the set (σA, σB) of all pairs of permutations of UA and UB; c(h, σ)
is the value v(σ−1(i∗)) of the first candidate i∗ = argmini{i : h(i, [σ

−1(i)]i) = 1} (where [σ−1(i)]j
indicates the projected rank of the i’th candidate among the first j candidates according to σ)
that received an offer; and p (as is typical in the secretary problem) is the uniform distribution
over Ω. The mixed strategies π ∈ ∆(X) are simply mappings π : {0, . . . , n}2 → [0, 1] from
rounds and projected ranks to a probability π(i, j) of a hiring decision.

The values v(·) may be chosen adversarially, and hence in the one-player setting the optimal
algorithm against a worst-case v(·) is the one that maximizes the probability of hiring the
best worker (the worst-case values set v(1) = 1 and v(i) << 1 for i > 1). In the literature
on secretary problems, the following classical algorithm is known to hire the best worker with
probability approaching 1

e : Interview n/e workers and hire next one that beats all the previous.
Furthermore, there is no other algorithm that hires the best worker with higher probability.

3.1 Common pools of workers

In this section, we study the common hiring duel in which employers see the same candidates
in the same order so that σA = σB and each employer observes when the other hires. In this
case, the following strategy π is a symmetric equilibrium: If the opponent has already hired,
then hire anyone who beats his employee; otherwise hire as soon as the current candidate has
at least a 50% chance of being the best of the remaining candidates.

Lemma 3. Strategy π is efficiently computable and constitutes a symmetric equilibrium of the
common hiring duel.

The computability follows from a derivation of probabilities in terms of binomials, and the
equilibrium claim follows by observing that there can be no profitable deviation. This strategy

4In some cases, an employer also knows when and whom his opponent hired, and may condition his strategy on
this information as well. Only one of the settings described below needs this knowledge set; hence we defer our
discussion of this point for now and explicitly mention the necessary assumptions where appropriate.

6

also beats the classical algorithm, enabling us to provide non-trivial lower and upper bounds for
its beatability.

Proof. For a round i, we compute a threshold ti such that π hires if and only if the projected
rank of the current candidate j is at most ti. Note that if i candidates are observed, the
probability that the ti’th best among them is better than all remaining candidates is precisely
(

i
ti

)

/
(

n
ti

)

. The numerator is the number of ways to place the 1 through ti’th best candidates
overall among the first i and the denominator is the number of ways to place the 1 through
ti’th best among the whole order. Hence to efficiently compute π we just need to compute ti
or, equivalently, estimate these ratios of binomials and hire whenever on round i and observing
the j’th best so far,

(

i
j

)

/
(

n
j

)

≥ 1/2.
We further note π is a symmetric equilibrium since if an employer deviates and hires early

then by definition the opponent has a better than 50% chance of getting a better candidate.
Similarly, if an employer deviates and hires late then by definition his candidate has at most a
50% chance of being a better candidate than that of his opponent.

Lemma 4. The beatability of the classical algorithm is at least 0.51 and at most 0.82.

The lower bound follows from the fact that π beats the classical algorithm with probability
bounded above 1/2 when the classical algorithm hires early (i.e., before round n/2), and the
upper bound follows from the fact that the classical algorithm guarantees a probability of 1/e
of hiring the best candidate, in which case no algorithm can beat it.

Proof. For the lower bound, note that in any event, π guarantees a payoff of at least 1/2
against the classical algorithm. We next argue that for a constant fraction of the probability
space, π guarantees a payoff of strictly better than 1/2. In particular, for some q, 1/e < q < 1/2,
consider the event that the classical algorithm hires in the interval {n/e, qn}. This event happens
whenever the best among the first qn candidates is not among the first n/e candidates, and
hence has a probability of (1− 1/qe). Conditioned on this event, π beats the classical algorithm
whenever the best candidate overall is in the last n(1 − q) candidates,5 which happens with
probability (1− q) (the conditioning does not change this probability since it is only a property
of the permutation projected onto the first qn elements). Hence the overall payoff of π against
the classical algorithm is (1 − q)(1− 1/qe) + (1/2)(1/qe). Optimizing for q yields the result.

For the upper bound, note as mentioned above that the classical algorithm has a probability
approaching 1/e of hiring the best candidate. From here, we see ((1/2e)+(1−1/e)) = 1−1/2e <
0.82 is an upper bound on the beatability of the classical algorithm since the best an opponent
can do is always hire the best worker when the classical algorithm hires the best worker and
always hire a better worker when the classical algorithm does not hire the best worker.

3.2 Independent pools of workers

In this section, we study the independent hiring duel in which the employers see different can-
didates. Thus σA 6= σB and the employers do not see when the opponent hires. We use the
bilinear duel framework introduced in Section 2.1 to compute an equilibrium for this setting,
yielding the following theorem.

Theorem 1. The equilibrium strategies of the independent hiring duel are efficiently computable.

The main idea is to represent strategies π by vectors {pij} where pij is the (total) probability
of hiring the j’th best candidate seen so far on round i. Let qi be the probability of reaching
round i, and note it can be computed from the {pij}. Recall π(i, j) is the probability of hiring
the j’th best so far at round i conditional on seeing the j’th best so far at round i. Thus
using Bayes’ Rule we can derive an efficiently-computable bijective mapping (with an efficiently
computable inverse) φ(π) between π and {pij} which simply sets π(i, j) = pij/(qi/i). It only

5This is a loose lower bound; there are many other instances where π also wins, e.g., if the second-best candidate
is in the last n(1− q) candidates and the best occurs after the third best in the first qn candidates.

7

remains to show that one can find a matrix M such that the payoff of a strategy π versus a
strategy π′ is φ(π)tMφ(π′). This is done by calculating the appropriate binomials.

We show how to apply the bilinear duel framework to compute the equilibrium of the in-
dependent hiring duel. This requires the following steps: define a subset K of Euclidean space
to represent strategies, define a bijective mapping between K and feasible (mixed) strategies
∆(X), and show how to represent the payoff matrix of strategies in the bilinear duel space. We
discuss each step in order.

Defining K. For each 1 ≤ i ≤ n and j ≤ i we define pij to be the (total) probability of
seeing and hiring the j’th best candidate seen so far at round i. Our subspace K = [0, 1]n(n+1)/2

consists of the collection of probabilities {pij}. To derive constraints on this space, we introduce
a new variable qi representing the probability of reaching round i. We note that the probability
of reaching round (i+ 1) must equal the probability of reaching round i and not hiring, so that
qi+1 = qi−

∑n
j=1 pij . Furthermore, the probability pij can not exceed the probability of reaching

round i and interviewing the j’th best candidate seen so far. The probability of reaching round
i is qi by definition, and the probability that the projected rank of the i’th candidate is j is 1/i
by our choice of a uniformly random permutation. Thus pij ≤ qi/i. Together with the initial
condition that qi = 1, these constraints completely characterize K.

Mapping. Recall a strategy π indicates for each i and j ≤ i the conditional probability
of making an offer given that the employer is interviewing the i’th candidate and his projected
rank is j whereas pij is the total probability of interviewing the i’th candidate with a projected
rank of j and making an offer. Thus π(i, j) = pij/(qi/i) and so pij = qiπ(i, j)/i. Together
with the equailities derived above that q1 = 1 and qi+1 = qi −

∑n
j=1 pij , we can recursively

map any strategy π to K efficiently. To map back we just take the inverse of this bijection:
given a point {pij} in K, we compute the (unique) qi satisfying the constraints q1 = 1 and
qi+1 = qi −

∑n
j=1 pij , and define π(i, j) = pij/(qi/i).

Payoff Matrix. By the above definitions, for any strategy π and corresponding mapping
{pij}, the probability that the strategy hires the j’th best so far on round i is pij . Given that
employer A hires the j’th best so far on round i and employer B hires the j′’th best so far
on round i′, we define Miji′j′ to be the probability that the overall rank of employer A’s hire
beats that of employer B’s hire plus one-half times the probability that their ranks are equal.
We can derive the entries of the this matrix as follows: Let EX

r be the event that with respect
to permutation σX the overall rank of a fixed candidate is r, and FX

ij be the event that the
projected rank of the last candidate in a random prefix of size i is j. Then

Miji′j′ =
∑

r,r′:1≤r<r′≤n

Pr[EA
r |F

A
ij] Pr[E

B
r′ |F

B
i′j′] +

1

2

∑

1≤r≤n

Pr[EA
r |FA

ij] Pr[E
B
r |FB

i′j′].

Furthermore, by Bayes rule, Pr[EX
r |FX

ij] = Pr[FX
ij |E

X
r] Pr[EX

r]/Pr[FX
ij] where Pr[EX

r] = 1/n

and Pr[FX
ij] = 1/i. To compute Pr[FX

ij |E
X
r], we select the ranks of the other candidates in the

prefix of size i. There are
(

r−1
j−1

)

ways to pick the ranks of the better candidates and
(

n−r+1
i−j

)

ways to pick the ranks of the worse candidates. As there are
(

n−1
i−1

)

ways overall to pick the
ranks of the other candidates, we see:

Pr[FX
ij |E

X
r] =

(

r−1
j−1

)(

n−r+1
i−j

)

(

n−1
i−1

) .

Letting {pij} be the mapping φ(π) of employer A’s strategy π and {p′ij} be the mapping φ(π)
of employer B’s strategy π′, we see that c(π, π′) = φ(π)tMφ(π′), as required.

By the above arguments, and the machinery from Section 2.1, we have proven Theorem 1
which claims that the equilibrium of the independent hiring duel is computable.

8

4 Compression Duel

In a compression duel, two competitors each choose a binary tree with leaf set Ω. An element
ω ∈ Ω is then chosen according to distribution p, and whichever player’s tree has ω closest
to the root is the winner. This game can be thought of as a competition between prefix-free
compression schemes for a base set of words. The Huffman algorithm, which repeatedly pairs
nodes with lowest probability, is known to be optimal for single-player compression.

The compression duel is D(X,Ω, c, p), where Ω = [n] and X is the set of binary trees with
leaf set Ω. For T ∈ X and ω ∈ Ω, c(T, ω) is the depth of ω in T . In Section 4.3 we consider a
variant in which not every element of Ω must appear in the tree.

4.1 Computing an equilibrium

The compression duel can be represented as a bilinear game. In this case, K and K ′ will be sets
of stochastic matrices, where a matrix entry {xij} indicates the probability that item ωi is placed
at depth j. The set K is precisely the set of probability distributions over node depths that are
consistent with probability distributions over binary trees. We would like to compute minmax
optimal algorithms as in Section 2.2, but we do not have a randomized rounding scheme that
maps elements of K to binary trees. Instead, following Section 2.3, we will find approximate
minmax strategies by constructing an ǫ-best response oracle.

The mapping φ : X → K is straightforward: it maps a binary tree to its depth profile. Also,

the expected payoff of x ∈ K versus x′ ∈ K ′ is
∑

i p(i)
∑

j xij

(

1
2x

′
ij +

∑

k>j x
′
ij

)

which can

be written as xtMx′ where matrix M has bounded entries. To apply Lemma 2, we must now
provide an ǫ best response oracle, which we implement by reducing to a knapsack problem.

Fix p and x′ ∈ K ′. We will reduce the problem of finding a best response for x′ to the
multiple-choice knapsack problem (MCKP), for which there is an FPTAS [13]. In the MCKP,
there are n lists of items, say {(αi1, . . . , αiki

) | 1 ≤ i ≤ n}, with each item αij having a value
vij ≥ 0 and weight wij ≥ 0. The problem is to choose exactly one item from each list with total
weight at most 1, with the goal of maximizing total value. Our reduction is as follows. For each

ωi ∈ Ω and 0 ≤ j ≤ n, define wij = 2−j and vij = p(ωi)
(

1
2x

′
ij +

∑

d>j x
′
id

)

. This defines a

MCKP input instance. For any given t ∈ X , v(φ(t), x′) =
∑

ωi∈Ω vidt(i) and
∑

ωi∈Ω wi,dt(i) ≤ 1
by the Kraft inequality. Thus, any strategy for the compression duel can be mapped to a solution
to the MCKP. Likewise, a solution to the MCKP can be mapped in a value-preserving way to
a binary tree t with leaf set Ω, again by the Kraft inequality. This completes the reduction.

4.2 Beatability

We will obtain a bound of 3/4 on the beatability of the Huffman algorithm. The high-level idea
is to choose an arbitrary tree T and consider the leaves for which T beats H and vice-versa. We
then apply structural properties of trees to limit the relative sizes of these sets of leaves, then
use properties of Huffman trees to bound the relative probability that a sampled leaf falls in
one set or the other.

Before bounding the beatability of the Huffman algorithm in the No Fail compression model,
we review some facts about Huffman trees. Namely, that nodes with lower probability occur
deeper in the tree, and that siblings are always paired in order of probability (see, for example,
page 402 of Gersting [9]. In what follows, we will suppose that H is a Huffman tree.

Fact 1. If dH(v1) > dH(v2) then pH(v1) ≤ pH(v2).

Fact 2. If v1 and v2 are siblings with pH(v1) ≤ pH(v2), then for every node v3 ∈ H either
pH(v3) ≤ pH(v1) or pH(v3) ≥ pH(v2).

We next give a bound on the relative probabilities of nodes on any given level of a Huffman
tree, subject to the tree not being too “sparse” at the subsequent (deeper) level. Let pmin

H (d) =
minv:dH(v)=d pH(v) and pmax

H (d) = maxv:dH(v)=d pH(v).

9

Lemma 5. Choose any d < maxv dH(v) and nodes v, w such that dH(w) = dH(v) = d. If v is
not the common ancestor of all nodes of depth greater than d, then pH(w) ≤ 3pH(v).

Proof. Let a = pH(v). By assumption there exists a non-leaf node z 6= v with dH(z) = d, say
with children z1 and z2. Then pH(z1) ≤ a and pH(z2) ≤ a by Fact 1, so pH(z) ≤ 2a. This
implies that v’s sibling has probability at most 2a by Fact 2, so the parent of v has probability
at most 3a. Fact 1 then implies that pH(w) ≤ 3a as required.

For any T ∈ X and set of nodes R ⊆ T we define the weight of R to be wT (R) =
∑

v∈R 2−dT (v). The Kraft inequality for binary trees is wT (T) ≤ 1. In fact, we have wT (T) = 1
since we can assume each interior node of T has two children.

Lemma 6. Choose R ⊆ H such that no node of R is a descendent of any other, and suppose
w(R) = 2−d for some d ∈ [n]. Then pmin

H (d) ≤ p(R) ≤ pmax
H (d).

Proof. We will show p(R) ≤ pmax
H (d); the argument for the other inequality is similar. We

proceed by induction on |R|. If |R| = 1 the result is trivial (since R = {v} where dH(v) = d).
Otherwise, since w(R) = 2−d, there must be at least two nodes of the maximum depth present
in R. Let v and w be the two such nodes with smallest probability, say with pH(v) ≤ pH(w).
Let w′ be the parent of w. Then pH(w′) ≥ pH(w) + pH(v), since the sibling of w has weight
at least pH(v) by Fact 2. Also, w′ 6∈ R since w ∈ R and no node of R is a descendent of any
other. Let R′ = R ∪ {w′} − {w, v}. Then w(R′) = w(R), p(R′) ≥ p(R), and no node of R′ is a
descendent of any other. Thus, by induction, p(R) ≤ p(R′) ≤ pmax

H (d) as required.

We are now ready to show that the beatability of the Huffman algorithm is at most 3
4 .

Proposition 2. The beatability of the Huffman algorithm is at most 3
4 .

Fix Ω and p. Let H denote the Huffman tree and choose any other tree T . Define P = {v ∈
Ω : dT (v) < dH(v)}, Q = {v ∈ Ω : dT (v) > dH(v)}. That is, P is the set of elements of Ω for
which T beats H , and Q is the set of elements for which H beats T . Our goal is to show that
p(P) < 3p(Q), which would imply that v(T,H) ≤ 3/4.

We first claim that w(P) < w(Q). To see this, write U = Ω− (P ∪Q) and note that, by the
Kraft inequality,

w(P) + w(Q) + w(U) = 1 = wT (P) + wT (Q) + wT (U). (2)

Moreover, wT (Q) > 0, wT (U) = wH(U), and wT (P) ≥ 2w(P) (since dT (v) ≤ dH(v) − 1 for all
v ∈ P). Applying these inequalities to (2) implies w(P)− w(Q) < 0, completing the claim.

Our approach will be to express P and Q as disjoint unions P = P1 ∪ . . . ∪ Pr and Q =
Q1∪ . . .∪Qr such that p(Pi) ≤ 3p(Qi) for all i. To this end, we express the quantities w(P) and
w(Q) in binary: choose x1, . . . , xn and y1, . . . , yn from {0, 1} such that w(P) =

∑

i xi2
−i and

w(Q) =
∑

i yi2
−i. Since w(P) is a sum of element weights that are inverse powers of two, we

can partition the elements of P into disjoint subsets P1, . . . , Pn such that w(Pi) = xi2
−i for all

i ∈ [n]. Similarly, we can partition Q into disjoint subsets Q1, . . . , Qn such that w(Qi) = yi2
−i

for all i ∈ [n].
Let r = min{i : xi 6= yi}. Note that, since w(P) < w(Q), we must have xr = 0 and yr = 1.
We first show that p(Pi) ≤ 3p(Qi) for each i < r. Since xi = yi, we either have Pi = Qi = ∅ or

else w(Pi) = w(Qi) = 2−i. In the latter case, suppose first that |Qi| = 1. Then, since Qi consists
of a single leaf and i is not the maximum depth of treeH , we can apply Lemma 6 and Lemma 5 to
conclude p(Pi) ≤ pmax

H (i) ≤ 3p(Qi). Next suppose that |Qi| > 1. We would again like to apply
Lemma 5, but we must first verify that its conditions are met. Suppose for contradiction that
all nodes of depth greater than i share a common ancestor of depth i. Then, since w(Qi) = 2−i

and |Qi| > 1, it must be that Qi contains all such nodes, which contradicts the fact that Qr

contains at least one node of depth greater than i. We conclude that the conditions of Lemma
5 are satisfied for all v and w at depth i, and therefore p(Pi) ≤ pmax

H (i) ≤ 3pmin
H (i) ≤ 3p(Qi) as

required.

10

We next consider i ≥ r. Let P ′
r =

⋃

j≥r Pj and Q′
r =

⋃

j≥r Qj. We claim that p(P ′
r) ≤

3p(Q′
r). If P ′

r = ∅ then this is certainly true, so suppose otherwise. Then w(P ′
r) < 2−r, so P ′

r

contains elements of depth greater than r. As in the case i < r, this implies that either Qr

contains only a single node (and cannot be the common ancestor of all nodes of depth greater
than r), or else not all nodes of depth greater than r have a common ancestor of depth r. We
can therefore apply Lemma 6 and Lemma 5 to conclude p(P ′

r) ≤ pmax
H (r) ≤ 3p(Qr) ≤ 3p(Q′

r).
Since P = P1 ∪ . . . ∪ Pr−1 ∪ P ′

r and Q = Q1 ∪ . . . ∪ Qr−1 ∪ Q′
r are disjoint partitions, we

conclude that p(P) ≤ 3p(Q) as required.
We now give an example to demonstrate that the Huffman algorithm is at least (2/3 − ǫ)-

beatable for every ǫ > 0. For any n ≥ 3, consider the probability distribution given by p(ω1) =
1
3 ,

p(ωi) =
1

3·2i−2 for all 1 < i < n, and p(ωn) =
1

3·2n−3 . For this distribution, the Huffman tree t
satisfies dt(ωi) = i for each i < n and dt(ωn) = n− 1. Consider the alternative tree t′ in which
d(ω1) = n − 1 and d(ωi) = i − 1 for all i > 1. Then t′ will win if any of ω2, ω3, . . . , ωn−1 are
chosen, and will tie on ωn. Thus v(t

′, t) =
∑

i>1
1

3·2i−2 + 1
2 · 1

3·2n−3 = 2
3 − 1

3·2n−2 , and hence the
Huffman algorithm is (23 − 1

3·2n−2)-beatable for every n ≥ 3.
We conclude the section by noting that if all probabilities are inverse powers of 2, the Huffman

algorithm is minmax optimal.

Proposition 3. Suppose there exist integers a1, . . . , an such that p(ωi) = 2−ai for each i ≤ n.
Then the value of the Huffman tree H is v(H) = 1/2.

Proof. We suppose that there exist integers a1, . . . , an such that p(ωi) = 2−ai for each i ≤ n.
Our goal is to show that the value of the Huffman tree H is v(H) = 1/2.

For this set of probabilities, the Huffman tree will set dH(ωi) = ai for all ωi ∈ Ω. In this case,
p(R) = w(R) for all R ⊆ H . Choose any other tree T , and define sets P and Q as in the proof
of Proposition 2. That is, P is the set of elements of Ω for which T beats H , and Q is the set
of elements for which H beats T . Then, as in Proposition 2, we must have w(P) < w(Q), and
hence p(P) < p(Q). Thus v(H,T) < 1/2. We conclude that the best response to the Huffman
tree H must be H itself, and thus strategy H has a value of 1/2.

4.3 Variant: allowed failures

We consider a variant of the compression duel in which an algorithm can fail to encode certain
elements. If we write L(T) to be the set of leaves of binary tree T , then in the (original) model
of compression we require that L(T) = Ω for all T ∈ X , whereas in the “Fail” model we require
only that L(T) ⊆ Ω. If ω 6∈ L(T), we will take c(T, ω) = ∞. The Huffman algorithm is optimal
for single-player compression in the Fail model.

We note that our method of computing approximate minmax algorithms carries over to this
variant; we need only change our best-response reduction to use a Multiple-Choice Knapsack
Problem in which at most one element is chosen from each list. What is different, however, is
that the Huffman algorithm is completely beatable in the Fail model. If we take Ω = {ω1, ω2}
with p(ω1) = 1 and p(ω2) = 0, the Huffman tree H places each of the elements of Ω at depth 2.
If T is the singleton tree that consists of ω1 as the root, then v(T,H) = 1.

5 Binary Search Duel

In a binary search duel, Ω = [n] and X is the set of binary search trees on Ω (i.e. binary trees
in which nodes are labeled with elements of Ω in such a way that an in-order traversal visits
the elements of Ω in sorted order). Let p be a distribution on Ω. Then for T ∈ X and ω ∈ Ω,
c(T, ω) is the depth of the node labeled by “ω” in the tree T . In single-player binary search
and uniform p, selecting the median m element in Ω as the root node and recursing on the left
{ω|ω < m} and right {ω|ω > m} subsets to construct sub-trees is known to be optimal.

The binary search game can be represented as a bilinear duel. In this case, K and K ′ will
be sets of stochastic matrices (as in the case of the compression game) and the entry {xi,j}

11

will represent the probability that item ωj is placed at depth i. Of course, not every stochastic
matrix is realizable as a distribution on binary search trees (i.e. such that the probability ωj is
placed at depth i is {xi,j}). In order to define linear constraints on K so that any matrix in K is
realizable, we will introduce an auxiliary data structure in Section 5.1 called the State-Action

Structure that captures the decisions made by a binary search tree. Using these ideas, we will
be able to fit the binary search game into the bilinear duel framework introduced in Section 2.2
and hence be able to efficiently compute a Nash equilibrium strategy for each player.

Given a binary search tree T ∈ X , we will write cT (ω) for the depth of ω in T . We will also
refer to cT (ω) as the time that T finds ω.

5.1 Computing an equilibrium

In this subsection, we give an algorithm for computing a Nash equilibrium for the binary search
game, based on the bilinear duel framework introduced in Section 2.2. We will do this by
defining a structure called the State-Action Structure that we can use to represent the
decisions made by a binary search tree using only polynomially many variables. The set of valid
variable assignments in a State-Action Structure will also be defined by only polynomially
many linear constraints and so these structures will naturally be closed under taking convex
combinations. We will demonstrate that the value of playing σ ∈ ∆(X) against any value matrix
V – see Definition 1 is a linear function of the variables in the State-Action Structure

corresponding to σ. Furthermore, all valid State-Action Structures can be efficiently
realized as a distribution on binary search trees which achieves the same expected value.

To apply the bilinear duel framework, we must give a mapping φ from the space of binary
search trees to a convex set K defined explicitly by a polynomial number of linear constraints
(on a polynomial number of variables). We now give an informal description of K: The idea
is to represent a binary search tree T ∈ X as a layered graph. The nodes (at each depth)
alternate in type. One layer represents the current knowledge state of the binary search tree.
After making some number of queries (and not yet finding the token), all the information that
the binary search tree knows is an interval of values to which the token is confined - we refer to
this as the live interval. The next layer of nodes represents an action - i.e. a query to some item
in the live interval. Correspondingly, there will be three outgoing edges from an action node
representing the possible replies that either the item is to the left, to the right, or at the query
location (in which case the outgoing edge will exit to a terminal state).

We will define a flow on this layered graph based on T and the distribution p on Ω. Flow will
represent total probability - i.e. the total flow into a state node will represent the probability
(under a random choice of ω ∈ Ω according to p) that T reaches this state of knowledge (in
exactly the corresponding number of queries). Then the flow out of a state node represents a
decision of which item to query next. And lastly, the flow out of an action node splits according
to Bayes’ Rule - if all the information revealed so far is that the token is confined to some
interval, we can express the probability that (say) our next query to a particular item finds the
token as a conditional probability. We can then take convex combinations of these ”basic” flows
in order to form flows corresponding to distributions on binary search trees.

We give a randomized rounding algorithm to select a random binary search tree based on a
flow - in such a way that the marginal probabilities of finding a token ωi at time r are exactly
what the flow specifies they should be. The idea is that if we choose an outgoing edge for each
state node (with probability proportional to the flow), then we have fixed a binary search tree
because we have specified a decision rule for each possible internal state of knowledge. Suppose
we were to now select an edge out of each action node (again with probability proportional to
the flow) and we were to follow the unique path from the start node to a terminal node. This
procedure would be equivalent to searching for a randomly chosen token ωi chosen according to
p and using this token to choose outgoing edges from action nodes. This procedure generates
a random path from the start node to a terminal node, and is in fact equivalent to sampling a
random path in the path decomposition of the flow proportionally to the flow along the path.
Because these two rounding procedures are equivalent, the marginal distribution that results

12

from generating a binary search tree (and choosing a random element to look for) will exactly
match the corresponding values of the flow.

5.2 Notation

The natural description of the strategy space of the binary search game is exponential (in |Ω|)
– so we will assume that the value of playing any binary search tree T against an opponent’s
mixed strategy is given to us in a compact form which we will refer to as a value matrix:

Definition 1. A value matrix V is an |Ω| × |Ω| matrix in which the entry Vi,j is interpreted
to be the value of finding item ωj at time i.

Given any binary search tree T ′ ∈ X , we can define a value matrix V (T ′) so that the
expected value of playing any binary search tree T ∈ X against T in the binary search game
can be written as

∑

i,j 1cT (ωj)=iV (T ′)i,j :

Definition 2. Given a binary search tree T ′ ∈ X, let V (T ′) be a value matrix such that

V (T ′)i,j =

0 if cT ′(ωj) < i
1
2 if cT ′(ωj) = i
1 if cT ′(ωj) > i

Similarly, given a mixed strategy σ′ ∈ ∆(X), let V (σ′) = ET ′∼σ′ [V (T ′)]

Note that not every value matrix V can be realized as the value matrix V (T ′) for some
T ′ ∈ X . In fact, V need not be realizable as V (σ) for some σ ∈ ∆(X). However, we will be
able to compute the best response against any value matrix V , regardless of whether or not
the matrix corresponds to playing the binary search game against an adversary playing some
mixed strategy. Lastly, we define a stochastic matrix I(T), given T ∈ X . From I(T), and
V (T ′) we can write the expected value of playing T against T ′ as a inner-product. We let
< A,B >p=

∑

i,j Ai,jBi,jp(ωj) when A and B are |Ω| × |Ω| matrices.

Definition 3. Given a binary search tree T ∈ X, let I(T) be an |Ω| × |Ω| matrix in which
I(T)i,j = 1cT (ωj)=i. Similarly, given σ ∈ ∆(X), let I(σ) = ET∼σ[I(T)].

Lemma 7. Given σ, σ′ ∈ ∆(X), the expected value of playing σ against σ′ in the binary search
game is exactly < I(σ), V (σ′) >p.

Proof. Consider any T, T ′ ∈ X . Then the expected value of playing T against T in the binary

search game is exactly
∑

i p(ωi)
[

1cT (ωi)<cT ′(ωi) +
1
21cT (ωi)=cT ′ (ωi)

]

=< I(T), V (T ′) >p. And

since < I(T), V (T ′) >p is bilinear in the matrices I(T) and V (T ′), indeed the expected value of
playing σ against σ′ is < I(σ), V (σ′) >p.

5.3 State-Action Structure

Definition 4. Given a distribution p on Ω and ωi, ωj , ωk ∈ Ω (and ai < j < k), let

pLi,j,k =
Prωk′∼p[i ≤ k′ < k]

Prωk′∼p[i ≤ k′ ≤ j]
, pEi,j,k =

Prωk′∼p[k
′ = k]

Prωk′∼p[i ≤ k′ ≤ j]
, and pRi,j,k =

Prωk′∼p[k < k′ ≤ j]

Prωk′∼p[i ≤ k′ ≤ j]

Intuitively, we can regard the interval [ωi, ωj] as being divided into the sub-intervals [ωi, ωk−1],
{ωk} and [ωk+1, ωj]. Then the quantity pLi,j,k represents the probability that randomly gener-
ated element is contained in the first interval, conditioned on the element being contained in
the original interval [ωi, ωj]. Similarly, one can interpret pEi,j,k and pRi,j,k as being conditional
probabilities as well.

We also define a set of knowledge states, which represent the current information that the
binary search tree knows about the element and also how many queries have been made:

Definition 5. We define:

13

1. S = {(i, j, r)|ωi, ωj ∈ Ω, i < j, and r ∈ {1, 2,, |Ω|}}

2. A = {(S, k)|S = (i, j, r) ∈ S, ωk ∈ Ω and k ∈ (i, j)}

3. F = {(k, r)|ωk ∈ Ω and r ∈ {1, 2,, |Ω|}}

We will refer to S as the set of knowledge state. Additionally we will refer to Sstart = (ω1, ωn, 0)
as the start state. We will refer to A as the set of action state and F as the set of termination
states.

We can now define a State-Action Structure:

Definition 6. A State-Action Structure is a fixed directed graph generated as:

1. Create a node nS for each S ∈ S, a node nA for each A ∈ A and a node nF for each
F ∈ F .

2. For each S = (i, j, r) ∈ S, and for each k such that i < k < j, create a directed edge eS,k
from S to A = (S, k) ∈ A.

3. For each A = (S, k) ∈ A and S = (i, j, r), create a directed edge eA,F from A to F =
(k, r + 1) and directed edges eA,SL

and eA,SR
from A to SL and SR respectively for SL =

(i, k − 1, r + 1) and SR = (k + 1, j, r + 1).

We will define a flow on this directed graph. The source of this flow will be the start node
Sstart and the node corresponding to each termination state will be a sink. The total flow in this
graph will be one unit, and this flow should be interpreted as representing the total probability
of reaching a particular knowledge state, or performing a certain action.

Definition 7. We will call an set of values xe for each directed edge in a State-Action

Structure a stateful flow if (let us adopt the notation that xS,A is the flow on an edge eS,A):

1. For all e, 0 ≤ xe ≤ 1

2. All nodes except nSstart
and nF (for F ∈ F) satisfy conservation of flow

3. For each action state A = (S, i) ∈ A for S = (i, j, r), the the flow on the three out-
going edges eA,F , eA,SL

and eA,SR
from nA, satisfy xA,F = pEi,j,kC, xA,SL

= pLi,j,kC and

xA,SR
= pRi,j,k where C =

∑

e=(S′,A) for S′∈S
xS′,A

Given T ∈ X , we can define a flow xT in the State-Action Structure that captures the
decisions made by T :

Definition 8. Given T ∈ X, define xT as follows:

1. For each S = (i, j, r) ∈ S let Ti,j be the sub-tree of T (if a unique such sub-tree exists)
such that the labels contained in Ti,j are exactly {ωi, ωi+1, ..., ωj}. Suppose that the root
of this sub-tree Ti,j is ωk. Then send all flow entering the node nS on the outgoing edge
eS,A for A = (S, k).

2. For each A ∈ A, divide flow into a action node nA according to Condition 3 in Definition 7
among outgoing edges.

Note that the flow out of nSstart
is one. Of course, the choice of how to split flow on outgoing

edges from an action node nA is already well-defined. But we need to demonstrate that xT does
indeed satisfy conservation of flow requirements, and hence is a stateful flow:

Lemma 8. For any T ∈ X, xT is a stateful flow

Proof. For some intervals {ωi, ωi+1, ..., ωj}, there is no sub-tree in T for which the labels con-
tained in the sub-tree is exactly {ωi, ωi+1, ..., ωj}. If there is such an interval, however, it is
clearly unique. We will prove by induction that the only state nodes in the State-Action

Structure which are reached by flow xT are state nodes for which there is such a sub-tree.
We will prove this condition by induction on r for state nodes nS of the form S = (i, j, r).

This condition is true in the base case because all flow starts at the node nSstart
and Sstart =

14

(ω1, ωn, 0) and indeed the entire binary search tree T has the property that the set of labels
used is exactly {ω1, ω2, ...ωn}.

Suppose by induction that there is some sub-tree Ti,j of T for which the labels of contained
in the sub-tree are exactly {ωi, ωi+1, ..., ωj}. Let ωk be the label of the root node of Ti,j . Then
all flow entering nS would be sent to the action node A = (S, k) and all flow out of this action
node would be set to either a termination node or to state nodes SL = (i, k − 1, r + 1) or
SR = (k + 1, r + 1) and both of the intervals {ωi, ω2, ...ωr−1} or {ωr+1, ωr+2, ..., ωj} do indeed
have the property that there is a sub-tree that contains exactly each respective set of labels -
these are just the left and right sub-trees of Ti,j.

The variables in a stateful flow capture marginal probabilities that we need to compute the
expected value of playing a binary search tree T against some value matrix V :

Lemma 9. Consider any state S = (i, j, r) ∈ S. The total flow in xT into nS is exactly the
probability that (under a random choice of ωk ∼ p), ωk is contained in some sub-tree of T at
depth r+ 1. Similarly the total flow in xT into any terminal node nF for F = (ωf , r) is exactly
the probability (under a random choice of ωk ∼ p) that cT (ωk) = r.

Proof. We can again prove this lemma by induction on r for state nodes nS of the form S =
(i, j, r). In the base case, the flow into nSstart

is 1, which is exactly the probability that (under
a random choice of ωt ∼ p), ωt is contained in some sub-tree of T at depth 1.

So we can prove the inductive hypothesis by sub-conditioning on the event that the element
ωk is contained in some sub-tree of T at depth r. Let this subtree be T ′. By the inductive
hypothesis, this is exactly the flow into the node nS′ where S′ = (i, j, r− 1) for some ωi, ωj ∈ Ω
and i ≤ k ≤ j. We can then condition on the event that ωk is such that i ≤ k ≤ j. Let ωr be the
label of the root node of T ′. Then using conditioning, the probability that ωk is contained in
the left-subtree of T ′ is exactly pLi,j,r, and similarly for the right sub-tree. Also the probability

that ωk = ωr is pEi,j,r. And so Condition 3 in Definition 7 enforces the condition that the flow
splits exactly as this total probability splits - i.e. the probability that ωk is contained in the left
and right sub-interval of {ωi, ωi+1, ...ωj} or contained in the root ”ωr” respectively. Note that
the set of sub-trees at any particular depth in T correspond to disjoint intervals of Ω, and hence
there is no other flow entering the state nS , and this proves the inductive hypothesis.

As an immediate corollary:

Corollary 1. The expected value of playing T against value matrix V ,

< I(T), V >p=
∑

F=(ωk,r)∈F

xin
T (F)Vr,k

where xin
T denotes the total flow into a node according to xT .

And as a second corollary:

Corollary 2. Given T ∈ X,

V (T)i,j =
1
2x

in
T (ωj , i) +

∑

i′>i x
in
T (ωj , i

′)

p(ωj)

where xin
T (ωj , i) denotes the total flow into nF for F = (ωj , i) ∈ F .

5.4 A rounding algorithm

Proposition 4. Given a stateful flow x, there is an efficient randomized rounding procedure that
generates a random T ∈ X with the property that for any ωj ∈ Ω and for any i ∈ {1, 2, ..., |Ω|},

Pr[cT (ωj) = i] =
xin(ωj ,i)

pωj

.

15

Proof. Since x is a unit flow from nSstart
to the set of sink nodes nF for F ∈ F . So if we could

sample a random path proportional to the total flow along the path, the probability that the
path ends at any sink nF for F = (ωj , r) is exactly xin(ωj , r).

First Rounding Procedure: Consider the following procedure for generating a path ac-
cording to this distribution - i.e. the probability of generating any path is exactly the flow
along the path: Starting at the source node, and at every step choose a new edge to traverse
proportionally to the flow along it. So if the process is currently at some node nS and the total
flow into the node is U , and the total flow on some outgoing edge e is u, edge e is chosen with
probability exactly u

U and the process continues until a sink node is reached. Notice that this
procedure always terminates in O(|Ω|) steps because each time we traverse an action node nA,
the counter r is incremented and every edge in a State-Action Structure either points into
or points out of a action node.

The key to our randomized rounding procedure is an alternative way to generate a path
from the source node to a sink such that the probability that the path ends at any sink nF for
F = (ωj , r) is still exactly xin(ωj , r). Instead, for each state node nS , we choose an outgoing
edge in advance (to some action node) proportional to the flow on x on that edge.

Second Rounding Procedure: If we fix these choices in advance, we can define an alter-
nate path selection procedure which starts at the source node, and traverse any edges that have
already been decided upon. Whenever the process reaches an action node (in which case the
outgoing edge has not been decided upon), we can select an edge proportional to the total flow
on the edge. This procedure still satisfies the property that the probability that the path ends
at any sink nF for F = (ωj , r) is exactly xin(ωj, r).

Third Rounding Procedure: Next, consider another modification to this procedure.
Imagine still that the outgoing edges from every state node are chosen (randomly, as above in
the Second Rounding Procedure:). Instead of choosing which outgoing edge to pick from
an action node when we reach it, we could instead pick an item ωk′ ∼ p in advance and using this
hidden value to determine which outgoing edge from a action node to traverse. We will maintain
the invariant that if we are at nA and A = (S, k) for S = (i, j, r), we must have i ≤ k′ ≤ j.
This is clearly true at the base case. Then we will traverse the edge eA,F for F = (k, r) if
ωk′ = ωk. Otherwise if i ≤ k′ ≤ k − 1 we will traverse the edge eA,SL

for SL = (i, k − 1, r + 1).
Otherwise i ≤ k′ ≤ k − 1 and we will traverse the edge eA,SR

for SR = (k + 1, j, r + 1). This
clearly maintains the invariant that k′ is contained in the interval corresponding to the current
knowledge state.

This third procedure is equivalent to the second procedure. This follows from interpreting
Condition 3 in Definition 7 as a rule for splitting flow that is consistent with the conditional
probability that ωk′ is contained in the left or right sub-interval of {ωi, ωi+1, ...ωj} or is equal
to ωk conditioned on ωk′ ∈ {ωi, ωi+1, ...ωj}. An identical argument is used in the proof of
Lemma 9. In this case, we will say that ωk′ is the rule for choosing edges out of action nodes.

Now we can prove the Lemma: The key insight is that once we have chosen the outgoing
edges from each state node (but not which outgoing edges from each action node), we have
determined a binary search tree: Given any element ωk′ , if we follow outgoing edges from action
nodes using ωk′ as the rule, we must reach a terminal node F = (ωk′ , r) for some r. In fact, the
value of r is determined by ωk′ because once ωk′ is chosen, there are no more random choices. So
we can compute a vector of dimension |Ω|, ~u such that ~uj = r such that F = (ωj , r) is reached
when the ωj is the rule for choosing edges out of action nodes.

Using the characterization in Proposition 6, it is easy to verify that the transition rules in
the State Action Structure enforce that ~u is a depth vector and hence we can compute a
binary search tree T which has the property that using selection rule ωj results in reaching the
sink node F = (ωj , cT (ωj)).

Suppose we select each outgoing edge from a state node (as in the Third Rounding Pro-

cedure) and select an ωk′ ∼ p (again as in the Third Rounding Procedure) independently.
Then from the choices of the outgoing edges from each state node, we can recover a binary
search tree T . Then PrT,ωk′

[cT (ωk′) = r] = xin(ωk′ , r) precisely because the First Rounding

Procedure and the Third Rounding Procedure are equivalent. And then we can apply

16

Bayes’ Rule to compute that

PrT [cT (ωk′) = r|ωk′ = ωk] =
xin(ωk, r)

p(ωk)

Theorem 5. There is an algorithm that runs in time polynomial in |Ω| that computes an exact
Nash equilibrium for the binary search game.

Proof. We can now apply the biliear duel framework introduced in Section 2.2 to the binary
search game: The space K is the set of all stateful flows. The set of variables is polynomially
sized – see Definition 6, and the set of linear constraints is also polynomially sized and is given
explicitly in Definition 7. The function φ maps binary search trees T ∈ X to a stateful flow xT

and is the procedure given in Defintion 8 for computing this mapping is efficient. Also the payoff
matrix M is given explicitly in Corollary 1 and Corollary 2. And lastly we give a randomized
rounding algorithm in Proposition 4.

5.5 Beatability

We next consider the beatability of the classical algorithm when p is the uniform distribution
on Ω. For lack of a better term, let us call this single-player optima the median binary search -
or median search.

Here we give matching upper and lower bounds on the beatability of median search. The
idea is that an adversary attempting to do well against median search can only place one item
at depth 1, two items at depth 2, four items at depth 3 and so on. We can regard these as
budget restrictions - the adversary cannot choose too many items to map to a particular depth.
There are additional combinatorial restrictions, as well For example, an adversary cannot place
two labels of depth 2 both to the right of the label of depth 1 - because even though the root
node in a binary search tree can have two children, it cannot have more than one right child.

But suppose we relax this restriction, and only consider budget restrictions on the adver-
sary. Then the resulting best response question becomes a bipartite maximum weight matching
problem. Nodes on the left (in this bipartite graph) represent items, and nodes on the right
represent depths (there is one node of depth 1, two nodes of depth 2, ...). And for any choice
of a depth to assign to a node, we can evaluate the value of this decision - if this decision beats
median search when searching for that element, we give the corresponding edge weight 1. If it
ties median search, we give the edge weight 1

2 and otherwise we give the edge zero weight.
We give an upper bound on the value of a maximum weight matching in this graph, hence

giving an upper bound on how well an adversary can do if he is subject to only budget re-
strictions. If we now add the combinatorial restrictions too, this only makes the best response
problem harder. So in this way, we are able to bound how much an adversary can beat median
search. In fact, we give a lower bound that matches this upper bound - so our relaxation did
not make the problem strictly easier (to beat median search).

We focus on the scenario in which |Ω| = 2r−1 and p is the uniform distribution. Throughout
this section we denote n = |Ω|. The reason we fix n to be of the form 2r − 1 is because the
optimal single-player strategy is well-defined in the sense that the first query will be at precisely
the median element, and if the element ω is not found on this query, then the problem will break
down into one of two possible 2r−1−1 sized sub-problems. For this case, we give asymptotically
matching upper and lower bounds on the beatability of median search.

Definition 9. We will call a |Ω|-dimensional vector ~u over {1, 2, ...|Ω|} a depth vector (over
the universe Ω) if there is some T ∈ X such that ~uj = cT (ωj).

Proposition 6. A |Ω|-dimensional vector ~u over {1, 2, ...|Ω|} is a depth vector (over the universe
Ω) if and only if

1. exactly one entry of ~u is set to 1 (let the corresponding index be j), and

17

2. the vectors [~u1 − 1, ~u2 − 1,~uj−1 − 1] and [~uj+1 − 1, ~uj+2 − 1,~un − 1] are depth vectors
over the universe {ω1, ω2, ...ωj−1} and {ωj+1, ωj+2, ...ωn} respectively.

Proof. Given any vector ~u that (recursively) satisfies the above Conditions 1 and 2, one can
build up a binary search tree on Ω inductively. Let ωj ∈ Ω be the unique item such that
~uj = 1 which exists because ~u satisfies Condition 1. Since ~u satisfies Condition 2, the vectors
~uL = [~u1− 1, ~u2− 1,~uj−1− 1] and ~uR = [~uj+1− 1, ~uj+2− 1,~un− 1] and hence by induction
we know that there are binary search trees TL and TR on the universe {ω1, ω2, ...ωj−1} and
{ωj+1, ωj+2, ...ωn} respectively for which ~uL(i) = cTL

(ωi) and ~uR(i
′) = cTR

(ωi′) for each 1 ≤
i ≤ j − 1 and j + 1 ≤ i′ ≤ n respectively.

So we can build a binary search tree T on Ω by labeling the root node ωj and letting the
left sub-tree to TL and the right sub-tree to TR. Since the in-order traversal of TL and of TR

result in visiting {ω1, ω2, ...ωj−1} and {ωj+1, ωj+2, ...ωn} in sorted order, the in-order traversal
of T will visit Ω in sorted order and hence T ∈ X .

Not also that cT (ωi) = 1+ cTL
(ωi) for 1 ≤ i ≤ j − 1 and similarly cT (ωi′) = 1 + cTR

(ωi′) for
j + 1 ≤ i′ ≤ n. So this implies that ~u satisfies ~ui = cT (ωi) for all 1 ≤ i ≤ n, as desired. This
completes the inductive proof that if a vector ~u satisfies Conditions 1 and 2, then it is a depth
vector.

Conversely, given T ∈ X , there is only one element ωj such that cT (ωj) = 1 and so Condition
1 is met. Let TL and TR be the binary search trees that are the left and right sub-tree of T rooted
at ωj respectively, where ”ωj” is the label of the root node in T . Again, cT (ωi) = 1+cTL

(ωi) for
1 ≤ i ≤ j− 1 and similarly cT (ωi′) = 1+ cTR

(ωi′) for j+1 ≤ i′ ≤ n so the vector corresponding
to cT does indeed satisfy Condition 2 by induction.

Claim 1. For any depth vector ~u, and any s ∈ {1, 2, ...|Ω|},

|{j ∈ [n]| such that ~uj = s}| ≤ 2s−1

Lemma 10. The beatability of median search is at least 2r−1−1+2r−3

2r−1 ≈ 5
8 .

Proof. Consider the depth vector for median search for 23 − 1 (r = 3): [3, 2, 3, 1, 3, 2, 3] and
consider a partially filled vector [2, 1, ∗, ∗, 2, ∗, ∗]. We can generate the depth vector for median
search for r + 1 from the depth vector for median search for r as follows: alternately interleave
values of r + 1 into the depth vector for r. For example the depth vector for median search
for r = 4 is [4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4]. We assume by induction that all blocks in the
partially filled vector are either ∗s or are one less than the corresponding entry in the depth
vector for median search. This is true by induction for the base case r = 3. We also assume that
the ∗s are given in blocks of length exactly two. This is also true in the base case. Then if we
consider the depth vector for median search for r+ 1, if an entry of r + 1 is interleaved, we can
place a value of r if the corresponding entry in the partially filled vector is interleaved between
two entries that are already assigned numbers. Otherwise three entries are interleaved into a
string of exactly two ∗s. The median entry in this string of 5 symbols corresponds to a newly
added r+1 entry in the depth vector for median search. At the median of this 5 symbol string,
we can place a value of r. This again creates sequences of ∗s of length exactly two, because we
have replaced only the median entry in the string of 5 symbols.

If we are given a partially filled depth vector with the property that one value 1 is placed,
two values of 2 are placed, four values of 3 are placed,... and 2r−1 values of r are placed.
Additionally, we require that all unfilled entries (which are given the value ∗ for now) occur in
blocks of length exactly 2. Then we can fill these symbols with the values r+ 1 and r+ 2, such
that the value of r+1 aligns with a corresponding value of r+1 in the depth vector for median
search (precisely because any two consecutive symbols contain exactly one value of r+ 1 in the
depth vector corresponding to median search for r + 1).

We can use Proposition 6 to prove that this resulting completely filled vector is indeed a
depth vector. How much does this strategy beat median search? There are 2r − 1 locations
(i.e. every index in which a value of 1, 2, ... or r is placed) in which this strategy beats median

18

search. And there are 2r−1 locations in which this strategy ties median search. Note that this
is for 2r+1 − 1 items, and so the beatability of median search on 2r − 1 items is exactly

lim
r→∞

2r−1 − 1 + 2r−3

2r − 1
=

5

8

Lemma 11. The beatability of median search is at most 2r−1−1+2r−3

2r−1 ≈ 5
8 .

Proof. One can give an upper bound on the beatability of median search by relaxing the question
to a matching problem. Given a universe Ω of size 2r − 1, consider the following weighted
matching problem: For every value of s ∈ {1, 2, ...r − 1}, add 2s−1 nodes on both the left and
right side with label “s”. For any pair of nodes a, b where a is contained on the left side, and b
is contained on the right side, set the value of the edge connecting a and b to be equal to 0 if
the label of a is strictly smaller than the label of b, 1

2 if the two labels have the same value, and
1 if the label of a is strictly larger than the label of b.

Let M be the maximum value of a perfect matching. Let M̄ be the average value - i.e. M
2r−1 .

Claim 2. M̄ is an upper bound on the beatability of binary search.

Proof. For any s ∈ {1, 2, ...r − 1}, the depth vector ~u(M) corresponding to median search has
exactly 2s−1 indices j for which ~u(M)j = s.

We can make an adversary more powerful by allowing the adversary to choose any vector
~u which satisfies the condition that for any s ∈ {1, 2, ...|Ω|}, the number of indices j for which
~uj = s is at most 2s−1 because using Claim 1 this is a weaker restriction than requiring the
adversary to choose a vector ~u that is a depth vector. So in this case, the adversary may as well
choose a vector ~u that satisfies the constraint in Claim 1 with equality.

And in this case where we allow the adversary to choose any vector ~u that satisfies Claim 1,
the best response question is exactly the matching problem described above - because for each
entry in ~uM because the adversary only needs to choose what label s ∈ {1, 2, ...r − 1} to place
at this location subject to the above budget constraint that at most 2s−1 labels of type ”s” are
used in total.

Claim 3. M̄ ≤ 2r−1−1+2r−3

2r−1 .

Proof. Given a maximum value, bipartite matching problem, the dual covering problem has
variables yv corresponding to each node v, and the goal is to minimize

∑

v yv subject to the
constraint that for every edge (u, v) in the graph (which has value w(u, v)), the dual variables
satisfy yu + yv ≥ w(u, v) and each variable yv is non-negative.

So we can upper bound M by giving a valid dual solution. This will then yield an upper
bound on M and consequently will also give an upper bound on M̄ .

Consider the following dual solution: For each node on the right, with label ”s” for s < r−2,
set yv equal to 1. For a node on the right with label ”s” for s = r − 2, set yv equal to 1

2 and
for each label ”s” for s = r − 1, set yv = 0. Additionally, for every node on the left, only nodes
with label ”s” for s = r − 1 are given non-zero dual variable, and set this variable equal to 1

2 .
The value of the dual

∑

v yv is 1 + 2+ ...2r−3 + 1
22

r−2 + 1
22

r−1. And so this yields an upper

bound on M̄ of 2r−1−1+2r−3

2r−1 and

lim
r→∞

2r−1 − 1 + 2r−3

2r − 1
=

5

8

19

6 Conclusions and Future Directions

The dueling framework presents a fresh way of looking at classic optimization problems through
the lens of competition. As we have demonstrated, standard algorithms for many optimization
problems do not, in general, perform well in these competitive settings. This leads us to suspect
that alternative algorithms, tailored to competition, may find use in practice. We have adapted
linear programming and learning techniques into methods for constructing such algorithms.

We have only just begun an exploration of the dueling framework for algorithm analysis;
there are many open questions yet to consider. For instance, one avenue of future work is to
compare the computational difficulty of solving an optimization problem with that of solving the
associated duel. We know that one is not consistently more difficult than the other: in Appendix
B we provide an example in which the optimization problem is computationally easy but the
competitive variant appears difficult; an example of the opposite situation is given in Appendix
C, where a computationally hard optimization problem has a duel which can be solved easily.
Is there some structure underlying the relationship between the computational hardness of an
optimization problem and its competitive analog?

Perhaps more importantly, one could ask about performance loss inherent when players
choose their algorithms competitively instead of using the (single-player) optimal algorithm.
In other words, what is the price of anarchy [12] of a given duel? Such a question requires
a suitable definition of the social welfare for multiple algorithms, and in particular it may be
that two competing algorithms perform better than a single optimal algorithm. Our main open
question is: does competition between algorithms improve or degrade expected performance?

20

References

[1] Itai Ashlagi, Piotr Krysta, and Moshe Tennenholtz. Social context games. In WINE, pages
675–683, 2008.

[2] Itai Ashlagi, Moshe Tennenholtz, and Aviv Zohar. Competing schedulers. In AAAI, 2010.

[3] Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with end-to-end feedback:
distributed learning and geometric approaches. In STOC ’04: Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages 45–53, New York, NY, USA,
2004. ACM.

[4] Felix Brandt, Felix A. Fischer, Paul Harrenstein, and Yoav Shoham. Ranking games. Artif.
Intell., 173(2):221–239, 2009.

[5] R. Burguet and J. Sakovics. Imperfect Competition in Auction Designs. International
Economic Review, 40(1):231–247, 1999.

[6] J. Feigenbaum, D. Koller, and P. Shor. A game-theoretic classification of interactive com-
plexity classes. In SCT ’95: Proceedings of the 10th Annual Structure in Complexity Theory
Conference (SCT’95), page 227, Washington, DC, USA, 1995. IEEE Computer Society.

[7] Lance Fortnow, Russell Impagliazzo, Valentine Kabanets, and Christopher Umans. On the
complexity of succinct zero-sum games. In CCC ’05: Proceedings of the 20th Annual IEEE
Conference on Computational Complexity, pages 323–332, Washington, DC, USA, 2005.
IEEE Computer Society.

[8] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In
COLT ’96: Proceedings of the ninth annual conference on Computational learning theory,
pages 325–332, New York, NY, USA, 1996. ACM.

[9] Judith L. Gersting. Mathematical Structures for Computer Science. W. H. Freeman & Co.,
New York, NY, USA, 1993.

[10] Nicole Immorlica, Robert Kleinberg, and Mohammad Mahdian. Secretary problems with
competing employers. In Paul Spirakis, Marios Mavronicolas, and Spyros Kontogiannis, ed-
itors, Internet and Network Economics, volume 4286 of Lecture Notes in Computer Science,
pages 389–400. Springer Berlin / Heidelberg, 2006.

[11] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Jour-
nal of Computer and System Sciences, 71(3):291 – 307, 2005. Learning Theory 2003.

[12] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th annual conference on Theoretical aspects of computer science, STACS’99, pages
404–413, Berlin, Heidelberg, 1999. Springer-Verlag.

[13] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979.

[14] L. Lovász and M. D. Plummer. Matching theory. Ann. Discrete Math., 29, 1986.

[15] P. McAfee. Mechanism Design by Competing Sellers. Econometrica, 61:1281–1312, 1993.

[16] D. Monderer and M. Tennenholtz. K-price auctions: Revenue Inequalities, Utility Equiva-
lence, and Competition in Auction Design. Economic Theory, 24(2):255–270, 2004.

[17] M. Peters and S. Severinov. Competition Among Sellers Who Offer Auctions Instead of
Prices. Journal of Economic Theory, 75:141–179, 1997.

[18] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
J. Comput. Syst. Sci., 43(3):441–466, 1991.

21

A Proofs from Section 2

Here we present the proof of Lemma 2. The proof follows a reduction from low-regret learning to
computing approximate minmax strategies [8]. It was shown there that if two players use “low
regret” algorithms, then the empirical distribution over play will converge to the set of minmax
strategies. However, instead of using the weighted majority algorithm, we use the “Follow the
expected leader” (FEL) algorithm [11]. That algorithm gives a reduction between the ability to
compute best responses and “low regret.”

Note, for this section, we will use the fact that xtMx′ ∈ [−C,C] for C = B3nn′ under our
assumptions on K,K ′, and M . We will extend the domain of v : Rn

≥0 ×Rn′

≥0 → R naturally

by v(x, x′) = xtMx′. For x ∈ [0, B]n and x′ ∈ [0, B]n
′

, v(x, x′) ∈ [−C,C]. Additionally, for
simplicity we will change the domains of O and O′ to Rn

≥0 and Rn′

≥0, as follows. For any

x′ ∈ Rn′

≥0, we simply take O(Bx′/‖x′‖∞) as the best response to x′ (for x′ = 0 an arbitrary

element of K, such as O(0) may be chosen). This scaling is logical since argmaxx∈K xtMx′ =
argmaxx∈K xtMαx′ for α > 0. By linearity in v, it implies that, for the new oracle O and any
x′ ∈ Rn′

≥0,

v(O(x′), x′) ≥ max
x∈K

v(x, x′)− ǫ
‖x′‖∞
B

. (3)

Similarly for O′.
Fix any sequence length T ≥ 1. Consider T periods of repeated play of the duel. Let the

strategies chosen by players 1 and 2, in period t, be xt and x′
t, respectively. Define the regret of

a player 1 on the sequence to be,

max
x∈K

T
∑

t=1

v(x, x′
t)−

T
∑

t=1

v(xt, x
′
t).

Similarly define regret for player 2. The (possibly negative) regret of a player is how much
better that player could have done using the best single strategy, where the best is chosen with
the benefit of hindsight.

Observation 1. Suppose in sequence x1, x2, . . . , xT and x′
1, x

′
2, . . . , x

′
T , both players have at

most r regret. Let σ = (x1 + . . . + xT)/T , σ′ = (x′
1 + . . . + x′

T)/T be the uniform mixed
strategies over x1, . . . , xT , and x′

1, . . . , x
′
T , respectively. Then σ and σ′ are ǫ-minmax strategies,

for ǫ = 2r/T .

Proof. Say the minmax value of the game is α. Let a = 1
T

∑

t v(xi, x
′
i). Then, by the definition

of regret, a ≥ α− r/T , because otherwise player 1 would have more than r regret as seen by any
minmax strategy for player 1, which guarantees at least an αT payoff on the sequence. Also, we
have that, against the uniform mixed strategy over x1, . . . , xT , no strategy can achieve payoff
of at least a− r, by the definition of regret (for player 2). Hence, σ guarantees player 1 a payoff
of at least α− 2r/T . A similar argument shows that σ′ is 2r/T -minmax for player 2.

The FEL algorithm for a player is simple. It has parameters B,R > 0, N ≥ 1 and also
takes as input an ǫ best response oracle for the player. For player 1 with best response orace
O, the algorithm operates as follows. On each period t = 1, 2, . . ., it chooses N independent
uniformly-random vectors rt1, rt2, . . . , rtN ∈ [0, R]m

′

. It plays,

1

N

N
∑

j=1

O

(

rtj +

t−1
∑

τ=1

xτ

)

 ∈ K.

The above is seen to be in K by convexity. Also recall that for ease of analysis, we have assumed
that O takes as input any positive combination of points in K ′.

22

Lemma 12. For any B,C,R, T, β, ǫ > 0, and any r ∈ [0, R]m
′

,

T
∑

t=1

v(O(r + x′
1 + x′

2 + . . .+ x′
t), x

′
t) ≥ max

x∈K

T
∑

t=1

v(x, x′
t)− 2CR/B − T (T +R/B)ǫ.

The proof is a straightforward modification of Kalai and Vempala’s proof [11]. What this is
saying is that the “be the leader” algorithm, which is “one step ahead” and uses the information
for the current period in choosing the current period’s play, has low regret. Moreover, one
can perturb the payoffs by any amount in a bounded cube, and this won’t affect the bounds
significantly. The point of the perturbations, which we will choose randomly, will be to make
it harder to predict what the algorithm will do. For the analysis, they will make it so that “be
the leader” and “follow the leader” perform similarly.

Proof. Define yt = r + x′
1 + . . .+ x′

t−1. We first show,

v(O(y1), r) +
T
∑

t=1

v(O(yt+1), x
′
t) ≥ v(O(yT+1), r) +

T
∑

t=1

v(O(yT+1), x
′
t)− T (T +R/B)ǫ. (4)

The facts that ‖r‖∞ ≤ R implies that v(x, r) ∈ [−CR/B,CR/B], and hence,

CR/B +

T
∑

t=1

v(O(yt+1), x
′
t) ≥ max

x∈K

(

v(x, r) +

T
∑

t=1

v(x, x′
t)

)

− T (T +R/B)ǫ

≥ max
x∈K

(

T
∑

t=1

v(x, x′
t)

)

− T (T +R/B)ǫ− 2CR/B,

which is equivalent to the lemma. We now prove (4) by induction on T . For T = 0, we have
equality. For the induction step, it suffices to show that,

v(O(yT), r) +

T−1
∑

t=1

v(O(yT), x
′
t) ≥ v(O(yT+1), r) +

T−1
∑

t=1

v(O(yT+1), x
′
t)− (R/B + T)ǫ.

However, this is just an inequality between v(O(yT), yT) and v(O(yT+1), yT), and hence follows
from (3) and the fact that ‖yT ‖∞/B ≤ R/B + T . Hence we have established (4) and also the
lemma.

Lemma 13. For any δ ≥ 0, with probability ≥ 1− 2Te−2δ2N ,

T
∑

t=1

v(xt, x
′
t) ≥ max

x∈K

T
∑

t=1

v(x, x′
t)− δCT − 2BCm′T/R− 2CR/B − T (T +R/B)ǫ.

Proof. It is clear that yt and yt+1 are similarly distributed. For any fixed x′
1, x

′
2, . . . , x

′
T , define

x̄t by,

x̄t =
1

Rm′

∫

r∈[0,R]m′

O
(

r + x′
1 + . . .+ x′

t−1

)

dr.

By linearity of expectation and v, it is easy to see that E[xt|x
′
1, . . . , x

′
t−1] = x̄t and,

E[v(xt, x
′
t) | x

′
1, . . . , x

′
t] = v(x̄t, x

′
t).

By Chernoff-Hoeffding bounds, since v(xt, x
′
t) ∈ [−C,C], for any δ ≥ 0, we have that with

probability at least 1− e−2δ2N ,

Pr
[

|v(xt, x
′
t)− v(x̄t, x

′
t)| ≥ δC

∣

∣ x′
1, . . . , x

′
t

]

≤ 2e−2δ2N .

23

Hence, by the union bound, Pr [|
∑

t v(xt, x
′
t)−

∑

t v(x̄t, x
′
t)| ≥ δCT] ≤ 2Te−2δ2N .

The key observation of Kalai and Vempala is that x̄t and x̄t+1 are close because the m′-
dimensional translated cubes x′

1 + . . . + x′
t−1 + [0, R]m

′

and x′
1 + . . . + x′

t + [0, R]m
′

overlap
significantly. In particular, they overlap in on all but at most a Bm′/R fraction [11] of their
volume. Since v is in [−1, 1], this means that

∣

∣v(x̄t, x
′
t)− v(x̄t+1, x

′
t)
∣

∣ ≤ 2BCm′/R. This follows
from the fact that v is bilinear, and hence when moved into the integral has exactly the same
behavior on all but a Bm′/R fraction of the points in each cube. This implies, that with

probability ≥ 1− 2Te−2δ2N ,

T
∑

t=1

v(xt, x
′
t) ≥

T
∑

t=1

v(x̄t+1, x
′
t)− δCT − 2BCm′T/R.

Combining this with Lemma 12 completes the proof.

We are now ready to prove Lemma 2.

Proof of Lemma 2. We take T =
(

4C
√

max(m,m′)/(3ǫ)
)2/3

, R = B
√

max(m,m′)T and N =

ln(4TC/δ)/(2ǫ2). As long as T ≥ max(m,m′), R/B ≤ T and hence Lemma 13 implies that
with probability at least 1− δ, if both players play FEL then both will have regret at most

ǫT + 4C
√

max(m,m′)T + 2T 2ǫ ≤ 4C
√

max(m,m′)T + 3T 2ǫ ≤ 12(max(m,m′)C2)2/3ǫ−1/3.

Observation 1 completes the proof.

B A Racing Duel

The racing duel illustrates a simple example in which the beatability is unbounded, the optimiza-
tion problem is “easy,” but finding polynomial-time minmax algorithms remains a challenging
open problem. The optimization problem behind the racing duel is routing under uncertainty.
There is an underlying directed multigraph (V,E) containing designated start and terminal
nodes s, t ∈ V , along with a distribution over bounded weight vectors Ω ⊂ RE

≥0, where ωe

represents the delay in traversing edge e. The feasible set X is the set of paths from s to t. The
probability distribution p ∈ ∆(Ω) is an arbitrary measure over Ω. Finally, c(x, ω) =

∑

e∈x ωe.
For general graphs, solving the racing duel seems quite challenging. This is true even when

routing between two nodes with parallel edges, i.e., V = {s, t} and all edges E = {e1, e2, . . . , en}
are from s to t. As mentioned in the introduction, this problem is in some sense a “primal”
duel in the sense that it can encode any duel and finite strategy set. In particular, given any
optimization problem with |X | = n, we can create a race where each edge ei ∈ E corresponds
to a strategy xi ∈ X , and the delays on the edges match the costs of the associated strategies.

B.1 Shortest path routing is 1-beatable

The single-player racing problem is easy: take the shortest path on the graph with weights
we = Eω∼p[ωe]. However, this algorithm can be beaten almost always. Consider a graph with
two parallel edges, a and b, both from s to t. Say the cost of a is ǫ/2 > 0 with probability 1, and
the cost of b is 0 with probability 1 − ǫ and 1 with probability ǫ. The optimization algorithm
will choose a, but b beats a with probability 1− ǫ, which is arbitrarily close to 1.

B.2 Price of anarchy

Take social welfare to be the average performance, W (x, x′) = (c(x) + c(x′))/2. Then the price
of anarchy for racing is unbounded. Consider a graph with two parallel edges, a and b, both
from s to t. The cost of a is ǫ > 0 with probability 1, and the cost of b is 0 with probability 3/4
and 1 with probability 1/4. Then b a dominant strategy for both players, but its expected cost
is 1/4, so the price of anarchy is 1/(4ǫ), which can be arbitrarily large.

24

C When Competing is Easier than Playing Alone

Recall that the racing problem from Appendix B was “easy” for single-player optimization, yet
seemingly difficult to solve in the competitive setting. We now give a contrasting example: a
problem for which competing is easier than solving the single-player optimization.

The intuition behind our construction is as follows. The optimization problem will be based
upon a computationally difficult decision problem, which an algorithm must attempt to answer.
After the algorithm submits an answer, nature provides its own “answer” chosen uniformly at
random. If the algorithm disagrees with nature, it incurs a large cost that is independent of
whether or not it was correct. If the algorithm and nature agree, then the cost of answering the
problem correctly is less than the cost of answering incorrectly.

More formally, let L ⊆ {0, 1}∗ be an arbitrary language, and let z ∈ {0, 1}∗ be a string. Our
duel will be D(X,Ω, p, c) where X = Ω = {0, 1}, p is uniform, and the cost function is

c(x, ω) =

0 if (x = ω = 1 and z ∈ L) or (x = ω = 0 and z 6∈ L)

1 if (x = ω = 1 and z 6∈ L) or (x = ω = 0 and z ∈ L)

2 if x 6= ω

The unique optimal solution to this (single-player) problem is to output 1 if and only if z ∈ L.
Doing so is as computationally difficult as the decision problem itself. On the other hand, finding
a minmax optimal algorithm is trivial for every z and L, since every algorithm has value 1/2:
for any x′, v(1− x′, x′) = Pr[ω 6= x′] = 1/2 = v(x′, x′).

D Asymmetric Games

We note that all of the examples we considered have been symmetric with respect to the players,
but our results can be extended to asymmetric games. Our analysis of bilinear duels in Section
2.1 does not assume symmetry when discussing bilinear games. For instance, we could consider
a game where player 1 wins in the case of ties, so player 1’s payoff is Pr[c(x, ω) ≤ c(x′, ω)]. One
natural example would be a ranking duel in which there is an “incumbent” search engine that
appeared first, so a user prefers to continue using it rather than switching to a new one. This
game can be represented in the same bilinear form as in Section 2.5, the only change being a
small modification of the payoff matrix M . Other types of asymmetry, such as players having
different objective functions, can be handled in the same way. For example, in a hiring duel,
our analysis techniques apply even if the two players may have different pools of candidates, of
possibly different sizes and qualities.

25

	1 Introduction
	2 Preliminaries
	2.1 Bilinear duels
	2.2 Reduction to bilinear duels
	2.3 Approximating best responses and approximating minmax
	2.4 Beatability
	2.5 A warmup: the ranking duel

	3 Hiring Duel
	3.1 Common pools of workers
	3.2 Independent pools of workers

	4 Compression Duel
	4.1 Computing an equilibrium
	4.2 Beatability
	4.3 Variant: allowed failures

	5 Binary Search Duel
	5.1 Computing an equilibrium
	5.2 Notation
	5.3 State-Action Structure
	5.4 A rounding algorithm
	5.5 Beatability

	6 Conclusions and Future Directions
	A Proofs from Section 2
	B A Racing Duel
	B.1 Shortest path routing is 1-beatable
	B.2 Price of anarchy

	C When Competing is Easier than Playing Alone
	D Asymmetric Games

