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Abstract

Miniaturizing our computers so we can carry them in our pockets has
drastically changed the way we use technology. However, mobile com-
puting is often peripheral to the act of operating in the real world, and
the form factor of today’s mobile devices limits their seamless integra-
tion into real-world tasks. Interacting with a mobile phone, for example,
demands both visual and manual focus. We describe our goal of creat-
ing always-available interaction, which allows us to transition between
mobile computing and real-world tasks as efficiently as we can shift our
visual attention. We assert that this could have the same magnitude
of impact that mobile computing had on enabling tasks that were not
possible with traditional desktop computers.

In this review, we survey and characterize the properties of sensors
and input systems that may enable this shift to always-available com-
puting. Following this, we briefly explore emerging output technologies,
both visual and non-visual. We close with a discussion of the challenges
that span various technologies, such as ambiguity, sensor fusion, ges-
ture design, and cognitive interference, as well as the opportunities for
high-impact research those challenges offer.



1
Introduction

With recent advances in mobile computing, we have miniaturized our
computers so we can carry them in our pockets (or bags or clip them
on our clothes) and have relatively convenient access to information
and computation even when we are not sitting at our desks. This has
drastically changed the way we use technology and has impacted our
work and life in profound ways. However, contrary to computing being
the primary and only task in desktop scenarios, computing in mobile
scenarios is often peripheral to the act of operating in the real world.
We believe that there remain opportunities for more tightly infusing
computational access into our everyday tasks.

At present, the form factor of typical mobile devices limits their
seamless integration into real-world tasks: interacting with a mobile
phone, for example, demands both visual and manual focus. For
example, researchers have shown that users could attend to mobile
interaction bursts in chunks of about 4–6 seconds before having to
refocus attentional resources on their real-world activity [97]. At this
point, the dual task becomes cognitively taxing as users are constantly
interrupted by having to move focus back and forth. Unfortunately,
when Ashbrook et al. measured the overhead associated with mobile
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interactions, they found that just getting a phone out of the pocket
or hip holster takes about 4 seconds, and initiating interaction with
the device takes another second [5]. This suggests that the current
status quo in mobile interaction will not allow us to integrate comput-
ing tightly with our everyday tasks.

In our work, we assert that augmenting users with always-available
interaction capabilities could have impact on the same magnitude that
mobile computing had on enabling tasks that were never before possible
with traditional desktop computers. After all, who would have imagined
mobile phones would make the previously onerous task of arranging to
meet a group of friends for a movie a breeze? Who would have imagined
when mobile data access became prevalent that we’d be able to price
shop on-the-fly? Or resolve a bar debate on sports statistics with a
quick Wikipedia search? Imagine what we could enable with seamless
and even greater access to information and computing power.

We spend a majority of this review surveying the state of the art in
novel input modalities that may allow us to transition between phys-
ically interacting with the mobile device and with the real world as
efficiently as we can shift our visual attention back and forth between
the two. We specifically assert that certain input technologies are more
likely than others to play a role in this paradigm shift, and attempt to
characterize the properties of sensors and input systems that render
them promising for always-available computing. Although this arti-
cle’s focus is on input technologies, efficient micro-interaction will also
require an approach to output that is less cognitively demanding than
current mobile displays. We thus follow our input-technology survey
with a brief exploration of emerging output technologies, both visual
and non-visual. After surveying and characterizing these technologies,
we close the review with discussion of challenges that span diverse
technologies, such as systematically handling ambiguity, sensor fusion,
gesture design and applicability, and cognitive interference associated
with using them in the real world, as well as the opportunities for
high-impact research those challenges offer.



2
Always-Available Input Technologies

In this review, we aim to provide broad appreciation for historical input
research, but to focus most of our effort on more recent technologies
and techniques we feel to be relevant to attaining “always-available
mobile micro-interactions.” Our first goal, therefore, is to scope our
survey and informally outline several requirements for always-available
mobile input that enable micro-interactions:

(1) Always-available input may require a cognitive shift to the
task for which the user demands input, but the input modal-
ity itself should not disrupt cognition. Just as I can be
engaged in conversation and briefly pause to tie my shoe
or say “hello” to a third party, an always-available input sys-
tem should require only the amount of distraction that the
underlying computing task introduces.

(2) Transitioning in and out of always-available input should be
as rapid as transitioning our visual attention from one task
to another. If an input system takes 10 seconds to access, it
is not “always-available”.

(3) Always-available input should be portable to any environ-
ment, within reason. While we do not argue that even the
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optimal technologies will work underwater, for example, we
do argue that technologies exist to provide always-available
input in environments that are novel to the user, both indoors
and outdoors.

(4) The notion of “always-available” includes scenarios when a
user’s hands are busy with other tasks: therefore, always-
available input should be at least compatible with the use of
our hands for non-computer-based tasks.

Always-available methods can range in the bandwidth of communi-
cation they support. While we believe that useful applications can
be crafted around the full range, in this review, we slightly favor
modalities that provide higher bandwidth (e.g., preferring techniques
that use detailed finger gestures over whole-body gestures). But ulti-
mately, the goal of any input technique is to capture the intent of
the user and transform it into actions that the computer can per-
form. We thus organize subsequent subsections around sensors or input
modalities we find most promising for capturing user intent in mobile
scenarios.

It should also be noted that one may dichotomize the sensor space
into sensors that are placed in the environment and ones that are placed
on the human body. While it may be reasonable to assume that certain
environmental sensors will become so prevalent as to pervade all our
computing environments, we assert that the list of interesting comput-
ing environments is constantly growing, and that there exist significant
mass deployment challenges to do this. In this survey, we favor describ-
ing the emergence of technologies that are carried or worn on the body
and that are truly mobile, and leave survey of environmental sensors
as well as projections of the eventual integration for a separate review.
In reading through the survey, we urge the reader to consider the
infrastructure and critical mass required (or not) for deploying some of
these mobile sensors, as well as to imagine the integration of these tech-
nologies with more traditional, infrastructure-dependent technologies.

To keep logical order, we begin with technologies that are already
in use today, such as inertial sensors and touch input, and proceed with
technologies that we see as increasingly forward-looking.
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2.1 Inertial Motion Sensing

We begin by looking at sensors that measure their own movement,
which — when held in a user’s hand or worn on a user’s body — allows
computers to measure movement related to users’ gestures or physical
activities.

As its name suggests, an accelerometer is any sensor that measures
its own acceleration. The most common accelerometer design used for
computer input consists of a damped mass on a spring in a rigid hous-
ing. When an external force accelerates the whole system, the mass
is displaced relative to its housing, and this displacement — which is
proportional to acceleration — is measured. This method is relatively
easy to fabricate at small scales (e.g., using microelectro-mechanical
systems, or MEMS), and is simple, reliable, and inexpensive. Most
micromechanical accelerometers are designed to be sensitive only to
a single direction in one plane. By integrating multiple devices perpen-
dicularly, two- or three-axis accelerometers can be made.

Gyroscopes are sensors that measure changes in their own
orientation, and may be constructed using any of several operating
principles. Rotating-disk gyroscopes, for example, are built by plac-
ing a spinning disk inside a non-spinning housing. When the entire
gyroscope is rotated, the disk’s inertia tends to keep it spinning in its
original plane of rotation, creating a torque or displacement between
the spinning and non-spinning parts of the gyroscope. This torque is
directly related to the applied rotation. Vibrating planes have a similar
tendency to resist rotation, a principle that allows gyroscopes to be
built based on vibrating piezoelectric materials. The latter approach is
frequently applied in modern MEMS gyroscopes, where the vibrating
element is embedded in a silicon die along with the electronics required
to measure its displacement.

The combination of these technologies has been used for sensing
ranging from braking systems in cars to monitoring commercial machin-
ery to medical applications to navigation and guidance systems. They
are also starting to see mass deployment in many modern mobile
phones. While it is outside the scope of this review to survey all appli-
cations of these sensors, we focus this subsection on recent uses that
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include hand-held devices, and perhaps more interestingly, body-worn
devices.

Perhaps the most popular recent commercial success to utilize
accelerometers for computer input is the controller that comes with
Nintendo’s Wii game console.1 This controller utilizes a combination of
optical sensors and accelerometers to provide motion sensing capability,
the basis for interaction with this device. This concept had been pre-
viously explored in academic circles: for example, Wilson and Shafer
describe a hardware device called the XWand that used a two-axis
accelerometer, a three-axis magnetometer, and a single-axis gyroscope
to sense gestures and pointing direction [148] (Figure 2.1). The use
of inertial sensing for entertainment has achieved even further success
with the incorporation of accelerometers and gyroscopes into mobile
phones, which now leverage these sensors for gaming, music synthesis,
pedometry, and a variety of other applications.

This popularization of accelerometer-based entertainment devices
and applications has inspired academic work as well, exploring various
aspects of tracking user motion with accelerometers. For example,
Rehm et al. use the Wii Remote for exploring cultural influences on

Fig. 2.1 Wilson’sand Shafer’s XWand [148] combined accelerometers with a gyroscope and
a magnetometer. Image c© ACM 2003.

1 Nintendo Co., Ltd., http://www.nintendo.com/wii.
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gestural execution [110]. Furthermore, many researchers have worked
on the core problems associated with taking the raw sensor data
and performing gesture tracking and inference. Pylvanainen describes
in great detail using hidden Markov Models to infer accelerometer
data [107], for example deriving optimal ways to normalize and rotate
an accelerometer data vector to get it aligned to the universal frame,
i.e., aligning the y-axis with gravity.

Recently, researchers have begun to explore attaching these sensors
to the body to track motion in order to control various applications.
We believe that this is a promising path to providing always-available
input. Using accelerometers on the wrist and arm, Cho et al. decode
gestures for emulating devices like TV remote controls [20] (Figure 2.2).
They focus on low-power processing and take an interesting heuristic
approach in which they manually classify which planes (XY, YZ, XZ)
are traversed by each of their gestures. They report attaining a 73%
recognition rate for 12 gestures, and find that mounting sensors on the
wrist works better than on other parts of the arm. Other researchers
have looked at sensing more minute finger gestures with minimal
instrumentation. In 1994, Fukumoto and Suenaga leveraged single-
axis accelerometers on each finger to detect when the fingers strike

Fig. 2.2 Cho et al. [20] apply lower-power, plane-crossing-based techniques to wrist- and
arm-mounted accelerometers. Image courtesy of authors.
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Fig. 2.3 Fukumoto and Suenaga [32] placed accelerometers on the fingers to detect gestures
and contact with surfaces. c© ACM 1994.

Fig. 2.4 Lam et al. [72] placed accelerometers on rings, wired to a radio transmitter (not
shown) worn on the wrist. c© IEEE 2003.

a surface [32] (Figure 2.3). They use this to provide text input through
a chorded input mechanism. Likewise, Lam et al. [72] (Figure 2.4) use
rings fitted with accelerometers. The rings are worn on four fingers,
with cables running to a wireless transmitter worn on the wrist.

Because inertial sensing has become almost ubiquitous in mobile
phones, applications have also begun to emerge in which a phone’s
embedded accelerometers and gyros are used for always-available input.
Though we have specifically scoped our definition of “always-available”
to exclude scenarios where a user has to reach into his pocket to access a
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device, Hudson et al. [53] leverage a phone’s built-in accelerometer even
while it is still in the user’s pocket, to sense what they label “Whack
gestures”. Using their technique, a user can slap the device that is still
residing in a pocket or backpack to communicate a small amount of
information, essentially enabling low-bandwidth, but always-available,
interaction. For example, a user might “whack” a phone that is still in
his or her pocket to silence the phone’s ringer.

2.2 Touch Sensing

While inertial sensing already plays an important role in mobile input,
it may lack the precision for high-bandwidth tasks like text entry and
object selection. In this section, we will discuss technologies that lever-
age our precise control over our fingers for mobile input, using both
mechanical and electrical sensing.

A conventional technology that has been explored for mobile input is
the button-based keyboard: various conceptualizations of the keyboard
have enabled lightweight, one-handed, mobile use through chording
and sequencing (e.g., the Twiddler,2 studied in Ref. [78]) (Figure 2.5).
This approach has achieved significant commercial success for mobile
input, particularly since the advent of T93 and similar predictive input
schemes. However, we do not believe that input techniques requiring a
device held in a user’s hand can be truly “always-available”: the time
required to access such a device (whether a phone or a standalone key-
board), and the incompatibility with any tasks occupying the user’s
hands or otherwise prohibiting manual interaction, separate keyboard-
based input from truly always-available input.

Moving beyond mechanical buttons and actuators, which necessarily
separate the input and output media used for interaction, various sens-
ing technologies allow users to interact directly on the surface used for
information display. While traditional mechanical buttons also of course
require the user to “touch” the input device, “touch input” has come to
refer to these technologies that allow co-located display-based output
and touch-based input. Chang et al. overview of some of the sensing

2 Handykey Corporation, http://www.handykey.com.
3 Nuance Communications, Inc., http://www.t9.com.
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Fig. 2.5 The Twiddler hand-held keyboard allows one-handed, mobile text entry using
physical buttons. Image from Lyons et al. [78], c© IEEE 2004.

mechanisms underlying touch-input systems [18]. These include resis-
tive and capacitive sensors, surface acoustic wave transmission, and
infrared or color cameras. Some of these mechanisms can be equally
applied to either the finger or a stylus, while others apply exclusively
to one or the other.

Bill Buxton provides historical perspective on touch-sensitive
devices in [16], capturing the evolution of touch input from mechan-
ical transducers to what we know today as touch-sensitive surfaces
(e.g., Microsoft Surface 2.04). He additionally postulates several short-
comings of touchscreen technologies, namely: (a) the sole reliance on
visual feedback to operate the interface means that if you are blind or
otherwise cannot focus visual attention to the display, you cannot use
this interaction style; (b) even when you can dedicate visual attention,

4 Microsoft Corp., http://www.microsoft.com/surface/.
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many of the displays attached to these devices do not work well in
extreme lighting conditions, such as under direct sunlight; (c) virtually
all handhelds relying on touchscreens require both hands to operate;
and (d) finger interaction is generally much less precise than interaction
with a physical stylus.

Hence, we make the same argument regarding the increasingly ubiq-
uitous mobile touchscreen, most commonly constructed using capaci-
tive sensing. While touch-based mobile devices are extremely portable,
they are still devices that a user must retrieve from storage prior to
interaction (a time-consuming operation relative to the fluidity of our
cognitive and visual attention), and they are still obstructions to every-
day tasks that require our hands. I can send a text message from my
mobile phone or I can carry my grocery bags, ride my bike, walk my
dog, hold my child, etc. But using modern touch-based devices I cannot,
so to speak, “have my hands and use them too.”

Interestingly, Saponas et al. present a technique called PocketTouch
that allows a user to interact with their capacitive touchscreen through
fabric, that is, without ever taking the device out of their pocket or
bag [124]. Various other researchers have been pushing instead on the
boundary of touch screens that do not require storage and that stay
out all the time to achieve the always-available vision. The nanoTouch
project explored techniques for interacting on the back of devices with
extremely small screens (∼2.4 inch) [11] (Figure 2.6). This eliminated
occlusion of the screen by the fingers, and opened an area of study
motivated by creating devices that never had to be put away. Extend-
ing observations from this work, Holz and Baudisch describe RidgePad,
a touch sensing technique that records the user’s fingerprint on the
screen, in addition to basic positional data. This not only provides user
identification, but also uses the inferred 3D posture of the finger to
improve tracking [49] (Figure 2.7). Asserting that the wristwatch is a
device that is quick to access for micro-interactions, Ashbrook et al.
explore interaction techniques based on a circular touchscreen wrist-
watch [6]. They consider three types of inter-target movements for var-
iously sized buttons placed around the rim, and derive a mathematical
model for error rate given a movement type and angular and radial
button widths.
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Fig. 2.6 Baudisch et al. explore interactions on the back of very small devices in their
nanoTouch project [11]. c© ACM 2009.

Fig. 2.7 Baudisch et al.’s RidgePad [49] project uses fingerprint patterns to improved finger
tracking for touch input. c© ACM 2010.

More generally, Ni and Baudisch survey candidate techniques for
gesture-based interactions with “disappearing mobile devices” [91].
They report on results of two studies investigating affordances of these
devices, focusing on marking and text entry using a gesture alphabet.
Similarly, Gustafson et al. describe Imaginary Interfaces which is a
concept they used to explore the extent to which users could spatially
interact with screen-less devices and interfaces that existed only in the
imagination [40] (Figure 2.8). They find that short-term memory could
at least partially replace conventional visual feedback, and that users
could create simple drawings, annotate existing drawings, and point at
precise locations described in imaginary space.
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Fig. 2.8 Gustafson et al. [41] explore users’ execution of gestures for “Imaginary Interfaces.”
c© ACM 2010.

Beyond mobile input devices, touch-sensitive surfaces integrated
into walls and furniture have recently received tremendous aca-
demic and commercial attention (e.g., [41], Perceptive Pixel’s Multi-
touch Display and Multi-touch Wall,5 Microsoft Surface6). While this
approach offers increasingly natural input, it depends on significant
environmental modification, and — even more than camera-based
sensing — constrains the location and behavior of a user even within
an instrumented environment. Therefore, we similarly expect that envi-
ronmentally instrumented surfaces are unlikely to be central to the
emergence of always-available micro-interactions.

2.3 Computer Vision

While touch sensing offers high precision for two-dimensional interac-
tions, it limits the interaction space to a physical surface. This con-
strains both the environments in which touch will be practical (a user
needs to be able to approach and manipulate the input device) and
the vocabulary of possible gestures the modality can support. In this
section, we explore techniques that use computer vision to extend user

5 Perceptive Pixel, Inc. http://www.perceptivepixel.com.
6 Microsoft Corp., http://www.microsoft.com/surface.
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input to three dimensions and relax the requirement that input requires
mechanical contact with a sensor.

Computer vision — roughly defined as analyzing patterns collected
from an array of light sensors — has received extensive attention from
computer scientists for applications ranging from medical image analy-
sis to robot navigation. And perhaps no technology has received more
attention as a means to hands-free interaction between humans and
computers. Note that we say “hands-free” here, rather than “always-
available”. In this section, we will explore this dichotomy, and discuss a
variety of ways in which computer vision can be applied to HCI, and
ultimately to mobile interaction.

2.3.1 Environmentally-Situated Cameras

First and foremost, the HCI and computer vision communities have
extensively explored the use of environmentally situated cameras for
analyzing gestures, particularly hand gestures (e.g., [13, 69, 81, 104,
135]). This approach has received some commercial success as well,
particularly through incorporation into gaming consoles, most notably
the PlayStation Eye,7 which leverages a color camera for coarse ges-
ture interpretation, and the Nintendo Wii,8 which leverages a hand-
held infrared (IR) camera and an environment-mounted IR emitter
to localize the handheld device relative to the emitter. Wachs et al.
survey sensing technologies for hand gesture recognition based on envi-
ronmental cameras, and discuss emerging applications for recognizing
hand gestures [99].

More recently, the use of “cameras” to interpret user input has
been broadened to include vision-based 3D sensors (e.g., [150, 149]).
Microsoft’s Kinect9 represents perhaps the first application of this
approach to consumer scenarios, leveraging a depth-sensing camera for
gesture interpretation.

While the use of environmentally situated cameras is promising for
scenarios where a camera is available, and while the decreasing cost

7 Sony Computer Entertainment, http://us.playstation.com/ps3/accessories/playstation-
eye-camera-ps3.html.

8 Nintendo Co., Ltd., http://www.nintendo.com/wii.
9 Microsoft Corp., http://www.xbox.com/en-US/kinect.
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of charge-coupled devices (CCDs) and other light sensors allows cam-
eras to be deployed in more and more environments, we argue that the
environment will never be sufficiently instrumented to build “always-
available” interactions around environmentally-situated cameras. We
thus devote the remainder of this section to applications of vision-
based interaction that have perhaps received less attention than envi-
ronmentally situated cameras, but may offer a more feasible path to
always-available interaction.

2.3.2 Gaze Tracking

The majority of the technologies we discuss in this survey leverage our
hands for input. However, significant industrial and academic attention
has also been paid to using our eyes for input, through various forms
of gaze tracking (e.g., [42, 28, 29, 86, 90]). Mobile approaches to eye
tracking are even becoming plausible, as an increasing set of mobile
devices — and potentially even glasses or contact lenses — incorporate
sensors capable of following a user’s gaze. This holds significant promise
not only for motor-impaired users, but also for collecting implicit infor-
mation about a user’s attention. But it is precisely that tight implicit
link to attention that we argue prohibits the use of gaze tracking in
always-available input systems. However, since it is hard for a human to
decouple their eyes from their attention, it remains difficult to harness
gaze as a conscious input stream.

2.3.3 On-Body Cameras

Although environmentally situated cameras offer great potential for
hand gesture recognition, we argue above that this approach will not
generalize to always-available, mobile interaction. However, an alterna-
tive approach — mounting cameras on a user’s body — may leverage
the potential of computer vision in a mobile input system. The Sixth-
Sense project [86] (Figure 2.9), for example, envisions a color camera
worn in a hat or pendant that looks down on a user’s hands, sensing
and interpreting hand gestures in any environment. This work proposes
the incorporation of a head- or pendant-mounted projector that would
allow not only in-air gestures, but also interaction with a projected user
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Fig. 2.9 The SixthSense project [86] envisions a color camera worn on a pendant that uses
computer vision to recognize hand gestures. Courtesy Pranav Mistry.

interface. A similar form factor is used by Starner et al.’s Gesture Pen-
dant [133] (Figure 2.10), which employs a neck-worn infrared camera
and emitter for illuminating and sensing the hand.

Ahmad and Musilek [1] (Figure 2.11) explore a different form factor,
mounting a camera on the palm side of a user’s wrist, pointing toward
the hand. The camera monitors the fingertips and can classify finger
movements in two dimensions, offering a vision-based approach to cap-
turing finger gestures that is perhaps applicable to always-available
interaction. This system also demonstrates the use of arm movement
for continuous control (e.g., cursor movement) using the same sensor
configuration. A user can move his/her fingers out of the camera’s field
of view and switch the system into a pointing mode, in which the
camera looks at the scene in front of the user and maps optic flow (an
estimation of the overall movement of the scene, which in this case cor-
responds to arm movement, since the camera is attached to the user’s
arm) to cursor position.
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Fig. 2.10 Starner et al.’s Gesture Pendant uses a neck-worn IR camera and emitter for
illuminating and sensing the hand [133]. c© IEEE 2000.

Fig. 2.11 Ahmad and Musilek [1] place a camera underneath the wrist, looking out toward
the hand, to interpret finger and arm gestures. c© IEEE 2006.

2.4 Mouth-Based Interfaces: Speech and Beyond

The majority of the technologies we have discussed so far attempt
to leverage our manual dexterity for computer input, building on
the legacy of hand-and-finger-based input devices (particularly the
mouse and keyboard) but addressing mobile scenarios where traditional
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devices are impractical. However, all of these approaches share a
common drawback: many real-world tasks require one or both hands,
which sets a boundary on the scenarios where hand-based interac-
tion with a computer will be appropriate. We can, however, decou-
ple another important motor sub-system — speech — from many of
our everyday tasks that require our hands. Controlling a computer via
speech input does not require our hands and is extraordinarily portable,
and — in many cases — does not interfere with “real-world” tasks.
I can communicate with my computer using speech while I carry the
groceries, ride my bike, drive a car, etc. In fact, perhaps the most
successful commercial application of voice recognition in mobile envi-
ronments is the use of voice input to dial and manipulate a phone while
operating a vehicle. It would thus seem that speech is optimally poised
to enable the mobile micro-interactions that we propose will lead to
always-available computing.

However, other drawbacks of speech input render it unsuitable as a
modality for micro-interaction. Most notably, conversation is perhaps
the most precious “real-world” activity with which we would like our
computing not to interfere, a requirement that speech input will almost
certainly be unable to meet. Less obvious, perhaps, is the fact that the
verbal nature of the human stream of consciousness results in a high
level of interference between the use of speech and almost any cognitive
task (Shneiderman [128] discusses the cognitive limitations associated
with speech recognition interfaces). Furthermore, significant technical
limitations call into question the ultimate performance of speech inter-
faces in real-world environments, and the strong association between
social interactions and speech has raised further criticism of the role
of speech in UIs. Starner [134] breaks down some of these social and
technical limitations in more detail.

We therefore label speech recognition as perhaps the most contro-
versial of the technologies we discuss in this review, in terms of its long-
term role in mobile interaction. In this section, we will highlight recent
approaches to bringing speech recognition to mobile interfaces, but fur-
ther research is required to determine whether speech-based interfaces
will be viable for mobile interactions in arbitrary environments.
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2.4.1 Speech Input on Mobile Devices

Speech input does not represent an emerging sensor or modality per se,
so a complete discussion of speech recognition in mobile environments is
beyond the scope of this review. However, speech technology continues
to evolve and has so much to offer for always-available interaction that
we will overview some of the main challenges and trends in this space.

First and foremost, the traditional problem of transcribing even
highly-controlled speech patterns comes with a host of challenges that
are unique to the mobile space (Cohen [23] discusses some of the major
issues faced by commercial efforts in mobile speech recognition). Low-
level acoustic modeling becomes fundamentally more difficult than
in the desktop or telephony spaces, due to unpredictable and often-
noisy environments, and unpredictable and often less-than-optimal
placement of the microphone relative to the user. This is of course
magnified in the scenarios we focus on in this review: speech recogni-
tion is challenging enough even when a user can be expected to hold
a microphone close to his or her mouth. In many “always-available”
scenarios, we might not be able to make this assumption, greatly exac-
erbating signal-to-noise problems. Furthermore, mobile scenarios often
come with the challenge of restricted computational resources or an
increased reliance on network connectivity. Consequently, recent algo-
rithmic research focuses not only on traditional speech recognition
problems, but also on adaptations that are specifically necessary for
the mobile scenario, for example the reduction of sporadic noise [50],
the fusion of multiple recognition algorithms to increase robustness [89],
and low-computational-cost speaker adaption [73].

In addition to these low-level acoustic issues, using speech for
always-available mobile interactions poses some higher-level challenges.
For example, one of our criteria for always-available interaction is mini-
mal cognitive overhead associated with transitioning in and out of inter-
action. Fulfilling this requirement for speech input requires not only
accurate recognition, but also accurate recognition of natural speech
patterns that do not require the user to concentrate on producing rec-
ognizable speech. As a result, research on handling natural expressions
of uncertainty (such as “something like” or “I don’t know”) [102] and
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research on robust recognition in the presence of vocalized hesitation
(such as “ummm” or “errr”) [36] will be critical for the success of even
the simplest always-available mobile speech interfaces.

Furthermore, an always-available, speech-based interface needs to
be listening constantly to its environment, which comes with a partic-
ularly difficult segmentation problem: the system has to differentiate
ambient conversation from commands or dictation intended for the
interface. This is especially difficult for dictation or text entry inter-
faces that need to handle interruptions in dictation that are demar-
cated only by affective qualities in the user’s voice (e.g., a change in
my tone as I order my coffee in the middle of dictating an email).
But even for “command and control” interfaces in which the system
need only interpret a finite set of commands, those commands may be
embedded in natural speech as well (e.g., I might just be talking about
“checking my email”, without wanting to actually check my email) or
at the very least may be acoustically similar to conversational speech
that should not be interpreted by the system. Consequently, proper
handling of continuous audio for speech recognition is another problem
that will be critical to always-available speech interfaces. Paek et al.,
for example, explore probabilistic models for continuous listening [101],
while Lunsford et al. [76, 77] explore the behavioral and acoustic cues
that can help distinguish system-directed from conversational speech.

Finally, always-available speech interfaces will need to compensate
for the fact that an error-prone or slow system breaks our “low cog-
nitive overhead for transitions in and out of interaction” requirement
just as surely as requiring unnatural speech. Therefore, research
into graceful handling of errors and ambiguity at the UI level, and
UI paradigms for rapid transition in and out of speech interfaces,
is just as important as the aforementioned research into improving
low-level recognition. For example Paek et al. [100] explore statistical
models that predict a user’s likely actions in a speech-based UI, which
both improves recognition and reduces the net interaction time for
frequent interactions, and Paek et al. [103] propose a mechanism for
graceful fallback to another modality (in this case touch) when speech
recognition errors or uncertainties occur. Goto et al. [35] address the
“continuous listening” problem through a novel UI paradigm: allowing
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the user to indicate system-directed speech by varying vocal pitch,
and further extend this work to incorporate other “meta-speech” cues,
particularly the inclusion of non-vocalized utterances to delineate
system-directed speech [37, 38].

2.4.2 Non-Speech Voice Input

Though communicating with computers through speech is intuitive and
high-bandwidth, many criticisms of speech as an interface mechanism
stem from its social intrusiveness. In particular, speech-based interac-
tion with a computer during a conversation is extremely unlikely, even
in an era where typing and interacting with mobile devices during con-
versation has become commonplace. Given that this limitation may
be deeply embedded in human social behavior, it is worth exploring
approaches that leverage the benefits of speech input while bypassing
this limitation.

In particular, recent work has shown that it is possible to detect
speech-like movement of the mouth, face, and throat even when no
sound — or sound that is inaudibly quiet — is produced. Denby
et al. [27] provide an excellent overview of a variety of technologies that
show promise in this area. Perhaps the most well-developed of these is
surface electromyography (sEMG) applied to the face and throat, which
attempts to recognize the patterns of muscle activation required to con-
trol speech production (Figure 2.12). Jorgensen and Dusan [61] explore
sEMG-based subvocal speech detection, and Jorgensen and Binsted [60]
even provide a demonstration of this approach used to drive a Web
browser. Promising but less-developed approaches include the use of
ultrasound images of the tongue and lips to recognize movements
that indicate speech patterns [54], extremely sensitive microphones
that detect whisper-level speech but reject environmental sound (non-
audible murmur microphones) [140], and even the use of implantable
brain–computer interfaces for monitoring the areas of the brain that
are associated with low-level speech production [14]. While this invasive
approach is not feasible for general-purpose applications, it does pro-
vide a window onto the low-level signals that control speech production
and may inform the development of more practical approaches, such as
Jorgensen et al.’s work in sEMG-based speech recognition.
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Fig. 2.12 sEMG applied to the throat can recognize the patterns of muscle activation
required to control speech production. Image courtesy NASA Ames Research Center,
Dominic Hart.

These approaches all attempt to use a modality other than sound
to detect the processes normally associated with speech. An alternative
approach uses sounds produced by the mouth that are not normally
considered speech to drive computer interfaces. While this approach
does not necessarily address the social compatibility problems that
speech-based interfaces pose in mobile scenarios, it does overcome
another limitation of speech-based control: speech is an excellent mech-
anism for controlling discrete values (such as text streams), but does not
offer a natural mode of control for continuous parameters. Recent lines
of work attempt to overcome this limitation by recognizing continuous
voice parameters that a user can easily control. For example, Harada
et al. [43] map the volume of a user’s voice to continuous parameters in
a drawing application (e.g., brush size, opacity), a multimodal approach
to harnessing non-spoken voice parameters. Igarashi and Hughes [57]
harness both the volume and the pitch of a user’s voice during held
vowels that are embedded within a speech control stream. For example,
this work allows a user to control a TV’s volume by saying “volume up,
ahhhh”, where the volume continues to increase as long as the user says
“ahhhh”. This hybrid approach — part speech, part non-text voice —
offers an interesting approach to overcoming at least one limitation of
speech recognition: its inherently discrete nature.
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2.4.3 Tongue Input

While not directly related to speech recognition, another approach
that turns the mouth into an input device involves sensing tongue
movement. While this approach does not offer the bandwidth of speech
recognition, it does potentially offer subtlety and silence, and may be a
valuable input modality for low-bandwidth discrete input. Challenges
arise, of course, in non-intrusively instrumenting a user’s mouth. This
problem has not been definitively solved yet, but a variety of sens-
ing approaches have been explored. Peng et al. [105] explore perhaps
the most straightforward approach: mounting a series of buttons in
a user’s mouth on a retainer-like apparatus; they present a wireless
system capable of sensing and transmitting activation events on five
membrane-covered switches. Huo et al. present the “Tongue Drive”
system [56], which uses a magnet secured to the tongue (by adhesive,
piercing, or clip) and a head-mounted magnetic sensing system to mon-
itor tongue movements. They demonstrate over 95% accuracy for six
discrete gestures. Strujik employs a related approach with less external
visibility, using a tongue-mounted magnet and retainer-mounted induc-
tor coils to sense tongue movement [137]. Finally, Saponas et al. [115]
(Figure 2.13) use retainer-mounted infrared sensor/emitter pairs to
classify four discrete tongue gestures with >90% accuracy.

Most of these efforts to sense tongue movement are targeted toward
accessibility applications, for example [55] explore the use of the Tongue

Fig. 2.13 Saponas et al. [125] use retainer-mounted infrared sensor and emitter pairs to
classify tongue gestures. c© ACM 2009.
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Drive system as a control scheme for patients with spinal cord injuries.
However, with sufficient miniaturization of the sensor apparatus, this
approach may complement other approaches to always-available input
by providing a covert, hands-free, discrete input stream.

2.5 Brain–Computer Interfaces

We asserted earlier in this review that “the goal of any input technique
is to capture the intent of the user and transform it into actions that
the computer can perform”. What better way to capture a user’s intent
than to measure it directly, by capturing the electrical potentials that
constitute a “thought” within the human brain? This is the broad goal
of “brain–computer interfaces” (BCIs), and in this section we will dis-
cuss several sensing modalities used for sensing brain activity and their
appropriateness for always-available, mobile micro-interactions.

Before discussing individual sensing technologies for BCIs, we will
first summarize the theme of this section, by applying the criteria that we
laid out above for always-available mobile input to brain–computer inter-
faces. Eventually, brain–computer interfaces may be fantastically appro-
priate for mobile interfaces: they provide by construct faster transitions
in and out of communication with a computer than any other modality
(requirement “2”), and they are by construct hands-free and compat-
ible with a huge variety of physical tasks (requirement “4”). However,
we believe that BCI technology may be several decades away from even
letting us assess the practicality of brain–computer interfaces for every-
day mobile interactions, and even further from deploying such interfaces.
Sensors with sufficiently high bandwidth for most interface needs are
prohibitively invasive, and non-invasive sensors have inadequate band-
width and/or are prohibitively non-portable and expensive for real-world
use. We do highlight that none of this precludes the applicability of
these technologies to accessibility scenarios, where both portability and
invasiveness need to be assessed against different criteria.

2.5.1 Implantable BCIs

Brain–computer interfaces may ultimately demonstrate the best per-
formance when sensors are placed closest to the neurons (nerve cells)
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Fig. 2.14 Intracortical electrode arrays are surgically placed on the surface of the brain,
and can record the electrical activity of several hundred brain cells. Image courtesy John
Donoghue and Matthew McKee/BrainGate Collaboration.

that carry the brain’s electrical signals. Intracortical electrodes, in par-
ticular, allow direct recording of the activity in a subset of the brain’s
neurons (Figure 2.14) through very small electrodes driven directly into
brain tissue, so their tips are adjacent to individual brain cells. This
approach offers relatively high bandwidth; in fact, implanted electrodes
haveallowedmonkeys todirectly control a three-dimensional cursor [152],
and early results show that recording systems implanted in the brains of
motor-impaired humans may also offer direct control of computer sys-
tems (e.g., on-screen cursors) [26, 68].However, bioengineering challenges
remain before these systems will be practical for long-term use [93, 113],
and — more critically — this level of invasiveness is prohibitive for typical
mobile interactions for the foreseeable future.

2.5.2 Electrocorticography (ECoG)

An intermediate level of invasiveness has attracted both research and
clinical attention recently: electrocorticography (ECoG) uses electrodes
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Fig. 2.15 Electrocorticography uses electrodes placed inside the skull — but not in brain
tissue — to record activity from a large area of the brain. Image courtesy Eric Leuthardt.

placed on the surface of the brain (inside the skull) to record elec-
trical activity with slightly lower temporal and spatial precision than
intracortical electrodes (Figure 2.15), but with significantly less risk to
patients. Although the idea of having anything placed on the surface of
the brain may seem daunting and invasive to typical consumers, ECoG
is considered only semi-invasive — and comparably quite safe — by
neurosurgical standards, and has already achieved widespread clinical
use for a variety applications. And as with intracortical electrodes, early
results show that ECoG may have sufficient bandwidth for direct con-
trol of computer input signals [71, 106, 120], perhaps far more than elec-
troencephalography (EEG), discussed below. However, despite being
considered quite safe for clinical applications where the benefits far
outweigh the risks, this approach is still prohibitively invasive for typ-
ical mobile input.

2.5.3 Electroencephalography (EEG)

In contrast to these more invasive, surgically-inserted sensors, electro-
encephalography (EEG) uses electrode plates on the surface of the scalp
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Fig. 2.16 Electroencephalography is non-invasive and relatively inexpensive, but does not
provide high-resolution information about brain activity.

to record electrical activity from the brain (Figure 2.16). The benefit of
this approach, relative to more invasive ECoG or implantable systems,
is a huge reduction in invasiveness: EEG is safe and painless. Further-
more, EEG can potentially be quite inexpensive: although high-quality
amplifiers are required to process the extremely weak signals measured
on the scalp, such amplifiers are falling in cost thanks to their use in
other applications, so an EEG system could potentially be made avail-
able at consumer price points [74]. And while EEG does require a grid
of electrodes placed on the head, a complete EEG system is relatively
portable (compared to fMRI or similar imaging technologies, discussed
below). Most importantly, early evidence shows that EEG signals can
be used to decode some degree of user intent, and in some cases EEG
may offer sufficient bandwidth for direct control of a computer, partic-
ularly for accessibility scenarios [33, 82, 83, 121, 122]. EEG may even
have potential to allow the control of three-dimensional continuous out-
put signal [12].

All of this potential comes at a cost, though: a tremendous amount
of detail is lost as electrical signals propagate through the skull and
underlying tissue, leading to much lower spatial and temporal precision
than ECoG or implant-based recordings. Consequently, EEG has very
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limited bandwidth and may ultimately be restricted to implicit sensing.
Furthermore, although explicit control is possible, it requires intense
focus at present and has not been shown to be feasible for a large slice of
users [31]. In other words, using EEG for computer interfaces currently
requires too much cognitive attention to be useful. Therefore, EEG
may ultimately be most appropriate for implicit sensing, particularly in
research environments, where it has already been harnessed for several
implicit input paradigms: human-aided computer vision [64], cognitive
load assessment [39], and task classification [74].

2.5.4 Functional Near-Infrared Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) measures the reflectance
of infrared light directed into the skull, which has been shown to vary
with the underlying brain activity as a consequence of changes in blood
flow patterns (Figure 2.17). fNIRS shares many properties with EEG:
it is non-invasive, relatively cheap, and relatively portable, but lacks
the spatial or temporal bandwidth required for direct control, and thus
is likely unsuitable for mobile input. However, fNIRS — like EEG —
holds tremendous potential as an implicit measurement tool for human–
computer interaction (HCI) [34, 46, 92, 130, 119].

Fig. 2.17 Functional near-infrared spectroscopy is non-invasive and inexpensive, but prob-
ably lacks the bandwidth for direct-control brain–computer interfaces. c© ACM 2009.
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Fig. 2.18 Magnetoencephalography offers better temporal precision than EEG or fNIRS,
but is non-portable and expensive, and probably still lacks the bandwidth for direct-control
brain–computer interfaces. Courtesy National Institute of Mental Health, National Insti-
tutes of Health, Department of Health and Human Services.

2.5.5 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) leverages the magnetic field created
by the brain’s electrical activity to assess brain activity (Figure 2.18).
MEG offers better temporal precision than EEG or fNIRS, and is
also non-invasive, but still likely lacks the spatial precision and over-
all bandwidth required for direct control applications. Perhaps more
importantly, MEG equipment is extremely large and expensive (in fact
requiring a magnetically-shielded room), with no clear path to reduc-
tion in size or cost, so it likely remains a research technology for the
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foreseeable future, and is an unlikely candidate for always-available
input. With that said, the underlying data stream indeed contains
information about motor intent [84, 145, 146] that may complement
other technologies in motor control research.

2.5.6 Functional Magnetic Resonance Imaging (fMRI)

Finally, functional magnetic resonance imaging (fMRI) has received
some attention in recent BCI research [109, 112] (Figure 2.19). fMRI
leverages the fact that changes in neural activity in the brain result in
changes in local blood flow, which in turn result in changes to the local
magnetic resonance. Magnetic resonance can be measured by apply-
ing a magnetic field to the brain and measuring consequent photon
emissions (the principle upon which all magnetic resonance imaging
(MRI) is based). Like EEG, fNIRS, and MEG, fMRI is non-invasive.
Like MEG, however, it demands an extremely large magnet and a large,
expensive sensor unit, with no obvious path to miniaturization. Fur-
thermore, because fMRI depends on changes in blood flow, which lag
behind electrical activity, the fMRI signal is both delayed and smoothed
relative to the underlying brain activity, resulting in poor temporal pre-
cision (on the order of seconds). Consequently, fMRI is unlikely to play

Fig. 2.19 fMRI can non-invasively monitor brain activity, but requires large, expensive
equipment and offers poor temporal precision. Courtesy Tor Wager.
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a role in always-available interfaces in the foreseeable future. However,
fMRI continues to be a tremendously valuable research technology for
studying the neural correlates of high-level cognition, yielding signals
corresponding to prosody [112], language processing [63, 87], and object
perception [17, 65]. fMRI therefore may impact the future of (poten-
tially portable) BCIs, even if fMRI itself is constrained to research
environments.

2.6 Muscle-Computer Interfaces

The previous section highlights the major challenge with BCIs as a
supporting technology for always-available interfaces: though the elec-
trical activity of the brain represents an appealing target for sampling
a user’s intent, the relevant signals are simply too complex and too
difficult to access for practical direct-control applications right now.
However, directly recording the electrical activity of a user’s muscles
represents an interesting intermediate: still a clear representation of a
user’s intent, and still measurable without requiring the user to hold a
physical device in her hand, but much more accessible than the signals
underlying BCIs.

When we initiate a voluntary motor action — for example, moving
a limb or tensing our muscles without moving — the brain sends an
electrochemical signal through the spinal cord. This signal is very simi-
lar to the signals brain cells use to communicate with each other, which
is the signal sensed directly or indirectly by all the sensors discussed in
the previous section. When this signal reaches the muscle, it continues
to travel up and down the length of a muscle using a similar mechanism,
and muscle cells respond by contracting. This signal can be measured as
it propagates through the musculature by inserting electrodes through
the skin and into the muscle, a measurement technique known as elec-
tromyography (EMG). However, for purposes of this review we assume
that needle insertion is unlikely to be practical for consumer interfaces
in the foreseeable future, due to concerns around both safety and com-
fort. Fortunately, the same signal can also be measured by placing elec-
trodes on the surface of the skin, a measurement technique known as
surface electromyography (sEMG) (Figure 2.20). sEMG senses electrical
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Fig. 2.20 Surface electromyography (sEMG) allows non-invasive measurement of electrical
muscle activity [117]. c© ACM 2008.

muscle potentials through metal electrodes placed against the skin, gen-
erally permanently plated in an electrolyte (often silver chloride) that
enhances conductivity, along with a conductive gel that is applied each
time the sensors are put on. sEMG provides lower signal amplitude and
a lower signal-to-noise ratio than needle-based EMG, but provides a sig-
nal that is much higher-amplitude than that provided by, for example,
EEG (millivolts instead of microvolts). This affords significant toler-
ance to environmental noise compared to electrical brain sensing. More
importantly, the signals one observes through EMG or sEMG are com-
plex, but much simpler than those observed through EEG. Roughly
speaking, higher-amplitude EMG signals correspond to more muscle
contraction, whereas an EEG signal collected from almost anywhere
in the brain is a very complex function of perception, motor intent,
high-level cognition, etc.

Another important factor supporting the plausibility of sEMG as an
interface technology is the location of the musculature controlling the
hands and fingers. Humans possess great dexterity in our hands, which
is why most of the computer input devices we use today are designed
for communication through our fingers. The muscles that control our
hands and fingers (with the exception of the thumb) are located on the
forearm, several inches away from the hand, connected to the skeleton
of the hand by a complex system of tendons. This suggests that a
computer input system could sense these muscles — and hence sense
finger movements or intended finger movements — with an armband
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that does not constrain a user’s ability to interact normally with the
physical world through his fingers. The remainder of this section will
look at several research projects that attempt to realize this vision.
We do not survey the long history of sEMG in clinical applications, such
as monitoring muscle progress during rehabilitation, but rather refer
the reader to Ref. [126] for a survey of this space; similarly, we do not
survey the application of sEMG for control of prosthetic devices, but
rather refer the reader to Ref. [96]. Furthermore, a detailed discussion
of the signal processing and machine learning techniques used in the
work discussed is beyond the scope of this review; for reviews of these
techniques, see Refs. [85, 108]. Instead, we focus on work applicable to
consumer scenarios, and discuss the strengths and weaknesses of several
research projects.

Saponas et al. [117] use a surface EMG sensors placed on the upper
forearm to classify a user’s finger movements via supervised machine
learning. This work demonstrated that it was possible to discriminate
among fingers tapped and on a surface and lifted off that surface using
the sEMG signal, with classification accuracies in the vicinity of 75–
90% for five- and six-class problems. However, this work suffered sev-
eral practical limitations. The system assumed a relatively static hand
(resting on a table). This work also relied on an expensive, large, wired
apparatus, including impractical conductive gel (suitable for medical
applications, but likely unsuitable for consumer applications). This
apparatus required an experimenter to apply several sensing electrodes
manually, a time-consuming process. Perhaps most significantly, this
work assumed that a user would train a supervised learning system for
several minutes prior to a classification session.

The same research group explored the application of similar
techniques to a wider variety of scenarios in [115], which relaxed the
restriction that a hand be held against a surface, and demonstrated the
feasibility of in-air finger gestures where the hand is free to rotate or
where the hand may be holding another object. This work still relied on
a wired clinical EMG apparatus, but Saponas et al. [116] (Figure 2.21)
relaxed this requirement by introducing a wireless device using dry elec-
trodes that did not require careful placement of each sensing electrode.
In this work, the authors also demonstrated that a user could use a
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Fig. 2.21 Saponas et al. present a wireless, dry sEMG device [116]. c© ACM 2010.

trained classifier even multiple days after training, where the sensor
had been removed in the intervening time. However, even at this stage,
this thread of research still relied on supervised classification: a user had
to spend several minutes training the system prior to use, potentially
prohibitive for consumer scenarios. Furthermore, classification accura-
cies are still far from perfect (100%), suggesting the need for further
refinement of the signal processing and machine learning techniques
underlying this work.

Kim et al. [67] achieve high classification accuracies by requiring the
user to perform more coarse gestures (whole-hand movement instead
of finger movement); they use the control of a remote-control car as a
test application. This approach complements the work discussed above,
but the need for large hand motions may prove problematic for subtle
gesture execution in some scenarios, and offers a low ceiling on the
system’s gesture vocabulary. On the other hand, this work not only
provides high accuracies, but also uses a very simple configuration of
just three electrodes, highlighting an interesting space on the cost-vs-
functionality curve for EMG input.

Costanza et al. [25] address several questions around the practi-
cality of EMG input, by exploring the hardware design of a wireless
EMG sensor in more detail than was presented in [116], which they
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Fig. 2.22 Costanza et al. [25] integrate EMG electrodes into an armband form factor that
might be plausible for consumer use. c© ACM 2007.

incorporate into an armband that approaches a form factor that would
be plausible for consumer use (Figure 2.22). Furthermore, this work
explores the visibility (or rather, invisibility) of EMG-based gestures to
an outside observer: by wearing an EMG sensor on an armband under
long sleeves, a user is able to perform very subtle gestures, which the
authors show are rarely visible even to an observer explicitly tasked
with detecting gestures.

Additional ongoing work is attempting to further the state of the art
in signal processing and classification for consumer EMG applications.
Wheeler et al. [147] present a Bayesian method for extracting individual
muscle activation signals from the ensemble activity sensed by sEMG
electrodes, using knowledge of muscle physiology to offer a potentially
richer feature set for classification than those used in the work discussed
so far. Tenore et al. [138] present time-domain techniques and leverage
a dense, 32-electrode array to achieve high accuracy in classifying fin-
ger movements. Ju et al. [62] address perhaps the two most challenging
problems in this space through novel algorithms: the need for adapta-
tion over time (to account for changes in the EMG signal when a device
is worn for long periods of time) and the need for cross-user training
which minimizes the burden on each user. After exploring a variety of
static classification techniques akin to those used in the above work,
this work explores adaptive stream processing for EMG signals and
shows promising progress toward solving both of these problems.
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2.7 Emerging Sensors

This survey has thus far focused on categories of sensors that have
been relatively deeply explored, at least in the academic literature. In
this section, we will turn our attention to several emerging sensor cat-
egories that have received less attention, but may represent promising
approaches to always-available input.

2.7.1 Mechanical Sensing

The sensing of mechanical impulses traveling along or around the body
represents one such sensing category. Harrison et al.’s Skinput system,
for example, explores the use of piezoelectric accelerometers — worn in
a compact armband that could be situated on the wrist or forearm —
to classify the location and type of finger taps performed by one hand
on the opposite arm [45] (Figure 2.23). They find that the mechanical
impulses traveling up the arm vary enough among tapped locations

Fig. 2.23 Harrison et al.’s Skinput system combines piezoelectric accelerometers (worn in
an armband) with a shoulder-mounted projector to prototype an on-body UI [45]. c© ACM
2010.
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that such classification is possible, up to as many as 10 unique loca-
tions on the forearm. This approach effectively turns the surface of the
arm into a tap-sensitive surface. The authors combine their approach
with a shoulder-mounted projector to highlight the possible use of this
approach for bringing familiar interface paradigms such as buttons and
scrolling menus to mobile scenarios. This approach also benefits from
our ability to locate points on our bodies using our kinesthetic senses:
if I ask you to close your eyes and tap one finger against the fingers of
the opposite hand, for example, you will likely have no trouble doing
so. This supports the feasibility of on-body, bi-manual interfaces like
Skinput for mobile scenarios, although further validation of robustness
is necessary.

A related approach to mechanical sensing is adopted by Amento
et al. [3] (Figure 2.24), who use wrist-mounted microphones to clas-
sify gestures based on the unique sounds that propagate through the
hand and arm when several finger gestures are performed: “tapping”,
“rubbing”, and “flicking” gestures, for example, each generate a unique
bioacoustic signature. Though this offers a smaller vocabulary than the
approach taken by Harrison et al., it is a single-handed interaction tech-
nique that may be more subtle and may be practical for scenarios where
bi-manual interaction is not.

2.7.2 Magnetic Sensing

The recent availability of magnetometers (sensors that report the
orientation and strength of a local magnetic field), including their

Fig. 2.24 Amento et al. use wrist-mounted microphones to classify gestures based on the
unique sounds of various finger gestures [3]. Courtesy Brian Amento.
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Fig. 2.25 Harrison and Hudson’s Abracadabra system couples a wrist-mounted magnetome-
ter with a passive magnet worn on the finger to provide three-dimensional input [44].
c© ACM 2009.

incorporation into some mobile phones, has spawned some exploration
of magnetic sensing for input. One important application is to add
absolute orientation sensing to a system of accelerometers and gyro-
scopes, as used in [148]. However, other work explores the direct of
magnetic sensing for input. Harrison et al.’s Abracadabra system [44]
(Figure 2.25) couples a wrist-mounted magnetometer with a passive
magnet worn on a finger of the opposite hand to provide three-
dimensional input supporting a variety of interaction techniques. While
this does require two physical components, one is easily conceived as
a component in a wristwatch, the other in a ring, suggesting that this
approach could be suitable for a variety of mobile interaction scenar-
ios. Ketabdar et al. [66] explore a similar approach using the magne-
tometer built into a commercial mobile phone. In this case, the input
signal is used specifically to control a computer-based musical instru-
ment, highlighting the potential that many of the systems discussed
here offer for on-the-go creativity. Askbrook et al. present Nenya, a
finger-ring input device that uses magnetic tracking performed by a
wrist-worn sensor [4]. In this system, users twist the magnetic ring on
the finger for selection, and slide it along the finger for clicking. The
authors propose that this provides fast access to analog input in a form
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factor that is socially acceptable, and their user studies explore both
one- and two-handed interaction with the device.

2.7.3 Electrical Sensing

We previously discussed the use of electroencephalography and elec-
tromyography (using electrodes placed on the skin to monitor brain or
muscle activity, respectively) — for computer input. Perhaps due to its
long history in medical sensing and in prosthetics, these techniques have
received quite a bit of attention. But several other types of electrical
sensing have also begun to emerge as candidate approaches to always-
available input. For example, Rekimoto [111] (Figure 2.26) demon-
strates the incorporation of a unique capacitive sensor into a watch-like
form factor, leveraging the observation that the wrist changes shape
(and cross-sectional area) with different hand postures. This change
in shape results in a change in capacitance, which — combined with

Fig. 2.26 Rekimoto’s GestureWrist system [111] leverages the fact that the wrist changes
shape — and therefore changes its electrical properties — when hand posture changes.
c© IEEE 2001.
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additional information provided by an accelerometer — allows classifi-
cation of a variety of hand gestures.

In a radically different approach to electrical sensing, Cohn et al. [24]
observe that the human body not only generates electrical signals
(as leveraged by sEMG), but also captures electrical signals radiating
through the environment. In other words, the human body serves as a
powerful antenna. Furthermore, they observe that a typical home con-
tains a significant amount of electrical noise — in particular that this
noise varies among locations within the home, due to the unique elec-
trical signatures of appliances and wiring patterns. This work thus uses
a body-coupled analog-to-digital converter to collect electrical noise in
a home environment, and identifies variations in that “noise” to clas-
sify the locations through which a user is traveling, and even gestures
that a user is executing. This approach offers an interesting hybrid
between traditional gesture recognition that depends on instrumenta-
tion (e.g., cameras) and the always-available, on-body techniques dis-
cussed throughout this survey. Here the system depends only on the
presence of location-specific noise in the environment, an assumption
that is reasonable for a wide variety of scenarios. The generalization
of their classification to novel environments, however, is left to future
work, so this approach is still environment-dependent to some degree.



3
Always-Available Output Technologies

So far, we have discussed a variety of mobile input technologies: sensors
that capture some component of user intent for interpretation by a
mobile computer. However, nearly every exchange a user has with a
computer requires both input and output components. Output may
be as simple as confirmatory feedback (e.g., a “click” to let you know
that your photo was taken), but more often represents a more com-
plex relaying of content or state from the machine to the user, often
in a real-time, closed loop. The mechanism we most often rely on to
deliver this information in non-mobile environments — and even in tra-
ditional mobile environments — is the pixel-based display. However, we
argue that for a computing environment to be truly always-available,
other feedback mechanisms will be necessary. Directing a user’s visual
attention to even a handheld screen violates two of our requirements
for always-available computing: the act of redirecting your eyes away
from the world is a significant cognitive disruption (requirement “1”),
and a handheld screen is not typically available in hands-busy scenarios
(requirement “4”).

Current non-visual feedback channels on mobile devices — primarily
audio feedback and simple vibration — do not provide nearly adequate
bandwidth to enable interaction in scenarios where the visual channel
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is unavailable, nor are they designed to do so. Consequently, although
this review’s main focus is on input technologies, we devote this section
to major trends in mobile output that will be important to realizing
the vision of always-available computing.

3.1 Haptic Feedback

Whether we are typing on a keyboard, pressing a button, or even writ-
ing with a pencil, our brains receive a constant stream of touch sen-
sations that play an important role in manipulating tools. As such,
consumer electronics make use of our sense of touch not only through
the mechanical design of objects but also through programmable haptic
output. Piezoelectric vibration elements and off-center weighted motors
have achieved significant commercial success in mobile phones and
game controllers, respectively, but a variety of other actuators have
been employed to create haptic sensations in research environments.
Iwamoto et al., for example, employ ultrasound waves for contact-free
haptic stimulation [59], and Bau et al. employ electrovibrations to cre-
ate textures on a touch screen [10].

While some of the most commercially successful uses of haptics
require a handheld instrument (e.g., a game controller or a mobile
phone), haptic output is appealing as an always-available feedback
mechanism because it can be applied away from our hands in a portable
form (e.g., around a watch band). In this section, therefore, we explore
the applicability of haptic feedback to always-available interaction.

Several groups have developed prototype belts that use vibra-
tory elements to indicate direction and assist a user with naviga-
tion [141, 142]. One could imagine employing this approach to guide a
user to the closest coffee shop, without interrupting the user’s conver-
sation with a friend. These examples fit into a more general category
of using haptics for ambient output around the body [79]. In addition
to belts, researchers in this area have explored a wide variety of form
factors including vibrotactile actuators built into the shoulder pads of
clothes [139] and arrays of vibrotactile actuators that can “draw” pat-
terns on a person’s arm [21]. Researchers have also attempted to charac-
terize what types of vibrotactile output can be successfully interpreted
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by a person. For example, Chen et al. found that people cannot easily
distinguish nearby vibrotactile actuators; when placing a 3 × 3 grid on
both the top and bottom of the wrist, they found that people’s ability
to distinguish which one of the 18 tactors vibrated ranged from 30%
to 73% depending on the location [19]. However, they do point out
that participants could identify which side of their wrist the vibration
came from 93% of the time. In a related study, Oakley et al. observed
similar results for localization and also noted that people are better at
distinguishing linear change in location around their arm (like a watch
band) than along the length of their arm [94] (Figure 3.1). One of the
main practical barriers to commercializing these approaches is find-
ing wearable form factors that comfortably accommodate computation,
communication, and actuators without negatively impacting comfort,
durability, and washability of garments or worn accessories.

In addition to the above examples of haptic output being worn on
the body, researchers have also explored techniques for haptic output

Fig. 3.1 Oakley et al. [94] use a 3 × 3 array of haptic actuators to explore perceptual
questions around a plausible form factor for wearable haptics. c© IEEE 2006.
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on mobile devices [47]. These techniques focus on creating spatial and
temporal patterns that we can perceive with our fingers when grasp-
ing a device. Touch receptors are packed more densely on our fingers
than elsewhere on our bodies; as a result, haptic interfaces targeting
the hands and fingers can potentially convey more bits of informa-
tion in a shorter period of time, using less space. For example, Chang
et al. [95] explore the use of haptics for communication, presenting a
device with 12 vibrotactile actuators distributed across four fingers.
This approach might enable a user to “feel” who is calling his/her
phone, without needing to pull the phone out and glance at the dis-
play. This form factor holds promise for always-available interfaces, but
requires a device to be held in the user’s hand, and thus may not be
appropriate for all always-available scenarios.

3.2 Audio Feedback

Nearly all mobile devices provide audio output, used ubiquitously for
phone calls, listening to music, and playing games. This ubiquitous
availability, combined with the increasing prevalence of always-available
headsets (e.g., Bluetooh earpieces), suggests that audio may indeed
play a role in always-available interaction. Furthermore, smaller wire-
less earpieces are emerging that can fit invisibly inside a person’s ear
canal, easing the social awkwardness of visibly wearing headphones
while interacting with other people.

While audio feedback can be available at all times, it is only effec-
tive as an always-available output mode if it does not impede a person’s
primary tasks. However, the use of language in computer interfaces
creates the potential for cognitive interference when the user may also
be engaged in language-centric real-world tasks, a problem discussed
above with respect to speech input. For example, it is difficult for a
person to listen to spoken language in an earpiece while also engaged
in conversation. Although it is possible for a person to become skilled
at simultaneous listening and conversing, it is still a significant chal-
lenge to incorporate linguistic audio into mobile interfaces that a person
would use while also using engaged in linguistic tasks such as reading
or conversation.
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Consequently, researchers have also explored several opportunities
for non-linguistic mobile audio feedback. One of these themes is passive
support of spatial navigation tasks. Holland et al. demonstrate the
AudioGPS technique for generating tones to indicate bearing and dis-
tance for pedestrian navigation [48]. This approach conveys the bearing
of a destination relative to the user by manipulating the perceived loca-
tion of a synthesized tone, and indicates distance to that destination
by varying the rate at which those tones are generated. This lever-
ages our ability to robustly perceive the location of sounds presented
in headphones; Vazquez-Alvarez and Brewster have demonstrated that
people can spatially discriminate among five audio sources over a 180-
degree range using typical headphones [143]. Sodnik et al. have even
shown that a spatial audio interface can be less distracting than a
visual interface for driver navigation in vehicles [129]. In addition to
these navigation tasks, Li et al.’s BlindSight system [75] demonstrates
that non-linguistic audio can also be used for quick, eyes-free querying
of a person’s calendar even while they are engaged in a phone call. As
these research projects demonstrate, the availability of small, wireless
headphones — combined with new non-linguistic audio techniques —
suggests that audio feedback may offer significant value for always-
available mobile interfaces.

3.3 Glasses and Other Mobile Displays

The primary output mechanism in almost all computing tasks has tra-
ditionally been visual, due to the high bandwidth that visual displays
provide relative to audio or haptic displays. This bandwidth is critical
for always-available interfaces that aim to minimize the duration of
interruptions. For example, if we are alerted to the arrival of an email,
a visual display enables us to quickly skim the contents of that email.
Visual displays also have the ability to convey non-linguistic infor-
mation quickly, through images and video. In addition to these high-
bandwidth applications of visual output, a low-bandwidth but useful
property of our visual system is our ability to perceive shapes, color,
and motion through our peripheral vision while keeping our primary
visual attention on another task. In an always-available interface, this
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could enable a display to keep us apprised of information (e.g., incom-
ing messages, weather, direction and distance to nearest coffee shop)
without interfering with our primary task. From these properties, we
can broadly say that visual displays are a rich output medium with the
potential to provide fast transitions in and out of the interface (as fast as
a glance), while minimally interfering with our primary tasks. However,
the practical challenge for always-available visual output is building dis-
plays in a form factor that is portable, comfortable, and socially accept-
able. Below, we review the state-of-the-art in mobile visual output.

3.3.1 Glasses

Wearable computing has long sought an effective mobile display built
into eyeglasses. This is a somewhat natural choice given that eyeglasses
are a commonly-worn accessory and perhaps have enough bulk to hide a
display’s components. A simple version of this vision is an LCD-based
display that clips onto one side of a pair of eyeglasses1 (Figure 3.2).

Fig. 3.2 The Teleglass project provides an LCD display that clips on to any pair of eye-
glasses. Courtesy Hrvoje Benko and Alex Olwal.

1 Arisawa Teleglass, publicly reported pre-production unit, http://www.arisawa.co.jp/en/.
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Fig. 3.3 Progress in optical technologies allow displays, such as this prototype from Lumus
Ltd., that present information on transparent glass that does not obstruct the wearer’s
view. Courtesy Lumus Ltd.

The main drawback of these displays is that they are bulky and par-
tially obstruct the wearer’s vision, even when powered off. More recent
prototype eyeglasses go farther toward realizing clear, display-equipped
eyeglasses2,3 (Figure 3.3). These prototypes are heavier than traditional
eyeglasses, but only minimally obstruct a user’s vision. If this tech-
nology can continue to improve, we believe that it is likely the best
candidate for always-available output in the near-term future.

3.3.2 Contact Lenses

Saeedi et al. have taken the concept of a ubiquitous display in front of
the eyes to an even more invisible level by creating initial prototypes of
LED-array-based displays built into contact lenses [129] (Figure 3.4).
This technology is in the early stages of development, requiring many
more advances before it is ready for human use. However, even if future
contact lenses are only able to display a line of text and a few col-
ored dots in the periphery, they would, in many ways, be the ultimate
always-available output technique.

3.3.3 On-Body Projection

Another approach to creating quickly accessible mobile displays is to
put a display directly on a person’s body. For example, researchers have

2 Microsovision Wearable Displays, Microvision, Inc., http://www.microvision.com/.
3 Lumus Personal Displays, Lumus [114] Ltd., http://www.lumusvision.com/.
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Fig. 3.4 Saeedi et al. are working toward embedding displays directly on contact lenses.
Courtesy Babak Parviz.

explored projecting displays directly onto a person’s arm or hand, cou-
pled with input techniques for detecting direct interaction with the pro-
jection [45, 86] (Figure 2.23). On-body projection is appealing because
it does not require users to wear special purpose glasses or contact
lenses, and — unlike glasses or contact lenses — on-body projection
also offers the potential of a shared portable display. The main draw-
back of wearable projection is the challenge of creating a projector
that is easily worn on the body and provides a bright enough projec-
tion to be seen in common lighting conditions (e.g., daylight). Even
the smallest current hand-held projectors (often referred to as “pico
projectors”) are likely too large for wearable applications and are not
bright enough for practical use in mobile environments: today’s best
devices are on the order of five cubic inches and offer only 30 lumens of
brightness.4 For comparison, 1000 lumens is generally considered the
bottom end of suitability for projection in an office environment, where
lights might be on and the projection surface might be several feet away
and several feet tall, and 2000–5000 lumens is typical for desktop or
ceiling-mounted projectors.

4 3M MP180, 3M, http://solutions.3m.com/wps/portal/3M/en US/Pocket/Projector/Main/
Products/MP180/.
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3.3.4 Clothing-Based Displays

On-body displays need not be projected; they can also be embedded
in our clothes. The main drawback of this approach is the requirement
that the clothes we wear every day have display technology embedded
within them. This may be incompatible with traditional properties of
clothing such as washability, durability, disposability (i.e., low cost),
and flexible aesthetics. There are, however, several plausible technolo-
gies for in-clothing displays. On obvious approach is to embed LEDs
directly into fabrics [15], allowing a familiar paradigm of turning indi-
vidual photo-elements on or off to create images. More generally, a
variety of electroluminescent elements (anything that emits light when
electrical current passes through it) are available today. However, the
manufacturing of embedded LEDs or electroluminescent patterns that
can be washed and mechanically protected, however, is challenging.
Heat-sensitive dyes that change colors with variations in temperature,
or thermochromics, provide a potential alternative: embed dye in fabric
using traditional processes, and use wires or other elements to control
the temperature of these dyes, possibly without mechanical contact.
Although this technique has been used for decades to produce clothes or
accessories that change color when heated as a result of being touched
by a human hand, this approach is at its early stages in terms of man-
ufacturing clothing whose appearance can be computer-controlled.



4
Challenges and Opportunities

In this review, we have surveyed a relatively broad swath of emerg-
ing input technologies that we believe will be instrumental in enabling
always-available mobile interaction. In this section, we discuss several
higher-level challenges that span many of these technologies. As
advances in sensors and materials continue to drive all of the technolo-
gies we have discussed so far, it is the areas discussed in this section that
we believe offer human-computer interaction researchers opportunities
for the broadest impact on always-available interaction.

4.1 Systematically Handling Ambiguity

Most traditional input devices have been designed to provide a stream
of data that is as well-defined as possible. For example, there is little
ambiguity on whether or not a key on the keyboard has been pressed,
or how much the mouse has moved on a surface. However, many of
the newer modalities described in this review tend to infer action and
intent from sensors that produce much noisier raw signals. Although
just about every researcher working on new input modalities attempts
to remove ambiguity as best they can, recognition errors for some
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of these modalities will likely remain an intrinsic part of the sensing
process and will never be completely eliminated. Hence, we believe
that we must systematically handle — or better yet, design for — the
two main classes of ambiguity: recognition ambiguity and segmentation
ambiguity.

Researchers have used multiple techniques to reduce recognition
errors. Because of its maturity as a field, a good bit of this work has been
done in the speech recognition domain, but results are often relevant
and applicable to newer modalities as well. For example, early work on
speech recognition explored ways of providing appropriate feedback for
error correction [2]. In different domains, researchers have found that
appropriate feedback allows users to form mental models of the system,
and actually helps them perform gestures that can be better recognized
(e.g., [115]). While we will not document this literature in detail, there
have also been many efforts to utilize multimodal interfaces in order
to reduce ambiguity and improve recognition accuracy. For a survey of
the literature in this field see Refs. [30] and [98].

Researchers have also worked on handling recognition ambiguity
by providing correction mechanisms that allow users to quickly and
cheaply roll back and re-specify the intended action. Shilman et al.
utilize past handwriting input associated with an error as well as the
user’s correction of that error, in combination with a set of gestures
that allow the user to further assist the recognizer, to improve on
recognition correction [127]. Similarly, Mankoff et al. perform a sur-
vey of error correction techniques and find that they fall into two basic
categories: repetition and choice [80]. They develop the OOPs toolkit,
and a set of associated interaction techniques, to support resolution of
input ambiguity.

The second class of ambiguity in always-available interfaces is seg-
mentation ambiguity. Since, we are claiming that the input modality
is “always-available” and since the user does not always intend to be
interacting with the computer, especially as they go about their real-
world tasks, the system must be smart enough to distinguish between
actions in the real world and explicit commands to the system. The
confusion between the two is often referred to in the eye-tracking and
gesture tracking literature as the “Midas Touch problem”. Huckauf
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et al. develop an eye-tracking-based input system based on explicit ges-
tures that are unlikely to naturally occur for actuating commands [51].
Rather than utilizing dwell time, as is usually done in eye-tracking
control applications, they suggest anti-saccades, or quick glances, at a
copy of an object to specify intent to operate on that object. In their
Snap Clutch work, Istance et al. provide a lightweight mechanism
to turn on/off parts of the control mechanism (namely, gaze-based
cursor control) while maintaining some amount of continued input
(selection) [58]. In their work on muscle-computer interfaces, Saponas
et al. propose explicit actuation gestures as well as a combination of
gestures that do not usually occur naturally in everyday tasks in order
both to circumvent the Midas Touch problem and to increase effective
recognition accuracy [115]. In general, we believe there are opportuni-
ties for better segmentation of naturally occurring gestures and explicit
ones, as well as more systematic approaches to defining gesture lan-
guages around on/off mechanisms.

More generally, there has been effort to model uncertainty and han-
dle it as a normal and expected part of the input process. Starting in
the early 1990s, Hudson and Newell proposed the notion of probabilistic
state machines that model uncertainty and maintain assessments of the
probabilities for alternate means of gestures [52]. They claim that doing
so allows the system to make more informed decisions about when to
invoke actions, thus leading to more robust performance. In follow up
work, Schwartz et al. develop a toolkit (and some very clever thinking)
around how ambiguity in input could be passed into higher levels of the
UI [123]. For example, a Web form designed for uncertain input focus
(perhaps expecting text or speech entry) could evaluate each possible
text box the user might be typing into, and place the input in the
box whose input model best fits the content. They present multiple
prototype interfaces and applications for this model and argue that a
fundamentally new computing paradigm will have to be designed as we
continue to evolve our interaction techniques to ones that include more
and more ambiguity.

Despite the extensive research done in algorithmically minimizing
ambiguity and developing interface metaphors around ambiguity, this
remains a tremendous source of interface breakdowns even today: input
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has become more ambiguous much faster than interface metaphors
have evolved to accommodate this trend. In fact, interacting via of our
increasingly-ambiguous input devices still relies on metaphors devel-
oped for their unambiguous ancestors (the keyboard and mouse). For
example, touch-based input devices still depend on users clicking indi-
vidual points (e.g., to click on buttons or links), a task that is quite
straightforward with a mouse but quite ambiguous with a finger that
spans literally hundreds of pixels and possibly dozens of potential input
targets. Consequently, misclassified touches frequently create user frus-
tration, or — more subtly — limit the density of information that
devices can present to users. This suggests an important opportunity
for the HCI community: the development of metaphors that leverage
the multi-dimensional nature of touch as a means to compensate for
the ambiguity of finding a single “touch point”.

As another example, speech-based search is available on most mobile
devices, but still relies largely on a familiar paradigm of transcribing
speech into text (an ambiguous process) and executing a discrete (and
potentially incorrect) query, perhaps offering the user a chance to cor-
rect that query. The use of implicit or explicit context to resolve an
inherently-ambiguous speech query represents an exciting area of explo-
ration, one which will require collaboration between HCI and speech
researchers.

4.2 Sensor Fusion

Having described many emerging interaction technologies, one may rea-
sonably ask the question of which will is likely to be the ideal modal-
ity, the “mouse and keyboard” of next-generation computing devices.
While we believe that this is a reasonable question, we do not believe
that there will exist a single solution. The shift from a well-defined and
rather static computing environment in the desktop computing world
to the dynamic and ever-changing scenarios in the mobile computing
world will likely necessitate a combination of modalities working in
close complement. More importantly, given the ambiguity we are intro-
ducing in many of our new modalities and the fact that multimodal
and multi-sensor modalities have been shown to improve robustness
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and add richness to the interactions, we believe creative sensor fusion
will be a large topic of interest as we move forward. As described in
previous sections, many projects are already starting to explore this
(e.g., [102, 111, 144, 151]), but we believe work explicitly aimed at
more systematic sensor fusion will be important and grow significantly
in this domain.

4.3 Gesture Design and Usability

There tend to be several phases in the development of any new interac-
tion modality. The early phase is typically proof-of-concept: a developer
or designer sets out to determine whether a new sensing technology
works at all. Applications and particular use cases tend to be rela-
tively ill-defined, and the pure novelty of the technology itself drives
research goals and reader attention. As the technology matures, it
is often used to emulate existing modalities. For example, touch- or
gesture-based interaction modalities are often used to emulate mouse
and keyboard interaction and applied to windows, icon, menu, pointer
(WIMP) interfaces. Finally, at full maturity, we see specific affordances,
applications, and paradigms tailored to take advantage of the proper-
ties of the modality. We believe that many of the modalities treated
in this review are in transition from emulation to maturity, and that
researchers continue to push hard on design of appropriate interaction
techniques as well as usage and learning affordances, all of which are
also well served (i.e., recognized) by the particular technology.

For instance, researchers working on gesture recognition concern
themselves with systems and tools that allow developers to design ges-
ture sets that are both easy for users to execute and learn, but that
also make it tractable for the sensors and computers to differentiate
and recognize. Long et al. present tests they ran using their pen-based
gesture design tool describing how developers do not tend to under-
stand the nuts and bolts of recognition engines and must be guided
as they design gesture sets [22]. They also found the need for support
in iteratively testing these gesture sets. Building on this, Ashbrook
and Starner built MAGIC, which extends these findings to support
motion gesture design [7]. Implicitly (and sometimes explicitly), many
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of these tools consider many important factors, including social accep-
tance and cultural appropriateness, learnability and memorability, the
ability of the system to differentiate and recognize gestures, and to a
smaller degree so far, the fit of the modality to its applications, and vice
versa.

OctoPocus combines “feed-forward” mechanisms (pre-gesture help,
guides, animations) as well as feedback (post gesture recognition
results) to help users learn and remember gesture sets, and techniques
surrounding this [9]. The exercise suggests how difficult it is to design
new modalities, systems, and applications, and points at the need for a
range of design methodologies and principles in doing so. Clearly, there
is much work to be done in this space, and we hope that this review
provides some of the basis for new researchers in the area to identify
new problems and approaches and to innovate in the way we design
new modalities, gestures, and applications for these.

Many researchers have specifically explored the universality of ges-
tures and whether or not factors like culture affect execution and mem-
orability. This is especially important since the mobile computing task
is often embedded in the real-world around other people, sometimes
even involving the other people. Rehm et al. use the Nintendo Wii
controller to input accelerometer gestures and find multiple cultural
differences, even down to their resting poses [110]. This suggests the
need to be sensitive to tuning recognition technologies, but also aware-
ness and sensitivity so that we design interactions that are not socially
awkward. That said, we also believe that no gesture set will ever be
intrinsically “natural” and that users will always have to learn some
part of the interaction. This has been true of all our modalities, even
ones that we eventually consider to be second nature, like the mouse
and keyboard. This is captured nicely by Stern et al., who present an
analytic approach to designing gesture vocabularies by decomposing
the problem into system constraints and user constraints and optimiz-
ing gesture sets for the overall utility [136].

Other researchers looking at cultural effects have focused on social
acceptance of the gestural interfaces. Calkin et al. examine definitions
of social acceptance, not only for the user but also for observers [88].
They identify factors such as user type (i.e., where they sit in the
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adoption curve), culture and time, as well as the actual interaction
type. One of the findings they propose is that a reasonable amount of
social acceptance is derived from the user’s perception of others’ ability
to interpret the manipulations. This is interesting as it suggests that
widespread adoption, or at least understanding, of any technology will
lead to natural social acceptance. This is not only because “everyone is
doing it,” but just as much because everyone actually understands and
can mentally attribute gestural actions to computing ones. Sensitive to
this in their work on “Intimate Interfaces,” Costanza et al. not only
introduce motionless gestures sense through electromyography, as we
have describe earlier in this review, but also assess how noticeable they
were to informed observers [25]. They found that even people looking
out had trouble identifying when a gesture was performed, which they
concluded was a positive property of this modality.

Apart from the gestures themselves, there are pragmatic issues in
many of these modalities, which tend to include sensors and devices
that are worn on the body. While it is not within the scope of this
review to discuss all the work in the wearable computing space, readers
may see any of a number of surveys and published work in this space
(e.g., [131, 132] as well as work from academic venues such as the
International Symposium on Wearable Computers). Apart from the
general work going on in the wearable computing domain, Ashbrook
et al. investigate placement and user mobility on the time required to
access an interface worn on the body [6]. They found that placing the
device in a holster or pocket drastically increases (up to 78%) access
time as opposed to a device that was, for example, always-available
on the wrist. They suggest careful consideration of seamless access so
users can most effectively compute on the go.

4.4 Cognitive Interference and Computational Senses

While much of the academic work today is conducted in relatively con-
trolled laboratory (and sometimes field) settings, the vision we paint
is one of infusing seamless computing into our everyday lives. There is
much work to be done on exploring and improving the effectiveness of
these modalities as they are used in the real world.
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As articulated by Shneiderman in his review of the limits of speech
recognition [128], for example, speech input often interferes with other
speech-based interactions (e.g., human–human ones), and worse yet
interferes significantly with other cognitive tasks. He describes why
after 30 years of trying to provide airplane pilots with speech interfaces,
complex functionality remains built into mechanical controls, as the
cognitive load associated with speech and the conflicts it creates with
the complex task at hand are too expensive. This is true of many of
the examples discussed in this review. As another good example, most
current brain–computer interface systems are designed for the user to
invoke explicit thoughts in order to control some interaction. While
controlling a computer with thought alone is impressive and inspiring,
further work is required to evaluate the cognitive resources required for
the task itself, and how the interaction can be designed so as to reduce
cognitive interference.

Cognitive interference is of course neither new nor unique to inter-
action techniques. In fact, this is an area that has been studied at great
length in the cognitive psychology and cognitive science fields (see [118]
for an overview), and has become so important that the entire “cogni-
tive ergonomics” subfield has grown up around it.

This field has a great deal to offer HCI: we believe that systemat-
ically understanding the physical and cognitive costs and benefits of
various interaction methodologies is critical in designing interaction
methods that allow us to integrate computer use while performing
everyday tasks. We also believe that the nature of interference will
necessitate the creation of an interaction ecosystem that is sensitive to
the demands of various scenarios.

One ambitious goal for always-available interfaces is for them to be
so unobtrusive and well integrated into our mental processes that they
virtually function as another sense. Put another way, when do you “just
know” whatever the computer is trying to tell you? Imagine having the
ability to “feel” the presence of available WiFi , always “know” which
direction is home (or the nearest coffee shop), or even “see” through
walls and around buildings. Posed as a research question: can such
senses be created through the unused bandwidth of our existing five
senses combined with the power of mobile computing?
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In this vein, several researchers have experimented augmenting
human sensory perception. In 1947, Kohler fitted a subject with a spe-
cial pair of glasses utilizing mirrors to present the eyes with an inverted
image of the world [70]. He observed that despite the image inversion
of the glasses, after several days the subject adapted to the visual dis-
tortion and began seeing right side up. Upon removing the glasses, the
individual had sensations of the world being inverted. This early work
reveals the flexibility of our sensory system.

More recently, researchers have explored adding or substituting
senses. Bach-y-Rita et al. utilized the tongue as a human-input channel
for sonar-like vision at night or for the blind [8]. And as discussed in
Section 3.1, at least two groups have created belts that employ vibra-
tion to support navigation [141, 142]. These belts overload a person’s
“touch” sensation around the waist to actually create a new sense: a
constant awareness of the recommended navigational strategy.

These examples illustrate that always-available interfaces have the
potential to blur the line between an “application” and a “sense”, yield-
ing what we might refer to as a “super-human” experience. In the
future, carefully-designed, always-available technologies might give us
access to 100 kHz hearing, infrared to ultraviolet vision, and magnetic
and electric field perception.



5
Conclusion

In this review, we have presented the challenge that lies ahead of us
in creating always-available computing interfaces. We assert that this
forms the next large paradigm shift that will take us into the next
generation of computing opportunities. We have laid out a starting
point for properties of such interfaces and surveyed technologies that we
believe may lead us closer to attaining the goal. While do not propose
that these are a comprehensive set of building blocks required, we are
impressed by the scope and depth of existing work, and hope that
researchers continue not only to innovate in the space of sensors and
techniques, but also to systematically solve some of the usability and
design issues surrounding the integration of multiple input and output
modalities in order to develop a richer mobile computing interface than
we have ever known. The challenge is that simple, and also that difficult.
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