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Abstract. We study the Glauber dynamics Markov chain for k-colourings
of trees with maximum degree ∆. For k ≥ 3, we show that the mixing
time on every tree is at most nO(1+∆/(k log ∆)). This bound is tight up to
the constant factor in the exponent, as evidenced by the complete tree.
Our proof uses a weighted canonical paths analysis and a variation of
the block dynamics that exploits the differing relaxation times of blocks.

1 Introduction

The Glauber dynamics is a Markov chain over configurations of spin systems
on graphs, of which k-colourings is a special case. Such chains have generated a
great deal of interest for a variety of reasons. For one thing, counting k-colourings
is a fundamental #P-hard problem, and Markov chains that sample colourings
can be used to obtain an FPRAS to approximately count them. For another,
k-colourings are equivalent to the antiferromagnetic Potts model from statistical
physics, and there is a large body of research into this and similar models.

The Glauber dynamics has received a very large part of this interest (see eg.
[12]). It is particularly appealing because it is a natural and simple algorithm and
it underlies more substantial procedures such as block dynamics and systematic
scan (see [12, 5]). It is also commonly used in practice, eg. in simulations, and
is closely related to other important areas such as infinite-volume Gibbs distri-
butions [2, 10, 14]. It is generally conjectured that the Glauber dynamics mixes
in polynomial time on every graph of maximum degree ∆ so long as k ≥ ∆ + 2.
Vigoda [19] has shown polynomial mixing time for k ≥ 11

6 ∆.
The focus of this paper will be the performance of the Glauber dynamics on

trees. Of course, the task of sampling a k-colouring of a tree is not particularly
difficult. Nevertheless, people have studied the Glauber dynamics on trees as a
means of understanding its performance on more general graphs, and because
the performance on trees is particularly relevant to related areas such as Gibbs
distributions. Berger et al. [1] showed that the Glauber dynamics mixes in poly-
nomial time on complete trees of maximum degree ∆, and Martinelli et al. [14]
showed that this polynomial is O(n log n) so long as k ≥ ∆ + 2.

⋆ This extended abstract presents two pieces of work. The first [13] proves the case
k ≥ 4 (amongst other things); it has been submitted to a journal. The second covers
the case k = 3; a full version is in progress.
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Hayes, Vera and Vigoda [7] showed that it mixes in polytime for all planar
graphs if k ≥ C∆/ log ∆ for a particular constant C. They remarked that this
was best possible, up to the value of C: The chain takes superpolynomial time
on every tree when k = o(∆/ log n), and hence trees with ∆ ≥ nǫ provide lower-
bound examples for any constant ǫ. They asked whether such examples exist for
smaller values of ∆; in particular, is the mixing time superpolynomial for the
complete (∆ − 1)-ary tree with k = 3 and ∆ = O(1)?

Proposition 2.5 of Berger et al. [1] shows that the mixing time is polynomial
for every constant k ≥ 3 and ∆ ≥ 2 (in fact, it shows this for general particle
systems on trees for which the Glauber dynamics is ergodic, of which proper
colouring is a special case). Independently, Goldberg, Jerrum and Karpinski [6]
and Lucier and Molloy [13] showed a lower bound of nΩ(1+∆/k log ∆) on the
mixing time for the case of the complete tree. Goldberg, Jerrum and Karpinski
also give an upper bound of nO(1+∆/ log ∆) for complete trees and constant ∆.

Our main result is an upper bound for every tree. Our bound is asymptoti-
cally tight, matching the lower bound up to a constant factor in the degree.

Theorem 1. For k ≥ 3, the Glauber dynamics on k-colourings of any tree with
maximum degree ∆ mixes in time at most nO(1+∆/k log ∆).

Thus, for every k ≥ 3 and ∆ = O(1), we have polytime mixing on every tree.
But if ∆ grows with n, no matter how slowly, then on some trees (eg. complete
trees) we require the Ω(∆/ log ∆) colours for polytime mixing that Hayes, Vera
and Vigoda noted were required at ∆ = nǫ.

Let us describe the difficulties that occur when k = o(∆/ log ∆). If k ≥ ∆+2
then no vertex will ever be frozen; i.e. there will always be at least one colour
that it can switch to. (It also corresponds to the threshold for unique infinite-
volume Gibbs distributions[10].) Much of the difficulty in showing rapid mixing
for smaller values of k is in dealing with frozen variables. From this perspective,
k ≥ C∆/ log ∆ for C > 1 is another natural threshold: if the neighbours of
a vertex are assigned independently random colours then we expect that the
vertex will not be frozen. But if k < (1 − ǫ)∆/ log ∆, then even in the steady
state distribution most degree ∆ vertices on a tree will be frozen.

If the children of a vertex u change colours enough times, then eventually
u will become unfrozen and change colours. This allows vertices to unfreeze,
level by level, much like in the level dynamics of [7]. This is a slow process: the
number of times that the children of u have to change before u is unfrozen is
(roughly) exponential in ∆/k. However, this value is manageable for ∆ = O(1):
the running time is a high degree polynomial rather than superpolynomial. For
balanced trees, it is very helpful that there are only O(log n) levels. For taller
trees, a more complicated approach is necessary.

The proofs of our main theorems use a variation of the well-known block
dynamics which takes account of differing mixing times amongst the blocks. To
the best of our knowledge, this is the first time that this variation has been used.

In order to apply the block dynamics, we need to analyze the mixing time of
the Glauber dynamics on subtrees which have colours on their external bound-
aries fixed. This is equivalent to fixing the colours on some leaves of a tree.
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Markov chains on trees with fixed leaves are well-studied. When every leaf is
fixed, Martinelli, Sinclair and Weitz [14] prove rapid mixing for k ≥ ∆ + 2; at
k ≤ ∆+1 the chain might not be ergodic. In our setting, k may be much smaller
and so we must bound the number of fixed leaves. Theorem 1 extends to show:

Theorem 2. For any k ≥ 4, the Glauber dynamics on k-colourings of any tree
with maximum degree ∆ and with the colours of any b ≤ k− 2 leaves fixed mixes
in time nO(1+b+∆/k log ∆).

Due to space constraints, some proofs are omitted from this extended abstract
and may be found in the full versions of the papers.

Remark 1. Our arguments can be extended to other instances of the Glauber
dynamics, e.g. the Ising model. Details will appear in a full version of the paper.

2 Preliminaries

2.1 Graph Colourings

Let G = (V,E) be a finite graph, and let A = {0, 1, . . . , k − 1} be a set of k
colours. A proper colouring of G is an assignment of colours to vertices such
that no two vertices connected by an edge are assigned the same colour. Define
Ω ⊂ AV to be the set of proper colourings of G. Given σ ∈ Ω and x ∈ V , we
write σ(x) to mean the colour of vertex x in σ. Given S ⊆ V , we write σ(S) to
refer to the assignment of colours to S in σ; that is, σ(S) is σ restricted to S.

Given some S ⊆ V , Ωσ
S is the set of proper colourings of G that are fixed

to σ at all vertices not in S. We can think of Ωσ
S as being equivalent to the set

of proper colourings of S with boundary configuration σ. However, technically
speaking, an element of Ωσ

S will be viewed as a colouring of the entire graph G.

2.2 Glauber dynamics

The Glauber dynamics for k-colourings of G is a Markov process over the space
Ω of proper colourings. We make use of the continuous-time Metropolis version
of the Glauber dynamics. (Standard methods, eg. [3, 17], show that our theorems
also hold for the heat-bath version.) Informally, the behaviour of this process is
as follows: each vertex has a (rate 1) poisson clock. When the clock for vertex v
rings, a colour a is chosen uniformly from A. The colour of v is set to a if a does
not appear on any neighbour of v, otherwise the colouring remains unchanged.

More formally, recall that a continuous-time Markov process is defined by
generator L. We can think of L as a |Ω| × |Ω| matrix, whose non-diagonal
entries represent the jump probabilities between colourings (and diagonal entries
are such that all rows sum to 0). For σ 6= η, we will write K[σ → η] to denote
the (σ, η) entry in this matrix. Under this framework, the jump probabilities for
the Metropolis version of the Glauber dynamics are given by

K[σ → η] =

{

1
k if σ, η differ on exactly one vertex

0 otherwise
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Note that this process is symmetric and, for k ≥ 3, ergodic on trees (see eg. [1]).
In many applications we are interested in the discrete analog of the Glauber

dynamics. We then think of K[σ → η] as the probability of moving from colour-
ing σ to colouring η, scaled by a factor of n. The mixing time for the discrete
chain is precisely n times the mixing time for the corresponding continuous pro-
cess (see eg. [1]), so our bounds on mixing time apply to the discrete setting.

We will additionally be interested in a variant of the Glauber dynamics, the
2-path Glauber dynamics, L2, that can also recolour pairs of adjacent vertices.
That is, on each step of L2, a connected subgraph S ⊆ T of size at most 2 is
chosen uniformly at random. If the initial configuration is η, then the subgraph
S is recoloured according to the uniform distribution on Ωη

S .

2.3 Mixing Time

Given probability distributions π and µ over space Ω, the total variation distance
between π and µ is defined as

||µ − π||TV =
1

2

∑

x∈Ω

|µ(x) − π(x)|.

Suppose L is the generator for an ergodic markov process over Ω. The sta-
tionary distribution for L is the unique measure π on Ω that satisfies πL = π. It
is well-known that the Glauber dynamics has uniform stationary distribution.

Given any σ ∈ Ω, denote by µt
σ the measure on Ω given by running the

process with generator L for time t starting from colouring σ. Then the mixing
time of the process, M(L), is defined as

M(L) = min

{

t : sup
σ∈Ω

||µt
σ − π||TV ≤

1

4

}

.

We define the spectral gap of L, Gap(L), to be the second-largest eigenvalue
of −L. The relaxation time of L, denoted τ(L), is defined as the inverse of the
spectral gap. We will use the following standard bound (see eg. [17]):

M(L) ≤ τ(L) log(|Ω|) ≤ (n log k)τ(L) since |Ω| ≤ kn. (1)

2.4 Colourings of Trees

Consider a (not necessarily complete) tree G = (V,E) with maximum degree ∆.
A subtree T of G is a connected induced subgraph of G. We shall write ∂T and
∂T to mean the exterior and interior boundaries of T . That is, ∂T = {x ∈ V \T :
N(x) ∩ T 6= ∅} and ∂T = {x ∈ T : N(x) ∩ ∂T 6= ∅}. Note that for each x ∈ ∂T
there is a unique y ∈ ∂T adjacent to x.

The following simple Lemma analyzes the ergodicity of the Glauber dynamics
and 2-path Glauber dynamics on trees.

Lemma 1. Let T be a subtree of G and suppose k ≥ max{3, |∂T |+2}. Then the
Glauber dynamics is ergodic over Ωσ

T for all σ ∈ Ω. If additionally k = 3 and
|∂T | ≤ 2, the 2-path Glauber dynamics is also ergodic over Ωσ

T for all σ ∈ Ω.
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3 Weighted Block Dynamics

In this section we present a generalization of the well-known block dynamics for
local spin systems. We prove the result for the Glauber dynamics acting on a
finite graph G = (V,E). Our statement of the block dynamics actually applies
to a more general setting, holding for all local update chains, including the 2-
path Glauber dynamics defined above. We avoid a statement in full generality
for succinctness. See [12] for a general treatment of local spin systems.

Suppose D = {V1, . . . , Vr} is a collection of subsets of V with V = ∪iVi. For
each 1 ≤ i ≤ r and σ ∈ Ω, let Lσ

Vi
be the generator for the Glauber dynamics

(or 2-path Glauber dynamics) restricted to Vi with boundary configuration σ.
In other words, colours can change only for nodes in Vi.

Suppose that Lσ
Vi

is ergodic for each i and σ. Let πσ
Vi

denote the stationary
distribution of Lσ

Vi
. For each i, define gi := infσ∈Ω Gap(Lσ

Vi
), the minimum spec-

tral gap for Lσ
Vi

over all choices of boundary configurations. The block dynamics
is a continuous-time Markov process with generator LD defined by

KD[σ → η] =

{

πσ
Vi

[η] if there exists i such that η ∈ Ωσ
Vi

0 otherwise.

Note that KD[σ → η] > 0 precisely when η and σ differ only within a single block
Vi. Informally, we think of the weighted block dynamics as having a poisson clock
of rate 1 for each block Vi. When clock i rings, the colouring of Vi is replaced
randomly according to πσ

Vi
, where σ is the previous colouring.

Using τVi
= 1/gi to denote the maximum relaxation time of Lσ

Vi
over all

choices of boundary configurations, Proposition 3.4 of Martinelli [12] is:

Proposition 1. τ(LV) ≤ τ(LD) × (max1≤i≤r τVi
) × supx∈V |{i : x ∈ Vi}| .

We are now ready to define the weighted block dynamics corresponding to D.
This is a continuous-time Markov process whose generator L∗

D is given by

K∗
D[σ → η] =

{

giπ
σ
Vi

[η] for all η,i such that η ∈ Ωσ
Vi

0 otherwise.

The weighted block dynamics is similar to the block dynamics, but the transition
probabilities for block Vi are scaled by a factor of gi. The main result for this
section is the following variant of Proposition 1:

Proposition 2. τ(LV) ≤ τ(L∗
D) × supx∈V |{i : x ∈ Vi}|.

The proof of Proposition 2 is a simple modification to the proof of Propo-
sition 1 [12]. It is worth noting the difference between Proposition 2 and the
original block dynamics, Proposition 1. In the original version, the block dy-
namics Markov process can be thought of as having a poisson clock of rate g for
each block, where g is the minimum over all gi. In other words, each block is
chosen with the same rate, that being the worst case over all blocks. On the other
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hand, in the modified version each block is chosen with the rate corresponding
to that block. The original version yields a simpler Markov process, but a looser
bound on the gap of the original process. In particular, applying the original
block dynamics to our main result yields a mixing time of nO(1+∆/k), while the
modified block dynamics tightens the bound to nO(1+∆/k log ∆) (see Remark 4).

We next show that the weighted block dynamics is equivalent to a related
process. Informally, we wish to “collapse” each block to its set of internal bound-
ary nodes. We will assign colours to these boundary nodes according to the
probability such a boundary configuration would occur in the block dynamics.
More formally, suppose D = {V1, . . . , Vm} is a set of blocks of vertices of T . Let
B = ∪m

i=1∂Vi. That is, B contains all internal boundary nodes for the blocks in
D. Note B ∩ Vi = ∂Vi. We define a Markov process LB on ΩB , which simulates
the behaviour of LD restricted to the nodes in B. Given distribution π over ΩT ,
S ⊆ T , and η ∈ ΩS , write πT [η′ : η′(S) = η(S)] to denote

∑

η′:η′(S)=η(S) πT [η′],
the probability that the configuration of S agrees with η. Then LB is defined by

KB [σ → η] =

{

giπ
σ
Vi

[η′ : η′(∂Vi) = η(∂Vi)] if σ and η differ only on ∂Vi

0 otherwise.
(2)

In other words, η is chosen according to the probability that η is the configuration
on B after a step of the block dynamics. Our claim is that the relaxation times
of L∗

D and LB are the same; this is similar to Claim 2.9 due to Berger et al [1].

Proposition 3. τ(L∗
D) = τ(LB).

4 An Upper Bound for General Trees

We now begin our proof of Theorem 1. Our approach is to decompose a tree
into smaller subtrees, apply the block dynamics to the resulting subgraphs, and
then use induction to bound the mixing time of the entire tree. Implicitly, this
yields an iterative decomposition of the tree into smaller and smaller subtrees.
How should we decompose a tree? A first idea is to root the tree at a vertex v,
then take each subtree rooted at a child of v as a block (and v itself as a block of
size 1). A nice property of this decomposition is that each subtree has at most
one boundary node, adjacent to its root. In this case there will be h levels of
recursion in the induction, where h is the height of tree T , and we will obtain
a bound of the form ch, where c = c(∆, k) is the mixing time for an instance of
the block dynamics. This method works for complete trees (and indeed was used
by Berger et al. [1]) since they have logarithmic height. However, the height of
a general tree could be much greater, leading to a super-polynomial bound.

Instead, we will partition the tree in a manner that guarantees each block
has size at most half the size of the tree. This ensures that our recursion halts
after logarithmically many steps, and yields a polynomial mixing time. To obtain
such a partition, we choose a central node x and conceptually split the tree by
removing x, obtaining at most ∆ subtrees plus {x}.
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There are difficulties with the above approach that must be overcome. First, a
subtree T may have multiple boundary nodes, which complicates the behaviour
of the block dynamics. We therefore make our choice of x carefully, so that
boundaries are of size at most 2. Second, for non-complete trees we might have
blocks of vastly differing sizes, which makes a tight analysis of the block dynamics
more difficult. We therefore use the weighted version of the block dynamics.

In this section we describe our choice of blocks for the block dynamics. We
then show that the upper bound of Theorem 1 holds, given a bound on the relax-
ation time of the block dynamics. The details of analyzing the block dynamics
are encapsulated in Lemma 3, which is proved in Section 4.1.

Let T be any tree with maximum degree ∆. Suppose |T | = n and |∂T | ≤ 2
(that is, T has at most two external boundary nodes). Let σ be a boundary
configuration for T . If k ≥ 4, then let L denote the Glauber dynamics on T
with k colours and boundary configuration σ. If k = 3, then take L to be the
2-path Glauber dynamics on T with boundary configuration σ. Either way, since
|∂T | ≤ 2, Lemma 1 implies that L is ergodic. Let τσ

T denote the relaxation time
for L. We wish to consider the maximum relaxation time over all boundary
configurations and trees of a certain size. To this end, we define

τT := max
σ∈Ω

τσ
T and τi(n) := max

T :|T |≤n, |∂T |≤i
τT .

We will prove Theorem 1 by showing the slightly stronger result that τ2(n) =
nO(1+∆/k log ∆). We will show that, for some fixed constant c and some 2 ≤ i ≤ ∆,

τ2(n) ≤ ci2
(

k − 1

k − 2

)i+1

τ2 (⌊n/i⌋) . (3)

First let us show how (3) implies Theorem 1 when k ≥ 4. By induction on n, (3)
implies that τ2(n) ≤ nd(1+∆/k log ∆) for some constant d (since we can assume k ≤
2∆, as otherwise the result is known [7]). By (1), the mixing time of the Glauber
dynamics satisfies M(L) ≤ (n log k)τG ≤ (n log k)τ2(n) = nO(1+∆/k log ∆) as
required. For k = 3, (3) implies that the 2-path Glauber dynamics mixes in time
nO(1+∆/k log ∆). Theorem 1 then follows from Lemma 2 below.

Lemma 2. Let L1 denote the Glauber dynamics with k = 3 colours, and L2

denote the 2-path Glauber dynamics again with k = 3 colours. For any T with
|∂T | ≤ 1 and boundary configuration ξ, τ(Lξ

1) ≤ nO(∆/ log ∆)τ(Lξ
2).

Proof (sketch). We wish to apply the comparison method of Diaconis and Saloff-
Coste [3]. We note that this application is not immediate, since a step of L2

cannot always be simulated by a small number of steps of L1. We therefore
consider an intermediate process, which performs a cyclic shift of all colours of a
subtree of T in one step. Such a process can be used to simulate a step of L2. To
compare with L1, we simulate a rotation step by changing the colours of nodes
in a bottom-up fashion. If these changes are ordered carefully, one can simulate
a rotation of colours in O(n) steps of L1, where each step has a congestion
of nO(∆/ log ∆). The term nO(∆/ log ∆) derives from a bound on the number of
siblings of ancestors of a given node. Details are given in the full version.
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We now turn to proving (3). The following Lemma will be our main tool.

Lemma 3. Suppose k ≥ 3 and let T be a subtree of a tree G with |∂T | ≤ 2
and let σ ∈ Ω be a boundary condition for T . Choose v ∈ T and let Dv =
{{v}, V1, . . . , Vt} be a partition of T into disjoint connected subtrees, where 1 ≤
t ≤ ∆. Suppose |∂Vi| ≤ 2 for each Vi. Then there exists constant c such that

τσ
T ≤ c max

1≤i≤t
i2

(

k − 1

k − 2

)i

τVi
.

We prove Lemma 3 in Section 4.1. Let us show how it implies (3). We first
consider trees with boundaries of size one, then size two.

Lemma 4. For some 2 ≤ i ≤ ∆, we have τ1(n) ≤ ci2
(

k−1
k−2

)i

τ2 (⌊n/i⌋).

Proof. Suppose |∂T | ≤ 1. It is well-known that we can find a vertex x ∈ T such
that if Dx = {{x}, V1, . . . , Vt}, we will have |Vi| ≤ ⌊n/2⌋ for all 1 ≤ i ≤ t (see eg.
[11]). We will choose our indices so that |V1| ≥ |V2| ≥ . . . ≥ |Vt|. Since |∂T | ≤ 1,

we have |∂Vi| ≤ 2 for all i. By Lemma 3, τT ≤ ci2
(

k−1
k−2

)i

τVi
for some 1 ≤ i ≤ t.

If i ≥ 2, we get τVi
≤ τ2(|Vi|) ≤ τ2(⌊n/i⌋), since the Vi are given by increasing

size. Thus τT ≤ ci2
(

k−1
k−2

)i

τ2 (⌊n/i⌋) for some 2 ≤ i ≤ t as required. If i = 1,

then we recall that |V1| ≤ ⌊n/2⌋ by our choice of x. Hence τT ≤ c
(

k−1
k−2

)

τV1
<

c(2)2
(

k−1
k−2

)2

τ2 (⌊n/2⌋) as required.

Proposition 4. For some 2 ≤ i ≤ ∆, τ2(n) ≤ c2i2
(

k−1
k−2

)i+1

τ2(⌊n/i⌋).

Proof. Let T be a subtree with |T | = n and |∂T | = 2, say ∂T = {z1, z2}. Choose
x as in Lemma 4, with x separating T into subtrees of size at most ⌊n/2⌋. We
will call the unique path in G from z1 to z2 the boundary path for T . Suppose
x is on the boundary path for T . Let Dx = {{x}, V1, . . . , Vt} be a partition into
disjoint connected subtrees, indexed so that |V1| ≥ . . . ≥ |Vt|; note that |∂Vi| ≤ 2
for all i. We then apply Lemma 3 as in Lemma 4 and obtain the desired result.

Now suppose that x is not on the boundary path for T . Consider T to be
rooted at some r ∈ ∂T . Let y be the least ancestor of x that lies on the boundary
path. Consider Dy = {{y}, V1, . . . , Vt}. Since x separates T into subtrees of size
at most ⌊n/2⌋, in particular the subtree containing y must have size at most
⌊n/2⌋. This implies that the subtree separated by y that contains x must contain
at least ⌊n/2⌋ nodes, and is therefore V1, the largest subtree separated by y. Also,
|∂Vi| ≤ 2 for all i, since y is on the boundary path for T . Lemma 3 implies

τT ≤ ci2
(

k − 1

k − 2

)i

τVi



9

for some i. If i > 1 then we obtain the desired result since |Vi| ≤ ⌊n/i⌋. If i = 1,
then since |V1| < n and |∂V1| = 1 ( by our choice of y), Lemma 4 implies

τT ≤ c

(

k − 1

k − 2

)

τ1(|V1|) ≤ c

(

k − 1

k − 2

)

τ1(n)

≤ c2i2
(

k − 1

k − 2

)i+1

τ2 (⌊n/i⌋) for some 2 ≤ i ≤ ∆.

We have now derived (3), completing the proof of Theorem 1.

4.1 Proof of Lemma 3

We now proceed with the proof of Lemma 3, which bounds the relaxation time
on a tree with respect to the relaxation times for subtrees. Our approach is to
use a canonical paths argument to bound the behaviour of the block dynamics.
Indeed, there is a simple canonical path to move between configurations σ and η:
modify the configuration of each Vi to an intermediate state so that v is free to
change colour to η(v), make that change to v, then set the configuration of each
Vi to η(Vi). The block dynamics paired with this path yields a bound on the
relaxation time. However, that bound is not tight enough to imply the mixing
rate we desire: it only implies a mixing time of nO(∆). We therefore apply the
following sequence of improvements to the above approach.

1. We explicitly describe an intermediate configuration for the neighbours of
v, in order to balance congestion over all start and end configurations. This
improves the bound on the mixing time to nO(log ∆+log k+∆/k).

2. Our path shifts between 3 different intermediate configurations to maximize
the dependency on the start and end configurations at each step. This im-
proves our bound to nO(log ∆+∆/k).

3. We apply the weighted block dynamics, to differentiate between large and
small subtrees. We always change configurations of blocks in order of subtree
size. This improves our bound to nO(log ∆+∆/k log ∆). See Remark 4.

4. We apply weights to our canonical path to discount the congestion on smaller
subtrees. The net effect is that the presence of many small subtrees does
not influence the congestion of our paths. This improves our bound to
nO(1+∆/k log ∆). See Remark 3.

The Block Dynamics Recall the conditions of Lemma 3. Suppose k ≥ 3 and
let T be a tree with |∂T | ≤ 2 and let σ ∈ Ω be a boundary condition for T .
Choose v ∈ T and consider D = {{v}, V1, . . . , Vt}, where 1 ≤ t ≤ ∆. Suppose
we choose v so that |∂Vi| ≤ 2 for each Vi. We will think of T as being rooted at
v; then let ui denote the root of Vi (ie. the neighbour of v in Vi). Due to space
limitations, we prove Lemma 3 under the assumption that ui 6∈ ∂T for all i. The
(simple) extension to remove this assumption is discussed at the conclusion of
the section; see Remark 2.
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Let L∗
D be the generator for the weighted block dynamics corresponding to

D and boundary configuration σ. Let τσ
D denote the relaxation time of L∗

D. Since
no vertex lies in more than one block, Proposition 2 implies τσ

T ≤ τσ
D.

Next recall the definition of graph B and dynamics LB from Proposition 3.
In this context, we can view LB as a version of LD wherein each block is treated
like a single vertex. That is, B is a star with internal node v; we will refer to
u1, . . . , ut as the leaf nodes of B. When such a leaf node, say ui, is chosen by the
dynamics, its colour updates with probability corresponding to the probability of
seeing that colour as the root of Vi in LD. By Proposition 3, τ(Lσ

D) = τ(Lσ
B). It

is therefore sufficient to bound τ(Lσ
B). Note that this is true even for the special

case of k = 3, as Lσ
B depends only on the ergodicity of L (the 2-path Glauber

dynamics) and its stationary distribution, which is uniform. The following simple
Lemma bounds the transition probabilities of Lσ

B .

Lemma 5. Choose S ⊆ T with |∂S| ≤ 2 and boundary configuration ξ, and

suppose x ∈ ∂S. Choose c ∈ A and suppose there exists some η ∈ Ωξ
S with

η(x) = c. Then πξ
S [ω : ω(x) = c] ≥ 1/k.

Corollary 1. Suppose α, ω ∈ Ωσ
B, KB [α → ω] > 0, and α(ui) 6= ω(ui). Then

KB [α → ω] ≥ (kτσ
Vi

)−1.

Defininition of Intermediate Configurations Choose two colourings α, η ∈
ΩB . Our goal is to define a sequence of steps of LB that begins in state α and
ends in state η. If α(v) = η(v) this sequence is simple: the colours of nodes
u1, . . . , ut are changed from α to η one at a time. If α(v) 6= η(v), our strategy
is to first change the colours of u1, . . . , ut so that none have colour η(v), then
change the colour of v to η(v), and finally set the colours of the ui nodes to
match η. The obvious way to do this requires two “passes” of changes over the
leaf nodes, but this method generates too much congestion (defined below). We
therefore introduce a more complex path that uses three passes. We now define
the colours used in the intermediate configurations of this path.

If α(v) 6= η(v) then for each 1 ≤ i ≤ t we will define three colours, ai, bi, and
ci, that depend on α and η. The first two colours are easy to define:

ai =

{

α(ui) if α(ui) 6= η(v)

α(v) otherwise
bi =

{

η(ui) if η(ui) 6= α(v)

η(v) otherwise

That is, (a1, . . . , at) are the colours of the children of v in α, with occurrences of
η(v) replaced with α(v). Note that our assumption that ui is not adjacent to the
external boundary of T ensures that there exists a configuration in which ui has
colour ai. We define bi in the same way, but with the roles of α and η reversed.

The definition of colour ci is more involved. These will be the colours to
which we set the leaf nodes to allow v to change from α(v) to η(v). We will
apply a function f that will map the colours (α(u1), . . . , α(ut)) to a vector of
colours (c1, . . . , ct) such that for all i, ci 6∈ {α(v), η(v)}. We want f to satisfy the
following balance property: for all 1 ≤ i ≤ t, writing x for (x1, . . . , xt),
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#{x : (xj = α(uj) ∀j > i) ∧ (f(x)j = cj ∀j ≤ i)} ≤

⌈

(

k − 1

k − 2

)i
⌉

. (4)

That is, for any 1 ≤ i ≤ t, if we are given c1, . . . , ci and α(ui+1), . . . , α(ut),

there are at most

⌈

(

k−1
k−2

)i
⌉

possibilities for α(u1), . . . , α(ut). Such an f is guar-

anteed to exist; see Lucier and Molloy [13] for a construction.

The Path Definition Let Γ be the transition graph over ΩG with (ω, β) ∈ Γ
if and only if KB [ω → β] > 0. We are now ready to define a path γ(α, η) of
transitions of Γ . If α(v) = η(v), our path simply changes the colour of each ui

from α(ui) to η(ui), one at a time. If α(v) 6= η(v), we use the following path:

1. For each ui in increasing order: recolour from α(ui) to bi, then to ci.
2. Recolour v from α(v) to η(v).
3. For each ui in decreasing order: recolour from ci to η(ui), then to ai.
4. For each ui in increasing order: recolour from ai to η(ui).

The reader is encouraged to verify that all steps are valid transitions accord-
ing to Lσ

B . The number of changes to the colour of each ui seems excessive, but
we define our path this way to maintain an important property: each change is
from a colour derived from α to a colour derived from η, or vice-versa. This will
be important in our analysis of the path congestion, defined below.

Analysis of Weighted Path Congestion We will now define the weighted
congestion of our choice of paths. For each (ω, β) ∈ Γ , we will define a weight
w(ω, β) > 0. Set w(ω, β) = 1 if ω and β differ on the colour of v, and set
w(ω, β) = i−2 if ω and β differ on the colour of vertex ui. We define the weight
of a path by w(γ(α, η)) =

∑

(ω,β)∈γ(α,η) w(ω, β). Then note that for all γ(α, η),

w(γ(α, η)) ≤ 1+5
∑t

i=1 i−2 < 1+5
(

π2

6

)

< 10. For each edge (ω, β) ∈ Γ , define

the weighted congestion of that edge, ρw(ω, β), as

ρw(ω, β) :=
1

w(ω, β)





∑

γ(α,η)∋(ω,β)

π[α]π[η]w(γ(α, η))

π[ω]KB [ω → β]



 .

The weighted congestion for our set of paths is ρw := supω,β ρw(ω, β). The
weighted canonical paths bound is τσ

D ≤ ρw. We note that this bound and its
proof are implicit in [4] (see their Remark on page 38). The standard canonical
path bound sets w(ω, β) = 1 for all (ω, β) ∈ Γ . Our choice of a different weight
function will allow us to tighten the bound we obtain on τσ

D (see Remark 3).
Our result follows by bounding ρw(ω, β). Uniformity of π implies

ρw(ω, β) ≤ 10

(

1

w(ω, β)
× |{γ(α, η) ∋ (ω, β)}| ×

1

(k − 1)t+1KB [ω → β]

)

. (5)
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We now consider cases depending on the nature of the transition (ω, β).
Case 1: ω and β differ on the colour of v. Note that w(ω, β) = 1.

Also, from the definition of LB , we have KB [ω → β] = infσ∈Ω gap(Lσ
{v})π

ω
{v}[φ :

φ(v) = β(v)]. But note that gap(Lσ
{v}) = 1 for all boundary conditions, and πω

{v}

is the uniform distribution over a set of at most k − 1 colours.We conclude

KB [ω → β] ≥
1

k − 1
. (6)

Consider the number of (α, η) such that (ω, β) ∈ γ(α, η). This occurs precisely
when α(v) = ω(v), η(v) = β(v), and α(ui) = ω(ui) for all ui.

Consider the possibilities for η. Configuration β determines η(v), and there
are (k−1)t choices for η given η(v) (consider choosing the colours for u1, . . . , ut,
which cannot be η(v)). Now consider α: the colour α(v) is determined by ω,
as are (c1, . . . , ct). Thus by (4) there are at most ⌈(k−1

k−2 )∆⌉ possibilities for
(α(u1), . . . , α(ut)), which determines α. Putting this together, the total number

of colourings α and η that satisfy (ω, β) ∈ γ(α, η) is at most (k− 1)t

⌈

(

k−1
k−2

)t
⌉

.

Substituting this and (6) into (5), we conclude

ρw(ω, β) ≤ 10(1)(k − 1)t

⌈

(

k − 1

k − 2

)t
⌉

k − 1

(k − 1)t+1
≤ 20

(

k − 1

k − 2

)t

.

Case 2: ω and β differ on the colour of ui for some i. In this case,
w(γ(α, η)) = i−2. Also, since there exists a colouring of Vi in which ui has colour
β(ui) (recalling our assumption that ui 6∈ ∂T ), Corollary 1 implies

KB [ω → β] ≥ (kτVi
)−1. (7)

How many paths in γ(α, η) use the transition (ω, β)? We consider subcases
for α and η. We give only one subcase here; the remaining 5 cases (which are
very similar) are omitted due to space constraints.

Subcase: α(v) 6= η(v) and (ω, β) is the first change to ui in γ(α, η).
That is, (ω, β) is the first change in Step 1 of the canonical path description.
In this case we know α(v) = ω(v), α(uj) = ω(uj) for all j ≥ i, bi = β(ui), and
cj = β(uj) for all j < i. How many α,η satisfy these conditions?

There are at most k−1 possibilities for η(v), since η(v) 6= α(v) = ω(v). Given
η(v), there are k−1 possibilities for η(uj) for each j 6= i. Note that β determines
bi, from which η(v) determines η(ui). Thus the total number of possibilities
for η is (k − 1)t. Next consider α. ω determines α(v) and also α(uj) for all
j ≥ i. Also, β determines cj for all j < i. By (4), the number of possibilities

for α(u1), . . . , α(ut) is at most

⌈

(

k−1
k−2

)i−1
⌉

. The total number of α and η is

therefore at most

⌈

(

k−1
k−2

)i−1
⌉

(k − 1)t. This completes the subcase.

Summing up over all subcases, we get that the total number of possibilities
for α and η, given that (ω, β) is a change in the colouring of ui, is at most
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12
(

k−1
k−2

)i

(k − 1)t. Substituting this and (7) into (5), we have

ρw(ω, β) ≤ 120i2
(

k − 1

k − 2

)i

(k − 1)t

(

τVi
k

(k − 1)t+1

)

≤ 180i2
(

k − 1

k − 2

)i

τVi
.

This concludes our case analysis. Cases 1 and 2 (and the fact that τVt
≥ 1)

imply ρw ≤ max1≤i≤t 180i2
(

k−1
k−2

)i

τVi
. Applying the canonical paths bound and

Proposition 2 we conclude τσ
T ≤ τσ

D ≤ 180max1≤i≤t i2
(

k−1
k−2

)i

τVi
as required.

Remark 2. Recall that in the analysis above we assumed that no ui was in ∂T .
We now sketch the method for removing this assumption; additional details
appear in the full version of this paper. We used the assumption to guarantee
that no leaf of B was adjacent to the boundary of T . We modify our selection
of blocks to maintain this property: we replace block {v} with a block R ⊆ T
that contains v and any neighbouring nodes in ∂T . Our new set of blocks D will
contain R and all subtrees separated by R. Then B will no longer be a star, but
rather a tree or forest with few internal nodes. We then bound the relaxation
time of LB as before, extending our set of canonical paths in the natural way.
The congestion analysis for this set of paths is similar to the original, and we
obtain the same result up to a constant factor.

Remark 3. We note the effect of using the weighted canonical paths bound. If
we had used the standard canonical paths bound, then we would replace the
factor of i2 in Lemma 3 by the maximum length of a path, which is 5∆ + 1.
However, this would lead to a bound of nO(log ∆+∆/k log ∆) on the mixing time
of the Glauber dynamics, which is weaker than nO(1+∆/k log ∆).

Remark 4. We also note the effect of using the weighted block dynamics. If we
had applied Proposition 1 instead of Proposition 2, the bound in (7) would
become KB [ω → β] ≥ (kτ)−1, where τ = maxi τVi

. This would lead to a bound

of τσ
T ≤ ct2

(

k−1
k−2

)t

max1≤i≤t τVi
for Lemma 3. With this modified Lemma, the

bound in (3) would become τ2(n) ≤ ct2
(

k−1
k−2

)t

τ2 (⌈n/2⌉), leading to a mixing

time bound of nO(1+∆/k), which is weaker than nO(1+∆/k log ∆).

5 Open Problems

Our results raise questions about the Glauber dynamics on planar graphs of
bounded degree. Hayes, Vera and Vigoda [7] noted that when ∆ ≥ nη for any
η > 0 then certain trees require k ≥ c∆/ log ∆ for polytime mixing, where c is
an absolute constant. The same is true for any ∆ that grows with n [13]. But
for ∆ = O(1), Theorem 1 shows that no trees require k > 3. Is there a constant
K such that for every k ≥ K and constant ∆, the Glauber dynamics mixes in
polytime on k-colourings of every planar graph with maximum degree ∆?



14

Another question is how far Theorem 2 can be extended. In other words, how
many leaves can we fix and still guarantee polytime mixing? It is easy to fix the
colours of k−1 neighbours of each of two adjacent vertices u, v so that the chain
is not ergodic, so the answer lies between k − 2 and 2k − 2.
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