
Hold ’em or Fold ’em? Aggregation
Queries under Performance Variations

Gautam Kumar
UC Berkeley

gautamk@cs.berkeley.edu

Ganesh Ananthanarayanan
Microsoft

ga@microsoft.com

Sylvia Ratnasamy
UC Berkeley

sylvia@cs.berkeley.edu

Ion Stoica
UC Berkeley

istoica@cs.berkeley.edu

Abstract
Systems are increasingly required to provide responses to
queries, even if not exact, within stringent time deadlines.
These systems parallelize computations over many pro-
cesses and aggregate them hierarchically to get the final
response (e.g., search engines and data analytics). Due to
large performance variations in clusters, some processes are
slower. Therefore, aggregators are faced with the question
of how long to wait for outputs from processes before com-
bining and sending them upstream. Longer waits increase
the response quality as it would include outputs from more
processes. However, it also increases the risk of the aggre-
gator failing to provide its result by the deadline. This leads
to all its results being ignored, degrading response quality.
Our algorithm, Cedar, proposes a solution to this quandary
of deciding wait durations at aggregators. It uses an online
algorithm to learn distributions of durations at each level in
the hierarchy and collectively optimizes the wait duration.
Cedar’s solution is theoretically sound, fully distributed, and
generically applicable across systems that use aggregation
trees since it is agnostic to the causes of performance varia-
tions. Evaluation using production latency distributions from
Google, Microsoft and Facebook using deployment and sim-
ulation shows that Cedar improves average response quality
by over 100%.

Categories and Subject Descriptors [Networks]: Cloud
computing; [Computer Systems Organization]: Distributed
Architectures

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16 April 18-21, 2016, London, United Kingdom
Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2901318.2901351

Aggregators

...Processes

...
Root

Figure 1: Aggregation Trees. On arrival of a query, com-
putations are spawned across multiple parallel processes
whose outputs are combined using aggregators to pro-
duce the final response.

Keywords Stragglers, Partition-aggregate, quality, dead-
line, order-statistics

1. Introduction
Systems using aggregation trees in their computation are in-
creasingly pervasive (e.g., web search engines and approx-
imate querying frameworks [2]). These computations have
many parallel processes with aggregators arranged hierar-
chically to combine their outputs. Figure 1 shows a sim-
ple abstract illustration. Modern systems that use aggrega-
tion trees run on large clusters and are required to provide
responses to queries, even if inexact, within stringent time
deadlines [2, 9, 18, 30].

Endemic to large clusters are broad performance varia-
tions, resulting in some processes being much slower than
others. These variations can arise because of network con-
gestion [3, 30, 34] as well as systemic contentions [6, 8, 13,
32]. For instance, production traces show that RTT values in
Bing’s search cluster can vary by a factor of nearly 50× [3].

Due to slow processes, every aggregator faces the deci-
sion of how long to wait for outputs from processes before
aggregating and sending the results upstream. The wait du-

1

ration has direct implication on the quality of the response.
We define response quality as the fraction of process outputs
that are included in the response; similar definitions of qual-
ity (or application throughput) have been used in many re-
cent proposals [17, 30]. The longer the aggregator waits, the
higher the quality of the overall response. However, longer
wait durations also increase the risk of the aggregator failing
to provide its results to the root by the deadline. If it misses
its deadline, all its results are ignored by the root, thus low-
ering quality of the final response.1

Systems typically avoid aggregators periodically updat-
ing the root with intermediate results because, (i) it increases
network traffic by a factor as much as the number of updates,
and (ii) it complicates the root and aggregator executions
along with their failure semantics. Production systems, to
the best of our best knowledge, do not involve such periodic
updates.

In this paper, we ask the question: How long should every
aggregator wait to maximize overall response quality within
the deadline?

The main observation behind our solution is that dura-
tions of queries follow a certain distribution type, and that
it is possible to quite accurately compute the parameters of
this distribution by observing a few process outputs. In par-
ticular, we use the durations of the processes that finish first
to predict the durations’ distribution, and use this distribu-
tion to optimize response quality by appropriately setting the
wait-time for the aggregator.

However any approach to learn the distribution param-
eters must overcome the following challenges. First, learn-
ing must be done in an online fashion on a per-query basis
given that different queries can vary substantially owing to
the different amount of work they might need to perform.
Second, given that we need to learn the distribution param-
eters online, the approach must be based on only the ear-
liest completed processes. Naturally, this introduces a bias
as the learning will not see the tail of the distribution, i.e.,
the outputs of the processes that take longest to complete.
Third, since we also target systems with short deadlines (∼
100 − 200ms), the learning must be distributed, i.e., not re-
quire aggregators to combine their samples, to avoid com-
munication overheads.

To address the above challenges, we propose Cedar, an
online algorithm to pick the wait duration for each aggrega-
tor. Cedar learns the distribution of process durations during
a query’s execution using statistically grounded techniques.
It avoids the measurement bias because of observing only
the earliest available process outputs by using the proper-
ties of order statistics [12]. Once it learns the distribution of
process durations, Cedar picks a wait duration based on the
query’s end-to-end deadline, as well as the time taken by ag-

1 Response times are critical for user engagement in interactive services.
Therefore, the logical alternative of fixing a desired response quality and
optimizing for response time is not a preferred option.

gregators themselves to combine and send the results to the
root.

Since Cedar learns the distribution parameters with high
accuracy even using a small number of samples, each aggre-
gator can estimate the parameters standalone without pool-
ing their samples. Thus, Cedar can be implemented in a fully
distributed manner.

Cedar’s solution has the following key advantages.

• It considers the problem of deadline-aware scheduling
end-to-end, i.e., aiming to improve application perfor-
mance instead of just individual processes.

• It makes no assumptions about the source of performance
variations among processes nor does it attempt to miti-
gate such variations. This generality differentiates our so-
lution from many prior efforts that assume specific causes
like network congestion [6, 17, 30]. Such generality is
critical for any solution to work well in practice because
there is no single cause for performance variations and
accurate modeling of these complex systems has proven
challenging so far [8, 13, 21, 22]. In this way, Cedar’s
performance benefits are agnostic to the cause of these
variations, whether they occur because of CPU, memory,
network or disk contention.

• Unlike many prior solutions that require changes at the
network layer [17, 30, 34], Cedar can be implemented
entirely at the endhosts. This leads to a simpler and easily
deployable solution. Furthermore, Cedar is robust across
different workloads.

To the best of our knowledge, prior work on dealing with
performance variations has not explored optimizing the wait
duration at aggregators. Optimizing along this simple de-
sign dimension leads to remarkably good results in our ex-
periments. We evaluate Cedar using a prototype implemen-
tation over the Spark framework [33] deployed on 80 ma-
chines on EC2, as well as through extensive simulations.
Cedar improves the quality of results by up to 100% in sim-
ulations and deployment replaying production traces from
Facebook and Cosmos’s analytics clusters as well as Google
and Bing’s search clusters. The near-optimal performance is
due to accurate learning of distribution parameters using or-
der statistics leading to as little as 5% estimation error as
well as a theoretically sound algorithm to select the correct
wait duration given the distributions.

2. Aggregation Queries
Aggregation queries are widely prevalent in modern sys-
tems. We describe two such systems—web services and data
analytics frameworks—that strive to provide results of the
best quality (but not necessarily exact) within a deadline. We
then quantify performance variations in production clusters
that run these systems.

2

Super Root

Frontend Web Server

query

News

Web

Video
Aggregators

Processes

Figure 2: A typical web search computation that aggre-
gates results across many functional silos [13]. The small
rectangles at the leaves denote processes of the computa-
tion.

2.1 Production Systems
Search Queries: Web search engines store indexes of
crawled web content on large distributed clusters. The in-
dexes are often divided into functional silos. To respond
to a search query, lookups are performed on different ma-
chines within every relevant silo, effectively resulting in
a computation of many parallel processes whose outputs
are aggregated hierarchically (as shown in Figure 2). Ev-
ery aggregator ranks results from nodes downstream and
sends the top few of them upstream. The eventual response
is based on results that arrive at the root by the deadline. The
higher the number of processes whose outputs are included
in the response, the better its quality and relevance [30],
which in turn has significant competitive and financial im-
plications [23]. Similar hierarchical computations are also
invoked in the creation of a user’s “wall” page in Face-
book [34].

Typically, process durations are primarily influenced by
contentions for multiple local resources as they read and
compute on indexes from the underlying storage. Aggrega-
tor durations, on the other hand, are influenced more by net-
working and scheduling aspects.
Approximate Analytics: Interactive data analytics frame-
works (e.g., Dremel [25], BlinkDB [2]) are projected to be
crucial in exploiting the ever growing data. These frame-
works allow users to specify deadlines in the query syntax,
and they strive to provide the best quality response within
that deadline [9, 30]. Queries are compiled to a DAG of
phases (or hierarchies) where each phase consists of mul-
tiple parallel processes. Figure 3 shows a DAG of a sample
query. While the communication pattern between hierarchies
can be either many-to-one or all-to-all, every aggregator ag-
gregates results from nodes downstream and sends them up-
stream. The quality of responses is, again, dictated by the
number of processes whose outputs are included in the re-
sponse.

Full
Aggregate

Full
Aggregate

Partialı
Aggregate

Partialı
Aggregate

Map Map Map Map

Output

Figure 3: A query to an interactive data analytics system
compiled into a DAG of hierarchical parallel processes.

2.2 Performance Variations
The nature of large clusters is that processes exhibit signifi-
cant and unpredictable variations in their completion. These
variations arise because of network congestion or contention
for resources on individual machines. We present variations
(in increasing order of magnitude) from three production
deployments—RTT variations in Microsoft Bing’s search
cluster [3], process durations in Google’s search cluster [13],
and task completion times in Facebook’s and Microsoft Cos-
mos’s production analytics cluster [7]. These clusters al-
ready have a variety of mitigation strategies to prevent pro-
cesses from straggling [3, 6, 8, 32, 34].

The objective of describing these variations is two fold.
First, is to show the prevalence and magnitude of perfor-
mance variations, and also that they occur because of mul-
tiple reasons. Second, is to present building blocks for con-
structing a workload for aggregation queries in the absence
of access to an end-to-end trace from systems as described
in §2.1.

Figure 4 plots the distribution of RTT values in Bing’s
search cluster. The RTT values show a long-tailed distribu-
tion (median, 90th percentile and 99th percentile values of
330µs, 1.1ms and 14ms) caused due to sporadic network
congestion. Variations among processes in Google’s search
cluster are primarily borne out of scheduling delays and
network congestion on highly utilized machines/links [13].
While the distribution is relatively narrow, the magnitude
of the variation is significantly higher. The median value is
19ms while the 99th percentile is over 65ms.

The task durations in Facebook’s and Cosmos’s analyt-
ics clusters vary considerably more (factor of 1600×) and
are caused by a combination of systemic contention for lo-
cal resources (memory, CPU and disk IO). Note that these
clusters already have speculation strategies [6, 32] for strag-
glers. When the earlier of the original or speculative copies
finish, the unfinished task is killed; we exclude durations of
such killed tasks. Further, task durations have recently fallen
by a factor of two to three orders of magnitude with the
advent of in-memory cluster frameworks (e.g., Spark [33],
Dremel [25]). At small task durations, effectiveness of exist-
ing straggler mitigation strategies are diminished owing to

3

0.0 0.5 1.0 1.5 2.0
Time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

0 5 10 15
Time (ms)

0.90
0.92
0.94
0.96
0.98
1.00

C
D

F
Figure 4: Distribution of RTTs in Bing’s search cluster.
The median value is 330µs while the 90th and 99th per-
centile values are 1.1ms and 14ms, respectively.

their reactive nature of observing a straggler before schedul-
ing speculative copies [8].

The upshot from these production traces is that perfor-
mance variations are large and occur for many reasons.
Ideally, algorithms to decide wait durations at aggregators
should take a holistic end-to-end view of the variations and
automatically adapt to any changes in the distributions, with-
out being tied to the underlying specifics. Before proceed-
ing to our solution, Cedar, in §4, we quantify the criticality
of picking the right wait-duration in §3 using an idealized
scheme.

3. The Case for Optimizing Wait Duration
We illustrate the value of picking the optimal wait duration at
aggregators by comparing the difference in response quality
between an ideal scheme and intuitive straw-man solutions.
We focus on the traces from Facebook’s Analytics (MapRe-
duce) cluster in this section, though our evaluations (§5) are
based on a number of production and synthetic workloads.

We assume a two level (or stage) hierarchy as shown in
Figure 5, where X1 and X2 denote the distribution of times
taken by nodes in the first and the second levels of the hierar-
chy, respectively, with k1 and k2 being the “fan out” at these
levels.2 There is an end-to-end deadline, D, imposed on the
query which is common knowledge to workers and aggre-
gators alike. However, while the aggregators know the top-
level deadline, they can’t exactly determine how long it will
take to ship the aggregated result upstream. As mentioned in
§1, one of the strengths of our model is that sinceX1 andX2

represent the duration of the entire stage subsuming all types
of variations, the performance improvement doesn’t depend
on their exact cause, be it network, CPU, memory or disk.

Our model makes two assumptions. First is that the du-
rations at the aggregators do not depend on the number of
downstream processes that respond, which generally holds
because the number of downstream straggler processes is
small. Second is that the performance variations are purely
caused by resource contentions and not inherent hardware
heterogeneity.

2 Two or three levels are common in the systems we focus on. However, we
will show later that our model works with any number of levels.

X2

X 1

X2

X 1 K

X2

X 1

K2

K1 K1 K1

D

Figure 5: A simple two level hierarchy. Let X1 and X2

be distribution of times taken in the first and the second
levels of the hierarchy, respectively.

3.1 Setting Wait Durations
Recall that wait duration at aggregators directly impacts
overall response quality; we measure quality by the fraction
of processes whose outputs are included in the final result.
(Note that our model is easily extensible to weighted pro-
cess outputs; Appendix A of [24]). If the wait duration is
too short, outputs that would have arrived before the dead-
line are missed thereby degrading overall response quality. If
the wait duration is too large, the aggregator misses its dead-
line which leads to outputs of all its processes (including the
completed ones) being ignored upstream, again degrading
overall response quality. Therefore, our problem is to calcu-
late the right wait duration at aggregators that maximizes
overall response quality given a deadline D.
Proportional-split: A natural straw-man solution to pick the
wait duration is to continuously learn statistics about the un-
derlying distributions X1 and X2 from completed queries,
and split the deadline proportionally between the different
levels based on the learned parameters. In fact, such a tech-
nique of estimating parameters from recent query behavior is
in deployment in Google’s clusters [18]. For a two-level tree
(Figure 5), the wait duration is set as D ×

(
µ(X1)

µ(X1)+µ(X2)

)
,

where µ(X1) is the mean of the stage duration distribution
X1. We refer to such a scheme as “Proportional-split”. 3

Ideal Solution: We compare the Proportional-split baseline
with an idealized scheme that has a priori information about
the distribution of process as well as aggregator durations
of every query. It uses that information to pick the wait du-
ration that maximizes overall response quality. We measure
the percentage improvement in response quality of the ideal-
ized scheme over the straw-man solutions. The ideal scheme
serves as a ceiling to estimate the maximum achievable im-
provement; the higher the improvement, the more the poten-
tial for Cedar.

3 Other statistics like median and (mean + stdev) exhibit similar results.
Futher, we also considered other baselines like equally dividing the deadline
between the stages or subtracting the mean of X2 from the deadline, but
they fare much worse.

4

Baseline

5

%
I
m

p
r
o
v
e
m

e
n
t

i
n

R
e
s
p
o
n
s
e

Q

u
a
l
i
t
y

A
v
g
.

R
e
s
p
o
n
s
e

Q

u
a
l
i
t
y

Proportional-Split Ideal

Figure 6: Ideal solution’s improvement in response qual-
ity over straw-man solutions for varying deadlines. Dis-
tribution X1 is from the map tasks and X2 is from the
reduce tasks in the Facebook cluster. The fanout is kept
constant at 50 (both k1 and k2) giving a total of 2500 pro-
cesses.

3.2 Potential Gains
Recall from §2.2 that the clusters from which we obtain our
traces already have a variety of straggler mitigation strate-
gies deployed. Despite that, we see substantial scope for im-
provement in quality of the overall response between the
Proportional-split and the Ideal scheme. In Figure 6, the
deadline for the query is varied from 500s to a really high
value of 3000s while the fanout factors k1 and k2 are kept
constant at 50 (based on [3]). Picking the right wait duration
can improve average response quality by over 100% com-
pared to Proportional-split, i.e., the response includes out-
puts of 100% more processes. Also, while it is ideally possi-
ble to achieve high response quality (say 90%) at deadline
values of > 1000s, the baseline fails to achieve such re-
sponse quality even at an extremely large deadline of 3000s.

The main drawback with Proportional-split is that it uses
a single distribution (from the recent set of queries) thus
missing query-specific variations which hold rich informa-
tion regarding spatial and temporal performance character-
istics. The potential for such high gains, despite the pres-
ence of straggler mitigation strategies, shows the criticality
of setting the right wait duration by learning the distributions
of durations online per-query.
Summary: Our analysis shows that setting the right wait du-
ration for aggregators (i) can substantially improve response
quality (by over 100%), and (ii) is non-trivial and simple
straw-man solutions fall significantly short.

4. Cedar: Algorithm Description
The aggregator estimates the optimal wait time by learning
the distribution parameters of process durations during a
query’s execution. The two main steps in doing so are, (i)
learning the distribution based on the completion times of
only the early processes in the query, and (ii) collectively
optimizing for the wait duration taking into account the time
taken by aggregators themselves to combine and send the
results to the root. We describe these steps after presenting
an overview.

〈ProcessOutput〉 outputSet← φ . Response Initialization
numOutputs← 0

procedure PARALLELHIERARCHICALCOMP(D)
SetTimer(D, TIMEREXPIRE)
ListenResponse(PROCESSHANDLER)

procedure PROCESSHANDLER(ProcessOutput to)
. On arrival of a process’s output

outputSet +← to . to added to outputSet
numOutputs +← 1
if numOutputs == k1 then

SetTimer(0, TIMEREXPIRE); return

Distribution X1 ← FITDISTRIBUTION(outputSet)
double wait← CALCULATEWAIT(D, k1, X1)
. Also uses Distributions Xi’s and ki’s for higher levels

(global)

double remWait← wait− elapsedT ime
. Subtract time elapsed so far.

SetTimer(remWait, TIMEREXPIRE)
ListenResponse(PROCESSHANDLER)

procedure TIMEREXPIRE

return outputSet

Pseudocode 1: Cedar’s algorithm for executing aggrega-
tion queries with deadline of D. The algorithm describes
the functioning of an aggregator at the lowest layer with
k1 processes whose durations are modeled as X1, aggre-
gators up the hierarchy work similarly. FITDISTRIBU-
TION is described in §4.2 to estimate X1 and CALCU-
LATEWAIT is described in §4.3.
4.1 Overview
Pseudocode 1 outlines Cedar’s end-to-end functioning. The
aggregator begins by setting a timer for the deadline, D
(PARALLELHIERARCHICALCOMP). On arrival of every
process’s output (PROCESSHANDLER), Cedar improves its
estimation of the distribution (FITDISTRIBUTION) and up-
dates its wait duration (CALCULATEWAIT). The aggregator
returns with the available outputs when no process finishes
in its current wait duration (TIMEREXPIRE).

Typically, higher levels in the hierarchy, i.e., aggregators,
have little variation in the distribution of their durations
across queries (X2 for the two-stage tree demonstrated in
Figure 5). This is because aggregation operations are mostly
similar across different queries (for example, sum and mean,
which have similar complexities). These trends are observed
in our analysis of traces from Google and Bing. These two
traces are primarily from higher level aggregator operations
and exhibit little variation across queries. Thus, Cedar learns
the above stage distributions offline based on completed
queries.

FITDISTRIBUTION concerns itself with learning the dis-
tributions of process durations, X1. As evidenced in the

5

Facebook distributions, process durations exhibit significant
variation across queries. Processes execute custom code that
involve a wide variety of compute and IO operations (across
disk, network) leaving them susceptible to many resource
contentions. As an illustration, the computation involved for
a search query like “Britney Spears” may take consider-
ably lesser time compared to a more sophisticated query like
“Britney Spears Grammy Toxic” because the latter involves
a combination of index lookups. Therefore, it becomes im-
perative to determine the distribution of process durations
per query.

CALCULATEWAIT, then, uses both X1 and higher level
distributions, X2, . . . , Xn, to calculate the optimal wait du-
ration for every aggregator.

We explain the learning of distribution of process dura-
tions (FITDISTRIBUTION) in §4.2. §4.3 explains the calcu-
lation of the optimal wait duration for aggregators (CALCU-
LATEWAIT). Table 1 lists the relevant notations.

4.2 Learning the Distribution
Cedar estimates the parameters of the distribution of pro-
cess durations online during the query’s execution. The es-
timation involves two aspects—distribution type (e.g., log-
normal, exponential), and relevant distribution parameters
(e.g., mean and standard deviation).

4.2.1 Distribution Type
Inspection of process durations from our traces show that the
distribution type across different queries remains unchanged,
even though the parameters of the distribution vary. There-
fore, estimating the distribution type is an offline process that
is repeated periodically across many completed queries. We
periodically fit percentile values using rriskDistributions [1]
package to find the best fit of distribution type.

In our traces, log-normal distribution gave the best fit for
each of the traces. The fit for the Facebook traces resulted
in less than 1% error in mean and median; even at high
percentiles the error was low. Google’s percentile values
for process durations fit with < 5% error even at the 99th

percentile. Log-normal distribution gave the best fit for the
Bing traces as well with 1% error in median and 2% error
in mean. More details about the goodness of our fit can be
found in Appendix B of [24].

One concern is that log-normal fit does seem to falter near
the extreme tail (say upwards of 99.5 percentile); the tail
being generally better modeled by distributions like Pareto
[14]. Such high percentiles, however, would consist of pro-
cesses whose outputs will not be aggregated irrespective of
any optimization of wait-duration given the heavy-tail be-
havior of such systems. Thus Cedar’s performance doesn’t
suffer due to this and remains near-optimal (§5).

Regardless of the distribution type, its parameters exhibit
considerable variation on a query to query basis. We estimate
them online, during the query’s execution.

Table 1: Table of Notation

D , Deadline at the top-level aggregator
n , Number of stages in the aggregation tree
Xi , Stage duration distribution for the ith stage

(1 being bottom-most)
ki , Fan-out at the ith stage
X, k , Stage duration distribution and fan-out

when a single stage is considered
X(i) , ith-order statistic of X
qn , Maximum achievable quality for an n-level

tree (under given D, X ′is and k′is).
4.2.2 Estimating Parameters of Distribution
We consider a single level in which an aggregator observes
process duration distribution given by X with a fan-out
of k (omitting the subscript that denotes the level since
we are concerned with a single stage in this section). The
objective is to estimate the parameters of the distribution X
based on the durations of only the completed processes thus
far. Denote the number of processes that have completed
at this point to be r, where r < k. A naive attempt at
estimating the parameters of the distribution would be to
simply calculate the mean and standard deviation using the
r samples. Such an empirical calculation would, however,
be sub-optimal because the r samples are biased, i.e., these
are not uniformly sampled r values from the distribution
but rather the smallest r values out of k samples from the
distribution. The key challenge in learning the parameters
of the distribution is, therefore, eradicating this bias. As
we show in §5, this bias can affect the accuracy of learnt
parameters considerably.

We alleviate the sampling bias using order statistics [12].
Given a distribution, X in our case, and k random samples
drawn from the distribution, the rth order statistic denotes
the distribution of the random variable corresponding to the
rth-minimum of the k samples. The key insight that Cedar
uses is that the time taken for the rth process output received
is not a random sample obtained from the distribution X ,
but instead, is a random sample obtained from the rth order-
statistic of the k samples drawn from X .4 In this way, Cedar
models each process duration as per a different distribution
which are given by the order statistics for the given distribu-
tion.

Formally, denote the random variables corresponding to
the first r order statistics (or process durations in our case)
by X(1), X(2), . . . X(r) (the subscript denotes the order they
arrive in),5 and let x(1), x(2), . . . , x(r) be the observed values
of process durations for the received outputs. The maximum
likelihood estimate, θ, of the distribution parameters (e.g., λ
for exponential distributions, or µ, σ for normal/log-normal

4 Order statistics are dependent on the sample size (or k in our case).
5X(i) is not to be confused with Xi that signifies the stage duration
distribution for the ith stage.

6

distributions), is written as: θMLE = arg maxθ P (X(1) =
x(1), X(2) = x(2), . . . , X(r) = x(r); θ).

Unfortunately, it is computationally expensive to maxi-
mize the above likelihood expression in an online setting.
Instead, we compute the maximum likelihood estimates of
the parameters θ independently from each random variable
X(i) and average the estimates together. While some in-
ternals of the estimation algorithm vary depending on the
distribution type, the general idea remains the same. We
present the details for log-normal and normal distributions.
The maximum likelihood estimates for the order-statistics
for the standard log-normal distribution are known, denoted
by o1, o2, . . . , ok henceforth. These are values that are avail-
able online or can be computed quite accurately using a sim-
ple simulation.

Since there are two parameters to estimate, µ, and σ,
at least two outputs are required. Let t1 and t2 denote the
arrival times for the first two responses. Then, we have
ln t1 = µ̂ + σ̂ln o1, and ln t2 = µ̂ + σ̂ln o2. This gives
us the first estimate of µ and σ. The ith estimate comes
from ti and ti+1 and the final estimates are obtained by
averaging individual estimates, a practical approach that is
computationally efficient in practice. The method for normal
distribution is similar; the equations do not have a logarithm
on either side.

4.3 Optimal Wait Duration
Once the underlying distribution is estimated, the next step
is selection of the optimal value of the wait duration to
maximize the quality (CALCULATEWAIT in Pseudocode 1,
and Pseudocode 2). As before, we focus our attention only
on the quality contributed by a single aggregator, since the
contribution of different aggregators to the overall quality is
independent of each other.

At a high level, the intuition is to model the expected
gain and loss in qualities due to a small additional wait.
We next formalize the gain and loss in quality. For ease of
understanding, we present the analysis for a two-level tree
(§4.3.1), before generalizing it to a n-level tree (§4.3.2).

4.3.1 Two-level tree
Consider an aggregator that has waited for t units of time
and has not received all the outputs. A small additional wait
of ∆t can result in additional responses being collected by
the aggregator.

Improvement in Quality: The probability that a pro-
cess’s output is received by the aggregator in time (t, t+∆t]
is given by a =

(
φX1(t + ∆t) − φX1(t)

)
, where φX1 is

the CDF of X1. The number of additional outputs from pro-
cesses received in the ∆t interval, then, is a binomial random
variable with success probability a. The expected number of
additional outputs received (given that the random variable is
binomial) is then k1a, where k1 is the maximum number of
outputs (fanout) that an aggregator can collect. These addi-
tional processes add to the quality of the final response only

if they reach the top-level aggregator in time whose proba-
bility is b = φX2

(D − (t + ∆t)). The expected gain due to
these additional outputs is given by multiplying a with b:

k1(φX1
(t+ ∆t) − φX1

(t)) · φX2
(D − (t+ ∆t)) (1)

Since quality is the fraction of process outputs, the expected
gain in quality is obtained by dividing the above expression
by k1.

Reduction in quality: The additional wait of ∆t, how-
ever, might lead to all the outputs of the aggregator (in-
cluding the additional garnered ones) not being included in
the final result. This happens if the aggregator itself misses
its deadline and is ignored altogether. The expected number

of outputs received till time t is k1
(φX1

(t)−[φX1
(t)]k1)

1−[φX1
(t)]k1

(Ap-
pendix C of [24]). The probability that the deadline is missed
due to the additional waiting is φX2

(D− t)−φX2
(D− (t+

∆t)). However, the above loss only occurs if all the outputs
have not been collected by the aggregator, which happens
with probability

(
1− [φX1(t)]k1

)
. Thus, the expected loss in

process outputs is obtained by multiplying the above three
expressions:

k1(φX1(t)−[φX1(t)]k1)·(φX2(D − t) − φX2(D − (t+ ∆t)))
(2)

Dividing the above expression by k1 gives us the expected
loss in quality.

4.3.2 Extension to n-level tree
Denote the number of levels in the aggregation tree to be n,
the fanout of each level denoted by k1, k2, . . . , kn, and stage
duration distributions by X1, X2, . . . , Xn; X1 being the
lowermost stage. Denote qn(D,X1, k1, X2, k2, . . . , Xn, kn)
(abbreviated as qn(D) whenever X1, k1, . . . , Xn, kn can be
treated implicit) to be the maximum quality (in expectation)
of this aggregation tree. The previous section formulated
the gain and loss in q2.

To extend our formulation to more than two levels, we de-
vise a recursive formulation by expressing the gain and loss
in qn in terms of qn−1. The key observation that we make is
that the maximum quality achieved under a certain deadline,
qn(D), is exactly the same as the maximum probability that
a particular process’ output reaches the root. This happens
only when each aggregator in the hierarchy selects the op-
timal wait-duration. For a single level tree, q1(D) is simply
the probability of a process output reaching the (only) ag-
gregator by the deadline D. Thus, q1(D,X1, k1) = P[X1 ≤
D] = φX1(D).

Therefore, the changes to the expressions for gain and
loss of quality are as follows.
Improvement in quality

The probability of additional outputs collected in ∆t
reachign the root is qn−1(D−(t+∆t), X2, k2, . . . , Xn, kn),
i.e., the maximum achievable quality for the n− 1 level tree
beginning at X2 (abbreviated as qn−1(D − (t + ∆t)) be-
low). For a two level tree, this is q1(D− (t+∆t), X2, k2) =

7

procedure CALCULATEWAIT(D, k1, Distribution X1)
. Also uses Distributions Xi’s and ki’s for higher levels

(global)

double wait← 0 . Wait Duration
double q ← 0; bestQ← 0 . Quality
for double c = 0; c ≤ D; c += ε do

. Incremental search in steps of ε
double G = QUALITYGAIN(c,X1, k1) . Eqn. 3
double L = QUALITYLOSS(c,X1, k1) . Eqn. 4
q+← G− L
if q ≥ bestQ then

bestQ← q
wait← c

return wait

Pseudocode 2: Calculation of the optimal wait duration
by balancing gain and loss. The optimal wait duration
depends on the distributions X1, X2, . . . , Xn, deadline D
and the fanouts k1, k2, . . . , kn.
φX2

(
D − (t+ ∆t)

)
. Thus, the expression for gain in qual-

ity for a two-level tree, or q2, is
(
φX1

(t + ∆t) − φX1
(t)

)
·

q1

(
D− (t+∆t), X2, k2

)
, Equation 1. Thus, the expected

gain in quality for an n-level tree is:(
φX1

(t+ ∆t) − φX1
(t)

)
· qn−1

(
D − (t+ ∆t)

)
(3)

Reduction in quality
To get the expression for n levels, we need to replace

φX2(.) by qn−1(.) in Equation 2 which gives:(
φX1

(t)−[φX1
(t)]k1

)
·
(
qn−1

(
D−t

)
−qn−1

(
D−(t+∆t)

))
(4)

The loss in q2 is
(
φX1(t)−[φX1(t)]k1

)
·
(
q1(D−t,X2, k2)−

q1(D − (t+ ∆t), X2, k2)
)
, Equation 2.

This recursive nature enables us to simply extend our
algorithm to any number of levels.

4.3.3 Picking Wait Duration
Pseudocode 2 describes the algorithm for picking the opti-
mal wait duration. Note that since the closed form solution
is not known, we compute the wait duration by searching
the space in small increments of ε. The net change in quality
is the difference between the expressions in Equation 3 and
Equation 4. We pick the value of wait duration which max-
imizes the quality. By keeping the value of ε to be small,
we can reduce the discretization error. Note that while Pseu-
docode 2 provides a serial exploration of the space for wait
duration, the exploration is easily parallelizable, i.e., we can
perform the calculation for each value of ε independently.
Further, one can simply precompute these wait-durations for
recorded distributions.

5. Evaluation
We evaluate Cedar using an implementation over the Spark
framework [33] and a simulator. We first explain the method-
ology of our evaluation before proceeding to present the re-
sults.

5.1 Methodology
Implementation: We implement Cedar’s algorithm over
Spark [33]. Spark caches data in-memory allowing for fast
interactive querying. For this, we first implement an aggre-
gator that can do partial aggregation, i.e., send results up-
stream after some timeout even when a subset of the lower
level tasks have completed. Along with minor changes in
the scheduler, we are able to run an entire partition ag-
gregate workflow. Finally, we implement the baseline and
Cedar’s algorithm in the aggregators to select appropriate
wait-duration. The total code is ∼ 300 LOC in Scala; but
Cedar’s algorithm took < 50 LOC. We deploy Cedar on an
EC2 cluster of 80 quad-core machines (320 slots to run pro-
cesses).
Simulator: Our simulator mimics aggregation queries and
can take as its input different fanout factors, deadlines, as
well as distributions (both real-world distributions as well as
synthetic). We use the simulator to evaluate Cedar’s sensi-
tivity to fanout values (§5.4), and when there are multiple
levels in the aggregation tree(§5.5).
Workloads: We simulate Cedar using production traces from
Facebook’s Hadoop cluster [7], RTT values in Bing’s search
values [3], task duration statistics from Microsoft Cosmos’s
production analytics cluster [7], and statistics from Google’s
search cluster [13]. We also evaluate the effect of variances
in the distributions by synthetically injecting them to the
original traces. For the latter, we change the parameters of
a log-normal approximation learned from the traces.

Primary Workload: We use the production traces from
the Facebook cluster as our primary workload where we
have exact durations of map and reduce tasks per job and
naturally contains performance variations seen in practice.
For a particular job, process durations are given by the map
tasks and aggregator durations are given by the reduce tasks.
In this way, we are able to replay individual jobs. Since, we
have perfect information of task durations, we are also able
to dissect Cedar’s performance in detail (§5.3).

Data analytics frameworks are increasingly being used
for interactive purposes, so we believe our workload is well-
suited to test Cedar’s functioning. Regardless, we also eval-
uate Cedar’s robustness to different distributions based on
both other production and synthetic traces and show that
gains continue to be substantial (§5.6 and §5.7).
Topology: We use a two level hierarchy for all our exper-
iments (except when experimenting with multiple levels).
Unless otherwise specified, the fanout at the lower level is
fixed at 50 (based on values in Bing’s cluster [3]) and the
upper layer fanout is also set to be 50. For Spark results, we

8

86%

43%

22%

14%

197%

10%

FacebookMR*Spark*
��� ��
��
	
	������
 ���
�	
����������� ��������������
�		����	�����
�� ��
���
��	�������� �����
�
�������,�

Proportional-Split

Cedar

(a) Spark Implementation

51%

33%

22%

17%

100%

11%

FacebookMR

Proportional-Split Cedar Ideal

(b) Simulation

Figure 7: Improvement in Response Quality. X1 is per
Facebook’s Map distribution and X2 is per Facebook’s
Reduce distribution for different queries. The fanout at
both levels is fixed at 50.
set the lower layer fanout to be 20 and upper layer fanout to
be 16 giving us a total of 320 processes. We also analyze the
sensitivity of Cedar’s gains to the fanout.
Metric: Our figure of merit is the increase in average re-
sponse quality compared to the baseline of “Proportional-
split” defined in §3. Proportional-split estimates the distri-
bution in every level in the hierarchy from previous queries
by fitting the best parameters. Therefore, if the quality of re-
sponse achieved with our baseline and Cedar is QualityB
and QualityC respectively, the improvement is defined as
100 × QualityC−QualityB

QualityB
.

We also report other percentile values, when appropriate,
to show the spread in improvements. Further, we also com-
pare Cedar’s performance to the “ideal” scheme described
in §3. The ideal scheme is aware of distribution of process
durations of all queries, and represents the maximum achiev-
able improvement.

We start with the highlights of our results.

• Response quality improves by over 100% with Cedar

compared to straw-man solutions. The absolute value of
the quality goes to over 0.9. (§5.2)

• Online estimation of distribution parameters using order
statistics results in less than 5% error even with very few
samples. (§5.3)

• Cedar’s gains hold up for different fanouts and different
distributions. (§5.4 and §5.7)

10-1 100 101 102 103

% Improvement in Response Quality

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

Figure 8: CDF of Percentage improvement of individual
queries. The deadline is set to 1000s. We only look at
queries having > 5% quality in the baseline approach
to prevent improvements from being unreasonably high.

• Cedar’s importance only increases with number of stages
in aggregation trees. (§5.5)

• Cedar’s algorithm is robust across different distributions.
(§5.6 and §5.7)

5.2 Improvement in Response Quality
Figure 7 plots the average response quality achieved by
Proportional-split as well as Cedar, along with the relative
improvements for the Facebook workload.6 Our results show
three key points. First, Cedar significantly improves the qual-
ity of the response over Proportional-split (the improvements
lie between 10 − 197% in deployment and 11 − 100% in
simulation). These results reinforce the extent to which vari-
ations in the distribution can affect response quality and the
importance of picking the right wait duration. Second, while
Cedar consistently pushes the quality to over 0.9 at deadlines
> 1000s, the baseline cannot achieve a similar quality even
at a humongous deadline of 3000s. Third, Cedar’s perfor-
mance closely matches that of the ideal system that is aware
of process distribution of the query beforehand (Figure 7b).

Figure 8 plots the distribution in improvements at the
deadline of 1000s. 40% of the queries see their quality im-
prove by over 50%. However, the bottom one-fifth of queries
see little gains. This is primarily due to the long tail in the
distribution of process durations in these queries, leaving lit-
tle scope for improvement in quality regardless of the wait
duration. Improvement in quality of these queries will oc-
cur only by specific techniques that reduce systemic and
network contentions. Efforts to that end are focus of many
current research projects, and Cedar’s algorithms will bene-
ficially coexist with them.

Cedar’s algorithm also completes within tens of millisec-
onds even without the parallelization proposed in §4.3.3.

5.3 Dissecting Cedar’s Learning
We next turn to dissecting Cedar’s performance to better
understand the reasons behind the improvements. There are
two factors in Cedar’s learning mechanism contributing to

6 We prune the trace to only consider jobs with> 2500 map tasks (for 2500
processes) and > 50 reduce tasks (for 50 aggregators).

9

0 10 20 30 40 50
#Completed processes

0
20
40
60
80

100

%
Er

ro
r i

n
 µ

 E
st

im
at

e Cedar
Empirical

(a) Estimate of µ

0 10 20 30 40 50
#Completed processes

0
20
40
60
80

100

%
Er

ro
r i

n
 σ

 E
st

im
at

e Cedar
Empirical

(b) Estimate of σ

Figure 9: Variation in % error in estimation of the µ
and σ parameters of Facebook’s distribution (log-normal
with µ = 2.77 and σ = 0.84) with the number of responses
that have arrived at the aggregator (maximum of 50).
The baseline is the empirical estimates for µ and σ from
the responses.

3

Proportional-Split Cedar with empirical estimates

Cedar

FacebookMR+Empirical+Spark

Figure 10: Spark implementation results showing that
Cedar’s learning algorithm provides significant benefits
over using empirical estimates for the parameters.
its gains—eliminating bias in received samples using order
statistics (§5.3.1); and a simple yet accurate online learning
algorithm (§5.3.2).

5.3.1 Estimation using Order Statistics
Recall from §4.2 that Cedar uses order statistics to estimate
the mean µ and standard deviation σ of the distribution. This
helps us to eradicate the error in its estimates despite being
provided a biased sample of durations from only the early
processes. We compare it with an “empirical” technique
that estimates the mean and standard deviation directly from
the available responses, and is hence susceptible to biased
samples.

Figure 9 compares the error in Cedar’s estimation to the
empirical technique, as the number of samples increases.
Cedar’s estimation of µ is not only more accurate, the er-
ror also drops off to less than 5% when at least ten processes
have completed. Error in estimation of σ is relatively higher
(∼ 20%), however it has a lesser effect on the wait dura-
tion. This is also evidenced by Cedar’s improvements closely
matching an ideal scheme (Figure 7).

Regardless, Cedar’s improvements in response quality are
30 − 70% higher than the empirical technique (Figure 10),
due to the use of order statistics in its learning.

FacebookMR*Offline*Spark

10

Proportional-Split Cedar without online learning

Cedar

Figure 11: Spark implementation results showing that
Cedar copes well with load fluctuations that can increase
(or decrease) mean process durations by learning the
distributions in an online fashion.
5.3.2 Importance of Online Learning
Cedar estimates the wait duration by learning the parameters
of the distribution per query in an online fashion. Such learn-
ing has significant impact on performance. To illustrate this,
we consider the processes in the aggregation tree to be first
operating at a lower load than Facebook’s map distribution,
and use a log-normal(2.77, 0.84) distribution to model X1

(i.e., we keep σ to be as per the Facebook’s distribution but
with lower µ). Figure 11 shows what happens when the load
increases, and the distribution becomes the same as Face-
book’s map distribution. If Cedar’s optimal wait-duration
computation algorithm is used when the load is low, then
the quality of the responses was > 90%. However, if the
same wait-duration (that was ideal previously) is used when
the load increases then the quality of responses drops. Since
Cedar learns the distribution in an online fashion, it is able to
cope with such load fluctuations.

5.4 Effect of Fanout
While our experiments so far have assumed a fanout of
50 at both levels based on values from Bing’s cluster [3],
we evaluate the performance of Cedar with differing fanout
values using our trace-driven simulator.
Equal fanout at both levels. We vary the fan-out value of
both the levels in the hierarchy and plot the results in Fig-
ure 12a. We observe that at lower values of fanout, Cedar’s
gains are slightly lower. This is because at lower values of
fanout, there are quadratically fewer processes and hence re-
duced variation between process durations. Therefore, the
potential gains achievable by Cedar are slightly less. How-
ever, beyond a fanout of 25, Cedar’s estimation starts show-
ing value with ∼ 50% gain.
Different fanout across levels. We now compare the per-
formance of Cedar for differing values of fanout in the two
hierarchies. The fanout in the upper level of the hierarchy,
k2, is set to 50 while the lower level’s fanout, k1, is varied
between 5 and 50. Figure 12b plots the improvement in re-
sponse quality with the ratio of k1 to k2. Beyond a value
of 0.2 for the ratio, the improvements stabilize and hover

10

0 10 20 30 40 50
Fanout k1 =k2

0

20

40

60

80

100

%
Im

pr
ov

em
en

t
in

 R

es
po

ns
e

Q
ua

lit
y

(a) Same Fanout

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Fanout k1/k2

0

20

40

60

80

100

%
Im

pr
ov

em
en

t
in

 R

es
po

ns
e

Q
ua

lit
y

(b) Different Fanout

Figure 12: Simulation results showing that Cedar’s gains
hold up when the structure of the aggregation tree
changes. In (a), we keep the fanout at both the levels. In
(b), we choose different fanout for the lower-level while
keeping the upper-level fanout at 50. The deadline is set
to 1000s.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quality of Baseline Approach

0
20
40
60
80

100
120
140

%
Im

pr
ov

em
en

t
in

 R

es
po

ns
e

Q
ua

lit
y

2 Levels
3 Levels

Figure 13: Simulation results showing that Cedar per-
forms even better when the number of levels in the ag-
gregation tree increases.
around 55%. Varying the ratio of k1 over k2 to over 1 does
not change the trend in improvements.

5.5 Multiple Stages
Given that Cedar’s formulation is recursive, it is directly ap-
plicable to aggregation trees with more than two stages in
the hierarchy. To evaluate if Cedar’s gains hold up when the
number of levels in the hierarchy increase, we consider a
3-stage aggregation tree. We model the lowest level using
Facebook’s Map distribution and the upper two levels using
Facebook’s Reduce distribution. Figure 13 compares the per-
centage improvement in response quality over the baseline
(proportional-split) for a two-level and a three-level aggre-
gation tree. Since, the three-level would require higher dead-
line values to achieve the same quality, we instead plot qual-
ity of the baseline approach on the x-axis to make a fair com-
parison. We observe that not only Cedar’s gains hold up, they
provide greater improvements for higher number of stages.
This is because Cedar near-optimally balances the deadline
among the different stages which becomes more crucial as
the number of stages increase.

5.6 Other Production Workloads
In this section, we consider a number of different setups
based on other production workloads.

Proportional-Split Cedar

69%

72%

61%

57%

46%

39%

36%

Ideal

Figure 14: Improvement in Response Quality. X1 is per
Facebook’s map distribution and X2 is per Google’s dis-
tribution. The fanout at both layers is 50.Cosmos

11

Proportional-Split Cedar

79%

43%

27%

14%

9%

Ideal

Figure 15: Improvement in Response Quality. X1 is per
Cosmos’s extract distribution and X2 is per Cosmos’s
full-aggregate distribution. The fanout at both levels is
fixed at 50.
Interactive workload: The Hadoop workload at Facebook,
while representative of performance variations encumbering
large clusters, has really large process and aggregator dura-
tions. We consider a workload where the lower stage is mod-
eled as per the Facebook’s map distribution (albeit expressed
in ms) and the upper stage is modeled by the Google’s dis-
tribution (already in ms). Thus, this workload has higher
variations in the lower stage compared to the upper stage.
We believe this to be representative of partition-aggregate
workflows for the following two reasons. First, processes at
the lower levels perform arbitrary user-defined functions and
hence are susceptible to multiple local systemic contentions
(as in the Facebook traces), while aggregators perform rel-
atively standard functions and are more influenced by net-
working and scheduling factors (as in the Google and Bing
traces). Second, variation in process durations is statistically
expected to be higher than among aggregators because there
are far more of them in a query. Since the Facebook distribu-
tion has much higher variation than the Google trace, our as-
sumption helps match the statistical expectation. The dead-
line is varied from 140− 170ms (based on quoted deadlines
values for production search queries [30, 34]). Figure 14
plots the results. Cedar provides significant improvements
over the baseline algorithm and manages to nearly match
ideal performance even in this scenario.

11

Analytics cluster at Microsoft Cosmos: We obtained
statistics about the task duration values from an analytics
cluster running in production at Microsoft. We run Cedar on
this workload. The lower stage is modeled using the statis-
tics from extract phase and the upper stage is modeled as
per the full-aggregate phase. Despite the fact that Cedar’s
online learning algorithm is not in play here due to the lack
of task durations per job, Cedar provides considerable im-
provements in response quality as shown in Figure 15 and
comes close to the ideal scheme. We expect the improve-
ments to only be higher if the per-job task durations were
available.
Similar Distribution at both stages: We also used similar
distribution for X1 and X2, that are derived from each of
Bing, Google and Facebook distributions. We evaluate Cedar

for varying values of σ of X1, i.e., the lower stage. The
results for varying σ ofX2 look similar and we omit them in
the interest of space. The upshot is that Cedar’s performance
continues to match the gains of an ideal scheme.
Bing’s Distribution: We consider the case where both the
stages are distributed as per the Bing distribution (a log-
normal fit with parameters, µ = 5.9 and σ = 1.25, in µs).
We are interested in the case when both levels have differ-
ent amount of variabilities and thus, vary the σ parameter
of the process duration distribution. We plot the % improve-
ment over Proportional-split and also compare against the
improvement of the ideal scheme in Figure 16a.
Google Distribution: We perform a similar experiment as
above when both stages are distributed as per Google’s clus-
ter (log-normal fit with parameters, µ = 2.94 and σ = 0.55
in ms). Figure 16b shows how the performance gains (com-
pared to Proportional-split) varies as the variability increases
among process durations.
Facebook Distribution: Finally, we use the distribution
from Facebook’s Hadoop cluster logs for X2 and samples
from a log-normal fit for these map-task durations for X1,
studying the performance gains as one induces more vari-
ance in the first stage in Figure 16c.

5.7 Other Distribution Types
Since all our traces fit the log-normal distribution, our re-
sults thus far, were based on that. To demonstrate that Cedar
is agnostic to the type of distribution, we evaluate its perfor-
mance with the Gaussian distribution. The experiment uses
a two-level tree with process durations distributed normally
with mean 40ms at both the levels; the standard deviation
being 10ms and 80ms for the top and bottom levels respec-
tively (keeping variance at bottom level higher than above
levels). As Figure 17 shows, while the percentage improve-
ments are smaller than the log-normal cases, Cedar achieves
quite high absolute values of quality. This is expected given
that normal distributions are not heavy tailed.

13.0% 13.4% 13.7% 13.3% 13.1% 12.7% 11.8%

12.6%

Proportional-Split Cedar

Figure 17: Cedar’s performance with the Gaussian distri-
bution. The percentages on the bars denote the improve-
ment that Cedar provides over Proportional-Split.
6. Discussion and Related Work
Aggregation trees is a classic topic, the optimization of
which has been of significant interest in sensor systems [10,
16, 28], parallel computations [27] and Internet services [11].
All these systems focus on optimizing response quality
of the aggregation queries under a variety of computation
and communication (wide-area, wireless) constraints. We
adopt the same problem statement in the context of datacen-
ters running interactive services but uniquely employ order
statistics to learn the distributions and set the wait durations,
which results in a statistically grounded approach with sig-
nificant benefits.
Straggler mitigation techniques work to reduce the vari-
ability in task durations [3, 4, 6, 8, 26, 31, 32, 34]. First,
Cedar can complement these mitigation techniques, since
stragglers still occur despite them (as seen in our traces).
Second, by virtue of being reactive, straggler mitigation
techniques fail to work effectively when process durations
are sub-second, as for interactive queries [8], whereas Cedar

still works well. Third, while straggler mitigation techniques
attempt to remove variance from within a query (or a job),
some queries are inherently more expensive (computation-
ally or otherwise) than other. Cedar tailors a query-specific
wait duration to improve application performance.
In approximate analytics, recent work, GRASS [9], has
looked at mitigating stragglers in approximate-analytics.
Unlike GRASS, Cedar’s benefits hold whether or not a stage
is single-wave (the common case for partition-aggregate
style workloads, e.g., web-search) or multi-wave. This is
because while GRASS primarily focusses on the question
of which task to schedule when a slot frees up within one
stage of a job, Cedar focuses on optimizing the wait time be-
tween stages. This leads to two important differences. First,
GRASS considers each stage of a job independently; Cedar
optimizes the stages jointly (by optimizing wait-durations
at aggregators). Second, GRASS’s scheduling benefits only
“multi-wave” stages in a job – i.e., stages with more tasks
than slots available. Cedar treats the question of when and
how tasks should be scheduled as orthogonal. Thus, in sum-
mary, the two are complementary.
Deadline-aware scheduling has garnered significant atten-
tion recently, both in systems [15, 19, 20] and networking

12

2.10 2.15 2.20 2.25 2.30 2.35 2.40
σ parameter of X1

0
20
40
60
80

100

%
Im

pr
ov

em
en

t
in

 R

es
po

ns
e

Q
ua

lit
y

Cedar
Ideal

(a) Bing-Bing

1.40 1.45 1.50 1.55 1.60 1.65 1.70
σ parameter of X1

0
20
40
60
80

100

%
Im

pr
ov

em
en

t
in

 R

es
po

ns
e

Q
ua

lit
y

Cedar
Ideal

(b) Google-Google

2.00 2.05 2.10 2.15 2.20 2.25
σ parameter of X1

0
20
40
60
80

100

%
Im

pr
ov

em
en

t
in

 R

es
po

ns
e

Q
ua

lit
y

Cedar
Ideal

(c) Facebook-Facebook

Figure 16: Same Distributions: Percentage Improvement in Response Quality as the σ parameter of X1 is varied. µ
parameter of log-normal distributions X1 and X2 and σ parameter of X2 are obtained from (a) Bing, (b) Google, and
(c), Facebook distributions.

[5, 17, 29, 30] communities. The networking community has
focussed on meeting flow deadlines such that the application
throughput (analogous to response quality) is maximized.
However, such approaches aim to improve the performance
of a single level. Cedar’s approach is end-to-end, in that it
aims to maximize the final response quality without worry-
ing about individual stages. The systems community has also
been looking at providing job SLOs [15], but the focus has
been on jobs that require exact results which do not trade-
off quality of the response with its latency. Kwiken [20] im-
proves performance of request-response workflows using a
variety of techniques including request reissues, catching-
up on laggards, and trading off accuracy for responsiveness.
Cedar’s approach is closest to the last technique in that it
solves the dual problem of maximizing accuracy under a
desired responsiveness. Cedar differs as it considers the en-
tire partition-aggregate workflow in a holistic way. Further,
Cedar’s online learning algorithm using order-statistics can
aid in determining reissue budget across stages in a better
way.
Consider the alternate system model of running an approximate-
query system where the deadline is set such that x% of the
process outputs are collected at the root. This imposes a
threshold on response quality instead of its latency. Since
Cedar’s algorithm is solving the dual problem, it can be ap-
plied to such systems as well, i.e.,Cedar can provide the same
quality threshold (x%) at a lower deadline value thereby im-
proving query’s response time.

7. Conclusion and Future Work
We formalize the dilemma that an aggregator faces whilst
deciding whether it should wait for additional time in the
hope of getting new process outputs, or to stop in order to
meet the upper-level deadline. We show that wait-time du-
ration selection has great potential (over 100%) to improve
the quality of responses within tight time budgets. Our solu-
tion Cedar, builds upon (i) an algorithm to perform online es-
timation of stage-duration distribution parameters; and (ii),
a theoretically optimal algorithm to maximize the expected

quality given the distributions. We show that Cedar achieves
near-optimal improvements in response qualities under a va-
riety of distributions, most notably so when there is high
variability in the system.

Going forward, we plan to extend Cedar’s algorithm to
work tightly with straggler mitigation techniques by leverag-
ing and contributing to speculation of processes and black-
listing of problematic machines. We also intend to consider
the relevance of outputs from the processes instead of just
the fraction, a hugely significant factor as we test it out on
real recommendation systems and sentiment analyses work-
loads. Finally, we will also relax our approach of being ag-
nostic to the underlying resource and explore the value of
designing algorithms specifically based on the dominant re-
source of the query (e.g., computationally intensive, network
intensive).

Acknowledgments
We would like to thank our shepherd Phil Gibbons and the
anonymous reviewers for their comments to improve the
draft. Aurojit Panda, Shivaram Venkataraman, Neeraja Yad-
wadkar, and David Zats read various versions of the draft
and provided helpful feedback. This research is supported
in part by NSF CISE Expeditions Award CCF-1139158,
DOE Award SN10040 DE-SC0012463, and DARPA XData
Award FA8750-12-2-0331, and gifts from Amazon Web Ser-
vices, Google, IBM, SAP, The Thomas and Stacey Siebel
Foundation, Adatao, Adobe, Apple Inc., Blue Goji, Bosch,
Cisco, Cray, Cloudera, Ericsson, Facebook, Fujitsu, Guavus,
HP, Huawei, Intel, Microsoft, Pivotal, Samsung, Schlum-
berger, Splunk, State Farm, Virdata and VMware.

References
[1] rrisk: Risk modelling and auto-reporting in r. http://

www.bfr.bund.de/en/rrisk__risk_modelling_

and_auto_reporting_in_r-52162.html.
[2] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Moza-

fari, and I. Stoica. Blink and it’s done: interactive
queries on very large data. Proc. VLDB Endow., 2012.

13

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center tcp (dctcp). ACM SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is more: trading a lit-
tle bandwidth for ultra-low latency in the data center.
Usenix NSDI, 2012.

[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker. Deconstructing datacenter
packet transport. ACM HotNets-XI, 2012.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
outliers in map-reduce clusters using mantri. Usenix
OSDI, 2010.

[7] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. Pacman: coordinated memory caching for parallel
jobs. Usenix NSDI, 2012.

[8] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective straggler mitigation: Attack of the
clones. Usenix NSDI, 2013.

[9] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. Grass: Trimming stragglers
in approximation analytics. In NSDI, 2014.

[10] J. Y. Choi, J. W. Lee, K. Lee, S. Choi, W. H. Kwon, and
H. S. Park. Aggregation time control algorithm for time
constrained data delivery in wireless sensor networks.
In IEEE VTC, 2006.

[11] L. Chu, H. Tang, T. Yang, and K. Shen. Optimizing
data aggregation for cluster-based internet services. In
ACM PPoPP, 2003.

[12] H. A. David and H. N. Nagarajan. Order Statistics, 3rd
Edition. Wiley, 2003.

[13] J. Dean and L. A. Barroso. The Tail at Scale. Commun.
ACM, 2013.

[14] A. B. Downey. Lognormal and pareto distributions in
the internet. Comput. Commun., 28(7):790–801, May
2005.

[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: guaranteed job latency in data
parallel clusters. ACM EuroSys, 2012.

[16] S. Hariharan and N. B. Shroff. Maximizing aggregated
revenue in sensor networks under deadline constraints.
In IEEE CDC, 2009.

[17] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
flows quickly with preemptive scheduling. ACM SIG-
COMM, 2012.

[18] J. Dean. Achieving Rapid Response Times in Large
Online Services. In Berkeley AMPLab Cloud Seminar,
2012.

[19] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Bridging the tenant-provider gap in cloud
services. ACM SoCC, 2012.

[20] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Ry-
balkin, and C. Yan. Speeding up distributed request-
response workflows. In SIGCOMM, 2013.

[21] Jeff Rothschild. High Performance at Massive Scale
Lessons learned at Facebook. http://video-jsoe.

ucsd.edu/asx/JeffRothschildFacebook.asx.
[22] Kandula, Srikanth and Sengupta, Sudipta and Green-

berg, Albert and Patel, Parveen and Chaiken, Ronnie.
The Nature of Datacenter Traffic: Measurements and
Analysis. ACM IMC, 2009.

[23] R. Kohavi and R. Longbotham. Online experiments:
Lessons learned. IEEE Computer, 2007.

[24] G. Kumar, G. Ananthanarayanan, S. Ratnasamy, and
I. Stoica. Hold ’em or fold ’em? aggregation queries
under performance variations. UC Berkeley TR
UCB/EECS-2015-267, 2015.

[25] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shiv-
akumar, M. Tolton, and T. Vassilakis. Dremel: inter-
active analysis of web-scale datasets. Proc. VLDB En-
dow., 2010.

[26] X. Ren, G. Ananthanarayanan, A. Wierman, and
M. Yu. Hopper: Decentralized speculation-aware clus-
ter scheduling at scale. ACM SIGCOMM, 2015.

[27] A. Shatdal and J. F. Naughton. Adaptive parallel aggre-
gation algorithms. In ACM SIGMOD, 1995.

[28] A. Sivagami, K. Pavai, and D. Sridharan. Latency
optimized data aggregation timing model for wireless
sensor networks. In IJCSI, 2010.

[29] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-
aware datacenter tcp (d2tcp). ACM SIGCOMM, 2012.

[30] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better never than late: meeting deadlines in datacenter
networks. ACM SIGCOMM, 2011.

[31] N. Yadwadkar, G. Ananthanarayanan, and R. Katz.
Wrangler: Predictable and faster jobs using fewer re-
sources. ACM SoCC, 2014.

[32] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in hetero-
geneous environments. Usenix OSDI, 2008.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. Usenix NSDI,
2012.

[34] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.
Detail: reducing the flow completion time tail in data-
center networks. ACM SIGCOMM, 2012.

14

