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Abstract
During maintenance, developers spend a lot of time
transforming existing code: refactoring, optimizing, and
adding checks to make it more robust. Much of this work
is the drudgery of identifying and replacing specific pat-
terns, yet it resists automation, because of meaningful
patterns are hard to automatically find. We present a
technique for mining loop idioms, surprisingly probable
semantic patterns that occur in loops, from big code to
find meaningful patterns. First, we show that automati-
cally identifiable patterns exist, in great numbers, with
a large scale empirical study of loop over 25 MLOC. We
find that loops in this corpus are simple and predictable:
90% of them have fewer than 15LOC and 90% have no
nesting and very simple control structure. Encouraged
by this result, we coil loops to abstract away syntactic
diversity to define information rich loop idioms. We show
that only 50 loop idioms cover 50% of the concrete loops.
We show how loop idioms can help a tool developers
identify and prioritize refactorings. We also show how
our framework opens the door to data-driven tool and
language design discovering opportunities to introduce
new API calls and language constructs: loop idioms show
that LINQ would benefit from an Enumerate operator, a
result confirmed by the fact that precisely this feature
is one of the most requested features on StackOverflow
with 197 votes and 95k views.

1. Introduction
When coding, developers often rewrite and transform
existing code to optimize it, increase its API confor-
mance, or refactor it. These tantalize with mechanical
steps, yet resist automation because the patterns to
rewrite are so numerous and varied. Compiler optimiza-
tion illustrates the difficulty of selecting and covering

∗Work done primarily while author was an intern at Microsoft
Research, WA, USA.

high-yield patterns. Despite 40 years of research, the
cost of handling them has prevented compilers from per-
forming all the optimizations that are within the reach
of automated analysis. A study of vectorizing compilers,
which rewrite sequential loops to use vector instructions,
found that, while collectively the compilers successfully
rewrote 83% of the benchmark loops, each individual
compiler vectorized only 45–71% (Maleki et al. 2011) of
those loops.

Designers and tool developers who work to manip-
ulate code seek useful patterns: patterns that are easy
to manipulate and reason about; patterns that match
syntactic terms that implement a cohesive functionality.
Tools such as grep and manual inspection currently dom-
inate the search for useful patterns and, unfortunately,
tend to return frequent but trivial or redundant patterns.
Tool developers need help finding useful, meaningful pat-
terns. This work seeks to find these patterns.

To this end, we propose semantic idiom mining, a new
technique for automatically mining meaningful patterns,
so designers and tool developers can prioritize them.
Semantic idioms are patterns that abstract the concrete
execution traces of the loops they match (Cousot and
Cousot 1977) to provide meaningful high-level represen-
tations. This representation is designed to encapsulate
properties relevant to a tool developer’s needs, eliminat-
ing other unnecessary information. Humans aggregate
concepts and data into mental chunks (Guida et al. 2013).
Consider a compiler developer who has written a loop
to algebraically simplify an instruction sequence. When
talking to another developer, the developer might de-
scribe the loop as “algebraically simplifying arithmetic
instructions”. Ideally, our idioms capture these mental
chunks over code.

Previous work mined frequent patterns to find mean-
ingful patterns. Unfortunately, the “a priori pinciple”
means that the larger a pattern, the smaller its sup-
port, i.e. the number of objects covered by that pattern
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foreach (var 0 in EXPR)
$REGION[UR(0, 1); URW(2);]

(a) A semantic loop idiom capturing a reduce idiom,
which reads the unitary variables 0 amd 1 and reduces
them by writing into the unitary variable 2.

foreach(var refMap0 in mapping.ReferenceMaps)
this2.AddProperties(properties1,

refMap0.Data.Mapping);

(b) Concrete loop from csvhelper that match the seman-
tic loop idiom in Figure 1a.

Figure 1: A semantic idiom and a matching loop. For
more samples, see Figure 4.

(Aggarwal and Han 2014, Chap. 5). Further, frequent
pattern mining does not capture statistical dependence
among the mined elements. Thus, putting a floor un-
der pattern size triggers pattern explosion, returning an
unwieldy number of patterns that differ only trivially
(Fowkes and Sutton 2016). For a concrete example from
our corpus, consider foreach(var v in c){} which has
an unspecified loop body. It is a very frequent, but mean-
ingless, pattern. In short, frequent patterns are rarely
meaningful to developers.

Allamanis and Sutton (2014) sought to find meaning-
ful patterns in big code by mining syntactic idioms, code
patterns that do capture usage dependencies among
mined elements. Although syntactic idioms are more
likely to be useful than frequent patterns, data sparsity,
exacerbated by the commendable practice of code reuse
(e.g. sorting algorithms), means that many syntactic
idioms often fall short of being meaningful, as you can
see in this example, from Allamanis and Sutton (2014):
FileSystem name= FileSystem.get([Path].toUri(), conf);

where name and [Path] are meta-variables. Specifically,
few syntactic idioms meaningfully contained loops at all,
let alone a loop that performs a reduce operation.

In this work, we combat this sparsity with abstraction.
Our abstract representation removes information irrele-
vant to tool developers. This step is crucial for creating
a representation that is semantically and syntactically
meaningful and contains a rich structure well-suited to
machine learning methods. We focused our mining on
coiled loops (subsection 3.2), because loops are vital to
programming and program analysis. Our coiling abstrac-
tion removes syntactic information, such as variable and
method names, while retaining loop-relevant properties
like loop control variables, collections, and purity infor-
mation. Loop idiom mining finds meaningful patterns,
such as the simple reduce idiom in Figure 1 and a con-
crete loop it matches. Further sample idioms and loops
can be found in Figure 4.

To approximate semantic properties like purity during
the coiling process, we used testing because its speed in
practice allows it to scale to “Big Code” and, crucially,
because one can easily test industrial code. Concerning
its speed, Beller et al. (2016) found that 75% of the
top projects in GitHub require less than 10 minutes
to execute the full test suite, many of which comprise
more than 500 tests. Essentially, we check whether a
property holds modulo a test suite. Although this process
is unsound, it is effective in our setting where we pipe
its output to machine learning, which robustly handles
“noise” (e.g. misclassifications) in data.

To show that loop idioms exist in sufficient numbers
to make mining them useful, we conducted a large-scale
empirical study of loops across a corpus of 25.4 million
LOC containing about 277k loops (Section 4). Our key
finding is that real-life loops are mostly simple and
repetitive. For example, 90% of loops have no nesting,
are less than 15 LOC long and contain very simple
control-structure.

Despite their regularity, loops also have a heavy tail of
diversity, exhibiting nontrivial variability across domains:
on average, 5% and, for some projects, 18% of loops
are domain-specific. For example, we find that loops in
testing code are much shorter than loops in serialization
code, while math-related loops exhibit more nesting
than loops that appear in error handling (Table 2). Loop
idioms capture sufficient detail to identify useful-patterns
despite this diversity. They identify opportunities to
replace loops with functional operators, while remaining
general enough to cover most loops: 100 idioms capture
62% and 200 idioms capture 70% of all loops in our
corpus. To demonstrate the utility of mining and ranking
semantic loop idioms, we present three case studies that
exploit loop idioms to suggest refactorings, new language
constructs, or APIs.

First, we built and evaluated an engine (subsec-
tion 6.1) that suggests replacing a loop with a functional
construct in LINQ1. This refactoring suggestion engine
matches a concrete loop to a loop idiom, then looks up
that idiom in a manually constructed table of equivalent
LINQ statements. Its suggestions are context-insensitive
and unsound; it is aimed at a refactoring tool developer,
not developers directly. A refactoring toop developer
could use it to identify which loop patterns to target.
Over our corpus, we manually mapped the top 25 idioms
to LINQ statements and covered 45.4% of all the con-
crete loops in 12 hours. The resulting suggestion engine
correctly suggested LINQ replacements for loops 89% of
the time as judged by human annotators. Loop idioms
could similarly help vectorizing compilers, where they

1Language Integrated Query (LINQ) is a .NET extension that
provides functional-style operations, such as map-reduce, on
streams of elements and is widely used in C# code.

2 2016/11/23



could identify and rank loop patterns whose support
would most improve a compiler’s coverage of loops.

Second, mining semantic idioms identifies opportuni-
ties for new API features that can significantly simplify
existing code (subsection 6.2). For example, we found
that in lucenenet adding an API method that accepts
a collection of elements would simplify API usage that
currently requires adding single elements. We also make
similar observations within mathnet-numerics, where new
APIs could vastly simplify code.

Finally, semantic idioms can also be useful for guiding
programming language design (subsection 6.3). Java’s
foreach and multicatch constructs simplify common
idioms that our framework could have identified auto-
matically. Their successful adoption illustrates how loop
idioms could help language designers. Had our frame-
work been available, designers could have used it to spot
the need for these constructs, speeding their implemen-
tation and deployment. Our idiom mining has identified
such opportunities in C# and LINQ. A common opera-
tion is tracking the index of each element in a collection
during traversal. Adding an Enumerate operator to C#,
similar to Python’s, would allow developers to perform
this operation more succinctly: adding Enumerate to C#
would simplify 12% of loops in our 25.4 MLOC corpus.

This paper presents a principled and data-driven
approach to support the construction of code transfor-
mation and analysis tools. Increasing the productivity of
tool developers promises to bring domain-specific, even
project-specific, tools within reach at reasonable cost; it
also is a first step toward data-driven language and API
design. Our principal contributions follow:
• We introduce semantic idiom mining, a new tech-
nique for mining big code for semantic idioms, and
specialize it for loop idioms, a code abstraction that
captures semantic loop properties (Section 3);

• We conduct a large-scale study of 277k loops in a
corpus of 25.4 MLOC showing that most loops are
surprisingly simple with 90% of them having less
than 15 LOC and no nesting (Section 4); and

• We demonstrate the utility of loop idioms for tool
and language construction via three case studies:
two centered on language and API design, showing
that adding Enumerate to C# would simply 12% of
loops, and the other on refactoring, showing that
the 25 loop idioms cover 45% of concrete loops and
suggest loop-to-LINQ refactorings with 89% accuracy
(Section 6).

Our data and code is available online at http://
groups.inf.ed.ac.uk/cup/semantic-idioms/.

2. Background
We are interested in the problem of extracting mean-
ingful idioms from a code base. In machine learning,
this is an unsupervised learning problem. The semantic
idiom mining method we use in this paper builds on the
work of Allamanis and Sutton (2014). Idiom mining is a
way of looking for patterns that can compactly encode
the training set as the concatenation of those patterns
with their composition. Consider the minimum length
description (MLD) of a program; the length of this de-
scription is the program’s Kolmogorov complexity. Each
symbol in the MLD encodes a pattern in the program.
To achieve minimality, these symbols must collectively
balance frequency and support. Idiom mining is analo-
gous to finding symbols in the MLD of a program. Thus,
idioms are surprisingly probable in their context, but
not necessarily frequent, patterns. In contrast, frequent
pattern mining tends to miss many patterns that are
present in the data (Kuzborskij 2011). We employ prob-
abilistic tree substitution grammar (pTSG) inference
that automatically and exhaustively captures the idioms
needed to reconstruct a forest of ASTs.

Why These Methods? It is certainly worth asking
why powerful statistical methods are necessary for the
idiom mining problem, rather than simpler methods that
are easier to apply. First, one might ask: why employ a
probabilistic model here? The reason is that probabilities
provide a natural quantitative measure of the quality of
a proposed idiom. Imagine that we create two different
models, one M1 that contains a proposed idiom and
anotherM2 without it. Then for each of these alternative
models, we can measure which has a higher value under
the posterior distribution, and this measures the value
of the proposed idiom. In other words, a proposed idiom
is worthwhile only if, when we include it into a pTSG,
it increases the probability that the pTSG assigns to
the training corpus. This encourages the method to
avoid identifying idioms that are frequent but trivial and
meaningless. As we show below, the statistical procedure
that we in fact employ is quite a bit more involved, but
this is a good basic intuition. Second, it may seem odd
that we are applying grammar learning methods when
the grammar of the programming language is already
known. However, our aim is not to re-learn the known
grammar, but rather to learn probability distributions
over ASTs from a known grammar. These distributions
represent which rules from the grammar are used more
often and, crucially, which sets of rules tend to be used
contiguously.

2.1 Representing Idioms
We represent idioms as fragments of a tree structure
(e.g. an AST). More precisely, a fragment is a con-
nected subgraph of the valid syntax tree of some string
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in the language. It is easy to see how the simple
for(int=0;i<n;i++){BODY} loop can be represented by a
fragment whose root is of type ForLoop, say. One nice
aspect of the fragment representation is that leaf nodes
in a fragment that correspond to nonterminals in the
language grammar are exactly the metavariables of the
idiom. For example, the body portion of the for-loop ex-
ample can be represented as a leaf node in the fragment
whose type is BlockStatement. In particular, we de-
scribe a probabilistic tree substitution grammar (pTSG),
which is a probabilistic context free grammar with the
addition of special rules that insert a tree fragment all
at once.

To fix notation, a probabilistic context free gram-
mar (PCFG) defines a distribution over the strings of
a context-free language. A PCFG is defined as G =
(Σ,N,S,R,Π), where Σ is a set of terminal symbols, N
a set of nonterminals, S ∈ N is the root nonterminal
symbol and R is a set of productions. Each production in
R has the form X→ Y , where X ∈N and Y ∈ (Σ∪N)∗.
The set Π is a set of distributions P (r|c), where c ∈N
is a nonterminal, and r ∈R is a rule with c on its left-
hand side. To sample a tree from a PCFG, we recursively
expand the tree, beginning at S. Each time we add a non-
terminal c to the tree, we expand c using a production
r that is sampled from the corresponding distribution
P (r|c). The probability of generating a particular tree
T from this procedure is the product over all rules that
are required to generate T .

A tree substitution grammar (TSG) (Joshi and Sch-
abes 1997; Cohn et al. 2010; Post and Gildea 2009) is a
simple extension to a CFG, in which productions expand
into tree fragments rather than simply into a list of sym-
bols. Formally, a TSG is also a tuple G = (Σ,N,S,R),
where Σ,N,S are exactly as in a CFG, but now each
production r ∈R takes the form X→TX , where TX is a
tree fragment rooted at the nonterminalX. To produce a
string from a TSG, we begin with a tree containing only
S, and recursively expand the tree top-to-bottom, left-
to-right as in CFGs — the only difference is that some
rules can increase the height of the tree by more than
1. A probabilistic tree substitution grammar (pTSG)
G (Cohn et al. 2010; Post and Gildea 2009) augments
a TSG with probabilities, in an analogous way to a
PCFG. A pTSG is defined as G= (Σ,N,S,R,Π) where
Σ is a set of terminal symbols, N a set of non terminal
symbols, S ∈N is the root nonterminal symbol, R is a
set of tree fragment productions. Finally, Π is a set of
distributions PT SG(TX |X), for all X ∈N , each of which
is a distribution over the set of all rules X →TX in R
that have left-hand side X.

The key reason that we use pTSGs for idiom mining
is that each tree fragment TX can be thought of as
describing a set of context-free rules that are typically

used in sequence. This is exactly what we are trying
to discover in the idiom mining problem. In other
words, our goal is to induce a pTSG in which every
tree fragment represents a code idiom if the fragment
has depth greater than 1 — we call these rules fragment
rules. The remaining TSG rules, those whose RHS has
depth 1, are less interesting, as they are simply the
productions from the original CFG of the programming
language. As a simple example, consider the PCFG

E→ E+E (prob 0.7) T → F ∗F (prob 0.6)
E→ T (prob 0.3) T → F (prob 0.4)
F → (E) (prob 0.1) F → id (prob 0.9),

where E, T , and F are nonterminals, and E the start
symbol. Now, suppose that we are presented with a
corpus of strings from this language that include many
instances of expressions like id∗ (id+ id) and id∗ (id+
(id+ id)) (perhaps generated by a group of students
who are practicing the distributive law). Then, we might
choose to add a single pTSG rule to this grammar, like
E→ F ∗ (T +T ) (prob 0.4)
E→ E+E (prob 0.3) E→ T (prob 0.3)
When we add the pTSG rule, we adjust the probabil-

ities of the previous rules so that all of E’s productions
sum to 1 as shown. Essentially, this allows us to a rep-
resent a correlation between the rules E→ T +T and
T → F ∗F . Finally, note that every CFG can be writ-
ten as a TSG where all productions expand to trees of
depth 1. Conversely, every TSG can be converted into
an equivalent CFG by adding extra nonterminals (one
for each TSG rule X→TX). So TSGs are, in some sense,
fancy notation for CFGs. This notation will prove very
useful, however, when we describe the learning problem
next.

2.2 Inferring Idioms
To solve the idiom mining problem, a natural idea is
to search for subtrees that occur often in a corpus.
However, this naïve method does not work well, for the
simple reason that frequent patterns can be meaningless
patterns. This is a well-known problem in data mining
(Aggarwal and Han 2014, Chap. 5). To return to our
previous example, for loops occur more commonly than
“for(int i=0;i<n;i++) {BODY}”, but it would be hard to
argue that “for(INIT, COND, UPD) {BODY}” on its own
(with no expressions or body) is an interesting pattern.
Instead, Allamanis and Sutton (2014) suggest a different
principle: interesting patterns are those that help to
explain the code that programmers write. It is when it
comes to quantifying the phrase “help to explain” that
the machinery of statistical natural language processing
becomes necessary. Essentially the goal is that each
returned idiom correspond to a group of syntactic rules
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that often co-occur. To formalize this intuition, the idea
is to infer a pTSG that is equivalent to the original
language grammar in the sense of generating the same set
of strings, but provides a better explanation of the data
in the statistical sense. We do this by learning a pTSG
that best explains a large quantity of existing source
code. We consider as idioms the tree fragments that
appear in the learned pTSG. We learn the pTSG using
a powerful framework called nonparametric Bayesian
methods.

Nonparametric Bayesian methods provide a theoret-
ical framework to infer how complex a model should
be from data. Adding parameters (which correspond to
pTSG fragment rules in our case) to a machine learn-
ing model increases the risk of overfitting the training
data, simply by memorizing it. But if we allow too few
parameters, then the model will be unable to find use-
ful patterns (i.e. underfit). Bayesian statistics (Gelman
et al. 2013; Murphy 2012) provides a simple and powerful
method to manage this trade-off. The basic idea is that
whenever we want to estimate an unknown parameter θ
from a data set x1,x2, . . .xN , we should not only treat
the data as random variables — as in classical statistics
— but also θ as well. To do this, we must choose a prior
distribution P (θ) encoding any prior knowledge about
θ, and then a likelihood P (x1 . . .xN |θ) that describes a
model of how the data can be generated given θ. Once
we define a prior and a likelihood, we can infer θ via
its conditional distribution P (θ|x1 . . .xN ) by Bayes’ rule.
This distribution is called the posterior distribution and
encapsulates all of the information that we have about
θ from the data. We can compute summaries of the
posterior to make inferences about θ. For example, if we
want to estimate θ by a single vector, we might compute
the mean of P (θ|x1 . . .xN ). To summarize, applications
of Bayesian statistics have three steps: 1) choose a prior
p(θ); 2) choose a likelihood p(x1 . . .xN |θ); and 3) com-
pute p(θ|x1 . . .xN ) using Bayes’s rule.

As a simple example, suppose the data x1...xN are
real numbers, which we believe to be distributed indepen-
dently according a Gaussian distribution with variance 1
but unknown mean θ. Then we might choose a prior p(θ)
to be Gaussian with mean 0 and a large variance, to rep-
resent the fact that we do not know much about θ before
we see the data. Our beliefs about the data indicate that
p(xi|θ) is Gaussian with mean θ and variance 1. By ap-
plying Bayes’s rule, it is easy to show that P (θ|x1 . . .xN )
is also Gaussian, whose mean is approximately2 equal
to N−1 ∑

ixi and whose variance is approximately 1/N .
This distribution represents a Bayesian’s belief about
the unknown mean θ, after seeing the data.

2 The exact value depends on precisely what variance we choose
in p(θ), but the formula is simple.

Nonparametric Bayesian methods handle the more
complex case where the number of parameters is un-
known as well. They focus on developing prior distribu-
tions over infinite dimensional objects (e.g. the infinite
set of possible pTSG rules in our case), which are then
used within Bayesian statistical inference. Bayesian non-
parametrics have been the subject of intense research
in statistics and machine learning (Gershman and Blei
2012; Teh and Jordan 2010). To infer a pTSG G using
Bayesian inference, our prior distribution must be a prob-
ability distribution over probabilistic grammars, which we
call P (G). A sample from P (G) is a pTSG, which is spec-
ified by the set of fragments FX that are rooted at each
nonterminal X, and a distribution PT SG(TX |X) over
the rules that can be used to expand each nonterminal
X. Sampling this pTSG gives us full trees. The specific
prior distribution that we use is called a Pitman-Yor pro-
cess. This choice was based on previous work in applying
pTSGs to natural language (Post and Gildea 2009; Cohn
et al. 2010). Briefly, the Pitman-Yor process prior has
the following properties 1) There is no a priori upper
bound on the size of the pTSG (that is, the method is
nonparametric). 2) It favors grammars that are not too
large, creating a penalty that discourages the method
from memorizing the training set. 3) It allows to model
Zipfian distribution of productions, that is, that the top
few productions are used very frequently, while the great
majority of idioms are used less commonly. This seems
natural since it is well known that both source code
and natural language display Zipfian properties in their
token distributions. Here, we differ from Allamanis and
Sutton (2014) by using the more general Pitman-Yor
process (instead of its simpler Dirichlet process) and the
fact that we do not assume a geometric distribution over
the number of productions in the prior.

Given the prior distribution over pTSGs P (G), we
can apply Bayes’s rule to obtain a posterior distribution
P (G|T1,T2, . . .TN ). Intuitively, this distribution repre-
sents for every possible pTSG G, how much we should
believe that G generated the observed data set. Applying
Bayes’s rule, the posterior is

P (G|T1,T2, . . .TN ) =
∏N

i=1P (Ti|G)p(G)
p(T1,T2, . . .TN )

i.e. it assigns high probability to grammars G that
themselves assign high probability to the data (this
is P (Ti|G)) and that receive a high score according the
prior distribution p(G). Unfortunately, the posterior dis-
tribution cannot be efficiently computed exactly, so —
as is common in machine learning — we resort to ap-
proximations. The most commonly used approximations
in the literature are based on Markov chain Monte Carlo
(MCMC). MCMC is a family of randomized method
that runs for a user-specified number of iterations. At
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Corpus ASTs

Purity Analysis

Loop Coiling

pTSG Inference Idiom Ranking

Loop Idioms

Figure 2: The architecture of our semantic idiom mining
system, specialized to loop idioms. As Section 5 demon-
strates, loop idioms enable code transformation tool de-
velopers and language designers to make data-driven de-
cisions about which rewritings or constructs to add.

each iteration t, MCMC generates a pTSG Gt that has
the special property that if t is taken to be large enough,
eventually the sampled value Gt will be approximately
distributed as P (G|T1,T2, . . .TN ). In our work, we use
an MCMC method (Liang et al. 2010) for as many it-
erations t as we can afford computationally and then
extract idioms from the few final samples of the pTSG.

3. Methodology
In this work, we mine loop idioms, semantic idioms
restricted to loop constructs. We focus on loops because
they represent an ubiquitous code construct that resists
analysis, but the process can be easily generalized to
other code constructs. Figure 2 depicts the workflow of
loop idiom mining. Below, we discuss how the mined
loop idioms look like and how refactoring, language, and
API can use them to identifying candidate refactorings,
language constructs, or method calls. To mine loop
idioms, we first manipulate the ASTs into coiled ASTs
(CAST), AST-like structures that preserve and add
semantic information (e.g. variable purity information)
and remove variability irrelevant to the loop semantics
(e.g. names and exact operations are removed). The
CASTs are then passed to the pTSG inference to mine
the idioms.

3.1 Purity Analysis
Purity information is essential for loop semantics and we
embed this information in the CASTs. For us, a function
is pure in a variable (or global), when it is does not
write to that variable during its execution. Impurity,
its complement, is a strong property of code. Usually
only a few runs of a code fragment are necessary to
reveal impurity, because impure code must be carefully
written to disguise its impurity and there is rarely any
reason to do so. Thus, exercising a code snippet against
its program’s test suite is likely detect its impurity.
Armed with this intuition, we implement an approximate
dynamic purity detection technique. Given a method
and a test suite that invokes that method, we run the
test suite and snapshot memory before and after each
invocation of the method. If the memory is unchanged

across all its invocations, the method is pure modulo the
test suite; otherwise, it is impure.

To snapshot the heap, we traverse the heap starting at
the input method’s reference arguments and globals. The
heap is an arbitrary graph, but we traverse it breadth
first without looping at backedges and compute its hash.
We compare the hashes of the before and after invocation
snapshots, to infer variable granular purity. If the test
suite does not execute the method, its purity, and that
of its variables and globals, is unknown. Otherwise, the
input method’s arguments and globals are pure until
marked impure. When it executes, our technique may
report false positives (incorrectly reporting a variable as
pure, when it is impure) but not false negatives.

Our use of a dynamic purity analysis avoids the im-
precision issues common to static analyses (Xu et al.
2007) and is sufficient for mining semantic loop idioms
within big code since machine learning is robust to small
amounts of noise. Other applications may require sound-
ness; for this reason, we designed our mining procedure
to encapsulate our dynamic purity analysis so that we
can easily replace it with any sound static analysis (Săl-
cianu and Rinard 2005; Marron et al. 2008; Cherem and
Rugina 2007), without otherwise affecting our idiom min-
ing. An important aspect of inferring the useful idioms
is to annotate their syntactic structure with semantics
information, as we do here with purity information. It
would be easy to further augment idioms with other
semantically rich properties, such as heap/aliasing infor-
mation (Barr et al. 2013; Raychev et al. 2014).

We instrument every method to realize our technique.
First, we wrap its body in a try block, so that we can
capture all the ways the function might exit in a finally

block. At entry and in the finally block, we then inject
snapshot calls that take the method’s arguments and
globals and computes their hash. In the finally block
after the snapshot, we compare the hashes and mark
any variables that point to memory that changed as
impure. Once a variable is marked impure, no further
instrumentation is made on that variable.

To speed up our purity inference and avoid the costly
memory traversals, we use exponential backoff: if a
method has been tested n times and has been found
pure with respect to some argument or global, then we
test purity only with probability pn. We used p = 0.9.
As a further optimization and to avoid stack overflows,
we assume that by convention the overriden methods
GetHashCode() and Equals(object) methods to be pure
and ignore them. These methods may be invoked very
frequently and therefore instrumentation is costly. Our
method cannot detect when a variable is overwritten
with the same value. This is a potential source of false
positives to the extent to which such identity rewritings
are correlated with impurity.
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foreach(x in y) {
if (f(x))
s += x;

else
s -= y.Size;

}

x

y

s

foreach

y

identifier

if

body

f(x)

cond

s+=x

body

s-=y.Size

else

Figure 3: Abstract Syntax Tree with References.

Since we cannot easily rewrite and rebuild libraries,
our technique cannot assess the purity of calls into them.
However, they are frequent in code, so we manually an-
notated the purity of about 1,200 methods and interfaces
in core libraries, including CoreCLR. These annotations
encompass most operations on common data structures
such as dictionaries, sets, lists, strings etc.

3.2 Coiling Loops
In this work we are interested in mining semantic loop
idioms to capture universal semantic properties of loops.
Thus, we keep only AST subtrees rooted at loop headers
and abstract nodes that obscure structural similarities.
We call this process coiling and detail its abstractions
next. Coiling is a series of transformations on the AST
and its output is another tree structure, which is the
input to the idiom miner (as described in Section 2).
Program Variables In conventional ASTs, a node
refers to a single variable. Coiling breaks this rule,
creating nodes that potentially refer to many variables.
Because we want to infer loop idioms that incorporate
and therefore match patterns of variable usage, we need
to re-encode variable usage into the AST. To this end,
we introduce the notion of a reference. A reference is a
set of nodes that refer to the same program variable. We
label nodes with zero or more references as depicted in
Figure 3. To combat sparsity, our pTSG inference merges
two references that share the same node set. Thus, an
idiom can match a concrete loop that contains more
variables than the number of references in the idiom.
Expressions Expressions are quite diverse in their
concrete syntax, due to the diversity of variable names,
but are usually structurally quite similar. Since our goal
is to discover universal loop properties, we abstract loop
expressions into a single EXPR node, labeled with the
variables that it uses. There are three exceptions: incre-
ment, decrement, and loop termination expressions. The
pre and post increment and decrement operators from
C introduce spurious diversity in increment expressions.
Thus, we abstract all increment and decrement opera-
tions to the single INC/DEC node. We preserve the top-

level operator of a termination expression and rewrite
its operands to Expr nodes, with the exception of the
common bounding expressions that compute a size or
length, which we rewrite to a SizeOf node and label it
with the reference to the measured variable.
Regions A region is a sequence of lines of code
lacking control statements. Regions tend to be quite
diverse, so we collapse region AST subtrees into a single
node labeled with references to the variables they use.
These regions are equivalent to uninterpreted functions.
To make our pTSG inference aware of purity, we encode
the purity of each of a region’s variables as children
of the region’s node. We label each child node with its
variable’s reference and give it a node type that indicates
its purity in the region. The purity node types are R,
W, and RW.

Loops usually traverse collections, so we distinguish
them from unitary (primitive or non-collection) variables.
U denotes a unitary variable. For collection variables
(denoted by C), we separate them into their spine,
the references that interconnect the elements, and the
elements it contains. Our purity analysis separately
tracks the mutability of a collection’s spine CS and
its elements CE . This notation allows us to detect
that a collection has changed when the same number
of elements have been added and removed, without
comparing its elements to the elements in a snapshot.
In practice, the spine and the elements change together
most often and only 9 idioms of the top 200 idioms
(with total coverage 1.2%) have loops that change the
elements of a collection, but leave the spine intact.
Blocks Blocks — the code that appears between { and
} delimiters in a C-style language — can have multiple
exits, including those, like break or continue statements,
that exit the loop. Coiling transforms block nodes into
two types of nodes: single and multi-exit blocks. This
allows our pTSG inference to infer loop idioms that
distinguish single exit blocks, whose enclosing loops are
often easier to refactor or replace.

3.3 Idiom Ranking
We mine the idioms from CASTs as described in Sec-
tion 2. After mining the idioms, we rank them in order
of their utility in characterizing the target constructs —
loops in our case. The ranked list provides data-based
evidence to interested parties (e.g. API designers, refac-
toring tool developers) augmenting their intuition when
identifying the most important code constructs. To mine
idioms, we use a score that computes a trade-off between
coverage and idiom expressivity. If we solely ranked id-
ioms by coverage, we would end up picking very general
and uninformative loop idioms, as would happen with
frequent tree mining. We want idioms that have as much
information content as possible and the greatest possible
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Semantic Idiom Sample Matching Concrete Loop Semantic
Operation

Cov-
erage

(1) 1 for(int 0=EXPR; 0<EXPR; INC(0))
2 $REGION[UR(0);CS,ER(1); URW(2)]

1 for (int i0 = 0; i0 < length; i0++)
2 charsNeeded2 += components1[i0].Length;

Reduce with
for

14%

(2) 1 foreach(var 0 in EXPR)
2 $REGION[UR(0, 1); URW(2);]

1 foreach(Term term0 in pq.GetTerms())
2 rootMap2.AddTerm(term0.Text, query1.Boost);

Reduce with
foreach

2%

(3) 1 foreach(var 0 in EXPR)
2 $REGION[UR(0, 1);CS,E RW(2)]

1 foreach(DictionaryEntry entry0 in dict)
2 hash2[entry0.Key]=entry0.Value;

Map with
foreach

2%

(4) 1 foreach(var 0 in EXPR)
2 $REGION[UR(1); URW(0, 2);]

1 foreach(var exp0 in args)
2 exp0.Emit(member1, gen2);

Map overwrite
and reduce
with foreach

2%

(5) 1 for(int 0=EXPR; 0<EXPR; INC(0))
2 $REGION[UR(0,1);CS,ER(2);CS,E RW(3)]

1 for (int k0=a; k0<b; k0++)
2 ranks3[index2[k0]] = rank1;

Map collection-
to-collection
with for.

5%

(6) 1 for(int 0=EXPR; 0<EXPR; INC(0))
2 $REGION[UR(0,1);URW(2);CS,E RW(3)]

1 for (var k0= 0; k0<i; k0++){
2 d3[k0] /= scale1;
3 h2 += d3[k0] * d3[k0];
4 }

Map and re-
duce with for.

5%

(7) 1 foreach(var 0 in EXPR)
2 $REGION[UR(1);URW(0)]

1 foreach(LoggingEvent event0 in loggingEvents)
2 event0.Fix = m_fixFlags1;

Map and over-
write foreach.

1%

(8) 1 for(var 0=0; 0 < $EXPR(1,2,3); INC(0)){
2 if($EXPR(0, 1, 2, 4, 5))
3 $REGION[UR(0, 1);URW(4);CS,ER(2)]
4 }

1 for(int i0=0; i0<data2.Length3; i0++){
2 if(data2[i0]>max4

3 && !float5.IsNaN(data2[i0]))
4 max4 = data2[i0];
5 }

Reduce with
for and condi-
tional

1%

Figure 4: Semantic idioms automatically mined by our method and ordered using our ranking method. For each idiom
we include a sample concrete loop it matches. Some concrete loops were slightly modified to fit the table and reduce
their size (removed braces, shortened variable names). Idiom metavariables are highlighted with a colored box and
a unique reference number is assigned to them. The same numbers appear within the concrete loops next to each
variable, indicating each variable’s binding to a metavariable. Non-terminals (e.g. EXPR) are also denoted within the
colored box. Idiom (2) is the one shown in Figure 1. The this unitary variable is implied in some contexts.

coverage. We score each idiom by multiplying the id-
iom’s coverage with its cross-entropy gain. Cross-entropy
gain measures the expressivity of an idiom and is the
average (over the number of CFG productions) log-ratio
of the posterior pTSG probability of the idiom over its
PCFG probability. This ratio measures how much the
idiom improves upon the base PCFG. To pick the top
idiom we use the following simple iterative procedure.
First, we rank all idioms by their score and pick the top
idiom. Then, we remove all loops that were covered by
that idiom and repeat the process. We repeat this until
there are no more loops covered by the remaining idioms.
This greedy knapsack-like selection, yields idioms that
achieve both high coverage and are highly informative.
Since purity information is explicitly encoded within the
CASTs (as special nodes, as discussed in subsection 3.2),
the ranking takes into consideration both the purity
information as well as the other information about each
loop.

Examples Figure 4 shows example idioms, patterns
mined after coiling, and concrete loops they match.
Showing idioms, and not merely coiled code, allows us to
illustrate both simultaneously. Loop idioms are simply

a ranked selection of segments of coiled code. Map and
reduce operations are quite common in our corpus. We
focus at the most complex idiom in Figure 4.8 to explain
the notation. The idiom contains the < operator, because
our expression abstraction, discussed above, preserves
the top-level operator in termination expressions. INC
denotes the special node for increment expression. It
contains a single block that, in turn, contains a single
region that references at least (since we merge references
with identical sets of nodes) four variables: 0, 1, 2, and 4.
The first two are read-only unitary variables (denoted by
UR); 2 is a collection with a read-only spine and elements
(denoted by CSR for the spine and CER for the elements);
and 4 is a read-write unitary variable (denoted as URW).
The reader may appreciate some of the semantic details
recorded within the idioms. For example, the idiom in
Figure 4.7 performs a map operation but modifies the
original collection elements. It is also common in our
data that loops perform multiple operations, e.g. idiom
in Figure 4.6 is a reduce operation in h and a map on d

(the code generates the Householder vector for matrix
factorization in mathnet-numerics). As we will discuss in
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Section 6, this idiom is one of the a common loop idioms
that does not have an efficient functional replacement.

4. Descriptive Statistics
Although the methods we described in the previous sec-
tion are generalizable, in this work we focus on loops.
Loops represent a core and hard-to-analyze code con-
struct. In this section, we present an empirical study
of loops and LINQ statements on a large corpus of
25.4 MLOC. We show that loops and LINQ statements
present some notion of naturalness (Hindle et al. 2012)
and therefore we can exploit this fact to mine loop id-
ioms that tool developers and language designers can
use in the next sections. This study of loops contributes
to a long-standing line of research. Knuth (1971) ana-
lyzed 7,933 FORTRAN programs, finding that loops,
are mostly simple: 95% of them increment their index
by one, 87% of the loops have no more than 5 state-
ments and only 53% of the loops are singly nested. Here,
we find comparable results but find that loop nesting
is much more rare. Changes in coding practices, no-
tably the dominance of structured programming and
object-orientation, may account for this difference. Most
recently, CLAPP (Fratantonio et al. 2015) studied 4
million Android loops, seeking to characterize execution
time. In contrast, our focus is on the naturalness of the
loop constructs. Nonetheless, both studies find similar
proportions of simple loops.
Dataset Collection We collect our data from GitHub.
Using the GitHub Archive, we compile a list of all C#
projects. We then compute the z score of the number of
forks and watchers and sum them. We use this number
as each project’s popularity score. For our descriptive
statistics analysis (Section 4) we use the top 500 projects.
Our corpus contains 277,456 loops and 1,109,824 LINQ
operations.
Loop Statistics We begin with some descriptive
statistics over the top 500 projects that contain 277,456
loops within. Table 1 presents summary statistics for
different types of loops, their sizes and complexities. The
top row shows that foreach loops are the most popu-
lar. These foreach loops already represent a degree of
abstraction, and their popularity suggests that program-
mers are eager to embrace it when available. The other
loops (for, while) are less frequent, and do is relatively
rare. The width of the violin plot gives an indication of
the proportion of the sample which lies in that value
range. The foreach, for, while loops are most often
around 2 lines long, while do loops are a bit larger at the
mode, around 5 lines. Cyclomatic complexity (McCabe
1976) measures the number of independent paths, and
is used as a measure of code complexity; in our sam-
ple it is most often around 3 for foreach and for, and
around 4 for while; this indicates that developers pack

a conditional inside a short loop. do loops’ complexities
are often a bit higher, presumably because they tend
to be longer. These results show that loops are natural,
i.e. simple and repetitive. This is the key finding on
which our entire loop mining technique rests. It means
that patterns that are repetitive enough to be worth
replacing can be efficiently and effectively found.

Further characteristics of the loops are presented
in the top of Table 2. Leftmost, we see the nesting
level of loops. The vast majority (90%) of the loops are
singly nested; virtually all (99%) are at most 2 levels
of nesting. In our corpus, virtually none at 3 levels of
nesting. The second plot is the size of the loops, in LOC
(we remove empty lines, comments and lines that contain
only braces); 90% are under 15 LOC, and 99% under
58 LOC. The third plot shows the proportion of lines in
code that are loops. On average, 4.6% of lines belong in a
loop and 90% of the code has no more than 18% of loop
density (i.e. the proportion of non-empty lines of code
that are contained within loops). Finally, at rightmost
we have the density of LINQ statements per kLOC in
our corpus. We find that in most cases (90%) there are
no LINQ constructs at all; and fully 99% of our samples
have fewer than 25 LINQ statements per kLOC. These
statistics and their associated graphs in Table 2 verify
that most loops are simple and the Zipfian nature of
their characteristics. Knowing this fact, helps us design
and select models. Concretely, we used this fact to guide
our selection of the Pittman-Yor process as described in
Section 2

Loops per Topic To get a sense of how loops occur
across domains, we used topic analysis. To extract the
topics of the source code, we parsed all C# files in
our 25.4MLOC corpus collecting all identifiers, except
from those in using statements. We then split the
identifiers on camelcase and on underscores, lowercasing
all subtokens. We remove any numerals. Thus, for the
topic model each file consists of a set of subtokens.
We use MALLET (McCallum 2002) to train LDA and
classify each file. For training, we used an asymmetric
Dirichlet prior and hyperparameter optimization. Once
topics are extracted, to analyze loops by topic, we rank
the topics by different descriptive statistics.

These ordered lists (Table 2) offer a more qualitative
look at the above statistics, giving some insights into the
prevalence of domain-specific loop characteristics. Thus
for example, the leftmost column suggests that loops in
MVC (Model-View-Controller) settings tend to be very
shallow in nesting, whereas loops in mathematical do-
mains can be deeply nested (c.f. tensor operations). On
the second column, we see topics ordered by size (LOC)
of topical loops: testing loops are quite small, whereas
loops relating to serialization are quite long (presumably
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Table 1: Loop statistics per type. The statistical signifi-
cant differences (p < 10−5) among the loops are: (a) aver-
age LOC do > while > for > foreach and for cyclomatic
complexity do > while > foreach, for.

foreach for while do

% 46.6 37.3 14.0 2.0

LOC 0

5

10

15

20

25

30

Cyclomatic 0

2

4

6

8

10

12

14

serializing complex container data structures within a
loop).

The third column shows the loop density per topic.
Security concerns, native memory, testing and GUI have
few loops in the code. On the other hand, code that is
concerned with collections, serialization, math, streams,
and buffers contains a statistically significant larger
proportion of code within loops. In the last column, we
present topics ordered by frequency of LINQ operator
usage. We can see that LINQ operators are frequently
used within session handling and testing, while it is more
infrequently used for security, native memory handling,
GUI and graphics.
Discussion The descriptive statistics show that loops
are “natural” in that they are mostly simple and short,
yet still have a long tail of highly diverse loops. This
suggests that it is possible to mine loop idioms that can
cover a large proportion of the loops, a fact that we
exploit to show the utility of loop idioms in the next
section. Additionally we find that loop characteristics
and usage differ significantly across domains, suggesting
that different patterns of loops are prevalent in different
domains. Therefore, data-driven loop idiom mining is
needed to uncover domain-specific loop idioms, that
might be missed by humans relying solely on intuition
for finding common patterns.
LINQ Operator Usage Programming rests on
iteration. Loops and LINQ expressions are two ways
to express iteration in code. Thus, LINQ expressions
are another data source on how humans think about
iteration. Patterns of LINQ expressions is a strong
indicator of patterns of semantically equivalent loops.
For example, if we see a Map-Reduce LINQ statement,
we should expect a similar loop idiom. But if we do
not see a GroupBy-Map often in LINQ we do not
expect to see this in loops either. Figure 5 shows the
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Figure 5: Common pairs of LINQ operations in our cor-
pus. The darker the color the more often the pair is used.
Numbers show the percent of times that the current op-
eration is followed by another. The last column suggests
that the current operation is the last one. Data collected
across 132,140 LINQ sequences from our corpus. Best
viewed in screen. A larger version can be found in Ap-
pendix B

probabilities of a bigram-like model of LINQ operations.
The data is presented as a table, showing essentially
transition frequencies from one LINQ operator to the
next. The darker the cell, the more frequent the indicated
transition. The special END token denotes that no LINQ
operation follows. For example, a common use of Select
is to map data from a container into another container
data structure; hence ToArray (19% of times) or ToList
frequently follow Select. In one direction, this suggests
new LINQ operators; in the other, it identifies common
operations that we expect to find in loops.

5. Evaluation
This work rests on the claim that we can mine seman-
tic idioms of code to provide data-driven knowledge to
refactoring tool developers and API and language de-
signers. The goal of mining loop idioms, that represent
commonly reused loop constructs, is to reduce the cost
of identifying loop rewritings by working on loop idioms,
instead of concrete loops. For example, a loop idiom
may represent a common use of a pattern that can be
simplified when introducing a new API or language fea-
ture, or an idiom can represent the LHR of a rewriting
rule (e.g. a loop-to-LINQ refactoring) that matches a
common pattern. A necessary condition for this is an
effective procedure for mining loop idioms that cover, or
match, a substantial proportion of real world loops. We
evaluate this in this section.
Coiling Loops To coil ASTs, we need to instrument
for purity (subsection 3.1) and thus need to be able to
compile and run unit tests. From the top 500 projects
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Table 2: Loop and LINQ statistics for the top 500 C# GitHub projects (25.4MLOC). Top high and low topics have a
statistical significant difference (p < 10−3) using a Welsh t test for the first two columns and the z test for population
proportions for the other two. A full list of the topic ranking can be found in ??.

Nesting Level Loop Body Size (LOC) Loop Density (% LOC) LINQ Statements/kLOC
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Nesting Level
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x̄= 0.14 x̄= 7.7 x̄= 4.6% x̄= 1.10
p90% = 1, p99% = 2 p90% = 15, p99% = 58 p90% = 18%, p99% = 56% p90% = 0, p99% = 25

Lo
w
es
t MVC/Events Testing Security Security

Error Handling Native Memory Native Memory Native Memory
Web/HTTP MVC/Events Testing GUI
Time/Scheduling Collections GUI Graphics
Session Handling Session Handling MVC/Events Streams/Buffers

H
ig
he
st Databases Code Manipulation Collections Files

Testing XML Code Manipulation Reflection
Streams/Buffers Streams/Buffers Serialization Serialization
Graphics Web/HTTP Math/Temporaries Testing
Math/Temporaries Serialization Streams/Buffers Session Handling

Table 3: C# Projects (577kLOC) from GitHub that were
used to mine loop idioms after collecting purity infor-
mation by running their test suite (containing 34,637
runnable unit tests).

Project Git SHA Description

Core 3b9517 Castle Framework Core
csvhelper 7c63dc Read/write CSV files
dotliquid 9930ea Template language
libgit2sharp f4a600 C# Git implementation
log4net 782e82 Logging framework
lucenenet 70ba37 Full-text search engine
mathnet-numerics f18e96 Math library
metrics-net 9b46ba Metrics Framework
mongo-csharp-driver 6f237b Database driver
Nustache 23f9cc Logic-less templates
Sandra.Snow c75320 Static Site Generator

(Section 4), we sampled 30 projects uniformly at random.
We then removed projects that we cannot compile, do
not have a NUnit (2016) test suite or the test suite
does not have any passing tests3, or the projects cannot
depend on the .NET 4.5 framework (e.g. Mono projects)
that is needed for our dynamic purity analysis. We end
up with 11 projects (Table 3). Most of the projects
are large representing a corpus of 577kLOC, containing
34,637 runnable unit tests. We executed the test suite
and retrieved purity information for 5,548 methods.
Coverage of Idiomatic Loops Our idioms are mined
from a large set of projects consisting of 577kLOCs

3 This may happen when the test suite needs an external service
e.g. a SQL or Redis server.
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Figure 6: Cumulative loop coverage vs. the number of
(top) idioms used. Given the diminishing returns the
distributions fits well into a Pareto distribution. The
Gini coefficient is G = 0.785 indicating a high coverage
inequality among idioms. When using 50 idioms, 50% of
the loops can be covered and with 200 idioms 70% of
the loops are covered. 22% of the loops in our corpus are
non-idiomatic (i.e. are not covered by an idiom).

(Table 3), which form our “training corpus”. Figure 6
shows the percent coverage achieved by the ranked list
of idioms. With the first 10 idioms, 30% of the loops
are covered, while with 100 idioms 62% of the loops
are covered. This shows that idioms have a Pareto
distribution — a core property of natural code — with a
very few common idioms and a long tail of less common
ones. This shows a useful property of the idioms. As a
tool developer or a language or API feature designer
uses the ranked list of idioms, she will be capturing
the most useful loops but with diminishing returns as
she goes down the list. In our case, the top 50 idioms
capture about 50% of the loops, while the 150 idioms
increases the coverage only by another 20%. Therefore,
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our data-driven approach allows the prioritization of
semantic code idioms and helps to achieve the highest
possible coverage with the minimum possible effort.
Nonidiomatic Loops Figure 6 shows that about
22.4% of the loops are not covered by any of the idioms.
Here, we perform a case study of these nonidiomatic
loops. We sampled uniformly at random 100 loops that
were not covered by any of the mined idioms and studied
how they differed from idiomatic loops. We found that
41% of these loops were in test suites, while another
8% of the nonidiomatic loops were loops that were ei-
ther automatically generated or were semi-automatically
translated from other languages (e.g. Java and C). An-
other 13% of these loops were extremely domain-specific
loops (e.g. compression algorithms, advanced math op-
erations). The rest of the nonidiomatic loops were seem-
ingly normal. However, we noticed they often contain
rare combinations of control statements (e.g. a for with
an if and another loop inside the else statement), con-
voluted control flow in the body of the loops or rare
purity properties. Some of these rare combinations, like
two consecutive if-else statements, are, in isolation,
normal or frequent, but rare when enclosed in a loop
rather than a method. We speculate these loops look
normal to developers because we humans tend to notice
the local normality, while neglecting the abnormality of
the neighborhood. Unsurprisingly, our method also con-
siders loops with empty bodies nonidiomatic. Knowing
which loops are nonidiomatic and that they are rare is
crucial, since it allows toolmakers to avoid wasting time
on them.
Project Specificity of Loop Idioms So far we
discussed idiom coverage with regards to the corpus
used for inferring the pTSG. Now, we are interested in
characterizing the project specificity of the mined loop
idioms. For each of the 11 projects, we infer a pTSG
on the other 10 projects and compute the coverage of
the new top 200 computed idioms on the target project.
The average percent of loops that are covered by the
top 200 idioms trained on all the projects is 70.1%
but when the project is excluded, it drops to 66.3%.
This shows both that the top ranked loop idioms are
general and that there is nontrivial proportion of domain-
specific loop idioms. There are two exceptions: the
lucenenet text search engine and the mathnet-numerics
math library that about 18% of the loops are project-
specific and cannot be covered by idioms found in the
other projects. By manually investigating the project-
specific idioms, we find that mathnet-numerics has a
significant number of specialized math-related loop
idioms, while lucenenet project-specific idioms are mostly
in its Snowball stemmer, which is autogenerated code
that has been ported from Java and is highly specialized
to the text-processing domain.

These results show how mining loop idioms identify
not only universal, domain-independent idioms that are
frequent yet detailed enough for replacement but also
domain, even project, specific loop idioms that may still
benefit from custom-defined replacement transforma-
tions. Our data-driven approach allows tool developers
and language designers to abandon the straitjacket of
building “one size fits all” tools, forced on them by
limited engineering resources, and build bespoke, even
adaptable, transformation tools that many more devel-
opers can use.
Alternatives to Idiom Mining Using existing code
to validate the commonality of perceived patterns is
not uncommon (Okur et al. 2014; Gyori et al. 2013).
However, existing tools are usually limited to simple
text or pattern matching (e.g. grep). Our work differs
in two important aspects. First, our CASTs provide an
abstract, but semantically expressive form that can be
useful on its own for matching patterns, as we show
in Section 6. Second, contrary to existing tools, which
provide information about a given pattern but require
their user to already know the pattern, idiom mining
learns the common idioms directly from the data without
any need for a priori intuition about the patterns.

6. Using Semantic Idioms
Popular idioms identify opportunities for identifying
“natural” rewritings of code, those that are structurally
similar and frequent enough to warrant the cost of
abstracting and reusing its core. Therefore, highly ranked
idioms can suggest a new language construct, a new
API call or the lefthand side of a rewriting rule that
implements a refactoring. For each idiom, one has to
write the righthand side of the rewriting rule. For
example, loop idioms, our focus in this work, are well-
suited for identifying opportunities for the task of
rewriting loops using new APIs, new language constructs
or even functionalizing them into LINQ statements.
Because these rules are mined from actual usage, we refer
to this process as prospecting. In this section, we discuss
three case studies on using loop idioms for prospecting.
In the first case study, we discuss how loop idioms
can be used for prospecting loop-to-LINQ rewritings,
then we show some evidence that loop idioms can help
with designing better APIs or even provide data-driven
arguments for introducing new language features.

6.1 Prospecting Loop to LINQ Refactorings
Loop idioms can help in an important instance of refac-
toring: replacing loops with functional operators. Since
2007, C# supports LINQ (Meijer 2011; Marguerie et al.
2008), that provides functional-style operations, such
as map-reduce, on streams of elements and is widely
used in C# code. LINQ is concise and supports lazy
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operations that are often easy to parallelize. For ex-
ample, multiplying all elements of the collection y

by two and removing those less than 1, in parallel,
is y.AsParallel().Where(x=>x<1).Select(x=>2*x). We
call a loop that can be replaced with a LINQ opera-
tor LINQable. LINQability has important implications
for the maintainability and comprehensibility of code.
LINQ’s more conceptually abstract syntax 1) manifests
intent, making loops easier to understand and more
amenable to automated reasoning and 2) saves space,
in terms of keystrokes, as a crude measure of effort to
compose and read code.

As a testament to the importance of refactoring loops
to functional operators, two tools already support such
operations: LambdaFicator (Gyori et al. 2013) targets
Java’s Streams and JetBrain’s Resharper (JetBrains
2015) replaces loops with LINQ statements. Both these
tools have followed the classic development model of
refactoring tools: they support rewritings that its tool
developers decided to support from first principles by
first deciding upon a set of preconditions, possibly
verifying her intuition about which constructs are most
common, and using textual matching technique. In
contrast, our approach complements the intuition of the
tool makers and finds important patterns that a designer
may not even be aware of. Therefore, it allows toolmakers
to support refactorings that the tool authors would
not envision without data, enabling the data-driven,
inference-based, general or domain-specific development
of refactorings. Additionally, data-driven inference allows
to discover project or domain-specific semantic idioms
without needing a deep knowledge of a domain or a
specific project.

To do this tool developers can build a refactoring tool
using loop idioms as key elements to the rewritings that
map loops to LINQ statements. In other words, we can
use our pTSG inference to automatically identify loop
constructs that could be replaced by a LINQ operator,
i.e. are LINQ-able. In our corpus, at least 55% of all
loops are LINQable.

To evaluate the fitness of our loop idiom mining for
prospecting natural loop rewritings, we built an idiom-
to-LINQ suggestion engine. The suggestion engine is
not intended as a refactoring tool for actual developers.
Instead, it is a proof-of-concept to demonstrate how loop
idioms can be used by tool developers to easily build
new refactoring tools, and also to demonstrate that the
loop idioms have sufficient quality and convey sufficient
semantic information to support the construction of
practical program rewriting tools. Its suggestions are
not sound, since it simply matches an idiom to a concrete
loop and does not check any semantics-preservation se-
mantics automating the suggested replacement would
entail. For example, our idiom-to-LINQ suggestion en-

gine maps the idiom in Figure 4.8 to a reduce operation.
Thus, for the concrete loop in Figure 4.8, the suggestion
engine outputs the loop and its location, then replaces
references with the concrete loop’s variable names and
outputs the following suggestion:

The loop is a reduce on max. Consider replacing it with
data.Where(cond).Aggregate((elt, max)=>accum)

1. Where(cond) may not be necessary
2. Replace Aggregate with Min or Max if possible

We know that this loop is a reduce because the matching
idiom’s purity information tells us that there is a read-
write only on a unitary variable. When our suggestion
engine accurately suggests a loop refactoring, a refac-
toring tool developer should find it easy to formalize a
rewriting rule (e.g. identifying and checking the relevant
preconditions) using loop idioms as a basis. In our exam-
ple, a polished refactoring tool should refactor the loop in
Figure 4.8 into data.Where(x=>!float.IsNan(x)).Max().

We used the top 25 idioms that cover 45.4% of the
loops in our corpus. We mapped 23 idioms, excluding 2
of the loop idioms (both while idioms, covering 1.5% of
the loops) have no corresponding LINQ expression. To
map each idiom to an expression, we found the variables
that match the references, along with the purity and
type information of each variable. We then wrote C#
code to generate a suggestion template, as previously
described. The process of mapping the top 23 idioms to
LINQ took less than 12 hours.

With this map, our engine suggests LINQ replace-
ments for 5,150 loops. Each idiom matches one or more
loops and is mapped to a LINQ expression in our idiom-
to-LINQ map. To validate the quality of these sugges-
tions, we uniformly sampled 150 loops and their associ-
ated suggestions. For each of these loops, two authors
assessed our engine’s suggestion accuracy. This should
not be seen as an effort for a batch-refactoring tool, but
rather as an means of evaluating our proposed method.
Our results show that the suggestions are correct 89%
of the time. The inter-rater agreement was κ= 0.81 (i.e.
agreed 96% of the time). So not only is our idiom to
LINQ map easy to build, it also achieves good precision.
This suggests that the mined idioms indeed learn seman-
tic loop patterns that can be used for refactoring Table 4
shows the percent of loops matched by an idiom whose
LINQ expression uses the specified LINQ operator and
explains the most common LINQ operations. This eval-
uation indicates that a refactoring tool developer can
easily use a loop idiom as the lefthand side of a refactor-
ing rule. She can then write extra code that checks for
the correctness of the refactoring. Most importantly, this
process allows the prioritized consideration of rewritings
that can provide the maximum codebase coverage with
the minimal effort.
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Table 4: Basic LINQ operators and coverage statistics
from the top 100 loop idioms. # Idioms is the number of
idioms our suggestion engine maps to a LINQ expression
that uses each LINQ operator. Use frequency is the
proportion of concrete loops that when converted to
LINQ use the given LINQ operator.

Operator Description # Idioms Use Freq

Range Returns integer se-
quence

50 77%

Select Maps a lambda to
each element

42 32%

Aggregate Reduce elements
into a value

43 21%

SelectMany Flattens collection
and maps lambda to
each element

5 10%

Where Filters elements 13 7%
Zip Combines two enu-

merables
6 3%

First Returns the first ele-
ment

2 1%

6.2 Prospecting for New APIs
The top mined loop idioms are interesting semantic pat-
terns of the usage of code. However, some of the common
patterns may be hard to read and cumbersome to write.
Since semantic idioms represent common operations,
they implicitly suggest new APIs that can simplify how
developers invoke some operation. Thus, the data-driven
knowledge that can be extracted from semantic idiom
mining can be used to drive changes in libraries, by in-
troducing new API features that simplify common usage
scenarios. Due to space limitation, we present only two
examples in this section.

One common set of loop idioms (covering 13.7% of
the loops) have the form
foreach (var element in collection)

obj.DoAction(foo(element))

where each element in the collection is mapped using
foo and then some non-pure action is performed on
obj. The frequent usage of this loop idiom for an API
provides strong indication that a new API feature should
be added. For example in lucenenet the following (slightly
abstracted) loop appears
for (int i = 0; i < numDocs; i++) {

Document doc = foo(i);
writer.AddDocument(doc);

}

In this example, the method AddDocument does not
support any operation that adds more than one object
at a time. This forces the developers of the project to
consistently write loops that perform this operation.
Adding an API method AddDocuments, that accepts
enumerables would lead to simpler, more readable and
more concise code:
writer.AddDocuments(collection.Select(d=>foo(d)))

We find similar issues in other libraries, such as in
mathnet-numerics where the same operation (e.g. a test
for a specific condition) is applied in all entries of a
matrix using multiple loops. For example, in the testing
code of mathnet-numerics there are 717 doubly nested
for loops that test a simple property of each element in
a 2d-array. Adding a new API that accepts a lambda
for each location i,j would greatly simplify this code.

6.3 Prospecting for New Language Features
Semantic loop idioms can provide data-driven evidence
for the introduction of new language features. For
example, some of the top idioms suggest novel language
features. For example, five top loop idioms with total
coverage 12% have the form:
for (int i=0; i < collection.Length; i++)

foo(i, collection[i])

where they are iterating over a collection but also require
the index of the current element.

A potential new feature would be the introduction
of an Enumerate operation that would jointly return the
index and the element of a collection. This resembles
the enumerate function that Python already has and
Ruby’s each_with_index. Interestingly, using loop idioms
we have identified a common problem faced by C#
developers: in StackOverflow there is a related question
for C# (StackOverflow 2009a) with about 93k views
and a highly voted answers (195 votes) that suggests a
helper method for bypassing the lack of such a function.
Prospecting for New LINQ Operators Mined
loop idioms can implicitly help with designing new LINQ
operators. For example, while mapping loop idioms to
LINQ, we found 5 idioms (total coverage of 5.4%) that
map to the rather cumbersome LINQ statement
Range(0, M).SelectMany(i => Range(0, N)

.Select(j => foo(i, j)))

These idioms essentially are doubly nested for loops that
perform some operation for each i and j. This suggests
that a 2-d Range LINQ operator would be useful and
would cover about 5.4% of the loops. In contrast, our
data suggests that a n-d (n> 2) Range operator would be
used very rarely and therefore no such operator needs to
be added. We note that we have found two StackOverflow
questions (StackOverflow 2010, 2013) with 15k views
that are looking for a similar functionality. Another
example is a set of idioms (coverage 6.6%) that map to
Range(M, N).Select(i=>foo(collection[i]))

essentially requiring a slice of an ordered collection4.
The common appearance of this idiom in 6.6% of
the loops provides strong data-driven evidence that
4 This could also be mapped to the equally ugly
collection.Skip(M).Take(N-M).Select(foo).
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a new feature would be highly profitable to intro-
duce. For example, to remove these loops or their
cumber -some LINQ equivalent, we could introduce
a new Slice feature that allows the more idiomatic
collection.Slice(M, N).Select(foo). Indeed, the data
has helped us identify a frequently requested function-
ality: This operation seems to be common enough that
.NET 3.0 introduced the slice method, but only for
arrays. Additionally, the need of such a feature — that
we automatically identified through data — can be ver-
ified by the existence of a highly voted StackOverflow
question (StackOverflow 2009b) with 106k views and
17 answers (with 422 votes in total) asking about slic-
ing with some of the answers suggesting a Slice LINQ
extension function.

Finally, we observe that some loops perform more
than one impure operation (e.g. adding elements to two
collections), while efficiently reusing intermediate results.
To refactor this with LINQ statements an intermediate
LINQ expression needs to be converted to an object (e.g.
by using ToList()) to be consequently used in two or
more other LINQ expressions, because of the laziness
of LINQ operators. This is not memory efficient and
may create an unneeded bottleneck when performing
parallel LINQ operations. A memoization LINQ operator
that can distribute the intermediate value into two or
more LINQ streams, could remove such hurdles from
refactoring loops into LINQ.

In our dataset, LINQ slicing seems to be a common
idiom required across many projects suggesting that
an addition to core LINQ API could be reasonable. In
contrast, the 2d Range is specific to mathnet-numerics,
suggesting that a domain-specific helper/extension LINQ
operator could be introduced in that project, as we
discussed earlier.

7. Related Work
Code clones (Basit and Jarzabek 2009; Kamiya et al.
2002; Kim et al. 2005) are related to idiom mining.
Code clone detection using ASTs has also been studied
extensively (Baxter et al. 1998; Jiang et al. 2007; Koschke
et al. 2006). For a survey of clone detection methods, see
Roy and Cordy (2007); Roy et al. (2009). In contrast to
clone detection, code idiom mining searches for frequent,
rather than maximally identical subtrees (Allamanis and
Sutton 2014) (see Section 2). Additionally, code clones
do not abstract over the semantic properties of code
as we do in this work. Qiu et al. (2017) instrumented
the Java parser to count the usage of production rules
across various releases of Java, but do not automatically
find meaningful patterns. Another related area is API
mining (Acharya et al. 2007; Nguyen et al. 2009; Zhong
et al. 2009; Wang et al. 2013). However, this problem
is significantly different from idiom mining because it

focuses on APIs calls, while in our work we abstract the
exact method calls and additionally include semantic
information (e.g. purity).

Our mining methods are directly applicable to rewrit-
ings, such as refactoring (Fowler 1999). The most promi-
nent area of research on refactoring focuses on develop-
ing tools to automatically identify locations to refactor
and/or perform refactorings (Binkley et al. 2005; Mens
and Tourwé 2004; Dig 2011; Beyls and D’Hollander 2009;
Kjolstad and Snir 2010) with tremendous impact: nearly
all popular IDEs (e.g. Eclipse, Visual Studio, NetBeans)
include refactoring support of some kind. However, exist-
ing refactoring tools are underutilized (Murphy-Hill and
Black 2008). One reason may be the fact that many refac-
toring tools cannot handle many of the constructs (such
as loops) that developers actually write. This is the prob-
lem we tackle in this work, by giving tool developers the
tools they need to make data-driven decisions. Tsantalis
and Chatzigeorgiou (2009) use machine learning-like
methods to find opportunities to apply existing refactor-
ing operators. In contrast to this work, we mine, rank
and present idioms to refactoring tool developers as can-
didates for the left-hand sides (the pattern to replace)
of new refactoring operators.

Multiple tools focus on loop rewritings. Relooper (Dig
et al. 2009) automatically refactors loops on Arrays into
parallelized loops. Resharper (JetBrains 2015) provides
refactorings to convert loops into LINQ expressions.
Gyori et al. (2013) refactor Java loops to Java 8 streams,
which are similar to LINQ in C#. All these works use
the classic approach that rests on the tool developer’s
intuition — not data — to decide which rewritings
to implement. For example, the tool of Gyori et al.
(2013) only handles four loop types, comprising 46%
of the loops that they encountered, underscoring the
challenges of refactoring loops and the importance
and utility of functionalizing them. Since all these
tools contain hard-coded refactorings, they may miss
refactoring opportunities that are project specific or
have common constructs that the tool developers did
not anticipate. Similarly, a study of vectorizing compilers,
which rewrite sequential loops to use vector instructions,
found that, while collectively the compilers successfully
rewrote 83% of the benchmark loops, their individual
performance ranged from 45–71% (Maleki et al. 2011).
Our work is complementary to those tools and aims to
complement the tool developers’ intuition with data
identifying and ranking idioms, patterns potentially
worth replacing, in loops, including including domain or
project specific idioms.

8. Conclusion
We presented a method for the unsupervised mining
of semantic idioms, specifically loop idioms, from a
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code corpus. By abstracting the AST and augmenting
it with semantic facts like purity, we showed that idiom
mining can cope with syntactic diversity to find and
prioritize patterns whose replacement might improve a
refactoring tool’s coverage and help language and API
designers. Semantic idioms can also benefit other other
areas of program analysis and transformation, guiding
the selection of heuristics and choice of corner cases with
hard data, as in auto-vectorization (Barthe et al. 2013).
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A. Mined Topic Model
Table 5 shows the mined topics from the C# code. Ta-
ble 6 presents the statistical differences in loop charac-
teristics

B. LINQ Patterns
Figure 7 shows a larger and more legible version of
Figure 5 in Section 4.
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Table 5: The mined topic models for our descriptive statistics in Section 4. The naming of the topic (left column) is
our interpretation of the topic. The right column shows the most common (sub)tokens in the code for each topic.

Name Topic Tokens
Databases data table sql column row command db name value type connection string get

parameter record cell set i add

Collections value t i key list index string source to item get count dictionary array add
collection exception enumerable hash

XML node element xml attribute name type value x child tag id namespace path document
system attributes string has parent

Native Memory int ptr u gl entry open system single security handle point vertex v unmanaged tk
type get graphics target

Serialization object type serialization pack serializer json msg system value member target
tuple context schema result read property polymorphic item

Math/Temporaries m i p a b x c d f v vector j y r n matrix s result k

Error Handling message exception error state service context system i result security log async
channel trace callback not operation is event

Code Manipulation expression code type node op arg token var expr statement block location visit
result operator context ast variable add

Networking/Games packet read id guid player spell game var i opcode of bit device channel card
effect get actor client

MVC/Events event view model args resource e item changed on page action get handler property
control manager text context value

Session Handling id query user var name entity i order session store filter by get list group
context add cache to

Web/HTTP request response token http context value url client instance get name status
parameters uri async id result cancellation web

GUI system text box label button windows forms size tab menu item add style drawing
tool name controls layout strip

Graphics color image point x width y size height cc position line frame rect font rectangle
draw left vector to

Streams/Buffers write writer reader stream line length read string buffer index offset text bytes
i size to start count char

Files file path name get project info settings directory string i package config is var
version folder configuration format proto

Testing assert test equal are var is expected result exception true not null to fact mock
with should tests get

Security val fields fix quick set field is get underlying id tags leg security type value
no party date price

Reflection type name method i property get info member is reference builder types parameter
attribute definition field class var value

Time/Scheduling time date task on span i var action queue next start add thread create status job
scheduler to repository
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Table 6: Loop and LINQ statistics for the top 500 C# GitHub projects (25.4MLOC). The table presents the sorted
(lower to higher) list of topics for each metric. This is an extended version of the last rows of Table 2. The red boxes
next to each topic name signify the label of the topics that are not statistically different from the others. Note that
statistical significance is not a transitive relation.

Nesting Level Loop Body Size (LOC) Loop Density (% LOC) LINQ Statements/kLOC

a MVC/Events a Testing a Security a Security
b Error Handling

∼= c,d,e b Native Memory
∼= c,d,e b Native Memory b Native Memory

c Web/HTTP
∼= b,d,e c MVC/Events

∼= b,d c Testing c GUI
d Time/Scheduling

∼= b,c,e,f,g,h d Collections
∼= b,c,e d GUI d Graphics

e Session Handling
∼= b,c,d,f,g,h e Session Handling

∼= b,d e MVC/Events e Streams/Buffers
f Collections

∼= d,e,g,h,i,j,n f Security
∼= g,h f Session Handling

∼= g f Error Handling
g Files

∼= d,e,f,h,i,j,k,n g Networking/Games
∼= f,h g Error Handling

∼= f g XML
∼= h,i

h Native Memory
∼= d,e,f,g,u,j,k,l,m,n h Time/Scheduling

∼= f,g h Networking/Games h Networking/Games
∼= g,i

i GUI
∼= f,g,h,j,k,l,m,n i GUI

∼= j,k,l i Time/Scheduling i Math/Temporaries
∼= g,h,j

j Networking/Games
∼= f,g,h,i,k,l,m,n j Reflection

∼= i,k,l j Graphics j Web/HTTP
∼= i

k Serialization
∼= g,h,i,j,l,m,n k Databases

∼= i,j,l k Databases k MVC/Events
l XML

∼= h,i,j,k,m,n l Error Handling
∼= i,j,k l XML l Databases

∼= m

m Reflection
∼= h,i,j,k,l,n m Files

∼= n,o m Files m Code Manipulation
∼= l

n Security
∼= f,g,h,i,j,k,l,m,o,p,q n Graphics

∼= m,o n Reflection
∼= o n Time/Scheduling

o Code Manipulation
∼= n,p o Math/Temporaries

∼= m,n o Web/HTTP
∼= n o Collections

∼= p,q,r

q Databases
∼= n,p,r q Code Manipulation

∼= p q Collections q Files
∼= p,q,r

p Testing
∼= n,o,q,r p XML

∼= q p Code Manipulation p Reflection
∼= o,q,r

r Streams/Buffers
∼= p,q r Streams/Buffers r Serialization r Serialization

∼= o,p,q

s Graphics s Web/HTTP s Math/Temporaries s Testing
t Math/Temporaries t Serialization t Streams/Buffers t Session Handling
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Figure 7: Common pairs of LINQ operations in our corpus. The darker the color the more often the pair is used.
Numbers show the percent of times that the current operation is followed by another. The last column suggests that
the current operation is the last one. Data collected across 132,140 LINQ sequences from our corpus. This is a larger
version of Figure 5 in Section 4.
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