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Abstract
We show how to compile high-level functional array-processing
programs, drawn from image processing and machine learn-
ing, into C code that runs as fast as hand-written C. The key
idea is to transform the program to destination-passing style,
which in turn enables a highly-efficient stack-like memory
allocation discipline.
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1 Introduction
Applications in computer vision, robotics, and machine learn-
ing [32, 35] may need to run in memory-constrained envi-
ronments with strict latency requirements, and have high
turnover of small-to-medium-sized arrays. For these appli-
cations the overhead of most general-purpose memory man-
agement, for example malloc/free, or of a garbage collector,
is unacceptable, so programmers often implement custom
memory management directly in C.

In this paper we propose a technique that automates a
common custom memory-management technique, which we
call destination passing style [20, 21] (DPS), as used in effi-
cient C and Fortran libraries such as BLAS. We allow the
programmer to code in a high-level functional style, while
guaranteeing efficient stack allocation of all intermediate ar-
rays. Fusion techniques for such languages are absolutely
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essential to eliminate intermediate arrays, and are well es-
tablished. But fusion leaves behind an irreducible core of
intermediate arrays that must exist to accommodate multi-
ple or random-access consumers.

The key idea behind DPS is that every function is given
the storage in which to store its result. The caller of the
function is responsible for allocating the destination storage,
and deallocating it as soon as it is no longer needed. This
incurs a burden at the call site of computing the size of the
callee result, but we will show how a surprisingly rich input
language can nevertheless allow these computations to be
done statically, or in negligible time. Our contributions are:
∙ We propose a new destination-passing style intermediate

representation that captures a stack-like memory manage-
ment discipline and ensures there are no leaks (Section 3).
This is a good compiler intermediate language because we
can perform transformations on it and reason about how
much memory a program will take. It also allows efficient
C code generation with bump-allocation. Although it is
folklore to compile functions in this style when the result
size is known, we have not seen DPS used as an actual
compiler intermediate language, despite the fact that DPS
has been used for other purposes (c.f. Section 6).

∙ DPS requires to know at the call site how much memory a
function will need. We design a carefully-restricted higher-
order functional language, ̃︀F (Section 2) which is a subset
of F#, and a compositional shape translation (Section 3.3)
that guarantees to compute the result size of any ̃︀F ex-
pression, either statically or at runtime, with no allocation,
and a run-time cost independent of the data or its size
(Section 3.6). Other languages with similar properties [17]
expose shape concerns intrusively at the language level,
while ̃︀F programs are just F#.

∙ We present the implementation of of the technique (Sec-
tion 4) and evaluate the runtime and memory performance
of both micro-benchmarks and real-life computer vision and
machine-learning workloads written in our high-level lan-
guage and compiled to C via DPS (as shown in Section 5).
We show that our approach gives performance comparable
to, and sometimes better than, idiomatic C++.

2 ̃︀F̃︀F (we pronounce it F smooth) is a subset of F#, an ML-like
functional programming language (the syntax in this paper
is slightly different from F# for presentation reasons). It is
designed to be expressive enough to make it easy to write
array-processing workloads, while simultaneously being re-
stricted enough to allow it to be compiled to code that is as
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e ::= e e – Application
| 𝜆x.e – Abstraction
| x – Variable Access
| n – Scalar Value
| i – Index Value
| N – Cardinality Value
| c – Constants (see below)
| let x = e in e – (Non-Rec.) Let Binding
| if e then e else e – Conditional

T ::= M – Matrix Type
| T ⇒ M – Function Types (No Currying)
| Card – Cardinality Type
| Bool – Boolean Type

M ::= Num – Numeric Type
| Array<M> – Vector, Matrix, ... Type

Num ::= Double | Index – Scalar and Index Type

Scalar Function Constants:
+ | - | * | / : Num, Num ⇒ Num
% : Index, Index ⇒ Index
> | < | == : Num, Num ⇒ Bool
&& | || : Bool, Bool ⇒ Bool
! : Bool ⇒ Bool
+𝑐 | −𝑐 | *𝑐 | /𝑐 | %𝑐 : Card, Card ⇒ Card

Vector Function Constants:
build 𝑛 𝑓 : Card , (Index ⇒ M ) ⇒ Array<M>
ifold 𝑓 𝑚0 𝑛 : ( M , Index ⇒ M ) , M , Card ⇒ M
get 𝑎 𝑖 : Array<M> , Index ⇒ M
length 𝑎 : Array<M> ⇒ Card

Syntactic Sugar:
e0[e1] = get e0 e1
e1 𝑏𝑜𝑝 e2 = 𝑏𝑜𝑝 e1 e2 – For binary operators 𝑏𝑜𝑝

Figure 1. The core ̃︀F syntax and function constants.

efficient as hand-written C, with very simple and efficient
memory management. We are willing to sacrifice some expres-
siveness to achieve higher performance. As presented here, ̃︀F
strictly imposes its language restrictions, rejecting programs
for which shape inference is not efficient. Of course it would
also be possible to emit compilation warnings for inefficient
constructs, and defer shape calculation to runtime, and also
to add heap allocation using F#’s explicit "new".

2.1 Syntax and Types of ̃︀F
In addition to the usual 𝜆-calculus constructs (abstraction,
application, and variable access), ̃︀F supports let binding and
conditionals. The syntax and several built-in functions are
shown in Figure 1, while the type system is shown in Figure 2.
Note that Figure 1 shows an abstract syntax and parentheses
can be used as necessary. Also, x and e denote one or more
variables and expressions, respectively, which are separated
by spaces, whereas, T represents one or more types which
are separated by commas.

In support of array programming, the language has several
built-in functions defined: build for producing arrays; ifold
for iteration for a particular number of times (from 0 to n-1)
while maintaining a state across iterations; length to get the
size of an array; and get to index an array.

(T-If)
e1 : Bool e2 : M e3 : M

if e1 then e2 else e3 : M
(T-Var)

x : T ∈ Γ

Γ ⊢ x : T

(T-App)
e0 : T ⇒ M e : T

e0 e : M
(T-Abs)

Γ ∪ x : T ⊢ e : M
Γ ⊢ 𝜆x.e : T ⇒ M

(T-Let)
Γ ⊢ e1 : T1 Γ, x : T1 ⊢ e2 : T2

Γ ⊢ let x = e1 in e2: T2

Figure 2. The type system of ̃︀F
Although ̃︀F is a higher-order functional language, it is

carefully restricted in order to make it efficiently compilable:
∙ ̃︀F does not support arbitrary recursion, hence is not Tur-

ing Complete. Instead one can use build and ifold for
producing and iterating over arrays.

∙ The type system is monomorphic. The only polymorphic
functions are the built-in functions of the language, such
as build and ifold, which are best thought of as language
constructs rather than first-class functions.

∙ An array, of type Array<M>, is one-dimensional but can
be nested. If arrays are nested they are expected to be
rectangular, which is enforced by defining the specific Card
type for dimension of arrays, which is used as the type of
the first parameter of the build function.

∙ No partial application is allowed as an expression in this
language. Additionally, an abstraction cannot return a
function value. These two restrictions are enforced by (T-
App) and (T-Abs) typing rules, respectively (c.f. Figure 2).

As an example, Figure 3 shows a linear algebra library
defined using ̃︀F. First, there are vector mapping operations
(vectorMap and vectorMap2) which build vectors using the
size of the input vectors. The 𝑖𝑡ℎ element (using a zero-based
indexing system) of the output vector is the result of the
application of the given function to the 𝑖𝑡ℎ element of the
input vectors. Using the vector mapping operations, one can
define vector addition, vector element-wise multiplication,
and vector-scalar multiplication. Then, there are several vec-
tor operations which consume a given vector by folding over
its elements. For example, vectorSum computes the sum of
the elements of the given vector, which is used by the vec-
torDot and vectorNorm operations. Similarly, several matrix
operations are defined using these vector operations. More
specifically, matrix-matrix multiplication is defined in terms
of vector dot product and matrix transpose. Finally, vector
outer product is defined in terms of matrix multiplication of
the matrix form of the two input vectors.

2.2 Fusion
Fusion is essential for array programs, without it they cannot
be efficient. However fusion is also extremely well studied
[6, 10, 29, 38], and we simply take it for granted in this paper.
Let us work through one example which illustrates how fusion
can be applied to an ̃︀F program.

Consider this function, which returns the norm of the vec-
tor resulting from the addition of its two input vectors.

f = 𝜆 vec1 vec2. vectorNorm (vectorAdd vec1 vec2)

Executing this program, as is, involves constructing two vec-
tors in total: one intermediate vector which is the result of
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let vectorRange = 𝜆 n. build n (𝜆 i. i)
let vectorMap = 𝜆 v f.

build (length v) (𝜆 i. f v[i])
let vectorMap2 = 𝜆 v1 v2 f.

build (length v1) (𝜆 i. f v1[i] v2[i])
let vectorAdd = 𝜆 v1 v2. vectorMap2 v1 v2 (+)
let vectorEMul = 𝜆 v1 v2. vectorMap2 v1 v2 (×)
let vectorSMul = 𝜆 v s. vectorMap v (𝜆 a. a × s)
let vectorSum = 𝜆 v.

ifold (𝜆 sum idx. sum + v[idx]) 0 (length v)
let vectorDot = 𝜆 v1 v2.

vectorSum (vectorEMul v1 v2)
let vectorNorm = 𝜆 v. sqrt (vectorDot v v)
let vectorSlice = 𝜆 v s e.

build (e −𝑐 s +𝑐 1) (𝜆 i. v[i + s])
let matrixRows = 𝜆 m. length m
let matrixCols = 𝜆 m. length m[0]

let matrixMap = 𝜆 m f. build (length m) (𝜆 i. f m[i])
let matrixMap2 = 𝜆 m1 m2 f.
build (length m1) (𝜆 i. f m1[i] m2[i])
let matrixAdd = 𝜆 m1 m2. matrixMap2 m1 m2 vectorAdd
let matrixTranspose = 𝜆 m.

build (matrixCols m) (𝜆 i.
build (matrixRows m) (𝜆 j. m[j][i]) )

let matrixMul = 𝜆 m1 m2.
let m2T = matrixTranspose m2
build (matrixRows m1) (𝜆 i.

build (matrixCols m2) (𝜆 j.
vectorDot (m1[i]) (m2T[j]) ) )

let vectorOutProd = 𝜆 v1 v2.
let m1 = build 1 (𝜆 i. v1)
let m2 = build 1 (𝜆 i. v2)
let m2T = matrixTranspose m2
matrixMul m1 m2T

Figure 3. Several Linear Algebra and Matrix operations defined in ̃︀F.

(build e0 e1)[e2] { e1 e2
length (build e0 e1) { e0

Figure 4. Fusion rules of ̃︀F.

adding the two vectors vec1 and vec2, and another in-
termediate vector which is used in the implementation of
vectorNorm (vectorNorm invokes vectorDot, which invokes
vectorEMul in order to perform the element-wise multiplica-
tion between two vectors). After using the rules presented in
Figure 4, the fused function is as follows:

f = 𝜆 vec1 vec2.
ifold (𝜆 sum idx.

let tmp = vec1[idx]+vec2[idx] in
sum + tmp * tmp

) 0 (length vec1)

This is better because it does not construct the intermediate
vectors. Instead, the elements of the intermediate vectors are
consumed as they are produced.

However, our focus is on efficient allocation and de-allocation
of the arrays that fusion cannot remove. For example: the
array might be passed to a foreign library function; or it
might be passed to a library function that is too big to inline;
or it might be consumed by multiple consumers, or by a
consumer with a random (non-sequential) access pattern. In
these cases there are good reasons to build an intermediate
array, but we want to allocate, fill, use, and de-allocate it
extremely efficiently. In particular, we do not want to rely
on a garbage collector.

3 Destination-Passing Style
Thus motivated, we define a new intermediate language,
DPS-̃︀F, in which memory allocation and deallocation is
explicit. DPS-̃︀F uses destination-passing style: every array-
returning function receives as its first parameter a pointer
to memory in which to store the result array. No function

t ::= t t | 𝜆 x. t | n | i | x | c | let x = t in t
| P – Shape Value
| r – Reference Access
| ∙ – Empty Memory Location
| if t then t else t – Conditional
| alloc t (𝜆 r. t) – Memory Allocation

P ::= ∘ – Zero Cardinality
| N – Cardinality Value
| N, P – Vector Shape Value

c ::= [See Figure 6]
D ::= M | D ⇒ M | Bool

| Shp – Shape Type
| Ref – Machine Address

M ::= Num | Array<M>
Num ::= Double | Index
Shp ::= Card – Cardinality Type

| (Card * Shp) – Vector Shape Type

Figure 5. The core DPS-̃︀F syntax.

allocates the storage needed for its result; instead the respon-
sibility of allocating and deallocating the output storage of a
function is given to the caller of that function. Similarly, all
the storage allocated inside a function can be deallocated as
soon as the function returns its result.

Destination passing style is a standard programming id-
iom in C. For example, the C standard library procedures
that return a string (e.g. strcpy) expect the caller to pro-
vide storage for the result. This gives the programmer full
control over memory management for string values. Other
languages have exploited destination-passing style during
compilation [14, 15].

3.1 The DPS-̃︀F Language
The syntax of DPS-̃︀F is shown in Figure 5, while its type
system is in Figure 6. The main additional construct in
this language is the one for allocating a particular amount
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Typing Rules:

(T-Alloc)
Γ ⊢ t0 : Card Γ, r : Ref ⊢ t1 : M

alloc t0 (𝜆 r. t1): M

Vector Function Constants:
build : Ref, Card, (Ref, Index ⇒ M ),

Card, (Card ⇒ Shp )
⇒ Array<M>

ifold : Ref, (Ref, M, Index ⇒ M ), M, Card,
(Shp, Card ⇒ Shp ), Shp, Card

⇒ M
get : Ref, Array<M>, Index,

Shp, Card ⇒ M
length : Ref, Array<M>, Shp ⇒ Card
copy : Ref, Array<M> ⇒ Array<M>

Scalar Function Constants:
DPS version of ̃︀F Scalar Constants (See Figure 1).
stgOff : Ref, Shp ⇒ Ref
vecShp : Card, Shp ⇒ (Card * Shp)
fst : (Card * Shp) ⇒ Card
snd : (Card * Shp) ⇒ Shp
bytes : Shp ⇒ Card

Syntactic Sugar:
t0.[t1]{r} = get r t0 t1 length t = length ∙ t
t0, t1 = vecShp t0 t1
for all binary ops 𝑏𝑜𝑝: e1 𝑏𝑜𝑝 e2 = 𝑏𝑜𝑝 ∙ e1 e2

Figure 6. The type system and built-in constants of DPS-̃︀F
of storage space alloc t1 (𝜆 r. t2). In this construct t1 is
an expression that evaluates to the size (in bytes) that is
required for storing the result of evaluating t2. This storage
is available in the lexical scope of the lambda parameter, and
is deallocated outside this scope. The previous example can
be written in the following way in DPS-̃︀F:

f = 𝜆 r1 vec1 vec2. alloc (vecBytes vec1) (𝜆 r2.
vectorNorm_dps ∙ (vectorAdd_dps r2 vec1 vec2) )

Each lambda abstraction typically takes an additional
parameter which specifies the storage space that is used for
its result. Furthermore, every application should be applied to
an additional parameter which specifies the memory location
of the return value in the case of an array-returning function.
However, a scalar-returning function is applied to a dummy
empty memory location, specified by ∙. In this example, the
memory location r1 can be ignored, whereas the number of
bytes allocated for the memory location r2 is specified by the
expression (vecBytes vec1) which computes the number of
bytes of the array vec1.

3.2 Translation from ̃︀F to DPS-̃︀F
We now turn present the translation from ̃︀F to DPS-̃︀F. Before
translating ̃︀F expressions to their DPS form, the expressions
should be transformed into a normal form similar to ANF [7].
In this representation, each subexpression of an application
is either a constant value or a variable. This greatly simpli-
fies the translation rules, specially the (D-App) rule.1 The
representation of our working example in ANF is as follows:

f = 𝜆 vec1 vec2.
let tmp = vectorAdd vec1 vec2 in
vectorNorm tmp

Figure 7 shows the translation from ̃︀F to DPS-̃︀F, where
𝒟⟦e⟧r is the translation of a ̃︀F expression e into a DPS-̃︀F
expression that stores e’s value in memory r. Rule (D-Let) is
1 In a true ANF, every subexpression is a constant value or a variable,
whereas in our case, we only care about the subexpressions of an
application. Hence, our representation is almost ANF.

a good place to start. It uses alloc to allocate enough space
for the value of e1, the right hand side of the let — but how
much space is that? We use an auxiliary translation 𝒮⟦e1⟧ to
translate e1 to an expression that computes e1’s shape rather
than its value. The shape of an array expression specifies
the cardinality of each dimension. We will discuss why we
need shape (what goes wrong with just using bytes) and the
shape translation in Section 3.3. This shape is bound to x𝑠ℎ𝑝,
and used in the argument to alloc. The freshly-allocated
storage r2 is used as the destination for translating the right
hand side e1, while the original destination r is used as the
destination for the body e2.

In general, every variable 𝑥 in ̃︀F becomes a pair of variables
x (for 𝑥’s value) and x𝑠ℎ𝑝 (for 𝑥’s shape) in DPS-̃︀F. You
can see this same phenomenon in rules (D-App) and (D-
Abs), which deal with lambdas and application: we turn each
lambda-bound argument 𝑥 into two arguments x and x𝑠ℎ𝑝.

Finally, in rule (D-App) the context destination memory r
is passed on to the function being called, as its additional first
argument; and in (D-Abs) each lambda gets an additional
argument, which is used as the destination when translating
the body of the lambda. Figure 7 also gives a translation of
an ̃︀F type T to the corresponding DPS-̃︀F type D.

For variables there are two cases. In rule (D-VarScalar)
a scalar variable is translated to itself, while in rule (D-
VarVector) we must copy the array into the designated result
storage using the copy function. The copy function copies
the array elements as well as the header information (the
second argument) into the given storage (the first argument).

3.3 Shape Translation
As we have seen, rule (D-Let) relies on the shape translation
of the right hand side. This translation is given in Figure 8. If
e has type T, then 𝒮⟦e⟧ is an expression of type 𝒮𝒯 ⟦T⟧ that
gives the shape of e. This expression can always be evaluated
without allocation.

A shape is an expression of type Shp (Figure 5), whose
values are given by P in that figure. There are three cases to
consider. First, a scalar value has shape ∘ (rules (S-ExpNum),
(S-ExpBool)). Second, when e is an array, 𝒮⟦e⟧ gives the
shape of the array as a nested tuple, such as 3, 4, ∘ for a
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𝒟⟦e⟧r = t

(D-App) 𝒟⟦e0 x1 ... x𝑘⟧r = (𝒟⟦e0⟧∙) r x1 ... x𝑘 x1
𝑠ℎ𝑝 ... x𝑘

𝑠ℎ𝑝

(D-Abs) 𝒟⟦𝜆 x1 ... x𝑘. e1⟧∙ = 𝜆 r2 x1 ... x𝑘 x1
𝑠ℎ𝑝 ... x𝑘

𝑠ℎ𝑝. 𝒟⟦e1⟧r2
(D-VarScalar) 𝒟⟦x⟧∙ = x
(D-VarVector) 𝒟⟦x⟧r = copy r x
(D-Let) 𝒟⟦let x = e1 in e2⟧r = let x𝑠ℎ𝑝 = 𝒮⟦e1⟧ in

alloc (bytes x𝑠ℎ𝑝) (𝜆 r2.
let x = 𝒟⟦e1⟧r2 in 𝒟⟦e2⟧r)

(D-If) 𝒟⟦if e1 then e2 else e3⟧r = if 𝒟⟦e1⟧∙ then 𝒟⟦e2⟧r else 𝒟⟦e3⟧r

𝒟𝒯 ⟦T⟧ = D

(DT-Fun) 𝒟𝒯 ⟦T1, ..., T𝑘 ⇒ M ⟧ = Ref, 𝒟𝒯 ⟦T1⟧, ..., 𝒟𝒯 ⟦T𝑘⟧, 𝒮𝒯 ⟦T1⟧, ..., 𝒮𝒯 ⟦T𝑘⟧ ⇒ 𝒟𝒯 ⟦M⟧
(DT-Mat) 𝒟𝒯 ⟦M⟧ = M
(DT-Bool) 𝒟𝒯 ⟦Bool⟧ = Bool
(DT-Card) 𝒟𝒯 ⟦Card⟧ = Card

Figure 7. Translation from ̃︀F to DPS-̃︀F
3-vector of 4-vectors. So the “shape” of an array specifies the
cardinality of each dimension. Finally, when e is a function,
𝒮⟦e⟧ is a function that takes the shapes of its arguments and
returns the shape of its result. You can see this directly in
rule (S-App): to compute the shape of (the result of) a call,
apply the shape-translation of the function to the shapes of
the arguments. This is possible because ̃︀F programs do not
allow the programmer to write a function whose result size
depends on the contents of its input array.

What is the shape-translation of a function f? Remem-
bering that every in-scope variable f has become a pair of
variables—one for the value and one for the shape—we can
simply use the latter, f𝑠ℎ𝑝, as we see in rule (S-Var).

For arrays, could the shape be simply the number of bytes
required for the array, rather than a nested tuple? No. Con-
sider the following function, which returns the first row of
its argument matrix:

firstRow = 𝜆 m: Array<Array<Double>>. m[0]
The shape translation of firstRow, namely firstRow𝑠ℎ𝑝, is

given the shape of m, and must produce the shape of m’s
first row. It cannot do that given only the number of bytes
in m; it must know how many rows and columns it has. But
by defining shapes as a nested tuple, it becomes easy: see
rule (S-Get).

The shape of the result of the iteration construct (ifold)
requires the shape of the state expression to remain the same
across iterations, which is by checking the beta equivalence of
the initial shape and the shape of each iteration. Otherwise
the compiler produces an error, as shown in rule (S-Ifold).

The other rules are straightforward. The key point is that
by translating every in-scope variable, including functions,
into a pair of variables, we can give a compositional account
of shape translation, even in a higher order language.

3.4 An Example
Using this translation, the running example at the beginning
of Section 3.2 is translated as follows:

f = 𝜆 r0 vec1 vec2 vec1𝑠ℎ𝑝 vec2𝑠ℎ𝑝.
let tmp𝑠ℎ𝑝 = vectorAdd𝑠ℎ𝑝 vec1𝑠ℎ𝑝 vec2𝑠ℎ𝑝 in
alloc (bytes tmp𝑠ℎ𝑝) (𝜆 r1.

let tmp =
vectorAdd r1 vec1 vec2 vec1𝑠ℎ𝑝 vec2𝑠ℎ𝑝 in

vectorNorm r0 tmp tmp𝑠ℎ𝑝

)

The shape translations of some ̃︀F functions from Figure 3
are as follows:

let vectorRange𝑠ℎ𝑝 = 𝜆 n𝑠ℎ𝑝. n𝑠ℎ𝑝, (𝜆 i𝑠ℎ𝑝. ∘) ∘
let vectorMap2𝑠ℎ𝑝 = 𝜆 v1𝑠ℎ𝑝 v2𝑠ℎ𝑝 f𝑠ℎ𝑝.

fst v1𝑠ℎ𝑝, (𝜆 i𝑠ℎ𝑝. ∘) ∘
let vectorAdd𝑠ℎ𝑝 = 𝜆 v1𝑠ℎ𝑝 v2𝑠ℎ𝑝.

vectorMap2𝑠ℎ𝑝 v1𝑠ℎ𝑝 v2𝑠ℎ𝑝 (𝜆 a𝑠ℎ𝑝 b𝑠ℎ𝑝. ∘)
let vectorNorm𝑠ℎ𝑝 = 𝜆 v𝑠ℎ𝑝. ∘

3.5 Simplification
As is apparent from the examples in the previous section,
code generated by the translation has many optimisation op-
portunities. This optimisation, or simplification, is applied in
three stages: 1) ̃︀F expressions, 2) translated Shape-̃︀F expres-
sions, and 3) translated DPS-̃︀F expressions. In the first stage,̃︀F expressions are simplified to exploit fusion opportunities
that remove intermediate arrays entirely. Furthermore, other
compiler transformations such as constant folding, dead-code
elimination, and common-subexpression elimination are also
applied at this stage.

In the second stage, the Shape-̃︀F expressions are simpli-
fied. The simplification process for these expressions mainly
involves partial evaluation. By inlining all shape functions,
and performing 𝛽-reduction and constant folding, shapes can
often be computed at compile time, or at least can be greatly
simplified. For example, the shape translations presented in
Section 3.3 after performing simplification are as follows:
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𝒮⟦e⟧ = s

(S-App) 𝒮⟦e0 e1 ... e𝑘 ⟧ = 𝒮⟦e0⟧ 𝒮⟦e1⟧ ... 𝒮⟦e𝑘⟧

(S-Abs) 𝒮⟦𝜆 𝑥1: 𝑇1, ..., 𝑥𝑘: 𝑇𝑘. e ⟧ = 𝜆 𝑥1
𝑠ℎ𝑝: 𝒮𝒯 ⟦𝑇1⟧, ..., 𝑥𝑘

𝑠ℎ𝑝: 𝒮𝒯 ⟦𝑇𝑘⟧. 𝒮⟦e⟧
(S-Var) 𝒮⟦x⟧ = x𝑠ℎ𝑝

(S-Let) 𝒮⟦let x = e1 in e2⟧ = let x𝑠ℎ𝑝 = 𝒮⟦e1⟧ in 𝒮⟦e2⟧

(S-If) 𝒮⟦if e1 then e2 else e3⟧ =
{︂

𝒮⟦e2⟧ 𝒮⟦e2⟧�𝒮⟦e3⟧

Compilation Error! 𝒮⟦e2⟧≇𝒮⟦e3⟧
(S-ExpNum) e: Num ⊢ 𝒮⟦e⟧ = ∘
(S-ExpBool) e: Bool ⊢ 𝒮⟦e⟧ = ∘
(S-ValCard) 𝒮⟦N⟧ = N
(S-AddCard) 𝒮⟦e0 +

𝑐 e1⟧ = 𝒮⟦e0⟧ +
𝑐 𝒮⟦e1⟧

(S-MulCard) 𝒮⟦e0 *𝑐 e1⟧ = 𝒮⟦e0⟧ *𝑐 𝒮⟦e1⟧
(S-Build) 𝒮⟦build e0 e1⟧ = 𝒮⟦e0⟧, 𝒮⟦e1⟧ ∘
(S-Get) 𝒮⟦e0[e1]⟧ = snd 𝒮⟦e0⟧
(S-Length) 𝒮⟦length e0⟧ = fst 𝒮⟦e0⟧

(S-Ifold) 𝒮⟦ ifold e1 e2 e3 ⟧ =
{︂

𝒮⟦e2⟧ ∀𝑛.𝒮⟦e1 e2 n⟧�𝒮⟦e2⟧

Compilation Error! otherwise

𝒮𝒯 ⟦T⟧ = S

(ST-Fun) 𝒮𝒯 ⟦T1, T2, ..., T𝑘 ⇒ M ⟧ = 𝒮𝒯 ⟦T1⟧, 𝒮𝒯 ⟦T2⟧, ..., 𝒮𝒯 ⟦T𝑘⟧ ⇒ 𝒮𝒯 ⟦M⟧
(ST-Num) 𝒮𝒯 ⟦Num⟧ = Card
(ST-Bool) 𝒮𝒯 ⟦Bool⟧ = Card
(ST-Card) 𝒮𝒯 ⟦Card⟧ = Card
(ST-Vector) 𝒮𝒯 ⟦Array<M>⟧ = (Card * 𝒮𝒯 ⟦M⟧)

Figure 8. Shape Translation of ̃︀F
let vectorRange𝑠ℎ𝑝 = 𝜆 n𝑠ℎ𝑝. n𝑠ℎ𝑝, ∘
let vectorMap2𝑠ℎ𝑝 = 𝜆 v1𝑠ℎ𝑝 v2𝑠ℎ𝑝 f𝑠ℎ𝑝. v1𝑠ℎ𝑝

let vectorAdd𝑠ℎ𝑝 = 𝜆 v1𝑠ℎ𝑝 v2𝑠ℎ𝑝. v1𝑠ℎ𝑝

let vectorNorm𝑠ℎ𝑝 = 𝜆 v𝑠ℎ𝑝. ∘

The final stage involves both partially evaluating the shape
expressions in DPS-̃︀F and simplifying the storage accesses in
the DPS-̃︀F expressions. Figure 9 demonstrates simplification
rules for storage accesses. The first two rules remove empty
allocations and merge consecutive allocations, respectively.
The third rule removes a dead allocation, i.e. an allocation
for which its storage is never used. The fourth rule hoists
an allocation outside an abstraction whenever possible. The
benefit of this rule is amplified more in the case that the
storage is allocated inside a loop (build or ifold). Note that
none of these transformation rules are available in ̃︀F, due to
the lack of explicit storage facilities.

After applying the presented simplification process, our
working example is translated to the following program:

f = 𝜆 r0 vec1 vec2 vec1𝑠ℎ𝑝 vec2𝑠ℎ𝑝.
alloc (bytes vec1𝑠ℎ𝑝) (𝜆 r1.

let tmp = vectorAdd r1 vec1 vec2
vec1𝑠ℎ𝑝 vec2𝑠ℎ𝑝 in

vectorNorm r0 tmp vec1𝑠ℎ𝑝

)

In this program, there is no shape computation at runtime.

Empty Allocation:
alloc ∘ (𝜆 r. t1) { t1[r ↦→ ∙]
Allocation Merging:
alloc t1 (𝜆 r1. { alloc (t1 +

𝑐 t2) (𝜆 r1.
alloc t2 (𝜆 r2. let r2 = stgOff r1 t1 in

t3 )) t3 )
Dead Allocation:
alloc t1 (𝜆 r. t2) { t2 if r < 𝐹 𝑉 t2
Allocation Hoisting:
𝜆𝑥. alloc t1 (𝜆 r. t2) { alloc t1 (𝜆 r. 𝜆𝑥. t2) if 𝑥 < 𝐹 𝑉 t1
Cardinality Simpl.:
bytes ∘ { ∘
bytes ∘, ∘ { ∘
bytes N, ∘ { NUM_BYTES *𝑐 N +𝑐 HDR_BYTES
bytes N, s { (bytes s) *𝑐 N +𝑐 HDR_BYTES

Figure 9. Simplification rules of DPS-̃︀F
3.6 Properties of Shape Translation
The target language of shape translation is a subset of DPS-̃︀F
called Shape-̃︀F. The syntax of the subset is given in Figure 10.
It includes nested pairs, of statically-known depth, to repre-
sent shapes, but it does not include vectors. That provides
an important property for Shape-̃︀F as follows:

Theorem 1. All expressions resulting from shape translation,
do not require any heap memory allocation.
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s ::= s s | 𝜆 x. s | x | P | c | let x = s in s
P ::= ∘ | N | N, P
c ::= vecShp | fst | snd | +𝑐 | *𝑐

S ::= S ⇒ Shp | Shp
Shp ::= Card | (Card * Shp)

Figure 10. Shape-̃︀F syntax, which is a subset of the syntax
of DPS-̃︀F presented in Figure 5.

Proof. All the non-shape expressions have either scalar or
function type. As shown in Figure 8 all scalar type expres-
sions are translated into zero cardinality (∘), which can be
stack-allocated. On the other hand, the function type expres-
sions can also be stack allocated. This is because functions
are not allowed to return functions. Hence, the captured
environment in a closure does not escape its scope. Hence,
the closure environment can be stack allocated. Finally, the
last case consists of expressions which are the result of shape
translation for vector expressions. As we know the number of
dimensions of the original vector expressions, the translated
expressions are tuples with a known-depth, which can be
easily allocated on stack.

Next, we show the properties of our translation algorithm.
First, let us investigate the impact of shape translation oñ︀F types. For array types, we need to represent the shape
in terms of the shape of each element of the array, and the
cardinality of the array. We encode this information as a
tuple. For scalar type and cardinality type expressions, the
shape is a cardinality expression. This is captured in the
following theorem:

Theorem 2. If the expression e in ̃︀F has the type T, then
𝒮⟦e⟧ has type 𝒮𝒯 ⟦T⟧.

Proof. Can be proved by induction on the translation rules
from ̃︀F to Shape-̃︀F.

In order to have a simpler shape translation algorithm as
well as better guarantees about the expressions resulting from
shape translation, two important restrictions are applied oñ︀F programs.
1. The accumulating function used in the ifold operator

should preserve the shape of the initial value. Otherwise,
converting the result shape into a closed-form polynomial
expression requires solving a recurrence relation.

2. The shape of both branches of a conditional should be the
same.

These two restrictions simplify the shape translation as is
shown in Figure 8.

Theorem 3. All expressions resulting from shape translation
require linear computation time with respect to the size of
terms in the original ̃︀F program.

Proof. This can be proved in two steps. First, translating
a ̃︀F expression into its shape expression, leads to an expres-
sion with smaller size. This can be proved by induction on
translation rules. Second, the run time of a shape expression
is linear in terms of its size. An important case is the ifold
construct, which by applying the mentioned restrictions, we

ensured their shape can be computed without any need for
recursion.

Finally, we believe that our translation is correct based
on our successful implementation. However, we leave a for-
mal semantics definition and the proof of correctness of the
transformation as future work.

3.7 Discussion
One possible question is whether the DPS technique can
go beyond the ̃︀F language. In other words, is it possible to
support programs which require an arbitrary recursion, such
as filtering an array, changing the size while recursing, or
computing a Fibonacci-size array?

The answer is yes; instead of producing compilation errors
(c.f. Figure 8), the compiler produces warnings and postpones
the shape computation until the run time. However, this can
cause a massive run time overhead, as it is no longer possible
to benefit from the performance guarantees mentioned in
Section 3.6. More specifically, the shape computation could
be as time consuming as the original array expressions [16],
which can cause massive computation and space overheads.
As an example, the computation complexity of a Fibonacci-
size array will be 𝑂

(︀
2.7𝑛

)︀
instead of 𝑂

(︀
1.6𝑛

)︀
(the former is

the closed form of 𝑓
(︀
𝑛
)︀
= 2𝑓

(︀
𝑛 − 1

)︀
+ 2𝑓

(︀
𝑛 − 2

)︀
, while the

latter is the closed form of 𝑓
(︀
𝑛
)︀
= 𝑓

(︀
𝑛 − 1

)︀
+ 𝑓

(︀
𝑛 − 2

)︀
).

4 Implementation
4.1 ̃︀F Language
We implemented ̃︀F as a subset of F#. Hence ̃︀F programs are
normal F# programs. Furthermore, the built-in constants
(presented in Figure 2) are defined as a library in F# and
all library functions (presented in Figure 3) are implemented
using these built-in constants. If a given expression is in the
subset supported by ̃︀F, the compiler accepts it.

For implementing the transformations presented in the
previous sections, instead of modifying the F# compiler, we
use F# quotations [31]. Note that there is no need for the
user to use F# quotations in order to implement a ̃︀F program.
The F# quotations are only used by the compiler developer
in order to implement transformation passes.

Although ̃︀F expressions are F# expressions, it is not pos-
sible to express memory management constructs used by
DPS-̃︀F expressions using the F# runtime. Hence, after trans-
lating ̃︀F expressions to DPS-̃︀F, we compile down the result
program into a programming language which provides mem-
ory management facilities, such as C. The generated C code
can either be used as kernels by other C programs, or in-
voked in F# as a native function using inter-operatorability
facilities provided by Common Language Runtime (CLR).

Next, we discuss why we choose C and how the C code
generation works.

4.2 C Code Generation
There are many programming languages which provide man-
ual memory management. Among them we are interested
in the ones which give us full control on the runtime envi-
ronment, while still being easy to debug. Hence, low-level
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imperative languages such as C and C++ are better candi-
dates than LLVM mainly because of debugging purposes.

One of the main advantages of DPS-̃︀F is that we can
generate idiomatic C from it. More specifically, the generated
C code is similar to a handwritten C program as we can
manage the memory in a stack fashion. The translation from
DPS-̃︀F programs into C code is quite straightforward.

As our DPS encoded programs are using the memory in
a stack fashion, the memory could be managed more effi-
ciently. More specifically, we first allocate a specific amount
of buffer in the beginning. Then, instead of using the stan-
dard malloc function, we bump-allocate from our already
allocated buffer. Hence, in most cases allocating memory is
only a pointer arithmetic operation to advance the pointer
to the last allocated element of the buffer. In the cases that
the user needs more than the amount which is allocated in
the buffer, we need to double the size of the buffer. Fur-
thermore, memory deallocation is also very efficient in this
scheme. Instead of invoking the free function, we need to
only decrement the pointer to the last allocated storage.

We compile lambdas by performing closure conversion. As
functions in DPS-̃︀F do not return functions, the environment
captured by a closure can be stack allocated.

As mentioned in Section 2, polymorphism is not allowed ex-
cept for some built-in constructs in the language (e.g. build
and ifold). Hence, all the usages of these constructs are
monomorphic, and the C code generator knows exactly which
code to generate for them. Furthermore, the C code genera-
tor does not need to perform the closure conversion for the
lambdas passed to the built-in constructs. Instead, it can
generate an efficient for-loop in place. As an example, the
generated C code for a running sum function of ̃︀F is as follows:

double vector_sum(vector v) {
double sum = 0;
for (index idx = 0; idx < v->length; idx++) {

sum = sum + v->elements[idx];
}
return sum;

}

Finally, for the alloc construct in DPS-̃︀F, the generated
C code consists of three parts. First, a memory allocation
statement is generated which allocates the given amount
of storage. Second, the corresponding body of code which
uses the allocated storage is generated. Finally, a memory
deallocation statement is generated which frees the allocated
storage. The generated C code for our working example is as
follows:

double f(storage r0, vector vec1, vector vec2,
vec_shape vec1_shp, vec_shape vec2_shp) {

storage r1 = malloc(vector_bytes(vec1_shp));
vector tmp = vector_add_dps(r1, vec1, vec2,

vec1_shp, vec2_shp);
double result = vector_norm_dps(r0,tmp,vec1_shp);
free(r1);
return result;

}

We use our own implementation of malloc and free for
bump allocation.

5 Experimental Results
For the experimental evaluation, we use an iMac machine
equipped with an Intel Core i5 CPU running at 2.7GHz,
32GB of DDR3 RAM at 1333Mhz. The operating system is
OS X 10.10.5. We use Mono 4.6.1 as the runtime system for
F# programs and CLang 700.1.81 for compiling the C++
code and generated C.2

Throughout this section, we compare the performance and
memory consumption of the following alternatives:
∙ F#: Using the array operations (e.g. map) provided in the

standard library of F# to implement vector operations.
∙ CL: Leaky C code, which is the generated C code from ̃︀F,

using malloc to allocate vectors, never calling free.
∙ CG: C code using Boehm GC, which is the generated C

code from ̃︀F, using GC_malloc of Boehm GC to allocate
vectors.

∙ CLF: CL + Fused Loops, performs deforestation and loop
fusion before CL.

∙ D: DPS C code using system-provided malloc/free, trans-
lates ̃︀F programs into DPS-̃︀F before generating C code.
Hence, the generated C code frees all allocated vectors.
In this variant, the malloc and free functions are used for
memory management.

∙ DF: D + Fused Loops, which is similar to the previous one,
but performs deforestation before translating to DPS-̃︀F.

∙ DFB: DF + Buffer Optimizations, which performs the buffer
optimizations described in Section 3.5 (such as allocation
hoisting and merging) on DPS-̃︀F expressions.

∙ DFBS: DFB using stack allocator, same as DFB, but using
bump allocation for memory management, as previously
discussed in Section 4.2. This is the best C code we generate
from ̃︀F.

∙ C++: Idiomatic C++, which uses an handwritten C++
vector library, depending on C++14 move construction
and copy elision for performance, with explict programmer
indication of fixed-size (known at compile time) vectors,
permitting stack allocation.

∙ E++: Eigen C++, which uses the Eigen [12] library which
is implemented using C++ expression templates to effect
loop fusion and copy elision. Also uses explicit sizing for
fixed-size vectors.
First, we investigate the behavior of several variants of gen-

erated C code for two micro benchmarks. More specifically we
see how DPS improves both run-time performance and mem-
ory consumption (by measuring the maximum resident set
size) in comparison with an F# version. The behavior of the
generated DPS code is very similar to manually handwritten
C++ code and the Eigen library.

Then, we demonstrate the benefit of using DPS for some
real-life computer vision and machine learning workloads
motivated in [27]. Based on the results for these workloads,
we argue that using DPS is a great choice for generating
C code for numerical workloads, such as computer vision

2 All code and outputs are available at http://github.com/awf/Coconut.
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(a) Runtime performance comparison of different ap-
proaches on adding three vectors of 100 elements for
one million times.

(b) Memory consumption comparison of different approaches on adding three
vectors of 100 elements by varying the number of iterations. All the invisible
lines are hidden under the bottom line.

(c) Runtime performance comparison of different ap-
proaches on cross product of two vectors of three
elements for one million times.

(d) Memory consumption comparison of different approaches on cross product
of two vectors of three elements by varying the number of iterations. All the
invisible lines are hidden under the bottom line.

Figure 11. Experimental Results for Micro Benchmarks

algorithms, running on embedded devices with a limited
amount of memory available.

5.1 Micro Benchmarks
Figure 11 shows the experimental results for micro bench-
marks, one adding three vectors, the second cross product of
two vectors.

add3 : vectorAdd(vectorAdd(vec1, vec2), vec3)
in which all the vectors contain 100 elements. This program
is run one million times in a loop, and timing results are
shown in Figure 11a. In order to highlight the performance
differences, the figure uses a logarithmic scale on its Y-axis.
Based on these results we make the following observations.
First, we see that all C and C++ programs are outperforming
the F# program, except the one which uses the Boehm GC.
This shows the overhead of garbage collection in the F#
runtime environment and Boehm GC. Second, loop fusion
has a positive impact on performance. This is because this
program involves creating an intermediate vector (the one
resulting from addition of vec1 and vec2). Third, the gener-
ated DPS C code which uses buffer optimizations (DFB) is
faster than the one without this optimization (DF). This is
mainly because the result vector is allocated only once for
DFB whereas it is allocated once per iteration in DF. Finally,
there is no clear advantage for C++ versions. This is mainly
due to the fact that the vectors have sizes not known at com-
pile time, hence the elements are not stack allocated. The
Eigen version partially compensates this limitation by using
vectorized operations, making the performance comparable
to our best generated DPS C code.

The peak memory consumption of this program for differ-
ent approaches is shown in Figure 11b. This measurement

is performed by running this program by varying number of
iterations. Both axes use logarithmic scales to better demon-
strate the memory consumption difference. As expected, F#
uses almost the same amount of memory over the time, due to
GC. However, the runtime system sets the initial amount to
15MB by default. Also unsurprisingly, leaky C uses memory
linear in the number of iterations, albeit from a lower base.
The fused version of leaky C (CLF) decreases the consumed
memory by a constant factor. Finally, DPS C, and C++ use
a constant amount of space which is one order of magnitude
less than the one used by the F# program, and half the
amount used by the generated C code using Boehm GC.

cross : vectorCross(vec1, vec2)
This micro-benchmark is 1 million runs in which the two
vectors contain 3 elements. Timing results are in Figure 11c.
We see that the F# program is faster than the generated
leaky C code, perhaps because garbage collection is invoked
less frequently than in add3. Overall, in both cases, the
performance of F# program and generated leaky C code
is very similar. In this example, loop fusion does not have
any impact on performance, as the program contains only
one operator. As in the previous benchmark, all variants
of generated DPS C code have a similar performance and
outperform the generated leaky C code and the one using
Boehm GC, for the same reasons. Finally, both handwritten
and Eigen C++ programs have a similar performance to our
generated C programs. For the case of this program, both
C++ libraries provide fixed-sized vectors, which results in
stack allocating the elements of the two vectors. This has
a positive impact on performance. Furthermore, as there is
no SIMD version of the cross operator, we do not observe a
visible advantage for Eigen.
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(a) Runtimes: Bundle Adjustment (b) Memory consumption: Bundle Adjustment

(c) Runtimes: GMM (d) Memory consumption: GMM

(e) Runtimes: Hand Tracking (f) Memory consumption: Hand Tracking

Figure 12. Experimental Results for Computer Vision and Machine Learning Workloads

Finally, we discuss the memory consumption experiments
of the second program, which is shown in Figure 11d. This
experiment leads to the same observation as the one for
the first program. However, as the second program does not
involve creating any intermediate vector, loop fusion does
not improve the peak memory consumption.

The presented micro benchmarks show that our DPS gen-
erated C code improves both performance and memory con-
sumption by an order of magnitude in comparison with an
equivalent F# program. Also, the generated DPS C code
promptly deallocates memory which makes the peak memory
consumption constant over the time, as opposed to a linear
increase of memory consumption of the generated leaky C
code. In addition, by using bump allocators the generated
DPS C code can improve performance as well. Finally, we
see that the generated DPS C code behaves very similarly to
both handwritten and Eigen C++ programs.

5.2 Computer Vision and Machine Learning Workloads
In this section, we investigate the performance and memory
consumption of real-life workloads.

Bundle Adjustment [35] is a computer vision problem which
has many applications. In this problem, the goal is to opti-
mize several parameters in order to have an accurate estimate
of the projection of a 3D point by a camera. This is achieved

let radialDistort = 𝜆 (radical: Vector) (proj: Vector).
let rsq = vectorNorm proj
let L = 1.0 + radical.[0] * rsq + radical.[1] * rsq * rsq
vectorSMul proj L

let rodriguesRotate = 𝜆 (rotation: Vector) (x: Vector).
(* Implementation omitted *)

let project = 𝜆 (cam: Vector) (x: Vector).
let Xcam = rodriguesRotate (vectorSlice cam 0 2) (

vectorSub x (vectorSlice cam 3 5) )
let distorted = radialDistort (vectorSlice cam 9 10) (

vectorSMul (vectorSlice Xcam 0 1) (1.0/Xcam.[2]) )
vectorAdd (vectorSlice cam 7 8) (

vectorSMul distorted cam.[6] )

Figure 13. Bundle Adjustment functions in ̃︀F.

by minimizing an objective function representing the repro-
jection error. This objective function is passed to a nonlinear
minimizer as a function handle, and is typically called many
times during the minimization.

One of the core parts of this objective function is the
project function which is responsible for finding the projected
coordinates of a 3D point by a camera, including a model of
the radial distortion of the lens. The ̃︀F implementation of
this method is partially in Figure 13.

Figure 12a shows the runtime of different approaches after
running project ten million times. First, the F# program
performs similarly to the leaky generated C code and the C
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code using Boehm GC. Second, loop fusion improves speed
fivefold. Third, the generated DPS C code is slower than
the generated leaky C code, mainly due to costs associated
with intermediate deallocations. However, this overhead is
reduced by using bump allocation and performing loop fusion
and buffer optimizations. Finally, we observe that the best
version of our generated DPS C code marginally outperforms
both C++ versions.

The peak memory consumption of different approaches
for Bundle Adjustment is shown in Figure 12b. First, the
F# program uses three orders of magnitude less memory in
comparison with the generated leaky C code, which remains
linear in the number of calls. This improvement is four orders
of magnitude in the case of the generated C code using Boehm
GC. Second, loop fusion improves the memory consumption
of the leaky C code by an order of magnitude, due to removing
several intermediate vectors. Finally, all generated DPS C
variants as well as C++ versions consume the same amount
of memory. The peak memory consumption of is an order of
magnitude better than the F# baseline.

The Gaussian Mixture Model is a workhorse machine learn-
ing tool, used for computer vision applications such as image
background modelling and image denoising, as well as semi-
supervised learning.

In GMM, loop fusion can successfully remove all interme-
diate vectors. Hence, there is no difference between CL and
CLF, or between DS and DSF, in terms of both performance
and peak memory consumption as can be observed in Fig-
ure 12c and Figure 12d. Both C++ libraries behave three
orders of magnitude worse than our fused and DPS generated
code, due to the lack of support for fusion needed for GMM.

Due to the cost for performing memory allocation (and
deallocation for DPS) at each iteration, the F# program, the
leaky C code, and the generated DPS C code exhibit a worse
performance than the fused and stack allocated versions.
Furthermore, as the leaky C code does not deallocate the
intermediate vectors, the consumed memory is increasing.

Hand tracking is a computer vision/computer graphics work-
load [32] that includes matrix-matrix multiplies, and numer-
ous combinations of fixed- and variable-sized vectors and
matrices. Figure 12e shows performance results of running
one of the main functions of hand-tracking for 1 million times.
As in the cross micro-benchmark we see no advantage for
loop fusion, because in this function the intermediate vectors
have multiple consumers. As above, generating DPS C code
improves runtime performance, which is improved even more
by using bump allocation and performing loop fusion and
buffer optimizations. However, in this case the idiomatic C++
version outperforms the generated DPS C code. Figure 12f
shows that DPS generated programs consume an order of
magnitude less memory than the F# baseline, equal to the
C++ versions.

6 Related Work
6.1 Programming Languages without GC
Functional programming languages without garbage collec-
tion dates back to Linear Lisp [2]. However, most functional

languages (dating back to Lisp in around 1959) use garbage
collection for managing memory.

Region-based memory management was first introduced
in ML [34] and then in an extended version of C, called
Cyclone [11], as an alternative or complementary technique
to in order to remove the need for runtime garbage collection.
This is achieved by allocating memory regions based on the
liveness of objects. This approach improves both performance
and memory consumption in many cases. However, in many
cases the size of the regions is not known, whereas in our
approach the size of each storage location is computed using
the shape expressions. Also, in practice there are cases in
which one needs to combine this technique with garbage
collection [13], as well as cases in which the performance is
still not satisfying [3, 33]. Furthermore, the complexity of
region inference hinders the maintenance of the compiler, in
addition to the overhead it causes for compilation time.

Safe [22, 23] suggests a simpler region inference algorithm
by restricting the language to a first-order functional language.
Also, linear regions [8] relax the stack discipline restriction
on region-based memory management, due to certain use-
cases which use recursion and need an unbounded amount
of memory. A Haskell implementation of this approach is
given in [19]. The situation is similar for the linear types
employed in Rust; due to loops it is not possible to enforce
stack discipline for memory management. However, ̃︀F offers
a restricted form of recursion, which always enforces a stack
discipline for memory management.

6.2 Array Languages and Push-Arrays
There is a close connection between so-called push arrays [1,
5, 30] and destination passing style. A push-array is repre-
sented by an effectful function that, given an index and a
value, will write the value into the array. This function closure
captures the destination, so a program using push arrays
is also using a form of destination passing style. There are
many differences, however. Our functions are transformed to
destination passing style, rather than our arrays. Our trans-
formation is not array-specific, and can apply to any large
object. Even though our basic array primitives are based on
explicit indices, they are referentially transparent and may be
read purely functionally. Our focus is on efficient allocation
and freeing of array memory, which is not mentioned in the
push-array literature. It may not be clear when the memory
backing a push-array can be freed, whereas it is clear by
construction in our work, and we guarantee to run without a
garbage collector. Unsurprisingly, this guarantee comes with
a limitation on expressiveness: we cannot handle operations
such as filter, whose result size is data-dependent (c.f. Sec-
tion 3.7). Happily a large class of important applications can
be expressed in our language, and enjoy its benefits.

There are many domain-specific languages (DSLs) for nu-
merical workloads such as Halide [25], Diderot [4], and Op-
tiML [28]. All these DSLs generate parallel code from their
high-level programs. Furthermore, Halide [25] exploits the
memory hierarchy by making tiling and scheduling decisions,
similar to Spiral [24] and LGen [26]. Although both paral-
lelism and improving the usage of a memory hierarchy are
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orthogonal concepts to translation into DPS, they are still
interesting directions for ̃︀F.

6.3 Estimation of Memory Consumption
One can use type systems for estimating memory consump-
tion. Hofmann and Jost [16] enrich the type system with
certain annotations and uses linear programming for the
heap consumption inference. Another approach is to use
sized types [36] for the same purpose.

Size slicing [14] uses a technique similar to ours for inferring
the shape of arrays in the Futhark programming language.
However, in ̃︀F we guarantee that shape inference is simplified
and is based only on size computation, whereas in their case,
they rely on compiler optimizations for its simplification and
in some cases it can fall back to inefficient approaches which in
the worst case could be as expensive as evaluating the original
expression [16]. The FISh programming language [17] also
makes shape information explicit in programs, and resolves
the shapes at compilation time by using partial evaluation,
which can also be used for checking shape-related errors [18].
Our shape translation (Section 3.3) is very similar to their
shape analysis, but their purposes differ: theirs is an analysis,
while ours generates for every function 𝑓 a companion shape
function that (without itself allocating) computes 𝑓 ’s space
needs; these companion functions are called at runtime to
compute memory needs.

6.4 Optimizing Tail Calls
Destination-passing style was originally introduced in [20],
then was encoded functionally in [21] by using linear types [39].
Walker and Morrisett [40] use extensions to linear type sys-
tems to support aliasing which is avoided in vanilla linear
type systems. The idea of destination-passing style has many
similarities to tail-recursion modulo cons [9, 37].
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