
Under consideration for publication in Formal Aspects of Computing

Validating a Web Service Security
Abstraction by Typing
Andrew D. Gordon1 and Riccardo Pucella2

1Microsoft Research
2Cornell University

Abstract. An XML web service is, to a first approximation, an RPC service in which requests and re-
sponses are encoded in XML as SOAP envelopes, and transported over HTTP. We consider the problem
of authenticating requests and responses at the SOAP-level, rather than relying on transport-level security.
We propose a security abstraction, inspired by earlier work on secure RPC, in which the methods exported
by a web service are annotated with one of three security levels: none, authenticated, or both authenticated
and encrypted. We model our abstraction as an object calculus with primitives for defining and calling
web services. We describe the semantics of our object calculus by translating to a lower-level language with
primitives for message passing and cryptography. To validate our semantics, we embed correspondence as-
sertions that specify the correct authentication of requests and responses. By appeal to the type theory for
cryptographic protocols of Gordon and Jeffrey’s Cryptyc, we verify the correspondence assertions simply by
typing. Finally, we describe an implementation of our semantics via custom SOAP headers.

Keywords: Web services, remote procedure call, authentication, type systems

1. Introduction

It is common to provide application-level developers with security abstractions that hide detailed imple-
mentations at lower levels of a protocol stack. For example, the identity of the sender of a message may
be exposed directly at the application-level, but computed via a hidden, lower level cryptographic protocol.
The purpose of this paper is to explore how to build formal models of such security abstractions, and how to
validate their correct implementation in terms of cryptographic primitives. Our setting is an experimental
implementation of SOAP security headers for XML web services.

Correspondence and offprint requests to: Andrew D. Gordon, Microsoft Research, Roger Needham Building, 7 J J Thomson
Ave, Cambridge CB3 0FB, UK. E-mail: adg@microsoft.com

2 A. D. Gordon and R. Pucella

1.1. Motivation: Web Services and SOAP

A crisp definition, due to the builders of the TerraService.NET service, is that “a web service is a web site
intended for use by computer programs instead of human beings” [8]. Each request to or response from
a web service is encoded in XML as a SOAP envelope [12]. An envelope consists of a header, containing
perhaps routing or security information, and a body, containing the actual data of the request or response.
A promising application for web services is to support direct retrieval of XML documents from remote
databases, without resorting to unreliable “screen scraping” of data from HTML pages. For example, Google
already offers programmatic access to its database via a web service [20]. Another major application is to
support systems interoperability within an enterprise’s intranet.

The interface exported by a web service can be captured as an XML-encoded service description, in
WSDL format [14], that describes the methods—and the types of their arguments and results—that make
up the service. Tools exist for application-level developers to generate a WSDL description from the code
of a service, and then to generate proxy code for convenient client access to the web service. Like tools for
previous RPC mechanisms, these tools abstract from the details of the underlying messaging infrastructure.
They allow us to regard calling a web service, for many if not all purposes, as if it were invoking a method
on a local object. Our goal is to augment this abstraction with security guarantees.

There are many signs of fervour over web services: there is widespread tool support from both open
source and commercial software suppliers, and frequent news of progress of web service standards at bodies
such as OASIS and the W3C. Many previous systems support RPC, but one can argue that what’s new
about web services is their combination of vendor-neutral interoperability, internet-scale, and toolsets for
“mere mortals” [8]. Still, there are some reasons for caution. The XML format was not originally designed
for messaging; it allows for interoperability but is inefficient compared to binary encodings. Moreover, it
would be useful to use web services for inter-organisational communication, for example, for e-commerce,
but SOAP itself does not define any security mechanisms.

In fact, there is already wide support for security at the transport-level, that is, for building secure web
services using HTTPS and SSL. Still, SSL encrypts all traffic between the client and the web server, so that
it is opaque to intermediaries. Hence, messages cannot be monitored by firewalls and cannot be forwarded by
intermediate untrusted SOAP-level routers. There are proposals to avoid some of these difficulties by placing
security at the SOAP-level, that is, by partially encrypting SOAP bodies and by including authenticators,
such as signatures, in SOAP headers. In particular, the WS-Security [6] specification describes an XML
syntax for including such information in SOAP envelopes.

Hence, the immediate practical goal of this work is to build and evaluate an exploratory system for
SOAP-level security.

1.2. Background: Correspondences and Spi

Cryptographic protocols, for example, protocols for authenticating SOAP messages, are hard to get right.
Even if we assume perfect cryptography, exposure to various replay and impersonation attacks may arise
because of flaws in message formats. A common and prudent procedure is to invite expert analysis of any
protocol, rather than relying on security through obscurity. Moreover, it is a useful discipline to specify and
verify protocol goals using formal notations. Here, we specify authenticity goals of our protocol using Woo
and Lam’s correspondence assertions [37], and verify them, assuming perfect cryptography in the sense of
Dolev and Yao [17], using type theories developed as part of the Cryptyc project [22, 23, 21].

Woo and Lam’s correspondence assertions [37] are a simple and precise method for specifying authenticity
properties. The idea is to specify labelled events that mark progress through the protocol. There are two
kinds: begin-events and end-events. The assertion is that every end-event should correspond to a distinct,
preceding begin-event with the same label. For example, Alice performs a begin-event with label “Alice
sending Bob message M” at the start of a session when she intends to send M to Bob. Upon receiving M
and once convinced that it actually comes from Alice, Bob performs an end-event with the same label. If
the correspondence assertion can be falsified, Bob can be manipulated into thinking a message comes from
Alice when in fact it has been altered, or came from someone else, or is a replay. On the other hand, if the
correspondence assertion holds, such attacks are ruled out.

There are several techniques for formally specifying and verifying correspondence assertions. Here, we
model SOAP messaging within a process calculus, and model correspondence assertions by begin- and end-

Validating a Web Service Security Abstraction by Typing 3

statements within the calculus. We use a form of the spi-calculus [22], equipped with a type and effect
system able to prove by typechecking that correspondence assertions hold in spite of an arbitrary attacker.
Spi [5] is a small concurrent language with primitives for message passing and cryptography, derived from
the π-calculus [32].

1.3. Contributions of this Paper

Our approach is as follows:

• Section 2 describes our high-level abstraction for secure messaging.
• Section 3 models the abstraction as an object calculus with primitives for creating and calling web

services.
• Section 4 defines the semantics of our abstraction by translating to the spi-calculus. Correspondence

assertions specify the authenticity guarantees offered to caller and callee, and are verified by typechecking.
• Section 5 describes a SOAP-based implementation using Visual Studio .NET.
• Section 6 shows how we can accommodate public-key infrastructures to implement the abstraction of

Section 2.

Our main innovation is the idea of formalizing the authentication guarantees offered by a security abstrac-
tion by embedding correspondence assertions in its semantics. On the other hand, our high-level abstraction
is fairly standard, and is directly inspired by work on secure network objects [35]. Although the rather
detailed description of our model and its semantics may seem complex, the actual cryptographic protocol
is actually quite simple. Still, we believe our framework and its implementation are a solid foundation for
developing more sophisticated protocols and their abstractions.

Many formal details, as well as the proofs of our formal results, have been relegated to the appendices.
Specifically, Appendix A gives sample messages exchanged during web service method calls using our ab-
stractions, Appendix B gives a formal description of our object calculus, Appendix C gives a formal definition
of the spi-calculus used in the paper, Appendix D gives the proofs of our formal results, and Appendix E
describes an extension of our object calculus to capture a form of first-class web services.

A part of this article, in preliminary form, appears as a conference paper [24].

2. A Security Abstraction

We introduce a security abstraction for web services, where the methods exported by a web service are
annotated by one of three security levels:

None unauthenticated call
Auth authenticated call
AuthEnc authenticated and encrypted call

A call from a client to a web service is made up of two messages, the request from the client to the web
service, and the response from the web service to the client. The inspiration for the security levels, and the
guarantees they provide, comes from SRC Secure Network Objects [35]. An authenticated web method call
provides a guarantee of integrity (that the request that the service receives is exactly the one sent by the
client and that the response that the client receives is exactly the one sent by the service as a response
to this request) and at-most-once semantics (that the service receives the request most once, and that the
client receives the response at most once). An authenticated and encrypted web method call provides all the
guarantees of an authenticated call, along with a guarantee of secrecy (that an eavesdropper does not obtain
any part of the method name, the arguments, or the results of the call).

We use the language C# to present our security abstraction. (There is nothing specific to C# in our
approach, although the implementation we describe in this section and in Section 5 takes advantage of
some features of the language.) In C#, where users can specify attributes on various entities, our security
annotations take the form of an attribute on web methods, that is, the methods exported by a web service.
The attribute is written [SecurityLevel(level)], where level is one of None, Auth, or AuthEnc. For example,
consider a simple interface to a banking service, where [WebMethod] is an attribute used to indicate a method
exported by a web service:

4 A. D. Gordon and R. Pucella

class BankingServiceClass {

string callerid;

[WebMethod] [SecurityLevel(Auth)]
public int Balance (int account);

[WebMethod] [SecurityLevel(AuthEnc)]
public string Statement (int account);

[WebMethod] [SecurityLevel(Auth)]
public void Transfer (int source,

int dest,
int amount);

}

The annotations get implemented by code to perform the authentication and encryption, at the level
of SOAP envelopes, transparently from the user. The annotations on the web service side will generate a
method on the web service that can be used to establish a security context. This method will never be
invoked by the user, but automatically by the code implementing the annotations. For the purpose of this
paper, we assume a simple setting for authentication and secrecy, namely that the principals involved possess
shared keys. Specifically, we assume a distinct key Kpq shared between every pair of principals p and q. We
use the key Kpq when p acts as the client and q as the web service. (Notice that Kpq is different from
Kqp.) It is straightforward to extend our approach to different settings such as public-key infrastructures or
certificate-based authentication mechanisms (see Section 6).

An authenticated call by p to a web method ` on a web service w owned by q with arguments u1, . . . , un

producing a result r uses the following protocol:

p→ q : request nonce
q → p : nq

p→ q : p, req(w, `(u1, . . . , un), s, nq), np,Hash(req(w, `(u1, . . . , un), s, nq),Kpq)
q → p : q, res(w, `(r), s, np),Hash(res(w, `(r), s, np),Kpq)

Here, Hash is a cryptographic hash function (a one-way message digest function such as MD5). We tag the
request and the response messages to be able to differentiate them. We also tag the response with the name
of the method that was originally called. We include a unique session tag s in both the request and response
message to allow the caller p to match the response with the actual call that was performed.

An authenticated and encrypted call by p to a web method ` on a web service w owned by q with
arguments u1, . . . , un producing a result r uses a similar protocol, with the difference that the third and
fourth messages are encrypted using the shared key instead of signed:

p→ q : request nonce
q → p : nq

p→ q : p, {req(w, `(u1, . . . , un), s, nq)}Kpq
, np

q → p : q, {res(w, `(r), s, np)}Kpq

To convince ourselves that the above protocols do enforce the guarantees prescribed by the security
abstraction, we typically argue as follows. Let’s consider the authenticated and encrypted case, the authenti-
cated case being similar. When the web service w run by principal q receives a request w, `(u1, . . . , un), s, nq

encrypted with Kpq (q uses the identity p in the request to determine which key to use), it knows that
only p could have created the message, assuming that the shared key Kpq is kept secret by both p and q.
This enforces the integrity of the request. Since the message also contains the nonce nq that the web service
can check has never appeared in a previous message, it knows that the message is not a replayed message,
hence enforcing at-most-once semantics. Finally, the secrecy of the shared key Kpq implies the secrecy of the
request. A similar argument shows that the protocol satisfies integrity, at-most-once-semantics, and secrecy
for the response.

What do we have at this point? We have an informal description of a security abstraction, we have
an implementation of the abstraction in terms of protocols, and an informal argument that the guarantees

Validating a Web Service Security Abstraction by Typing 5

prescribed by the abstraction are enforced by the implementation. How do we make our security abstraction
precise, and how do we ensure that the protocols do indeed enforce the required guarantees? In the next
section, we give a formal model to make the abstraction precise. Then, we formalize the implementation by
showing how to translate the abstractions into a lower level calculus that uses the above protocols. We use
types to show that guarantees are formally met by the implementation, via correspondence assertions.

3. A Formal Model

We model the application-level view of authenticated messaging as an object calculus. Object calculi [1, 25,
29] are object-oriented languages in miniature, small enough to make formal proofs feasible, yet large enough
to study specific features. As in FJ [29], objects are typed, class-based, immutable, and deterministic. As in
some of Abadi and Cardelli’s object calculi [1], we omit subtyping and inheritance for the sake of simplicity.
In spite of this simplicity, our calculus is Turing complete. We can define classes to implement arithmetic,
lists, collections, and so on.

To model web services, we assume there are finite sets Prin and WebService of principal identifiers and
web service identifiers, respectively. We think of each w ∈ WebService as a URL referring to the service;
moreover, class(w) is the name of the class that implements the service, and owner(w) ∈ Prin is the principal
running the service.

To illustrate this model, we express the banking service interface introduced in the last section in our calcu-
lus. Suppose there are two principals Alice,Bob ∈ Prin, and a web service w = http://bob.com/BankingService,
where we have owner(w) = Bob and class(w) = BankingServiceClass. Suppose we wish to implement the
Balance method so that given an account number, it checks that it has been called by the owner of the
account, and if so returns the balance. If Alice’s account number is 12345, we might achieve this as follows:

class BankingServiceClass
Id CallerId
Num Balance(Num account)

if account = 12345 then
if this.CallerId = Alice then 100 else null

else . . .

There are a few points to note about this code. First, as in BIL [25], method bodies conform to a single
applicative syntax, rather than there being separate grammars for statements and expressions. Second, while
the C# code relies on attributes to specify exported methods and security levels, there are not attributes
in our calculus. For simplicity, we assume that all the methods of a class implementing a web service are
exported as web methods. Furthermore, we assume that all these exported methods are authenticated and
encrypted, as if they had been annotated AuthEnc. (It is straightforward to extend our calculus to allow
per-method annotations but it complicates the presentation of the translation in the next section.)

Every class implementing a web service has exactly one field, named CallerId , which exposes the identity
of the caller, and allows application-level authorisation checks.

We write w:Balance(12345) for a client-side call to method Balance of the service w. The seman-
tics of such a web service call by Alice to a service owned by Bob is that Bob evaluates the local call
new BankingServiceClass(Alice).Balance(12345) as Bob. In other words, Bob creates a new object of the
formnew BankingServiceClass(Alice) (that is, an instance of the class BankingServiceClass with CallerId set
to Alice) and then calls the Balance method. This would terminate with 100, since the value of this.CallerId
is Alice. (For simplicity, we assume every class in the object calculus has a single constructor whose argu-
ments are the initial values of the object’s fields.) This semantics guarantees to the server Bob that the field
CallerId contains the identity of his caller, and guarantees to the client Alice that only the correct owner of
the service receives the request and returns the result.

In a typical environment for web services, a client will not invoke web services directly. Rather, a client
creates a proxy object corresponding to the web service, which encapsulates the remote invocations. Those
proxy objects are generally created automatically by the programming environment. Proxy objects are
easily expressible in our calculus, by associating with every web service w a proxy class proxy(w). The class
proxy(w) has a method for every method of the web service class, the implementation for which simply calls
the corresponding web service method. The proxy class also has a field Id holding the identity of the owner

6 A. D. Gordon and R. Pucella

of the web service. Here is the client-side proxy class for our example service:

class BankingServiceProxy
Id Id()

Bob
Num Balance(Num account)

w:Balance(account)

The remainder of this section details the syntax and informal semantics of our object calculus.

3.1. Syntax

In addition to Prin and WebService, we assume finite sets Class, Field , Meth of class, field, and method
names, respectively.

Classes, Fields, Methods, Principals, Web Services:

c ∈ Class class name
f ∈ Field field name
` ∈ Meth method name
p ∈ Prin principal name
w ∈WebService web service name

There are two kinds of data type: Id is the type of principal identifiers, and c ∈ Class is the type of
instances of class c. A method signature specifies the types of its arguments and result.

Types and Method Signatures:

A,B ∈ Type ::= type
Id principal identifier
c object

sig ∈ Sig ::= B(A1 x1, . . . , An xn) method signature (xi distinct)

An execution environment defines the services and code available in the distributed system. In addition
to owner and class, described above, the maps fields and methods specify the types of each field and the
signature and body of each method, respectively. We write X → Y and X

fin→ Y for the sets of total functions
and finite maps, respectively, from X to Y .

Execution Environment: (fields,methods, owner , class)

fields ∈ Class → (Field fin→ Type) fields of a class
methods ∈ Class → (Meth fin→ Sig × Body) methods of a class
owner ∈WebService → Prin service owner
class ∈WebService → Class service implementation

We complete the syntax by giving the grammars for method bodies and for values.

Values and Method Bodies:

x, y, z name: variable, argument
u, v ∈ Value ::= value

x variable
null null
new c(v1, . . . , vn) object
p principal identifier

a, b ∈ Body ::= method body
v value
let x=a in b let-expression
if u = v then a else b conditional

Validating a Web Service Security Abstraction by Typing 7

v.f field lookup
v.`(u1, . . . , un) method call
w:`(u1, . . . , un) service call

The free variables fv(a) of a method body are defined in the usual way, where the only binder is x being
bound in b in the expression let x=a in b. We write a{x←b} for the outcome of a capture-avoiding substitution
of b for each free occurence of the variable x in method body a. We view method bodies as being equal up
to renaming of bound variables. Specifically, we take let x=a in b to be equal to let x′=a in b{x←x′}, if
x′ 6∈ fv(b).

Our syntax for bodies is in a reduced form that simplifies its semantics; in examples, it is conve-
nient to allow a more liberal syntax. For instance, let the term if a1 = a2 then b1 else b2 be short for
let x1=a1 in let x2=a2 in if x1 = x2 then b1 else b2. We already used this when writing if this.CallerId =
Alice then 100 else null in our example. Similarly, we assume a class Num for numbers, and write integer
literals such as 100 as shorthand for objects of that class.

Although objects are values, in this calculus, web services are not. This reflects the fact that current
WSDL does not allow for web services to be passed as requests or results. We explore an extension of our
model to account for web services as “first-class values” in Appendix E.

We assume all method bodies in our execution environment are well-typed. If methods(c)(`) = (sig , b) and
the signature sig = B(A1 x1, . . . , An xn) we assume that the body b has type B given a typing environment
this:c, x1:A1, . . . , xn:An. The variable this refers to the object on which the ` method was invoked. The type
system is given by a typing judgment E ` a : A, saying that a has type A in an environment E of the form
x1:A1, . . . , xn:An that gives a type to the free variables in a. The domain dom(E) of E is the set of variables
{x1, . . . , xn} given a type in E. The typing rules, which are standard, are given in Appendix B. We also
assume the class class(w) corresponding to each web service w has a single field callerid .

3.2. Informal Semantics of our Model

We explain informally the outcome of evaluating a method body b as principal p, that is, on a client or server
machine controlled by p. (Only the semantics of web service calls depend on p.) A formal account of this
semantics, as well as the typing rules of the calculus, can be found in Appendix B.

To evaluate a value v as p, we terminate at once with v itself.
To evaluate a let-expression let x=a in b as p, we first evaluate a as p. If a terminates with a value v, we

proceed to evaluate b{x←v}, that is, b with each occurrence of the variable x replaced with v. The outcome
of evaluating b{x←v} as p is the outcome of evaluating the whole expression.

To evaluate a conditional if u = v then a else b as p, we evaluate a as p if u and v are the same; else we
evaluate b as p.

To evaluate a field lookup v.f as p, when v is an object value new c(v1, . . . , vn), we check f is the jth
field of class c for some j ∈ 1..n (that is, that fields(c) = fi 7→ Ai

i∈1..n and that f = fj), and then return
vj . If v is null or if the check fails, evaluation has gone wrong.

To evaluate a method call v.`(u1, . . . , un) as p, when v is an object new c(v1, . . . , vn), we check ` is a
method of class c (that is, that methods(c) = `i 7→ (sig i, bi) i∈1..m and that ` = `j for some j ∈ 1..m) and
we check the arity of its signature is n (that is, that sigj = B(A1 x1, . . . , An xn)) and then we evaluate the
method body as p, but with the object v itself in place of the variable this, and actual parameters u1, . . . ,
un in place of the formal parameters x1, . . . , xn (that is, we evaluate the expression bi{this←v, x1←u1, . . . ,
xn←un}). If v is null or if either check fails, evaluation has gone wrong.

To evaluate a service call w:`(u1, . . . , un) as p, we evaluate the local method call new c(p).`(u1, . . . , un)
as q, where c = class(w) is the class implementing the service, and q = owner(w) is the principal owning the
service. (By assumption, c’s only field is CallerId of type Id .) This corresponds directly to creating a new
object on q’s web server to process the incoming request.

8 A. D. Gordon and R. Pucella

4. A Spi-Calculus Semantics

We confer a formal semantics on our calculus by translation to the spi-calculus [5, 22], a lower-level language
with primitives for message-passing (to model SOAP requests and responses) and cryptography (to model
encryption and decryption of SOAP headers and bodies).

4.1. A Typed Spi-Calculus (Informal Review)

To introduce the spi-calculus, we formalize the situation where Alice sends a message to Bob using a
shared key, together with a correspondence assertion concerning authenticity of the message, as outlined
in Section 1. A name is an identifier that is atomic as far as our analysis is concerned. In this exam-
ple, the names Alice and Bob identify the two principals, the name K represents a symmetric key known
only to Alice and Bob, and the name n represents a public communication channel. A message, M or
N , is a data structure such as a name, a tuple (M1, . . . ,Mn), a tagged message t(M), or a ciphertext
{M}N (that is, a message M encrypted with a key N , which is typically a name). A process, P or Q,
is a program that may perform local computations such as encryptions and decryptions, and may com-
municate with other processes by message-passing on named channels. For example, the process PAlice =
begin sending(Alice,Bob,M); out n {M}K defines Alice’s behaviour. First, she performs a begin-event la-
belled by the tagged tuple sending(Alice,Bob,M), and then she sends the ciphertext {M}K on the channel
n. The process PBob = inp n (x); decrypt x is {y}K ;end sending(Alice,Bob, y); defines Bob’s behaviour. He
blocks till a message x arrives on the channel n. Then he attempts to decrypt the message with the key K.
We assume there is sufficient redundancy, such as a checksum, in the ciphertext that we can tell whether
it was encrypted with K. If so, the plaintext message is bound to y, and he performs an end-event labelled
sending(Alice,Bob, y). The process new (K); (PAlice | PBob) defines the complete system. The composition
PAlice | PBob represents Alice and Bob running in parallel, and able to communicate on shared channels such
as n. The binder new(K) restricts the scope of the key K to the process PAlice | PBob so that no external
process may use it. Appendix C contains the grammar of spi messages and processes. The grammar includes
the type annotations that are required to appear in spi terms.

We include begin- and end-events in processes simply to specify correspondence assertions. We say a
process is safe to mean that in every run, and for every L, there is a distinct, preceding begin L event for
every end L event. Our example is safe, because Bob’s end-event can only happen after Alice’s begin-event.

For correspondence assertions to be interesting, we need to model the possibility of malicious attacks.
Let an opponent be a spi-calculus process O, arbitrary except that O itself cannot perform begin- or end-
events. We say a process P is robustly safe if and only if P | O is safe for every opponent O. Our example
system new (K); (PAlice | PBob) is not robustly safe. The opponent cannot acquire the key K since its
scope is restricted, but it can intercept messages on the public channel n and mount a replay attack. The
opponent inp n (x); out n x; out n x duplicates the encrypted message so that Bob may mistakenly accept M
and perform the end-event sending(Alice,Bob,M) twice. To protect against replays, and to achieve robust
safety, we can add a nonce handshake to the protocol.

In summary, spi lets us precisely represent the behaviour of protocol participants, and specify authenticity
guarantees by process annotations. Robust safety is the property that no opponent at the level of the spi-
calculus may violate these guarantees. We omit the details here, but a particular type and effect system
verifies robust safety: if a process can be assigned the empty effect, then it is robustly safe. The example
above is simple, but the general method works for a wide range of protocol examples [22, 21].

For the sake of clarity, we defer some of the technical details to the appendices. Specifically, Appendix C
contains more details on the spi-calculus and the type and effect sytem, as well as a formal definition of
robust safety; Appendix D gives a proof of our technical results.

4.2. A Semantics for Local Computation

We translate the types, values, and method bodies of our object calculus to types, messages, and processes,
respectively, of the spi calculus. To begin with, we omit web services. Many computational models can
be studied by translation to process calculi; our translation of local computation follows a fairly standard
pattern.

Validating a Web Service Security Abstraction by Typing 9

We use the notation [[]] to represent the translation of the types and terms of our object calculus to
appropriate types, messages, and processes in the spi calculus. In many places, we also define abbreviations
in the spi calculus (for instance, we define let x=callw(p, args);P as shorthand for a more complex spi calculus
process); these do not use the [[]] notation.

We assume that Prin are spi-calculus names, and that Field∪Meth∪Class∪{null} are message tags. The
translations for types is straightforward. Since principal identifiers are presumably known to the opponent,
the type of identifiers corresponds to the spi type Un. A value of class c is either the value null , or a tagged
tuple new c(v1, . . . , vn). As we shall see below, we translate null to a tagged empty tuple null(), and an
object to a tagged tuple c(v1, . . . , vn). Thus, a class c translates to a tagged union type with components
null(Un) and c(Un). (The types Un indicate that the content of the tuples are presumably known to the
opponent.)

Type Translation:

Prin , Un
[[Id]] , Prin
[[c]] , Union(null(Un), c(Un))

Environment Translation:

[[x1:A1, . . . , xn:An]] , x1:[[A1]], . . . , xn:[[An]]

If As = A1, . . . , An and xs = x1, . . . , xn we sometimes write B(As xs) as shorthand for the signature
B(A1 x1, . . . , An xn). We define two shorthands for types corresponding to web method calls. The type
Req(w) represents the type of possible calls to web methods provided by the service w; the type of a call
is simply the translated type of the arguments of the web method, tagged with the name of the method.
Similarly, the type Res(w) represents the type of the results of web methods provided by the service w; the
type of a result of a call is simply the translated type of the result of the web method, tagged once again
with the name of the method.

Request and Response Types:

[[A1, . . . , Am]] , [[A1]], . . . , [[Am]]
Req(w) , Union(`i([[Asi]]) i∈1..n)

where class(w) = c and methods(c) = `i 7→ (Bi(Asixsi), bi) i∈1..n

Res(w) , Union(`i([[Bi]]) i∈1..n)
where class(w) = c and methods(c) = `i 7→ (Bi(Asixsi), bi) i∈1..n

The translation of expressions really acts on the type derivation of an expression, not just the expression
itself. This means that during the translation of an expression, we have access to the types of the subex-
pressions appearing in the expression. To reduce clutter, we write the translation as though it is acting
on the expression itself, except that when we need access to the type of a subexpression, we annotate the
appropriate subexpression with its type. For example, the translation of let x=a in b depends on the type
of a, which is available through the type derivation of E ` let x=a in b : B. We write let x=aA in b to
indicate that the type of a is A, according to the type derivation. Values translate easily; in particular, an
object translates to a tagged tuple containing the values of its fields.

Translation of a Value v to a Message [[v]]:

[[x]] , x
[[null]] , null()
[[new c(v1, . . . , vn)]] , c([[v1]], . . . , [[vn]])
[[p]] , p

We translate a body b to a process [[b]]pk that represents the evaluation of b as principal p. The name k is
a continuation, a communications channel on which we send [[v]] to represent termination with value v. Since
our focus is representing safety rather than liveness properties, we represent an evaluation that goes wrong

10 A. D. Gordon and R. Pucella

simply by the inactive process stop; it would be easy—but a complication—to add an exception mechanism.
We use standard split and case statements to analyse tuples and tagged messages, respectively. To call a
method ` of an object v of class c, with arguments u1, . . . , un we send the tuple (p, [[v]], [[u1]], . . . , [[un]], k) on
the channel c `. The name p is the caller, and channel k is the continuation for the call. We translate method
` of class c to a process that repeatedly awaits such messages, and triggers evaluations of its body. We defer
the translation of web method calls until Section 4.3. Our translation depends in part on type information;
we write vc in the translation of field lookups and method calls to indicate that c is the type of v.

Translation of a Method Body b to a Process [[b]]pk:

[[v]]pk , out k [[v]]
[[let x=aA in b]]pk , new (k′:Un); ([[a]]pk′ | inp k′ (x:Un); [[b]]pk)
[[if u = v then a else b]]pk , if [[u]] = [[v]] then [[a]]pk else [[b]]pk
[[vc.fj]]

p
k , case [[v]] is null(y:Un); stop

is c(y:Un); split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj

where fields(c) = fi 7→ Ai
i∈1..n, and j ∈ 1..n

[[vc.`(u1, . . . , un)]]pk , case [[v]] is null(y:Un); stop
is c(y:Un); out c ` (p, [[v]], [[u1]], . . . , [[un]], k)

Translation of Method ` of Class c:

Iclass(c, `) , repeat inp c ` (z:Un);
split z is (p:Prin, this:Un, x1:[[A1]], . . . , xn:[[An]], k:Un); [[b]]pk

where methods(c)(`) = (B(A1 x1, . . . , An xn), b)

4.3. A Semantics for Web Services

We complete the semantics for our object calculus by translating our cryptographic protocol for calling a
web service to the spi-calculus. A new idea is that we embed begin- and end-events in the translation to
represent the abstract authenticity guarantees offered by the object calculus.

We assume access to all web methods is at the highest security level AuthEnc from Section 2, providing
both authentication and secrecy. Here is the protocol, for p making a web service call w:`(u1, . . . , un) to
service w owned by q, including the names of continuation channels used at the spi level. Recall that the
protocol assumes that the client has a way to query the web service for a nonce. Therefore, we assume that in
addition to the methods of class(w), each web service also supports a method getnonce, which we implement
specially.

p→ q on w : req(getnonce()), k1

q → p on k1 : res(getnonce(nq))
p→ q on w : p, {req(w, `(u1, . . . , un), t, nq)}Kpq

, np, k2

q → p on k2 : q, {res(w, `(r), t, np)}Kpq

We are assuming there is a shared key Kpq for each pair of principals p, q ∈ Prin. For the sake of brevity,
we omit the formal description of the type and effect system [21] we rely on, but see Appendix C for a
detailed overview. Still, to give a flavour, we can define the type of a shared key Kpq as follows:

Type of Key Shared Between Client p and Server q:

CSKey(p, q) ,
SharedKey(Union(

req(w:Un, a:Un, t:Un,
nq:Public Response [end req(p, q, w, a, t)]),

res(w:Un, r:Un, t:Un,
np:Public Response [end res(p, q, w, r, t)])))

The type says we can use the key in two modes. First, we may encrypt a plaintext tagged req containing

Validating a Web Service Security Abstraction by Typing 11

four components: a public name w of a service, an argument a suitable for the service, a session tag t, and a
nonce nq proving that a begin-event labelled req(p, q, w, a, t) has occurred, and therefore that an end-event
with that label would be safe. Second, we may encrypt a plaintext tagged res containing four components: a
service w, a result r from that service, the session tag t, and a nonce np proving that a begin-event labelled
res(p, q, w, r, t) has occurred.

We translate a service call to the client-side of our cryptographic protocol as follows. We start by em-
bedding a begin-event labelled req(p, q, w, `([[u1]], . . . , [[un]]), t) to record the details of client p’s call to server
q = owner(w). We request a nonce nq, and use it to freshen the encrypted request, which we send with our
own nonce np, which the server uses to freshen its response. If the response indeed contains our nonce, we
embed an end-event to record successful authentication. For the sake of brevity, we rely on some standard
shorthands for pattern-matching.

Translation of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (req(getnonce()), k1);
inp k1 (res(getnonce(nq:Un)));
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
out w (p, {req(w, `([[u1]], . . . , [[un]]), t, n′

q)}Kpq
, np, k2);

inp k2 (q′:Un, bdy :Un); decrypt bdy is {res(plain)}Kpq ;
match plain is (w, rest :(r:Res(w), t′:Un,Public Response [end res(p, q, w, r, t′)]));
split rest is (r:Res(w), rest′:(t′:Un, n′

p:Public Response [end res(p, q, w, r, t′)]));
match rest ′ is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
check np is n′

p; end res(p, q, w, r, t); case r is `(x); out k x
where q = owner(w)

Our server semantics relies on a shorthand notation defined below; let x=callw(p, `(u1, . . . , un));P runs
the method ` of the class class(w) implementing the service w, with arguments u1, . . . , un, and with its
CallerId field set to p, binds the result to x and runs P .

Server-Side Invocation of a Web Method:

let x=callw(p, args);P ,
new (k);
(

12 A. D. Gordon and R. Pucella

Web Service Implementation:

Iws(w) , repeat inp w (bdy :Un, k1:Un);
case bdy is req(getnonce());
new (nq:Public Challenge []);
out k1 (res(getnonce(nq)));
inp w (p′:Un, cipher :Un, np:Un, k2:Un);∏

p∈Prin if p = p′ then
decrypt cipher is {req(plain)}Kpq

;
match plain is (w, rest :

(a:Req(w), t:Un,Public Response [end req(p, q, w, a, t)]));
split rest is (a:Req(w), t:Un, n′

q:
Public Response [end req(p, q, w, a, t)]);

check nq is n′
q; end req(p, q, w, a, t);

let r:Res(w)=callw(p, a);
begin res(p, q, w, r, t);
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]); out k2 (q, {res(w, r, t, n′
p)}Kpq

)
where q = owner(w)

This semantics is subject to more deadlocks than a realistic implementation, since we do not have a single
database of outstanding nonces. Still, since we are concerned only with safety properties, not liveness, it is
not a problem that our semantics is rather more nondeterministic than an actual implementation.

4.4. Security Properties of a Complete System

We define the process Sys(b, p, k) to model a piece of code b being run by principal p (with continuation
k) in the context of implementations of all the classes and web services in Class and WebService. The
implementation of the classes and web services are given as follows.

Implementation of Classes and Web Services:

ClMeth , {(c, `) : c ∈ Class, ` ∈ dom(methods(c))}
Iclass ,

∏
(c,`)∈ClMeth Iclass(c, `)

Iws ,
∏

w∈WebService Iws(w)

The process Sys(b, p, k) is defined with respect to an environment that specifies the type of its free
variables, such as the names of the web services, principals, classes and methods, and keys.

Top-Level Environments:

Eclass , (c `:Un) (c,`)∈ClMeth

Ekeys , (Kpq:CSKey(p, q)) p,q∈Prin

Ews , (w:Un) w∈WebService

Eprin , p1:Prin, . . . , pn:Prin where Prin = {p1, . . . , pn}
E0 , Ews , Eprin , Eclass , Ekeys

The process Sys(b, p, k) is defined as follows:

Sys(b, p, k) , new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[b]]pk)

We claim that the ways an opponent O can interfere with the behaviour of Sys(b, p, k) correspond to the
ways in which an actual opponent lurking on a network could interfere with SOAP-level messages being
routed between web servers. The names c ` of methods are hidden, so O cannot interfere with calls to local
methods. The keys Kpq are also hidden, so O cannot decrypt or fake SOAP-level encryption. On the other
hand, the names w on which Sys(b, p, k) sends and receives our model of SOAP envelopes are public, and so
O is free to intercept, replay, or modify such envelopes.

Validating a Web Service Security Abstraction by Typing 13

Our main result is that an opponent cannot disrupt the authenticity properties embedded in our trans-
lation. The proof is by showing the translation preserves types.

Theorem 1. If ∅ ` b : B and p ∈ Prin and k /∈ dom(E0) then the system Sys(b, p, k) is robustly safe.

Proof. See Appendix D.1.

5. A SOAP-Level Implementation

We have implemented the security abstraction introduced in Section 2 and formalized in Sections 3 and 4
on top of the Microsoft Visual Studio .NET implementation of web services, as a library that web service
developers and clients can use. A web service developer adds security attributes to the web methods of the
service. The developer also needs to provide a web method to supply a nonce to the client. On the client
side, the client writer is provided with a modified proxy class that encapsulates the implementation of the
security abstraction and takes into account the security level of the corresponding web service methods.
Hence, from a client’s point of view, there is no fundamental difference between accessing a web service with
security annotations and one without.

Consider an implementation of our running example of a banking service. Here is what (an extract of)
the class implementing the web service looks like:

class BankingServiceClass : System.Web.Services.WebService
{
...
[WebMethod]
public int RequestNonce () { ... }

public DSHeader header;

[WebMethod]
[SecurityLevel(Level=SecLevel.Auth)]
[SoapHeader("header", Direction=Direction.InOut,Required=true)]
public int Balance (int account) { ... }

}

This is the code we currently have, and it is close to the idealized interface we gave in Section 2. The
differences are due to implementation restrictions imposed by the development environment. The extract
shows that the web service implements the RequestNonce method required by the authentication protocol.
The Balance method is annotated as an authenticated method, and is also annotated to indicate that the
headers of the SOAP messages used during a call will be available through the header field of the interface.
(The class DSHeader has fields corresponding to the headers of the SOAP message.) As we shall see shortly,
SOAP headers are used to carry the authentication information. Specifically, the authenticated identity of
the caller is available in a web method through header.callerid.

To implement the security abstraction on the web service side, we use a feature of Visual Studio .NET
called SOAP Extensions. Roughly speaking, a SOAP Extension acts like a programmable “filter”. It can be
installed on either (or both) of a client or a web service. It gets invoked on every incoming and outgoing
SOAP message, and can be used to examine and modify the content of the message before forwarding it
to its destination. In our case, the extension will behave differently according to whether the message is
incoming or outgoing, and depending on the security level specified. For an outgoing message, if the security
level is None, the SOAP message is unchanged. If the security level is Auth, messages are signed as specified
by the protocol: a cryptographic hash of the SOAP body and the appropriate nonce is stored in a custom
header of the messages. If the security level is AuthEnc, messages are encrypted as specified by the protocol,
before being forwarded. For incoming messages, the messages are checked and decrypted, if required. If the
security level is Auth, the signature of the message checked. If the security level is AuthEnc, the message is
decrypted before being forwarded. Our implementation uses the SHA1 hash function for signatures, and the
RC2 algorithm for symmetric encryption.

To implement the security abstraction on the client side, we provide the client with a new proxy class.
The new proxy class provides methods None, Auth, and AuthEnc, that are called by the proxy methods to

14 A. D. Gordon and R. Pucella

initiate the appropriate protocol. The method None simply sets up the headers of the SOAP message to
include the identity of the caller and the callee. Auth and AuthEnc do the same, but also make a call to
the web service to get a nonce and add it (along with a newly created nonce) to the headers. The actual
signature and encryption of the SOAP message is again performed using SOAP Extensions, just as on the
web service side.

Our implementation uses a custom SOAP header DSHeader to carry information such as nonces, identities,
and signatures. It provides the following elements:

callerid identity of the client
calleeid identity of the web service provider
np client nonce
nq web service nonce
signature cryptographic signature of the message

Not all of those elements are meaningful for all messages. In addition to these headers, in the cases where the
message is encrypted, the SOAP body is replaced by the encrypted body. Appendix A gives actual SOAP
messages exchanged between the client and web service during an authenticated call to Balance, and an
authenticated and encrypted call to Statement.

6. A Semantics Using Asymmetric Cryptography

The security abstraction we describe in Section 2 relies on shared keys between principals. This is hardly
a reasonable setup in modern systems. In this section, we show that our approach can easily accommodate
public-key infrastructures.

6.1. Authenticated Web Methods

We start by describing the protocol and implementation for authenticated web methods. Hence, for now, we
assume that all the exported methods of a web service are annotated with Auth.

Consider a simple public-key infrastructure for digital signatures. Each principal p has a signing key SKp
and a verification key VKp. The signing key is kept private, while the verification key is public. To bind the
name of a principal with their verification key, we assume a certification authority CA (itself with a signing
key SKCA and verification key VKCA) that can sign certificates CertVKp of the form {|p,VKp|}SKCA.
(The notation {| · |}K is used to represent both asymmetric encryption and signature, differentiating it from
symmetric encryption. In the case where {|M |}K represent a signature, this is simply notation for M along
with a token representing the signature of M with asymmetric key K.)

Here is a protocol that uses digital signatures to authenticate messages, for p making a web service call
w:`(u1, . . . , un) to service w owned by q, including the names of continuation channels used at the spi level.
Again, we assume that in addition to the methods of class(w), each web service also supports a method
getnonce, which we implement specially.

p→ q on w : CertVKp, np, req(getnonce()), k1

q → p on k1 : CertVKq , res(getnonce(nq))
p→ q on w : p, {|req(w, `(u1, . . . , un), t, q, nq)|}SKp , k2

q → p on k2 : q, {|res(w, `(r), t, p, np)|}SKq

Type of Signing Keys:

AuthMsg(p) ,
Union(req(w:Un, a:Un, t:Un, q:Un, nq:Public Response [end req(p, q, w, a, t)]),

res(w:Un, r:Un, t:Un, q:Un, nq:Public Response [end res(q, p, w, r, t)]))
AuthKeys(p) , KeyPair(AuthMsg(p))
AuthCert , (p : Un,Decrypt Key(AuthMsg(p)))
AuthCertKeys , KeyPair(AuthCert)

We will represent the key pair of a signing key and verification key for principal p by a pair DSp, of type

Validating a Web Service Security Abstraction by Typing 15

AuthKeys(p). The key pair for the certification authority will be represented by a pair DSCA. We use the
following abbreviations:

Key and Certificates Abbreviations:

SKp , Encrypt (DSp) p’s signing key
VKp , Decrypt (DSp) p’s verification key
CertVKp , {|p,VKp|}SKCA p’s certificate

With that in mind, we can amend the translation of Section 4 to accommodate the new protocol. First,
we give a new translation for a web method call w:`(u1, . . . , un):

New Translation of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (CertVKp, np, req(getnonce()), k1);
inp k1 (c:Un, res(getnonce(nq:Un)));
decrypt c is {|cert :(q′:Un,Decrypt Key(AuthMsg(q′)))|}VKCA−1 ;
match cert is (q, vkq :Decrypt Key(AuthMsg(q)));
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
out w (p, {|req(w, `([[u1]], . . . , [[un]]), t, q, n′

q)|}SKp , k2);
inp k2 (q′′:Un, bdy :Un);
decrypt bdy is {|res(plain:(w′:Un, r:Un, t′:Un, p′:Un,

Public Response [end res(p′, q, w′, r, t′)]))|}vkq−1 ;
match plain is (w, rest :(r:Res(w), t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
split rest is (r:Res(w), rest ′:(t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
match rest ′ is (t, rest ′′:(p′:Un,Public Response [end res(p′, q, w, r, t)]));
match rest ′′ is (p, n′

p:Public Response [end res(p, q, w, r, t)]);
check np is n′

p;
end res(p, q, w, r, t);
case r is `(x); out k x

where q = owner(w)

We also need to give a new implementation for web services, again to take into account the different
messages being exchanged:

New Web Service Implementation:

Iws(w) ,
repeat inp w (c:Un, np:Un, bdy :Un, k1:Un);
case bdy is req(getnonce());
decrypt c is {|p:Un, vkp:Decrypt Key(AuthMsg(p))|}VKCA−1 ;
new (nq:Public Challenge []);
out k1 (CertVKq , res(getnonce(nq)));
inp w (p′:Un, cipher :Un, k2:Un);
if p = p′ then
decrypt cipher is {|req(plain:(w:Un, a:Un, t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]))|}vkp−1 ;
match plain is (w, rest :(a:Req(w), t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]));

16 A. D. Gordon and R. Pucella

split rest is (a:Req(w),
t:Un, rest ′:(q′:Un,Public Response [end req(p, q′, w, a, t)]));

match rest ′ is (q, n′
q:Public Response [end req(p, q, w, a, t)]);

check nq is n′
q;

end req(p, q, w, a, t);
let r:Res(w)=callw(p, a);
begin res(p, q, w, r, t);
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
out k2 (q, {|res(w, r, t, p, n′

p)|}SKq)
where q = owner(w)

Finally, we need to change the top-level environment to account for the new keys, and to add a channel
through which we will publish the public keys.

Top-Level Environments:

Eclass , (c `:Un) (c,`)∈ClMeth

Ekeys , DSCA:AuthCertKeys, (DSp:AuthKeys(p)) p∈Prin

Ews , (w:Un) w∈WebService

Eprin , p1:Prin, . . . , pn:Prin where Prin = {p1, . . . , pn}
Enet , net :Un
E0 , Ews , Eprin , Enet , Eclass , Ekeys

Publishing can be achieved by simply sending the public keys on a public channel, here net :

Public Keys Publishing:

Inet , out net (VKCA, (VKp) p∈Prin)

We can now establish that the resulting system is robustly safe:

Theorem 2. If ∅ ` a : A and p ∈ Prin and k /∈ dom(E0) then the system

new (Eclass , Ekeys); (Inet | Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof. See Appendix D.2.

The protocol we give above to provide authentication has some undesirable properties. Specifically, it
requires the server to remember the certificate CertVKp and nonce np at the time when a nonce is requested.
Since anyone can request a nonce, and no authentication is performed at that stage of the protocol, this
makes the server severely vulnerable to denial-of-service attacks. The following variation on the protocol
achieves the same guarantees, but pushes the exchange of certificates and nonces to later messages, basically
just when they are needed.

p→ q on w : req(getnonce()), k1

q → p on k1 : res(getnonce(nq))
p→ q on w : p,CertVKp, np, {|req(w, `(u1, . . . , un), t, q, nq)|}SKp , k2

q → p on k2 : q,CertVKq , {|res(w, `(r), t, p, np)|}SKq

6.2. Authenticated and Encrypted Web Methods

We now describe a protocol and implementation for authenticated and encrypted web methods. Hence, for
now, we assume that all the exported methods of a web service are annotated with AuthEnc.

The public-key infrastructure we consider for this case is similar to the one for authenticated web methods,
except that now we have encryption and decryption keys, as opposed to signing and verification keys. Each
principal p has an encryption key EKp and a decryption key DKp. The decryption key is kept private, while

Validating a Web Service Security Abstraction by Typing 17

the encryption key is public. To bind the name of a principal with their encryption key, we again assume a
certification authority CA (with a signing key SKCA and verification key VKCA) that can sign certificates
CertEKp of the form {|p,EKp|}SKCA.

Here is a protocol for p making a web service call w:`(u1, . . . , un) to service w owned by q, including the
names of continuation channels used at the spi level. Again, we assume that in addition to the methods of
class(w), each web service also supports a method getnonce, which we implement specially.

p→ q on w : CertEKp, req(getnonce()), k1

q → p on k1 : CertEKq , {|msg2 (q, nK)|}EKp , res(getnonce(nq))
p→ q on w : {|msg3 (w, p, K, nK)|}EKq , np, {req(`(u1, . . . , un), t, nq)}K , k2

q → p on k2 : {res(`(r), t, np)}K

This protocol is similar to that for authenticated web methods, except that public key encryption is used to
exchange a session-specific shared key K used to encrypt the actual method call. Specifically, in the third
message, p chooses a session-specific shared key K, and sends it to q encrypted with q’s public key EKq ; this
session key K is used to encrypt the web method call. The result of the web method call is also encrypted
with this shared key. To prevent replay attacks, the shared key is bound to a nonce nK sent by q in the
second message.

Type of Keys:

SKey(p, q, w) ,
SharedKey(Union(req(a:Un, t:Un, nq:Public Response [end req(p, q, w, a, t)]),

res(r:Un, t:Un, np:Public Response [end res(p, q, w, r, t)])))
AuthEncMsg(p) ,

Union(msg2 (q:Un, nK :Private Challenge []),
msg3 (w:Un, q:Un,K:Top,

nK :Private Response [trust K:SKey(p, q, w)]))
AuthEncKeys(p) , KeyPair(AuthEncMsg(p))
AuthEncCert , (p:Un,Encrypt Key(AuthEncMsg(p)))
AuthEncCertKeys , KeyPair(AuthEncCert)

We will represent the key pair of an encryption key and decryption key for principal p by a pair PKp,
of type AuthEncKeys(p). The signing key pair for the certification authority will be represented by a pair
DSCA. We use the following abbreviations:

Key and Certificates Abbreviations:

EKp , Encrypt (PKp) p’s encryption key
DKp , Decrypt (PKp) p’s decryption key
CertEKp , {|p,EKp|}SKCA p’s certificate

Again, we can amend the translation of Section 4 to accommodate the new protocol. First, we give a new
translation for a web method call w:`(u1, . . . , un):

New Translation of Web Method Call:

[[w:`(u1, . . . , un)]]pk ,
new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
out w (CertEKp, req(getnonce()), k1);
inp k1 (c:Un, cipher :Un, res(getnonce(nq:Un)));

18 A. D. Gordon and R. Pucella

decrypt c is {|cert :(q′:Un,Encrypt Key(AuthEncMsg(q′)))|}VKCA−1 ;
match cert is (q, ekq :Encrypt Key(AuthEncMsg(q)));
decrypt cipher is {|msg2 (q′:Un, nK :Un)|}DKp−1 ;
if q = q′ then
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
new (K:SKey(p, q, w));
witness K:SKey(p, q, w);
cast nK is (n′

K :Private Response [trust K:SKey(p, q, w)]);
out w ({|msg3 (w, p, t,K, n′

K)|}ekq , np, {req(w, `([[u1]], . . . , [[un]]), t, n′
q)}K , k2);

inp k2 (bdy :Un);
decrypt bdy is {res(plain:(r:Res(w), t′:Un,

Public Response [end res(p, q, w, r, t′)]))}K ;
match plain is (r:Res(w), rest :(t′:Un,Public Response [end res(p, q, w, r, t′)]));
match rest is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
check np is n′

p;
end res(p, q, w, r, t);
case r is `(x); out k x

where q = owner(w)

We also need to give a new implementation for web services, again to take into account the different
messages being exchanged:

New Web Service Implementation:

Iws(w) ,
repeat inp w (c:Un, bdy :Un, k1:Un);
case bdy is req(getnonce());
decrypt c is {|p:Un, ekp:Encrypt Key(AuthEncMsg(p))|}VKCA−1 ;
new (nq:Public Challenge []);
new (nK :Private Challenge []);
out k1 (CertEKq , {|msg2 (q, nK)|}ekp , res(getnonce(nq)));
inp w (cipher1:Un, np:Un, cipher2:Un, k2:Un);
decrypt cipher1

is {|msg3 (plain1:(w:Un, p′:Un,K:Top,
Private Response [trust K:SKey(p′, q, w)]))|}DKq−1 ;

match plain1 is (w, rest :(p′:Un,K:Top,
Private Response [trust K:SKey(p′, q, w)]));

match rest is (p, rest ′:(K:Top,Private Response [trust K:SKey(p, q, w)]));
split rest ′ is (K:Top, n′

K :Private Response [trust K:SKey(p, q, w)]);
check nK is n′

K ;
trust K is (K ′:SKey(p, q, w));
decrypt cipher2 is {req(plain2:(a:Req(w), t:Un,

Public Response [end req(p, q, w, a, t)]))}K′ ;
split plain2 is (a:Req(w), t:Un, n′

q:Public Response [end req(p, q, w, a, t)]);
check nq is n′

q;
end req(p, q, w, a, t);
let r:Res(w)=callw(p, a);
begin res(p, q, w, r, t);
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
out k2 {res(r, t, n′

p)}K′

where q = owner(w)

Finally, we need to change the top-level environment to account for the new keys, and to add a channel
through which we will publish the public keys.

Validating a Web Service Security Abstraction by Typing 19

Top-Level Environments:

Eclass , (c `:Un) (c,`)∈ClMeth

Ekeys , DSCA:AuthEncCertKeys, (PKp:AuthEncKeys(p)) p∈Prin

Ews , (w:Un) w∈WebService

Eprin , p1:Prin, . . . , pn:Prin where Prin = {p1, . . . , pn}
Enet , net :Un
E0 , Ews , Eprin , Enet , Eclass , Ekeys

Publishing can be achieved by simply sending the public keys on a public channel, here net :

Public Keys Publishing:

Inet , out net (VKCA, (EKp) p∈Prin)

We can now establish that the resulting system is robustly safe:

Theorem 3. If ∅ ` a : A and p ∈ Prin and k /∈ dom(E0) then the system

new (Eclass , Ekeys); (Inet | Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof. See Appendix D.3.

We can note some further possibilities, with respect to the protocols implemented in this section:

• The protocol implementing authenticated and encrypted invocation uses certificates to essentially nego-
tiate a symmetric key with which to actually perform the encryption. It is straightforward to apply the
same idea to the authenticated-only case, negotiating a symmetric key with which to hash the content
of the method call (instead of relying on public-key signatures).
• In the above protocol, a new symmetric key is negotiated at every method invocation. A more efficient

variation would be to re-use a negotiated symmetric key over multiple web method calls. Once a symmetric
key has been negotiated, it can effectively act as a shared key between the two principals, which is the
case we investigated in the body of this paper. We can therefore use the above protocol for the first web
method call between a principal and a particular service, and the shared-key protocol for subsequent web
method calls.

7. Related Work

There has been work for almost twenty years on secure RPC mechanisms, going back to Birrell [10]. More
recently, secure RPC has been studied in the context of distributed object systems. As we mentioned, our
work was inspired by the work of van Doorn et al. [35], itself inspired by [30, 36]. These techniques (or similar
ones) have been applied to CORBA [31], DCOM [11], and Java [7, 19].

In contrast, little work seems to have been done on formalizing secure RPC. Of note is the work of Abadi,
Fournet, and Gonthier [2, 3], who show how to compile the standard join-calculus into the sjoin-calculus, and
show that the compilation is fully abstract. In a subsequent paper [4], they treat similarly and more simply
a join-calculus with authentication primitives: each message contains its source address, there is a way to
extract the principal owning a channel from the channel, and any piece of code runs as a particular principal.
Their fully abstract translation gives very strong guarantees: it shows that for all intents and purposes, we
can reason at the highest level (at the level of the authentication calculus). Although our guarantees are
weaker, they are easier to establish.

Duggan [18] formalizes an application-level security abstraction by introducing types for signed and
encrypted messages; he presents a fully abstract semantics for the abstraction by translation to a spi-calculus.

Much of the literature on security in distributed systems studies the question of access control. Intuitively,
access control is the process of determining if the principal calling a particular method has permission to
access the objects that the method refers to, according to a particular access control policy. There is a
distinction to be made between authentication and access control. Authentication determines whether the

20 A. D. Gordon and R. Pucella

principal calling a method is indeed the principal claiming to be calling the method, while access control can
use this authenticated identity to determine whether that principal is allowed access. This distinction is made
clear in the work of Balfanz et al. [7], where they provide authenticated and encrypted communication over
Java RMI (using SSL) and use that infrastructure as a basis for a logic-based access control mechanism. The
access control decisions are based on the authenticated caller identity obtained from the layer in charge of
authentication. This approach is also possible in our framework, which provides access to an authenticated
identity as well. We plan to study access control abstractions in our framework. Various forms of access
control mechanisms have been formalized via π-calculi, [26, 33, 27], and other process calculi [13, 16]. An
access control language based on temporal logic has been defined by Sirer and Wang [34] specifically for web
services. Damiani et al. [15] describe an implementation of an access control model for SOAP; unlike our
work, and the WS-Security proposal, it relies on an underlying secure channel, such as an SSL connection.

Since this work was completed, a series of specifications for web services security has been published, as
laid out in a whitepaper from IBM and Microsoft [28]. In particular, WS-Security [6] defines how to add
signatures, to apply encryption, and to add principal identities, such as usernames or certificates, to a SOAP
envelope. It would be straightforward, for example, to adapt our implementation to produce WS-Security
compliant SOAP envelopes. A recent paper shows how to formalize the authentication goals of protocols
based on WS-Security using the applied π-calculus [9].

Despite its enjoyable properties, the formal model we use to study the implementation of our security
abstraction suffers from some limitations. For instance, it makes the usual Dolev-Yao assumptions that
the adversary can compose messages, replay them, or decipher them if it knows the right key, but cannot
otherwise “crack” encrypted messages. A more severe restriction is that we cannot yet model insider attacks:
principals with shared keys are assumed well-behaved. Work is in progress to extend the Cryptyc type theory
to account for malicious insiders. We have not verified the hash-based protocol of Section 2.

8. Conclusions

Authenticated method calls offer a convenient abstraction for developers of both client and server code.
Various authorisation mechanisms may be layered on top of this abstraction. This paper proposes such an
abstraction for web services, presents a theoretical model, and describes an implementation using SOAP-level
security. By typing our formal semantics, we show no vulnerability exists to attacks representable within the
spi-calculus, given certain assumptions. Vulnerabilities may exist outside our model—there are no methods,
formal or otherwise, to guarantee security absolutely.

While our approach is restricted to proving properties of protocols that can be established using the
Cryptyc type and effect system, it is worth pointing out that it is compatible with alternative methods
for protocol verification. For instance, it is possible to analyze the protocols we use to implement secure
web method calls for security flaws beyond those that can be uncovered using Cryptyc (for instance, flaws
involving malicious insiders).

Our work shows that by exploiting recent advances in authenticity types, we can develop a theoretical
model of a security abstraction, and then almost immediately obtain precise guarantees. (As with many
formal analyses, these guarantees concern the design of our abstraction, and do not rule out code defects in
its actual implementation.)

This study furthermore validates the adequacy of the spi-calculus, and Cryptyc in particular, to formally
reason about security properties in a distributed communication setting.

Acknowledgments Cryptyc is an ongoing collaboration between Alan Jeffrey and the first author. Ernie
Cohen, Cédric Fournet, and Alan Jeffrey made useful suggestions during the writing of this paper.

A. Sample SOAP Messages

We give some sample SOAP messages exchanged during web service method calls of the web service described
in Section 5. One thing that is immediately clear is that we are not using standard XML formats for signing
and encrypting messages, such as XML-Encryption and XML-Signature. There is no intrinsic difficulty
in adapting our infrastructure to use standard formats. The point is that the validation of the security
abstraction does not rely on the exact syntax of the SOAP envelopes.

Validating a Web Service Security Abstraction by Typing 21

A.1. An Authenticated Call

We describe an authenticated call to the Balance method. The messages exchanged to obtained the nonce
are standard SOAP messages. The following message is the request from Alice to the web service to execute
the Balance method on argument 12345. Notice the DSHeader element holding the identity of the principals
involved, as well as the nonces and the cryptographic signature.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<DSHeader xmlns="http://tempuri.org/">
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>42</nq>
<signature>
3E:67:75:28:3B:AD:DF:32:E7:6C:D3:66:2A:CF:E7:8A:3F:0A:A6:0D

</signature>
</DSHeader>

</soap:Header>
<soap:Body>
<Balance xmlns="http://tempuri.org/">
<account>12345</account>

</Balance>
</soap:Body>

</soap:Envelope>

The response from the web service has a similar form:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<DSHeader xmlns="http://tempuri.org/">
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>42</nq>
<signature>
8D:31:52:6E:08:F0:89:7B:1E:12:3F:5E:63:EE:B0:D2:63:89:CA:73

</signature>
</DSHeader>

</soap:Header>
<soap:Body>
<BalanceResponse xmlns="http://tempuri.org/">
<BalanceResult>100</BalanceResult>

</BalanceResponse>
</soap:Body>

</soap:Envelope>

A.2. Authenticated and Encrypted Call

We describe an authenticated and encrypted call, this time to the Statement method. Again, the messages
exchanged to obtained the nonce are standard SOAP messages. The following message is the request from

22 A. D. Gordon and R. Pucella

Alice to the web service to execute the Statement method on argument 12345. As in the authenticated call
above, the DSHeader element holds identity information. The body of the message itself is encrypted. Note
that the nonce nq must be encrypted according to the protocol, so its encrypted value is included in the
encrypted data, and its element is reset to a dummy value (here, -1). Similarly, the signature is unused and
set to a dummy value.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<DSHeader xmlns="http://tempuri.org/">
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>-1</nq>
<signature>4E:00:6F:00</signature>

</DSHeader>
</soap:Header>
<soap:Body>
9D:8F:95:2B:BC:60:B1:73:A7:C4:82:F5:39:20:97:F7:69:71:66:
D3:A3:A0:90:B9:9B:FE:71:0A:65:C1:EF:EE:99:CB:4D:8A:40:37:
CA:1E:D0:03:50:34:76:8C:E3:F3:30:DD:C9:34:19:D4:04:CB:39:
7D:1A:84:2F:CA:30:DA:68:7E:E1:CB:07:9C:EB:79:F9:E9:4B:47:
5B:94:56:D7:22:0E:02:CD:AA:F5:D3:40:C1:EC:13:FB:B9:E6:4F:
13:CD:70:FD:BA:18:80:FC:50:F3:75:F2:2F:95:50:5D:41:7E:C8:
8B:BB:AB:76:C9:59:BA:E2:3B:E5:4D:79:71:E4:AD:18:5A:4B:EA:
29:17:30:90:66:08:27:ED:B4:BD:2E:89:06:6D:0B:56:40:43:35:
A1:77:AE:12:7E:4B:19:26:B5:24:1A:D9:67:3D:A0:91

</soap:Body>
</soap:Envelope>

The response is similarly encoded. Notice that this time the nonce np must be encrypted, so its value is
again included in the encrypted data, and its element is reset to a dummy value.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<DSHeader xmlns="http://tempuri.org/">
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>-1</np>
<nq>-1</nq>
<signature>4E:00:6F:00</signature>

</DSHeader>
</soap:Header>
<soap:Body>
98:FD:6A:5B:38:0A:82:95:3F:01:EC:D3:55:F9:AA:35:4D:18:DB:
1B:7D:9D:FE:3F:78:52:29:99:C9:41:84:EE:B1:42:12:B2:02:AC:
63:F5:0C:92:9B:DB:75:FB:6C:8B:65:EB:3C:42:6B:79:70:AF:61:
2A:C2:7B:ED:96:E1:D6:7A:F6:D2:0C:DF:BC:2A:4C:93:B3:D0:7B:
7D:2D:83:18:60:D2:D8:05:EB:73:74:2D:75:A2:B2:57:C9:04:B4:
C1:E6:66:54:BA:42:86:AF:22:72:3D:B7:90:CF:03:22:E5:C4:47:
03:F0:77:A0:30:01:C9:FE:78:A1:AB:FA:B1:CB:EE:E2:0B:F2:79:
17:1B:8E:82:E2:13:F4:66:52:76:6D:BA:1B:E9:8E:75:15:90:37:

Validating a Web Service Security Abstraction by Typing 23

0A:64:ED:F3:9C:18:94:EC:4F:CF:61:92:38:EF:A9:46:E8:4E:E9:
4A:E6:8A:C9:5E:ED:A7:34:72:3E:72:A2:BE:0D:DC:07:22:45:B0:
E6:79:33:8F:CD:90:B8:97:DB:BA:3B:B2:8B:38:38:B6:5B:F1:11:
FB:DD:88:CE:9A:3E:B4:E6:31:13:CB:1C:F3:B5:17:D8:9B:CF:2E:
65:23:4D:BA:ED:72:6D:F4:53:97:B8:7A:D2:9C:2C:10:58:A3:0E:
FE:48:A2:2A:2A:57:AE:6D:69:4D:97:90:EF:9F:C6:7E:9B

</soap:Body>
</soap:Envelope>

B. Semantics of the Object Calculus

In this appendix, we give a formal description of the operational semantics and typing rules of the object
calculus. We first describe some encodings showing the expressiveness of the calculus.

B.1. Encoding Arithmetic

The calculus is simple enough that questions about whether or not it is sufficiently expressive to be of interest
arise. This is especially likely since there are no recursive functions in the calculus, and it is not clear that
it is even Turing complete. That the calculus indeed is Turing complete is a consequence of the fact that we
can write recursive classes and methods, and that we have a null object. The following example shows an
encoding of natural numbers as a class Num, with the typical recursive definition of addition:

class Num
Num pred
Num succ()

new Num(this)
Num add(Numx)

if x.pred = null then
this

else this.add(x.pred).succ()

We define zero as new Num(null), one as zero.succ(), and so on.

B.2. Formalization of proxy objects

We mentioned in the text that we can easily express proxy objects within the calculus. For completeness,
here is a detailed formalization of such proxy objects. First, we assume a map proxy ∈WebService → Class,
assigning to every web service w ∈ WebService a proxy class proxy(w). We further assume that for each
w ∈WebService,

• dom(methods(class(w))) ∪ {Id} = dom(methods(proxy(w))),
• fields(proxy(w)) = ∅,
• methods(proxy(w)(Id)) = (Id(), owner(w)), and
• for all ` ∈ dom(methods(class(w))),

methods(proxy(w))(`) = (B(A1 x1, . . . , An xn), w:`(x1, . . . , xn)),

where methods(class(w))(`) = (B(A1 x1, . . . , An xn), b).

B.3. Operational Semantics

The operational semantics is defined by a transition relation, written a →p a′, where a and a′ are method
bodies, and p is the principal evaluating the body a.

To specify the semantics, we need to keep track of which principal is currently running a method body.

24 A. D. Gordon and R. Pucella

We add a new method body form to our object calculus, p[a], meaning p running body a. This form does
not appear in code written by the user, but only arises through the transitions of the semantics.

Extended Method Bodies:

a, b ∈ Body ::= method body
· · · as in Section 3
p[a] body a running as p

Transitions:

(Red Let 1)
a→p a′

let x=a in b→p let x=a′ in b

(Red Let 2)

let x=v in b→p b{x←v}

(Red If)

if u = v then atrue else afalse →p au=v

(Red Field)
fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

(new c(v1, . . . , vn)).fj →p vj

(Red Invoke)(where v = new c(v1, . . . , vn))
methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n sigj = B(A1 x1, . . . , Am xm)

v.`j(u1, . . . , um)→p bj{this←v, xk←uk
k∈1..m}

(Red Remote)
owner(w) = q class(w) = c

w:`(u1, . . . , un)→p q[new c(p).`(u1, . . . , un)]

(Red Prin 1)
a→q a′

q[a]→p q[a′]

(Red Prin 2)

q[v]→p v

B.4. Type System

The judgments of our type system all depend on an environment E, that defines the types of all variables
in scope. An environment takes the form x1:A1, . . . , xn:An and defines the type Ai for each variable xi. The
domain dom(E) of an environment E is the set of variables whose types it defines.

Environments:

D,E ::= environment
∅ empty
E, x:A entry

dom(x1:A1, . . . , xn:An) , {x1, . . . , xn} domain of an environment

The following are the two judgments of our type system. They are inductively defined by rules presented
in the following tables.

Judgments E ` J :

E ` � good environment
E ` a : A good expression a of type A

Validating a Web Service Security Abstraction by Typing 25

We write E ` J when we want to talk about both kinds of judgments, where J stands for either � or a : A.
The following rules define an environment x1:A1, . . . , xn:An to be well-formed if each of the names

x1, . . . , xn are distinct.

Rules for Environments:

(Env ∅)

∅ ` �

(Env x)(where x 6∈ dom(E))
E ` �

E, x:A ` �

We present the rules for deriving the judgment E ` a : A that assigns a type A to a value or method
body a. These rules are split into two tables, one for values, and one for method bodies.

Rules for Typing Values:

(Val x)
E = E1, x:A,E2 E ` �

E ` x : A

(Val null)
E ` �

E ` null : c

(Val Object)
fields(c) = fi 7→ Ai

i∈1..n E ` vi : Ai ∀i ∈ 1..n

E ` new c(v1, . . . , vn) : c

(Val Princ)
E ` �

E ` p : Id

Rules for Typing Method Bodies:

(Body Let)
E ` a : A E, x:A ` b : B

E ` let x=a in b : B

(Body If)
E ` u : A E ` v : A E ` a : B E ` b : B

E ` if u = v then a else b : B

(Body Field)
E ` v : c fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

E ` v.fj : Aj

(Body Invoke)
E ` v : c methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n
sigj = B(A1 x1, . . . , Am xm) E ` uk : Ak ∀k ∈ 1..m

E ` v.`j(u1, . . . , um) : B

(Body Remote)
class(w) = c methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n

sigj = B(A1 x1, . . . , Am xm) E ` ui : Ai ∀i ∈ 1..m

E ` w:`j(u1, . . . , um) : B

(Body Princ)
E ` a : A

E ` p[a] : A

We make the following assumption on the execution environment.

Assumptions on the Execution Environment:

(1) For each w ∈WebService, fields(class(w)) = CallerId : Id .
(2) No tagged expression p[a] occurs within the body of any method;

such expressions occur only at runtime, to track the call stack of principals.
(3) for each c ∈ Class and each ` ∈ dom(methods(c)),

if methods(c)(`) = (B(A1 x1, . . . , An xn), b),
then this:c, x1:A1, . . . , xn:An ` b : B.

26 A. D. Gordon and R. Pucella

It is straightforward to show that our type system is sound, that is, that the type system ensures that
methods that typecheck do not get stuck when evaluating. Some care is needed to make this precise, since
evaluation can block if one attempts to access a field of a null object, or to invoke a method on a null object.
(We could introduce an error token in the semantics and propagate that error token when such a case is
encountered, but this would needlessly complicate the semantics, at least for our purposes.) Soundness can
be derived as usual via Preservation and Progress theorems. To establish these, we first need the following
lemmas:

Lemma 1. The following properties of judgments hold:

(Exchange) if E, x:A, y:B,E′ ` J , then E, y:B, x:A,E′ ` J ;
(Weakening) if E ` J and x 6∈ dom(E), then E, x:A ` J ;
(Strengthening) if E, x:B ` a : A and x 6∈ fv(a), then E ` a : A.

Proof. Straightforward.

We often use the above properties silently in the course of proofs.

Lemma 2 (Substitution). If E, x:B ` a : A and E ` v : B, then E ` a{x←v} : A

Proof This is a straightforward proof by induction on the height of the typing derivation for E ` a : A.
We proceed by case analysis on the form of a.

- Case a = x: Since E, x:B ` x : A, we must have A = B. Since a{x←v} = v and E ` v : B, we have
E ` v : A, as required.

- Case a = y, where y 6= x: Since x is not free in y, E, x:B ` y : A implies E ` y : A, by the Strengthening
Lemma, as required.

- Case a = null : Since x is not free in null , E, x:B ` null : A implies E ` null : A, as required.
- Case a = p: Since x is not free in p, E, x:B ` p : A implies E ` p : A, as required.
- Case a = newc(v1, . . . , vn): We have the equation newc(v1, . . . , vn){x←v} = newc(v1{x←v}, . . . , vn{x←v}).

We have E, x:B ` new c(v1, . . . , vn) : A, hence E, x:B ` vi : Ai if fields(c) = fi 7→ Ai
i∈1..n. By

the induction hypothesis, we know E ` vi{x←v} : Ai for all i ∈ 1..n. Hence, we can derive E `
new c(v1{x←v}, . . . , vn{x←v}) : A, as required.

- Case a = let y=a0 in b: Without loss of generality, we can take y 6= x, since y is bound in b. Note
that (let y=a0 in b){x←v} = let y=a0{x←v} in b{x←v}. We have E, x:B ` let y=a0 in b : A, hence
E, x:B ` a0 : A0 for some A0, and E, y:A0, x:B ` b : A. By the induction hypothesis, E ` a0{x←v} : A0

and E, y:A0 ` b{x←v} : A, and hence E ` let x=a0{x←v} in b{x←v} : A, as required.
- Case a = if u0 = u1 then a0 else a1: We have (if u0 = u1 then a0 else a1){x←v} = if u0{x←v} =

u1{x←v} then a0{x←v} else a1{x←v}. We have E, x:B ` if u0 = u1 then a0 else a1, hence E, x:B `
u0 : A′, E, x:B ` u1 : A′, E, x:B ` a0 : A and E, x:B ` a1 : A. Applying the induction hypothesis to
these judgments, we can derive

E ` if u0{x←v} = u1{x←v} then a0{x←v} else a1{x←v} : A

as required.

The remaining cases are similar, upon noting that:

- (u.fj){x←v} = u{x←v}.fj ,
- (u.`(u1, . . . , um)){x←v} = u{x←v}(u1{x←v}, . . . , um{x←v}),
- (w:`(u1, . . . , un)){x←v} = w:(u1{x←v}, . . . , un{x←v}), and
- (p[a]){x←v} = p[a{x←v}]. 2

Theorem 4 (Preservation). If E ` a : A and a→p a′ then E ` a′ : A.

Proof We proceed by induction on the height of the typing derivation for E ` a : A. Since a →p a′, a
cannot be a value v.

- Case a = let x=v in b: Since E ` a : A, we have E ` v : B and E, x:B ` b : A. We must have
a′ = b{x←v}. Applying the Substitution Lemma, we have E ` b{x←v} : A, as required.

Validating a Web Service Security Abstraction by Typing 27

- Case a = let x=a0 in b, where a0 is not a value: We have E ` a0 : B, and E, x:B ` b : A. Since a→p a′,
we must have have a0 →p a′0. By induction hypothesis, E ` a′0 : B, and hence E ` let x=a′0 in b : A, as
required.

- Case a = if u = v then a0 else a1: Note that either a→p a0 or a→p a1. In both cases, since E ` if u =
v then a0 else a1 : A, we have E ` a0 : A and E ` a1 : A, as required.

- Case a = (new c(v1, . . . , vn)).fj : We have fields(c) = fi 7→ Ai
i∈1..n. The type derivation for a is as follows:

E ` vi : Ai
i∈1..n

E ` new c(v1, . . . , vn) : c

E ` (new c(v1, . . . , vn)).fj : Aj

Since a′ = vj , we have E ` vj : Aj , as required.
- Case a = (new c(v1, . . . , vn)).`j(u1, . . . , um): Let v = new c(v1, . . . , vn). We have methods(c) = `i 7→

(sig i, bi) i∈1..n, where sigj = B(A1 x1, . . . , Am xm). By the typing derivation for E ` a : B, we have
E ` uk : Ak for all k ∈ 1..m, and E ` v : c. By assumption on the execution environment, we know
this:c, x1:A1, . . . , xm:Am ` b : B. Applying the Substitution and the Weakening Lemmas, we get E `
b{this←v, xk←uk

k∈1..m} : B, as required.
- Case a = w:`j(u1, . . . , un): We have class(w) = c, methods(c) = `i 7→ (sig i, bi) i∈1..n where sigj =

B(A1 x1, . . . , Am xm). By the typing derivation for E ` a : B, we have E ` ui : Ai for all i ∈ 1..m. We
can therefore derive the required type for a′ = q[new c(p).`(u1, . . . , um)]:

E ` new c(p) : c E ` ui : Ai ∀i ∈ 1..m

E ` new c(p).`(u1, . . . , um) : B

E ` q[new c(p).`(u1, . . . , um)] : B

- Case a = q[v]: Since E ` q[v] : A, we have E ` v : A, and q[v]→p v, as required.
- Case a = q[a0], where a0 is not a value: Since E ` q[a0] : A, we have E ` a0 : A, and since a →p a′, we

must have a0 →q a′0. By induction hypothesis, E ` a′0 : A, and hence E ` q[a′0] : A, as required. 2

To state the Progress Theorem, we need to recognize programs that are blocked because of a null in
object position. We say a method body a is null-blocked if, essentially, it is stuck trying to access a field of
a null object, or invoke a method on a null object. Formally, a is null-blocked if it is of the form null .fj ,
null .`(u1, . . . , un), let x=a in b (where a is null-blocked), or q[a] (where a is null-blocked).

Theorem 5 (Progress). If ∅ ` a : A and a is not a value and is not null-blocked, and p ∈ Prin, then
a→p a′ for some a′.

Proof Again, we proceed by induction on the height of the typing derivation for ∅ ` a : A. We assume a
is not a value, and a is not null-blocked.

- Case a = let x=a0 in b: We consider two subcases, depending on whether a0 is a value or not.

- Case a0 is a value v: We have a→p b{x←v}.
- Case a0 is not a value: Since ∅ ` a : A, we have ∅ ` a0 : B for some B, a0 not a value. Since a is

not null-blocked, a0 is not null-blocked. Hence, by induction hypothesis, we have a0 →p a′0. Hence,
we have a→p let x=a′0 in b.

- Case a = if u = v then a0 else a1: We have a→p a0 or a→p a1 depending on the result of u = v.
- Case a = v.fj : Since ∅ ` a : A and a is not null-blocked, we must have v = new c(u1, . . . , un), and

fields(c) = fi 7→ Ai
i∈1..n. Therefore, we have v.fj →p uj .

- Case a = v.`j(u1, . . . , um): Since ∅ ` a : A and a is not null-blocked, we must have v = new c(u1, . . . , un),
methods(c) = `i 7→ (sig i, bi), and sigj = B(A1 x1, . . . , Am xm). Therefore, we have v.`j(u1, . . . , um) →p

bj{this←v, xk←uk
k∈1..m}.

- Case a = w:`(u1, . . . , um): The following transition rule w:`(u1, . . . , um) →p q[new c(p).`(u1, . . . , um)]
applies, with owner(w) = q and class(w) = c.

- Case a = q[a0]: We consider two subcases, depending on whether a0 is a value or not.

28 A. D. Gordon and R. Pucella

- Case a0 is a value v: We have q[v]→p v.
- Case a0 is not a value: Since ∅ ` q[a0] : A, we have ∅ ` a0 : A, a0 not a value. Since a is not null-

blocked, a0 is not null-blocked. Hence, by induction hypothesis, we have a0 →q a′0, and q[a0]→p q[a′0].
2

We can now state soundness formally. We say a method body a is stuck if a is not a value, a is not
null-blocked, and there is no a′ and p such that a →p a′. We write a →∗ a′ to mean that there exists a
sequence a1, . . . , an and principals p1, . . . , pn+1 such that a→p1 a1 →p2 · · · →pn an →pn+1 a′. (Hence, →∗ is
a kind of transitive closure of →p.)

Theorem 6 (Soundness). If ∅ ` a : A, and a→∗ a′, then a′ is not stuck.

Proof. A straightforward induction on the number of transitions in a→∗ a′.

C. The Spi-Calculus in More Detail

We give an overview of the language and type system on which our analysis of web services depends. We give
the syntax in detail, but for the sake of brevity give only an informal account of the operational semantics
and type system. Full details are in a technical report [21], from which some of the following explanations
are drawn. Some constructs primitive here are actually derived forms in the original calculus.

Names, Messages:

k ::= Encrypt | Decrypt key attribute
m,n, x, y, z name: nonce, key, key-pair
L,M,N ::= message

x name
(M1, . . . ,Mn) record, n ≥ 0
ti(M) tagged union
{M}N symmetric encryption
{|M |}N asymmetric encryption
k (M) key-pair component

The message x is a name, representing a channel, nonce, symmetric key, or asymmetric key-pair. We do
not differentiate in the syntax or operational semantics between key-pairs used for public key cryptography
and those used for digital signatures.

The message (M1, . . . ,Mn) is a record with n fields, M1, . . . , Mn.
The message ti(M) is message M tagged with tag ti. The message {M}N is the ciphertext obtained by

encrypting the plaintext M with the symmetric key N .
The message {|M |}N is the ciphertext obtained by encrypting the plaintext M with the asymmetric

encryption key N .
The message Decrypt (M) is the decryption key (or signing key) component of the key-pair M , and

Encrypt (M) is the encryption key (or verification key) component of the key-pair M .

Types and Effects:

` ::= Public | Private nonce attribute
S, T, U ::= type

Un data known to the opponent
(x1:T1, . . . , xn:Tn) dependent record, n ≥ 0
Union(t1(T1), . . . , tn(Tn)) tagged union
Top top
SharedKey(T) shared-key type
KeyPair(T) asymmetric key-pair
k Key(T) encryption or decryption part
` Challenge es challenge type
` Response fs response type

e, f ::= atomic effect

Validating a Web Service Security Abstraction by Typing 29

end L end-event labelled L
check ` N name-check for a nonce N
trust M :T trust that M :T

es, fs ::= effect
[e1, . . . , en] multiset of atomic effects

The type Un describes messages that may flow to or from the opponent, which we model as an arbitrary
process of the calculus. We say that a type is public if messages of the type may flow to the opponent. Dually,
we say a type is tainted if messages from the opponent may flow into the type. The type Un is both public
and tainted.

The type (x1:T1, . . . , xn:Tn) describes a record (M1, . . . ,Mn) where each Mi : Ti. The scope of each
variable xi consists of the types Ti+1, . . . , Tn. Type (x1:T1, . . . , xn:Tn) is public just if all of the types Ti are
public, and tainted just if all of the types Ti are tainted.

The type Union(t1(T1), . . . , tn(Tn)) describes a tagged message ti(M) where i ∈ 1..n and M : Ti. Type
Union(t1(T1), . . . , tn(Tn)) is public just if all of the types Ti are public, and tainted just if all of the types
Ti are tainted.

The type Top describes all well-typed messages; it is tainted but not public.
The type SharedKey(T) describes symmetric keys for encrypting messages of type T ; it is public or tainted

just if T is both public and tainted.
The type KeyPair(T) describes asymmetric key-pairs for encrypting or signing messages of type T ; it is

public or tainted just if T is both public and tainted. The key-pair can be used for public-key cryptography
just if T is tainted, and for digital signatures just if T is public.

The type Encrypt Key(T) describes an encryption or signing key for messages of type T ; it is public just
if T is tainted, and it is tainted just if T is public.

The type Decrypt Key(T) describes a decryption or verification key for messages of type T ; it is public
just if T is public, and it is tainted just if T it tainted.

The types ` Challenge es and ` Response fs describe nonce challenges and responses, respectively. The
effects es and fs embedded in these types represent certain events. An outgoing challenge of some type
` Challenge es can be cast into a response of type ` Response fs and then returned, provided the events in
the effect es + fs have been justified, as explained below. Therefore, if we have created a fresh challenge at
type ` Challenge es, and check that it equals an incoming response of type ` Response fs, we can conclude
that the events in es + fs may safely be performed. The attribute ` is either Public or Private; the former
means the nonce may eventually be public, while the latter means the nonce is never made public. Type
Public Challenge es is public, or tainted, just if es = []. Type Public Response fs is always public, but tainted
just if es = []. Neither Private Challenge es nor Private Response fs is public; both are tainted.

An effect es is a multiset, that is, an unordered list of atomic effects, e or f . Effects embedded in challenge
or response types signify that certain actions are justified, that is, may safely be performed. An atomic effect
end L justifies a single subsequent end-event labelled L, and is justified by a distinct, preceding begin-event
labelled L. An atomic effect check ` N justifies a single subsequent check that an ` response equals an `
challenge named N , where ` is Public or Private, and is justified by freshly creating the challenge N . An
atomic effect trust M :T justifies casting message M to type T , and is justified by showing that M indeed
has type T .

Processes:

O,P,Q,R ::= process
out M N output
inp M (x:T);P input (x bound in P)
repeat inp M (x:T);P replicated input (x bound in P)
split M is (x1:T1, . . . , xn:Tn);P record splitting
match M is (N, y:T);P pair matching (y bound in P)
case M is ti(xi:Ti);Pi

i∈1..n tagged union case (ti distinct)
if M = N then P else Q conditional (new)
new (x:T);P name generation (x bound in P)
P | Q composition
stop inactivity

30 A. D. Gordon and R. Pucella

decrypt M is {x:T}N ;P symmetric decrypt (x bound in P)
decrypt M is {|x:T |}N−1 ;P asymmetric decrypt (x bound in P)
check M is N ;P nonce-checking
begin L;P begin-assertion
end L;P end-assertion
cast M is (x:T);P cast to nonce type
witness M :T ;P witness testimony
trust M is (x:T);P trusted cast

The processes out M N and inp M (x:T);P are output and input, respectively, along an asynchronous,
unordered channel M . If an output out x N runs in parallel with an input inp x (y);P , the two can interact
to leave the residual process P{y←N}, the outcome of substituting N for each free occurrence of y in P .
We write out x (M);P as a simple shorthand for out x M | P .

The process repeat inp M (x:T);P is replicated input, which behaves like input, except that each time an
input of N is performed, the residual process P{y←N} is spawned off to run concurrently with the original
process repeat inp M (x:T);P .

The process split M is (x1:T1, . . . , xn:Tn);P splits the record M into its n components. If M is (M1, . . . ,Mn),
the process behaves as P{x1←M1} · · · {xn←Mn}. Otherwise, it deadlocks, that is, does nothing.

The process match M is (N, y:U);P splits the pair (binary record) M into its two components, and checks
that the first one is N . If M is (N,L), the process behaves as P{y←L}. Otherwise, it deadlocks.

The process case M is ti(xi:Ti);Pi
i∈1..n checks the tagged union M . If M is tj(L) for some j ∈ 1..n, the

process behaves as P{xi←L}. Otherwise, it deadlocks.
The process if M = N then P else Q behaves as P if M and N are the same message, and otherwise as

Q. (This process is not present in the original calculus [21] but is a trivial and useful addition.)
The process new (x:T);P generates a new name x, whose scope is P , and then runs P . This abstractly

represents nonce or key generation.
The process P | Q runs processes P and Q in parallel.
The process stop is deadlocked.
The process decrypt M is {x:T}N ;P decrypts M using symmetric key N . If M is {L}N , the process

behaves as P{x←L}. Otherwise, it deadlocks. We assume there is enough redundancy in the representation
of ciphertexts to detect decryption failures.

The process decrypt M is {|x:T |}N−1 ;P decrypts M using asymmetric key N . If M is {|L|}Encrypt (K) and
N is Decrypt (K), then the process behaves as P{x←L}. Otherwise, it deadlocks.

The process check M is N ;P checks the messages M and N are the same name before executing P . If
the equality test fails, the process deadlocks.

The process begin L;P autonomously performs a begin-event labelled L, and then behaves as P .
The process end L;P autonomously performs an end-event labelled L, and then behaves as P .
The process cast M is (x:T);P binds the message M to the variable x of type T , and then runs P . In

well-typed programs, M is a challenge of type ` Challenge es, and T is a response type ` Challenge fs. This
is the only way to populate a response type.

The process witness M :T ;P simply runs P , but is well-typed only if M has the type T . This is the only
way to justify a trust M :T effect.

The process trust M is (x:T);P binds the message M to the variable x of type T , and then runs P . In
well-typed programs, this cast is justified by a previous run of a witness M :T ;Q process.

Next, we recall the notions of process safety, opponents, and robust safety introduced in Section 4. The
notion of a run of a process can be formalized by an operational semantics.

Safety:

A process P is safe if and only if
for every run of the process and for every L,

there is a distinct begin L event for every end L event.

Opponents and Robust Safety:

A process P is assertion-free if and only if
it contains no begin- or end-assertions.

Validating a Web Service Security Abstraction by Typing 31

A process P is untyped if and only if
the only type occurring in P is Un.

An opponent O is an assertion-free untyped process.
A process P is robustly safe if and only if

P | O is safe for every opponent O.

Our problem, then, is to show that processes representing protocols are robustly safe. We appeal to a
type and effect system to establish robust safety (but not to define it). The system involves the following
type judgments.

Judgments E ` J :

E ` � good environment
E ` es good effect es
E ` T good type T
E `M : T good message M of type T
E ` P : es good process P with effect es

We omit the rules defining these judgments, which can be found in [21]; our previous informal explanation
of types should give some intuitions.

We made two additions to the language as defined in [21], namely the empty record type () (and corre-
sponding empty record message ()), and the conditional form if M = N then P else Q. The empty record type
can be handled by simply extending the typing rules for records to the case where there are no elements. The
main consequence of this is that the type () will be isomorphic to the type Un, by the extended subtyping
rules. The extension of spi to handle the conditional is similarly straightforward, except that we need to
actually add a transition rule to the operational semantics, and a new typing rule to propagate the effects.
For completeness, we describe the additions here, with the understanding that they rely on terminology
defined and explained in [21]:

Extensions to Spi for the Conditional:

[if M = N then Ptrue else Pfalse] + As→ [PM=N] + As transition rule

(Proc If)
E `M : Top E ` N : Top E ` P : es E ` Q : fs

E ` if M = N then P else Q : es ∨ fs
typing rule

The type and effect system can guarantee the robust safety of a process, according to the following
theorem [21]:

Theorem 7 (Robust Safety). If x1:Un, . . . , xn:Un ` P : [] then P is robustly safe.

D. Proofs

D.1. Proof of Theorem 1

A consequence of the types translation for our calculus is that [[A]] is isomorphic to Un for all types A.
Formally,

Lemma 3. [[A]] <:> Un ` for all types A.

In practice, this means that we can replace [[A]] by Un in type derivations, and vice versa.
Some general remarks on typing are in order. A consequence of Lemma 3, as well as our general use of

types, reveals that we rely on typing exclusively to show security properties, not to establish standard safety
results. For instance, we do not use types to ensure that the type of the arguments supplied at method
invocation match the type of the parameters to the method. Indeed, the only channel type in our translation
has itself type Un.

In order to prove Theorem 1, we first establish some lemmas.

32 A. D. Gordon and R. Pucella

Lemma 4.

(1) If E ` v : A then Eprin , [[E]] ` [[v]] : [[A]].

(2) If E ` a : A and E0, [[E]] ` p : Prin and k /∈ dom(E0, [[E]]) then:

E0, [[E]], k:Un ` [[a]]pk : []

(3) If c ∈ Class and ` ∈ dom(methods(c)) then E0 ` Iclass(c, `) : [].

(4) If w ∈WebService then E0 ` Iws(w) : [].

Proof. (1) We prove this by induction on the height of the type derivation for E ` v : A:

- Case v = x: Since E ` x : A, we must have x:A ∈ E. By definition of the translation for environment,
x:[[A]] ∈ [[E]], hence Eprin , [[E]] ` x : [[A]], as required.

- Case v = null : We have E ` null : c. Since [[c]] = Union(null(), c(Un)) and [[null]] = null(), we have
Eprin , [[E]] ` null() : Union(null(Un), c(Un)), as required.

- Case v = new c(v1, . . . , vn): Since E ` v : A, where A = c, we have fields(c) = fi 7→ Ai
i∈1..n, and

E ` vi : Ai for all i ∈ 1..n. Let E′ = Eprin , [[E]]. By induction hypothesis, E′ ` [[vi]] : [[Ai]] for all
i ∈ 1..n. We can now derive:

E′ ` [[vi]] : [[Ai]] ∀i ∈ 1..n

E′ ` ([[v1]], . . . , [[vn]]) : ([[A1]], . . . , [[An]])
E′ ` [[v1]], . . . , [[vn]] : (Un, . . . ,Un)

E′ ` [[v1]], . . . , [[vn]] : Un

E′ ` c([[v1]], . . . , [[vn]]) : Union(null(Un), c(Un))

- Case v = p: Since E ` p : A (with A = Id), we have p ∈ Prin, hence p:Prin ∈ Eprin . Since [[Id]] = Prin,
we have Eprin , [[E]] ` p : Prin, as required.

(2) Again, we proceed by induction on the height of the type derivation for E ` a : A.

- Case a = v: We can apply the result of part (1). Since E ` v : A, then Eprin , [[E]] ` [[v]] : [[A]]. We can
derive:

E0, [[E]], k:Un ` k : Un

E0, [[E]] ` [[v]] : [[A]]
E0, [[E]] ` [[v]] : Un

E0, [[E]], k:Un ` out k [[v]] : []

- Case a = let x=a0 in b: We have E ` a0 : B for some B, and E, x:B ` b : A. Applying the
induction hypothesis, we derive E0, [[E]], k′:Un ` [[a0]]

p
k′ : [] and E0, [[E]], x:[[B]], k:Un ` [[b]]pk : []. Let

E′ = E0, [[E]], k:Un. We can now derive:

E′, k′:Un ` [[a]]pk′ : []
E′, k′:Un ` k′ : Un

E′, k′:Un, x:[[B]] ` [[b]]pk : []
E′, k′:Un, x:Un ` [[b]]pk : []

E′, k′:Un ` inp k′ (x:Un); [[b]]pk : []
E′, k′:Un ` [[a]]pk′ | inp k′ (x:Un); [[b]]pk : []

E′ ` new (k′:Un); ([[a]]pk′ | inp k′ (x:Un); [[b]]pk) : []

- Case a = if u = v then a0 else a1: We have E ` u : B, E ` v : B, E ` a0 : A, and E ` a1 : A.
Applying the induction hypothesis, we derive E0, [[E]], k:Un ` [[a0]]

p
k : [] and E0, [[E]], k:Un ` [[a0]]

p
k : [].

By (1), we also have E0, [[E]] ` [[u]] : [[B]] and E0, [[E]] ` [[v]] : [[B]]. This gives us E0, [[E]], k:Un ` if [[u]] =
[[v]] then [[a0]]

p
k else [[a1]]

p
k : [], as required.

- Case a = v.fj : We have E ` v.fj : Aj , where E ` v : c and fields(c) = fi 7→ Ai
i∈1..n. By (1), E0, [[E]] `

[[v]] : [[c]]. Let E′ = E0, [[E]], k:Un. First, let us derive that E′, y : Un ` split y is (x1:[[A1]], . . . , xn:[[An]]);

Validating a Web Service Security Abstraction by Typing 33

out k xj : []. Let E′′ = x1:[[A1]], . . . , xn:[[An]]. (We trim environments where possible to reduce clutter.)

E′, y : Un ` y : Un

E′ ` k : Un

E′, y : Un, E′′ ` xj : [[Aj]]
E′, y : Un, E′′ ` xj : Un

E′, y : Un, E′′ ` out k xj : []
E′, y : Un ` split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj : []

We can now derive:

E′ ` [[v]] : Union(null(Un), c(Un))
E′, y : Un ` stop : []
E′, y : Un ` split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj : []

E′ ` case [[v]] is null(y:Un); stop
is c(y); split y is (x1:[[A1]], . . . , xn:[[An]]); out k xj : []

- Case a = v.`j(u1, . . . , um): We have E ` v.`j(u1, . . . , um) : B, where E ` v : c, methods(c) =
`i 7→ (sig i, bi) i∈1..n, sigj = B(A1 x1, . . . , Am xm), and E ` uk : Ak for all k ∈ 1..m. By (1),
E0, [[E]] ` [[uk]] : [[Ak]] for all k ∈ 1..m. Let E′ = E0, [[E]], k:Un. First, let us derive that E′, y:Un `
out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : [].

E′, y:Un ` c ` : Un E′, y:Un ` (p, [[v]], [[u1]], . . . , [[un]], k) : Un

E′, y:Un ` out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : []

We can derive:

E′ ` [[v]] : Union(null(Un), c(Un))
E′, y:Un ` stop : []
E′, y:Un ` out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : []

E′ ` case [[v]] is null(y:Un); stop
is c(y); out c ` (p, [[v]], [[u1]], . . . , [[un]], k) : []

- Case a = w:`j(u1, . . . , um): We have E ` w:`j(u1, . . . , um) : B, where class(w) = c, owner(w) = q,
methods(c) = `i 7→ (sig i, bi) i∈1..n, sigj = B(A1 x1, . . . , Am xm), and E ` uk : Ak for all k ∈ 1..m.
By (1), E0, [[E]] ` [[uk]] : [[Ak]] for all k ∈ 1..m. Rather than giving the full type derivation for the
translation of a web service call, we outline the derivation of effects:

34 A. D. Gordon and R. Pucella

new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
// Effect: [check Public np]
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
out w (req(getnonce()), k1);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
inp k1 (res(getnonce(nq:Un)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
// Effect: [check Public np]
out w (p, {req(w, `([[u1]], . . . , [[un]]), t, n′

q)}Kpq , np, k2);
// Effect: [check Public np]
inp k2 (q′:Un, bdy :Un);
// Effect: [check Public np]
decrypt bdy is {res(plain)}Kpq

;
// Effect: [check Public np]
match plain is (w, rest :

(r:Res(w), t′:Un,Public Response [end res(p, q, w, r, t′)]));
// Effect: [check Public np]
split rest is (r:Res(w), rest′:

(t′:Un, n′
p:Public Response [end res(p, q, w, r, t′)]));

// Effect: [check Public np]
match rest ′ is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: [check Public np]
check np is n′

p;
// Effect: [end res(p, q, w, r, t)]
end res(p, q, w, r, t);
// Effect: []
case r is `(x); out k x
// Effect: []

(3) Recall that we assume that method bodies are well-typed, that is, we assume for c, `j with methods(c) =
`i 7→ (sig i, bi) and sigj = B(A1 a1, . . . , Am xm), that this:c, x1:A1, . . . , xm:Am ` bj : B. By clause (2)
above, this means that E0, this:[[c]], x1:[[A1]], . . . , xm:[[Am]], k:Un ` [[bj]]

p
k : []. Applying Lemma 3, we derive

E0, this:Un, x1:Un, . . . , xm:Un, k:Un ` [[bj]]
p
k : []. We can now easily derive the following:

E0 ` c ` : Un

E0, z:Un ` z : (Prin,Un, . . . ,Un)
E0, z:Un, p:Prin, this:Un, x1:Un, . . . , xn:Un, k:Un ` [[bj]]

p
k : []

E0, z:Un ` split z is (p:Prin, this:Un, x1:Un, . . . , xn:Un, k:Un); [[bj]]
p
k : []

E0 ` repeat inp c ` (z); split z is (p:Prin, this:Un, x1:Un, . . . , xn:Un, k:Un); [[bj]]
p
k : []

E0 ` Iclass(c, `) : []

(4) Let w ∈WebService, with owner(w) = q. First, note that the following derivation is admissible:

E0, E ` p : Prin E0, E ` a : Req(w) E0, E, r:Res(w) ` P : es

E0, E ` let r:Res(w)=callw(p, a);P : es

(The proof is a straightforward, if longish, type derivation.) Rather than giving the full type derivation
for the implementation of web service w, we outline the derivation of effects:

Validating a Web Service Security Abstraction by Typing 35

repeat inp w (bdy :Un, k1:Un);
// Effect: []
case bdy is req(getnonce());
// Effect: []
new (nq:Public Challenge []);
// Effect: [check Public nq]
out k1 (res(getnonce(nq)));
// Effect: [check Public nq]
inp w (p′:Un, cipher :Un, np:Un, k2:Un);
// Effect: [check Public nq]∏

p∈Prin if p = p′ then
// Effect: [check Public nq]
decrypt cipher is {req(plain)}Kpq ;
// Effect: [check Public nq]
match plain is (w, rest :(a:Req(w), t:Un,

Public Response [end req(p, q, w, a, t)]));
// Effect: [check Public nq]
split rest is (a:Req(w), t:Un, n′

q:Public Response [end req(p, q, w, a, t)]);
// Effect: [check Public nq]
check nq is n′

q;
// Effect: [end req(p, q, w, a, t)]
end req(p, q, w, a, t);
// Effect: []
let r:Res(w)=callw(p, a);
// Effect: []
begin res(p, q, w, r, t);
// Effect: [end res(p, q, w, r, t)]
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: []
out k2 (q, {res(w, r, t, n′

p)}Kpq
)

// Effect: []

Lemma 5. If ∅ ` a : A and p ∈ Prin and k /∈ dom(E0) then:

Ews , Eprin ` new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk) : []

Proof. This is a corollary of Lemma 4. Specifically, we can derive:

E0 ` Iclass(c, `) : [] (c,`)∈ClMeth

E0 ` Iclass : []
E0 ` Iws(w) : [] w∈WebService

E0 ` Iws : []
E0, k:Un ` [[a]]pk : []

E0 ` new (k:Un); [[a]]pk : []
E0 ` Iclass | Iws | new (k:Un); [[a]]pk : []

Ews , Eprin ` new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk) : []

We can now prove Theorem 1.

Theorem. If ∅ ` a : A and p ∈ Prin and k /∈ dom(E0) then the system

new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof. By Lemma 5,

Ews , Eprin ` new (Eclass , Ekeys); (Iclass | Iws | new (k:Un); [[a]]pk) : [].

Robust safety of the system follows by Theorem 7.

36 A. D. Gordon and R. Pucella

D.2. Proof of Theorem 2

Theorem. If ∅ ` a : A and p ∈ Prin and k /∈ dom(E0) then the system

new (Eclass , Ekeys); (Inet | Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof. Rather than giving a full proof, we point out the parts of the proof of Theorem 1 that need to be
updated. Essentially, we need to show that the new semantics for web method invocations is effect-free, and
similarly for the new implementation of web services. These occur in the proof of Lemma 4, part (2) and (4).

As we did in Lemma 4, rather than giving the full type derivation for the translation of a web service
call, we outline the derivation of effects:

new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
// Effect: [check Public np]
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
out w (CertVKp, np, req(getnonce()), k1);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
inp k1 (c:Un, res(getnonce(nq:Un)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
decrypt c is {|cert :(q′:Un,Decrypt Key(AuthMsg(q′)))|}VKCA−1 ;
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
match cert is (q, vkq :Decrypt Key(AuthMsg(q)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
// Effect: [check Public np]
out w (p, {|req(w, `([[u1]], . . . , [[un]]), t, q, n′

q)|}SKp , k2);
// Effect: [check Public np]
inp k2 (q′′:Un, bdy :Un);
// Effect: [check Public np]
decrypt bdy is {|res(plain:(w′:Un, r:Un, t′:Un, p′:Un,

Public Response [end res(p′, q, w′, r, t′)]))|}vkq−1 ;
// Effect: [check Public np]
match plain is (w, rest :(r:Res(w), t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
// Effect: [check Public np]
split rest is (r:Res(w), rest ′:(t′:Un, p′:Un,

Public Response [end res(p′, q, w, r, t′)]));
// Effect: [check Public np]
match rest ′ is (t, rest ′′:(p′:Un,Public Response [end res(p′, q, w, r, t)]));
// Effect: [check Public np]
match rest ′′ is (p, n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: [check Public np]
check np is n′

p;
// Effect: [end res(p, q, w, r, t)]
end res(p, q, w, r, t);
// Effect: []
case r is `(x); out k x
// Effect: []

For the new implementation of web service w, rather than giving the full type derivation, we outline the
derivation of effects:

Validating a Web Service Security Abstraction by Typing 37

repeat inp w (c:Un, np:Un, bdy :Un, k1:Un);
// Effect: []
case bdy is req(getnonce());
// Effect: []
decrypt c is {|p:Un, vkp:Decrypt Key(AuthMsg(p))|}VKCA−1 ;
// Effect: []
new (nq:Public Challenge []);
// Effect: [check Public nq]
out k1 (CertVKq , res(getnonce(nq)));
// Effect: [check Public nq]
inp w (p′:Un, cipher :Un, k2:Un);
// Effect: [check Public nq]
if p = p′ then
// Effect: [check Public nq]
decrypt cipher is {|req(plain:(w:Un, a:Un, t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]))|}vkp−1 ;
// Effect: [check Public nq]
match plain is (w, rest :(a:Req(w), t:Un, q′:Un,

Public Response [end req(p, q′, w, a, t)]));
// Effect: [check Public nq]
split rest is (a:Req(w),

t:Un, rest ′:(q′:Un,Public Response [end req(p, q′, w, a, t)]));
// Effect: [check Public nq]
match rest ′ is (q, n′

q:Public Response [end req(p, q, w, a, t)]);
// Effect: [check Public nq]
check nq is n′

q;
// Effect: [end req(p, q, w, a, t)]
end req(p, q, w, a, t);
// Effect: []
let r:Res(w)=callw(p, a);
// Effect: []
begin res(p, q, w, r, t);
// Effect: [end res(p, q, w, r, t)]
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: []
out k2 (q, {|res(w, r, t, p, n′

p)|}SKq)
// Effect: []

D.3. Proof of Theorem 3

Theorem. If ∅ ` a : A and p ∈ Prin and k /∈ dom(E0) then the system

new (Eclass , Ekeys); (Inet | Iclass | Iws | new (k:Un); [[a]]pk)

is robustly safe.

Proof. Rather than giving a full proof, we point out the parts of the proof of Theorem 1 that need to be
updated. Essentially, we need to show that the new semantics for web method invocations is effect-free, and
similarly for the new implementation of web services. These occur in the proof of Lemma 4, part (2) and (4).

As we did in Lemma 4, rather than giving the full type derivation for the translation of a web service
call, we outline the derivation of effects:

38 A. D. Gordon and R. Pucella

new (k1:Un, k2:Un, t:Un, np:Public Challenge []);
// Effect: [check Public np]
begin req(p, q, w, `([[u1]], . . . , [[un]]), t);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
out w (CertEKp, req(getnonce()), k1);
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]inp k1 (c:Un, cipher :Un, res(getnonce(nq:Un)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
decrypt c is {|cert :(q′:Un,Encrypt Key(AuthEncMsg(q′)))|}VKCA−1 ;
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
match cert is (q, ekq :Encrypt Key(AuthEncMsg(q)));
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
decrypt cipher is {|msg2 (q′:Un, nK :Un)|}DKp−1 ;
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
if q = q′ then
// Effect: [check Public np, end req(p, q, w, `([[u1]], . . . , [[un]]), t)]
cast nq is (n′

q:Public Response [end req(p, q, w, `([[u1]], . . . , [[un]]), t)]);
// Effect: [check Public np]
new (K:SKey(p, q, w));
// Effect: [check Public np]
witness K:SKey(p, q, w);
// Effect: [check Public np, trust K:SKey(p, q, w)]
cast nK is (n′

K :Private Response [trust K:SKey(p, q, w)]);
// Effect: [check Public np]
out w ({|msg3 (w, p, t,K, n′

K)|}ekq , np, {req(w, `([[u1]], . . . , [[un]]), t, n′
q)}K , k2);

// Effect: [check Public np]
inp k2 (bdy :Un);
// Effect: [check Public np]
decrypt bdy is {res(plain:(r:Res(w), t′:Un,

Public Response [end res(p, q, w, r, t′)]))}K ;
// Effect: [check Public np]
match plain is (r:Res(w), rest :(t′:Un,Public Response [end res(p, q, w, r, t′)]));
// Effect: [check Public np]
match rest is (t, n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: [check Public np]
check np is n′

p;
// Effect: [end res(p, q, w, r, t)]
end res(p, q, w, r, t);
// Effect: []
case r is `(x); out k x
// Effect: []

For the new implementation of web service w, rather than giving the full type derivation, we outline the

derivation of effects:

repeat inp w (c:Un, bdy :Un, k1:Un);
// Effect: []
case bdy is req(getnonce());
// Effect: []
decrypt c is {|p:Un, ekp:Encrypt Key(AuthEncMsg(p))|}VKCA−1 ;
// Effect: []
new (nq:Public Challenge []);
// Effect: [check Public nq]
new (nK :Private Challenge []);
// Effect: [check Public nq, check Private nK]
out k1 (CertEKq , {|msg2 (q, nK)|}ekp , res(getnonce(nq)));
// Effect: [check Public nq, check Private nK]

Validating a Web Service Security Abstraction by Typing 39

inp w (cipher1:Un, np:Un, cipher2:Un, k2:Un);
// Effect: [check Public nq, check Private nK]
decrypt cipher1

is {|msg3 (plain1:(w:Un, p′:Un,K:Top,
Private Response [trust K:SKey(p′, q, w)]))|}DKq−1 ;

// Effect: [check Public nq, check Private nK]
match plain1 is (w, rest :(p′:Un,K:Top,

Private Response [trust K:SKey(p′, q, w)]));
// Effect: [check Public nq, check Private nK]
match rest is (p, rest ′:(K:Top, n′

K :Private Response [trust K:SKey(p, q, w)]));
// Effect: [check Public nq, check Private nK]
split rest ′ is (K:Top, n′

K :Private Response [trust K:SKey(p, q, w)]);
// Effect: [check Public nq, check Private nK]
check nK is n′

K ;
// Effect: [check Public nq, trust K:SKey(p, q, w)]
trust K is (K ′:SKey(p, q, w));
// Effect: [check Public nq]
decrypt cipher2 is {req(plain2:(a:Req(w), t:Un,

Public Response [end req(p, q, w, a, t)]))}K′ ;
// Effect: [check Public nq]
split plain2 is (a:Req(w), t:Un, n′

q:Public Response [end req(p, q, w, a, t)]);
// Effect: [check Public nq]
check nq is n′

q;
// Effect: [end req(p, q, w, a, t)]
end req(p, q, w, a, t);
// Effect: []
let r:Res(w)=callw(p, a);
// Effect: []
begin res(p, q, w, r, t);
// Effect: [end res(p, q, w, r, t)]
cast np is (n′

p:Public Response [end res(p, q, w, r, t)]);
// Effect: []
out k2 {res(r, t, n′

p)}K′

// Effect: []

E. First-Class Web Services

The model of web services captured by our calculus in Section 3 does not consider web services to be values.
This reflects the fact that current WSDL does not allow for web services to be passed as requests or results.
On the other hand, a web service has a simple representation as a string, namely the URL used to access the
web service, and this string can be passed as a request or a result. Hence, it is possible, in a sense, to pass
web services as values given the current web services infrastructure. In this section, we explore an extension
of our object calculus that allows web services as first-class values. The main point here is to show that there
is no real difficulty in modelling this aspect of the web services infrastructure. Our main result is type safety.
We expect it would be straightforward to translate this extended calculus into the spi-calculus, but we do
not describe this in detail.

For the sake of keeping this section essentially self-contained, we give the full syntax and semantics of
the extended object calculus.

E.1. Syntax

We assume finite sets Prin, WebService, Class, Field , Meth of principal, web service, class, field, and method
names, respectively.

40 A. D. Gordon and R. Pucella

Classes, Fields, Methods, Principals, Web Services:

c ∈ Class class name
f ∈ Field field name
` ∈ Meth method name
p ∈ Prin principal name
w ∈WebService web service name

There are now three kinds of data type: Id is the type of principal identifiers, c ∈ Class is the type of
instances of class c, and WS (c) is the type of web services with implementation class c ∈ Class. A method
signature specifies the types of its arguments and result.

Types and Method Signatures:

A,B ∈ Type ::= type
Id principal identifier
c object
WS (c) web service

sig ∈ Sig ::= B(A1 x1, . . . , An xn) method signature (xi distinct)

As in Section 3, an execution environment defines the services and code available in the distributed
system.

Execution Environment: (fields,methods, owner , class)

fields ∈ Class → (Field fin→ Type) fields of a class
methods ∈ Class → (Meth fin→ Sig × Body) methods of a class
owner ∈WebService → Prin service owner
class ∈WebService → Class service implementation

The owner and implementation class of a web service need not be globally known. We can assume that
the representation of a web service w carries representations of its owner and its implementation class, which
class and owner simply read off. Since we assume web services are given, and we do not provide for ways to
actually create new web services, there is no loss of generality in taking this particular approach.

The syntax of method bodies and values is that of the original object calculus, with the differences that
web services are values, and that we do not assume that web service invocations require a fixed web service.

Values and Method Bodies:

x, y, z name: variable, argument
u, v ∈ Value ::= value

x variable
null null
new c(v1, . . . , vn) object
p principal identifier
w web service

a, b ∈ Body ::= method body
v value
let x=a in b let-expression
if u = v then a else b conditional
v.f field lookup
v.`(u1, . . . , un) method call
v:`(u1, . . . , un) service call
p[a] body a running as p

We again require a method body of the form p[a], meaning p running body a, to keep track of which
principal is running a method body in the upcoming operational semantics.

Validating a Web Service Security Abstraction by Typing 41

E.2. Operational Semantics

The operational semantics is defined by a transition relation, written a →p a′, where a and a′ are method
bodies, and p is the principal evaluating the body a.

Transitions:

(Red Let 1)
a→p a′

let x=a in b→p let x=a′ in b

(Red Let 2)

let x=v in b→p b{x←v}

(Red If)

if u = v then atrue else afalse →p au=v

(Red Field)
fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

(new c(v1, . . . , vn)).fj →p vj

(Red Invoke)(where v = new c(v1, . . . , vn))
methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n sigj = B(A1 x1, . . . , Am xm)

v.`j(u1, . . . , um)→p bj{this←v, xk←uk
k∈1..m}

(Red Remote)
owner(w) = q class(w) = c

w:`(u1, . . . , un)→p q[new c(p).`(u1, . . . , un)]

(Red Prin 1)
a→q a′

q[a]→p q[a′]

(Red Prin 2)

q[v]→p v

E.3. Type System

The judgments of our type system all depend on an environment E, that defines the types of all variables
in scope. An environment takes the form x1:A1, . . . , xn:An and defines the type Ai for each variable xi. The
domain dom(E) of an environment E is the set of variables whose types it defines.

Environments:

D,E ::= environment
∅ empty
E, x:A entry

dom(x1:A1, . . . , xn:An) , {x1, . . . , xn} domain of an environment

The following are the two judgments of our type system. They are inductively defined by rules presented
in the following tables.

Judgments E ` J :

E ` � good environment
E ` a : A good expression a of type A

We write E ` J when we want to talk about both kinds of judgments, where J stands for either � or a : A.
The following rules define an environment x1:A1, . . . , xn:An to be well-formed if each of the names

x1, . . . , xn are distinct.

Rules for Environments:

(Env ∅)

∅ ` �

(Env x)(where x 6∈ dom(E))
E ` �

E, x:A ` �

We present the rules for deriving the judgment E ` a : A that assigns a type A to a value or method
body a. These rules are split into two tables, one for values, and one for method bodies.

42 A. D. Gordon and R. Pucella

Rules for Typing Values:

(Val x)
E = E1, x:A,E2 E ` �

E ` x : A

(Val null)
E ` �

E ` null : c

(Val WS)
E ` � class(w) = c

E ` w : WS (c)

(Val Object)
fields(c) = fi 7→ Ai

i∈1..n E ` vi : Ai ∀i ∈ 1..n

E ` new c(v1, . . . , vn) : c

(Val Princ)
E ` �

E ` p : Id

Rules for Typing Method Bodies:

(Body Let)
E ` a : A E, x:A ` b : B

E ` let x=a in b : B

(Body If)
E ` u : A E ` v : A E ` a : B E ` b : B

E ` if u = v then a else b : B

(Body Field)
E ` v : c fields(c) = fi 7→ Ai

i∈1..n j ∈ 1..n

E ` v.fj : Aj

(Body Invoke)
E ` v : c methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n
sigj = B(A1 x1, . . . , Am xm) E ` uk : Ak ∀k ∈ 1..m

E ` v.`j(u1, . . . , um) : B

(Body Remote)
E ` v : WS (c)

methods(c) = `i 7→ (sig i, bi) i∈1..n j ∈ 1..n
sigj = B(A1 x1, . . . , Am xm) E ` ui : Ai ∀i ∈ 1..m

E ` v:`j(u1, . . . , um) : B

(Body Princ)
E ` a : A

E ` p[a] : A

We make the following assumption on the execution environment.

Assumptions on the Execution Environment:

(1) For each w ∈WebService, fields(class(w)) = CallerId : Id .
(2) No tagged expression p[a] occurs within the body of any method;

such expressions occur only at runtime, to track the call stack of principals.
(3) for each c ∈ Class and each ` ∈ dom(methods(c)),

if methods(c)(`) = (B(A1 x1, . . . , An xn), b),
then this:c, x1:A1, . . . , xn:An ` b : B.

We can establish the soundness of the type system of this extended object calculus by essentially the
same way we established the soudness of the type system of the original object calculus. Recall that a method
body is null-blocked if it is of the form null .fj , null .`(u1, . . . , un), let x=a in b (where a is null-blocked), or
q[a] (where a is null-blocked). A method body is stuck if a is not a value, a is not null-blocked, and there
is no a′ and p such that a →p a′. We write a →∗ a′ to mean that there exists a sequence a1, . . . , an and
principals p1, . . . , pn+1 such that a→p1 a1 →p2 · · · →pn an →pn+1 a′.

Theorem 8 (Soundness). If ∅ ` a : A, and a→∗ a′, then a′ is not stuck.

Proof. A straightforward adaptation of the proof of Theorem 6, via corresponding Preservation and Progress
theorems.

To illustrate the usefulness of first-class web services, consider the following simple example, where the fact
that web services can be passed as arguments to methods is quite natural. Suppose, as we did in Section 3, that
there are two principals Alice,Bob ∈ Prin, and a web service cal = http://mycalendar.com/CalendarService,

Validating a Web Service Security Abstraction by Typing 43

where we have class(cal) = CalendarServiceClass. The web service cal maintains an appointment calendar
for principals. It offers web methods to query a principal’s calendar for a free time slot, and to reserve time
slots. More precisely, the service has the following interface:

class CalendarServiceClass
Id CallerId
Bool Available(Id account ,Time from,Time to)
〈check if selected time slot if free for account〉

Void Reserve(Id account ,Time from,Time to)
〈reserve time slot for account〉

(We assume that the classes Bool , Time, and Void are provided in the execution environment. The details
of their implementation are irrelevant to our discussion.)

Suppose that Alice has an account on cal , and that she wants to make an appointment with a calendar-
enabled banking service—that is, a banking service that offers a web method for scheduling appointments
with a bank advisor via a calendar service. Consider a calendar-enabled version of the banking service
of Section 3. Let w = http://bob.com/BankingService, where we have owner(w) = Bob and class(w) =
BankingServiceClass. We add a web method MakeAppt to BankingServiceClass that takes as argument a
time period during which the appointment is sought, and a calendar service that the banking service can
query to confirm that a common free time slot is available between the client and the bank advisor. The
interface of the augmented banking service is as follows:

class BankingServiceClass
Id CallerId
Num Balance(Num account)

if account = 12345 then
if this.CallerId = Alice then 100 else null

else . . .
Time MakeAppt(Time from,Time to,WS (CalendarService) cs)

. . . cs.Available(CallerId , . . .) . . .

Hence, if Alice wants to make an appointment sometime within the next week, she could issue the web method
call w:MakeAppt(18/11/02:08:00, 23/11/02:17:00, cal). (We assume appropriate syntax for constants of type
Time.) During the evaluation of this web method invocation, the implementation of MakeAppt will make
calls to cal :Available to find a time slot suitable to Alice, and finally a call to cal :Reserve to reserve a time
slot. A principal with an account on a different calendar service c would call w:MakeAppt passing in c as the
calendar service.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
[2] M. Abadi, C. Fournet, and G. Gonthier. Secure communications implementation of channel abstractions. In 13th

IEEE Symposium on Logic in Computer Science (LICS’98), pages 105–116, 1998.
[3] M. Abadi, C. Fournet, and G. Gonthier. Secure communications processing for distributed languages. In IEEE

Computer Society Symposium on Research in Security and Privacy, pages 74–88, 1999.
[4] M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their compilation. In 27th ACM Symposium

on Principles of Programming Languages (POPL’00), pages 302–315, 2000.
[5] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and Computa-

tion, 148:1–70, 1999.
[6] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, C. Kaler, J. Klein, B. LaMacchia, P. Leach,

J. Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam, H. Prafullchandra, J. Shewchuk, and D. Simon.
Web services security (WS-Security), version 1.0. Available from http://msdn.microsoft.com/library/en-us/
dnglobspec/html/ws-security.asp, April 2002.

[7] D. Balfanz, D. Dean, and M. Spreitzer. A security infrastructure for distributed Java applications. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 15–26. IEEE Computer Society Press, 2000.

[8] T. Barclay, J. Gray, E. Strand, S. Ekblad, and J. Richter. TerraService.NET: An introduction to web services.
Technical Report MS–TR–2002–53, Microsoft Research, June 2002.

[9] K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services authentication. In 31st ACM Symposium
on Principles of Programming Languages (POPL’04), pages 198–209, 2004. An extended version appears as
Microsoft Research Technical Report MSR–TR–2003–83.

44 A. D. Gordon and R. Pucella

[10] A. D. Birrell. Secure communication using remote procedure calls. ACM Transactions on Computer Systems,
3(1):1–14, 1985.

[11] D. Box. Essential COM. Addison Wesley Professional, 1997.
[12] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte, and D. Winer. Simple

object access protocol (SOAP) 1.1. Available from http://www.w3.org/TR/SOAP, 2000.
[13] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240:177–213, 2000.
[14] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description language (WSDL) 1.2.

Available from http://www.w3.org/TR/2002/WD-wsdl12-20020709, 2002.
[15] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Securing SOAP e-services. International

Journal of Information Security (IJIS), 1(2):100–115, 2002.
[16] R. De Nicola, G. Ferrari, and R. Pugliese. Types as specifications of access policies. In Secure Internet Programming

1999, volume 1603 of Lecture Notes in Computer Science, pages 117–146. Springer, 1999.
[17] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on Information Theory,

IT–29(2):198–208, 1983.
[18] D. Duggan. Cryptographic types. In 15th IEEE Computer Security Foundations Workshop, pages 238–252. IEEE

Computer Society Press, 2002.
[19] P. Eronen and P. Nikander. Decentralized Jini security. In Proceedings of Network and Distributed System Security

2001 (NDSS2001), pages 161–172, 2001.
[20] Google. Google Web APIs (beta). http://www.google.com/apis, July 2002.
[21] A.D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols. In 15th IEEE Computer

Security Foundations Workshop, pages 77–91. IEEE Computer Society Press, 2002. An extended version appears
as Technical Report MSR–TR–2002–31, Microsoft Research, August 2002.

[22] A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal of Computer Security,
11(4):451–521, 2003.

[23] A.D. Gordon and A. Jeffrey. Typing correspondence assertions for communication protocols. Theoretical Computer
Science, 300:379–409, 2003.

[24] A.D. Gordon and R. Pucella. Validating a web service security abstraction by typing. In 2002 ACM Workshop on
XML Security, pages 18–29, 2002.

[25] A.D. Gordon and D. Syme. Typing a multi-language intermediate code. In 28th ACM Symposium on Principles
of Programming Languages (POPL’01), pages 248–260, 2001.

[26] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In Proceedings HLCL’98, volume
16(3) of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[27] D. Hoshina, E. Sumii, and A. Yonezawa. A typed process calculus for fine-grained resource access control in
distributed computation. In Fourth International Symposium on Theoretical Aspects of Computer Software
(TACS2001), volume 2215 of Lecture Notes in Computer Science, pages 64–81. Springer, 2001.

[28] IBM Corporation and Microsoft Corporation. Security in a web services world: A proposed architec-
ture and roadmap. White paper available from http://msdn.microsoft.com/library/en-us/dnwssecur/html/
securitywhitepaper.asp, April 2002.

[29] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ. In Object
Oriented Programming: Systems, Languages and Applications (OOPSLA ’99), pages 132–146. ACM Press, 1999.

[30] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems: Theory and practice.
ACM Transactions on Computer Systems, 10(4):265–310, 1992.

[31] U. Lang and R. Schreiner. Developing Secure Distributed Systems with CORBA. Artech House, 2002.
[32] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.
[33] P. Sewell. Global/local subtyping and capability inference for a distributed π-calculus. In 25th International

Colloquium on Automata, Languages, and Programming (ICALP’98), volume 1443 of Lecture Notes in Computer
Science, pages 695–706. Springer, 1998.

[34] E. G. Sirer and K. Wang. An access control language for web services. In Proceedings of the ACM Symposium on
Access Control Models and Technologies, pages 23–30. ACM Press, 2002.

[35] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. Secure network objects. In IEEE Computer Society
Symposium on Research in Security and Privacy, pages 211–221, 1996.

[36] T. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in the Taos operating system. ACM Trans-
actions on Computer Systems, 12(1):3–32, 1994.

[37] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In IEEE Computer Society Symposium
on Research in Security and Privacy, pages 178–194, 1993.

