
FastLane: Making Short Flows Shorter with Agile Drop Notification

David Zats�†, Anand Padmanabha Iyer�, Ganesh Ananthanarayanan§,
Rachit Agarwal�, Randy Katz�, Ion Stoica�, Amin Vahdat†

�University of California, Berkeley †Google §Microsoft Research

Abstract
The drive towards richer and more interactive web content
places increasingly stringent requirements on datacenter
network performance. Applications running atop these net-
works typically partition an incoming query into multiple
subqueries, and generate the final result by aggregating
the responses for these subqueries. As a result, a large
fraction — as high as 80% — of the network flows in such
workloads are short and latency-sensitive. The speed with
which existing networks respond to packet drops limits
their ability to meet high-percentile flow completion time
SLOs. Indirect notifications indicating packet drops (e.g.,
duplicates in an end-to-end acknowledgement sequence)
are an important limitation to the agility of response to
packet drops.

This paper proposes FastLane, an in-network drop noti-
fication mechanism. FastLane enhances switches to send
high-priority drop notifications to sources, thus inform-
ing sources as quickly as possible. Consequently, sources
can retransmit packets sooner and throttle transmission
rates earlier, thus reducing high-percentile flow completion
times. We demonstrate, through simulation and implemen-
tation, that FastLane reduces 99.9th percentile completion
times of short flows by up to 81%. These benefits come at
minimal cost — safeguards ensure that FastLane consume
no more than 1% of bandwidth and 2.5% of buffers.

Categories and Subject Descriptors C2.2 [Computer -
Communication Networks]: Network Protocols

Keywords Datacenter networks, Transport Protocols

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SoCC ’15, August 27 - 29, 2015, Kohala Coast, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3651-2/15/08. . . $15.00.
http://dx.doi.org/10.1145/2806777.2806852

1. Introduction
Modern data centers host a wide variety of applications
including web search, social networks, recommendation
systems, and database storage. The workloads encountered
in these applications have two common features. First, a
large fraction of the network flows are latency-sensitive
short flows; for instance, [12] reports that 80% of the flows
have less than 10KB of data. Second, applications produce
an output by aggregating the results from multiple short
flows and must wait for the last of these flows to finish. As
a result, these applications face an increasingly stringent
latency requirement, with “efficiency” often measured in
terms of 99.9 percentile of flow completion time [16, 17].

Motivated by above applications, a number of proto-
cols [8–10, 21, 29, 31] have been proposed to reduce the
flow completion time in data centers. While these proto-
cols reduce the likelihood of packet drops and perform
extremely well in reducing the flow completion time in
absence of packet drops, they resort to TCP-style mecha-
nisms (duplicate acknowledgements and timeouts) when
the packets are in fact dropped, leading to high flow com-
pletion times in such scenarios. Unfortunately, short flows
are particularly sensitive to packet drops. These flows may
not contain enough packets to generate three duplicate
acknowledgements or at the least increase the likelihood
of all packets in a window being dropped, thus leading to
timeouts. The problem is further exacerbated by the bursty
nature of the data center workloads and frequent packet
drops due to lack of deep buffered switches [8, 9].

How should the network react when these short flows
experience packet drops? Clearly, approaches that rely
on duplicate acknowledgements and timeouts will incur
delays much larger than the lifespan of short flows. Even
with tight timeouts [8, 30], our measurements (§4) show
that relying on indirect indicators (e.g., duplicates in an
end-to-end acknowledgement sequence) can increase short
flow completion times five-fold. End-to-end approaches
with improved window management [8, 9, 29] can also
be far from effective, requiring multiple round trip times
(RTTs) worth of delay to properly respond to congestion.
During this time period, many packet drops and timeouts
may occur. Finally, explicit rate control mechanisms [21,

 84

31] do not solve the problem either — these mechanisms
may in fact inflate the completion times of most datacenter
flows, requiring multiple RTTs for transmissions that could
have completed in just one [10, 12, 20].

This paper presents FastLane, a lightweight drop noti-
fication mechanism that can be integrated with existing
transport layer protocols for efficient handling of packet
drops. FastLane allows switches to directly transmit notifi-
cations to sources, quickly informing them of packet drops.
By generating and transmitting notifications at the location
of the packet drop, FastLane informs sources as quickly as
theoretically possible. This enables sources to respond to
the packet drop sooner, thus reducing high-percentile flow
completion times. Explicit drop notification in FastLane
also enables the sources to distinguish between out-of-
order delivery and packet loss. This in turn enables the
network to perform per-packet load balancing, exploiting
existing path redundancy [7, 20] to avoid hot-spots and
the associated delays.

The idea of in-network notification has already been
advocated by proposals like ICMP Source Quench [19]
and QCN [1]. FastLane differs from these proposals in
two main aspects. First, while the above proposals focused
primarily on congestion control, FastLane explicitly focuses
on the problem of efficient loss notification and recovery.
While the two problems are related, bursty traffic and small
buffers may lead to packet drops even with congestion
control mechanisms. Second, FastLane resolves a number
of challenges that resulted in limiting the adoption of
previous proposals. The most important among these are:
(i) making notifications semantically rich enough to allow
sources to identify the event that triggered it and which (if
any) packet was lost; (ii) ensuring that notifications arrive
at the source as quickly as possible; and (iii) incorporating
safety mechanisms, preventing notifications from causing
congestion collapse.

FastLane resolves the first challenge by including the
transport header of the original packet in drop notifica-
tions, providing sources sufficient information to identify
that drops had occurred and which packets were lost. To
resolve the second challenge, FastLane makes the design
decision of generating notifications in the data plane and
giving them the highest priority. We show that this can
be performed efficiently with minimal changes in the un-
derlying switch hardware. Finally, FastLane prevents no-
tifications from consuming excessive network resources
by installing (tunable) analytically-determined buffer and
bandwidth caps. FastLane has the additional benefit of
being transport-agnostic. We demonstrate that FastLane
can be easily integrated with existing transport layer pro-
tocols by extending both TCP and pFabric [10] to leverage
FastLane’s functionality.

We perform extensive evaluation of FastLane, integrated
with two transport layer protocols — TCP and pFabric [10].

Our evaluation, which includes both simulation and imple-
mentation, shows that FastLane can improve the 99.9th
percentile completion time of short flows by up to 81%
for TCP and by up to 52% for pFabric. FastLane achieves
these improvements even when we cap the bandwidth and
buffers used by notifications to as little as 1% and 2.5%,
respectively. Since increasing the network bandwidth and
switch buffers by 2.5% is significantly easier than reducing
the 99.9th percentile completion time by 52%, we believe
that this is an appropriate trade-off to make.

2. The Case for Drop Notification
Measurement studies from a variety of datacenters have
shown that workloads are dominated by short flows that
are often latency-sensitive. For instance, a measurement
study across ten datacenters [12] shows that more than
80% of the flows have size less than 10KB. A study from
Microsoft’s production datacenter also shows that latency-
sensitive flows typically range from 2–20KB in size [8].

Another peculiar property of data center workloads
is the partition-aggregate workflow, where applications
produce an output by aggregating results from multiple
short flows. On the one hand, such workflows induce
extreme traffic bursts on the network, resulting in frequent
packet drops. On the other hand, their completion time
is bound by the time it takes for the last flow to arrive.
When flows stall, applications such as web search must
typically make the difficult decision between delaying the
response and violating stringent user-perceived deadlines
[23] or returning early and degrading the quality of
the response [8]. Thus, network performance for such
workloads is often measured in terms of 99.9 percentile of
flow completion time [16, 17].

In this section, we argue that the above two properties
of data center workloads necessitate a carefully designed
packet drop notification mechanism to meet the stringent
latency requirements. We then make a case for direct notifi-
cation, the underlying design principle of FastLane. Having
settled the need for direct notification, we investigate ex-
isting direct notification schemes with a particular focus
on the design decisions of these schemes that dramatically
limit their effectiveness. Based on this investigation, we
propose a series of design principles for direct notification,
which we use in the next section to design FastLane.

2.1 Notifying Drops

As discussed above, short flows are particularly sensitive
to packet drops. In the absence of sufficiently many ac-
knowledgements, existing transport layer protocols [8–
10, 21, 29, 31] typically resort to timeouts for such flows.
The problem with timeouts is the undesirably high flow
completion time. Timeouts are purposely set to large val-
ues to increase the certainty that the missing packet has ac-
tually been dropped. Sources must set timeouts sufficiently

 85

high to account for queueing delays and unpredictable
server delays, else they will have spurious retransmissions.
To be able to set smaller timeouts, we must achieve both (i)
small queueing delays; and (ii) predictable server delays.

Reducing buffer sizes can partially mitigate large queue-
ing delays. However, packets may still observe unpre-
dictable queuing delays as they traverse through the many
hops between the source and destination. Achieving pre-
dictable server delays is even more challenging. Recent
work has shown that even highly-optimized servers can
take hundreds of microseconds to respond to requests in
the presence of bursts [22]— up to an order of magnitude
longer than the RTTs in unloaded data centers [10].

One way of avoiding timeouts is to allow switches
to notify sources when packet drops occur. This can be
achieved in two ways — the switch can notify the source
either by sending the notification to the destination, which
must echo it back to the source, or by sending it directly to
the source. A recent proposal, CP [14], explores the first
approach highlighting its ability to both avoid timeouts and
maintain the ACK clock. To the contrary, this paper focuses
on the second approach. Sending the notification directly
to the source avoids the additional overheads incurred by
forwarding the notification to the destination. Specifically,
direct notification avoids potentially high latencies from
queuing delays along the path to the destination and
the additional processing time at the destination. Our
evaluation (§4) shows that avoiding this overhead can lead
to significant performance improvements in high percentile
flow completion times for typical workloads and network
utilizations.

2.2 Existing Alternatives

Using direct notification for improving flow completion
time was proposed by ICMP Source Quench and Quantized
Congestion Notification (802.1Qau) [1, 19]. To the best of
our knowledge, both have failed to gain widespread adop-
tion, and Source Quench has since been deprecated. Here
we investigate why these proposals were ineffective at re-
ducing high percentile completion times in datacenters.
We use the insights gained to propose a series of design
principles that must be satisfied for direct notification to
be effective.

2.2.1 ICMP Source Quench

Switches used ICMP source quench to signal congestion
to the source. A switch experiencing congestion gener-
ates and sends ICMP messages to sources requesting them
to reduce their transmission rates. The quench message
contained the first 8 bytes of the offending packet’s trans-
port header so the source could determine which flow to
throttle.

The advantage of this approach is that it enabled
switches to generate source quench messages as frequently
as their control plane supports. The specification did not

Figure 1: 99.9th percentile flow completion times.

have to concern itself with the generation rates of different
switch hardware. However, conditions under which such
messages were sent were poorly defined, and the message
itself did not contain any information as to what triggered
it. The latter is a main disadvantage, as it was impossible
for sources to identify whether the notification was sent
in response to a packet drop or building congestion. As
a result, when Linux supported Source Quench (15 years
ago), it responded to those messages in the same way as it
does to ECN [28]. It reduced the congestion window but
it waited for 3 duplicate acknowledgements or a timeout
to retransmit the packet.

Source quench messages suffered from two other prob-
lems. Due to having the same priority as the offending data
packet, quench messages often took a long time to arrive at
the source, thus diminishing potential gains [11]. Further-
more, there were no safeguards to avoid overconsumption
of resources during extreme congestion.

To quantify the impact of these design decisions, we
evaluated Source Quench using the workload in §4. In
this workload, we have bursts of short flows (up to 32KB
in length) and long flows (1 MB in length). Figure 1
shows the 99.9th percentile completion times for the
short flows. We see that while Source Quench does not
perform significantly better than TCP, an idealized drop
notification mechanism that does not have limitations of
Source Quench could reduce high-percentile completion
times by 81%.

2.2.2 Quantized Congestion Notification

Quantized Congestion Notification (QCN) is a direct notifi-
cation scheme proposed as part of the data center bridg-
ing protocols [1]. With QCN, switches send notifications
directly to sources, informing them the extent of the con-
gestion being experienced. Upon receiving notifications,
sources reduce the rate of transmission, based on the
amount of congestion reported. Sources then periodically
increase their transmission rates until another notification
is received.

The key limitation of QCN is that rate-limiting is per-
formed in the NIC. This has the following problems: (i)
transport is unaware of congestion being experienced and
cannot make more informed decisions (e.g., MPTCP select-
ing another path [27]), (ii) QCN cannot discern whether

 86

acknowledgments are being received, and must instead
rely on a combination of timers and bytes transmitted to de-
termine when to raise the transmission window, and (iii) in
practice NICs have an insufficient number of rate limiters,
so flows may be grouped together, causing head-of-line
blocking [8]. In fact, QCN can degrade TCP performance
so significantly that prior work recommends enabling QCN
only in heterogeneous environments where it is beneficial
to control unresponsive flows (e.g., UDP) [15].

2.3 Direct Notification Design Principles

Based on the lessons learned from digging deeper into
the advantages and the disadvantages of the ICMP Source
Quench and the QCN protocols, we have distilled a set of
design principles for direct notifications:

1. Notifications (and the triggers that generate them)
must be well-specified: When a notification does not
make it clear which packet triggered it and whether the
original packet was dropped, sources are left guessing
the appropriate action to take. If sources respond
conservatively by waiting for an indirect indicator (i.e.,
3 duplicate acknowledgements or a timeout), flows
will suffer large delays. If sources respond aggressively,
retransmitting the packet, they risk increasing network
load aggravating congestion.

2. Notifications must be created in the data plane:
When the network is congested, switches may have
to generate notifications for many flows within a short
time. If notifications are created by the control plane,
they may overwhelm it in meeting the generation
requirements of the protocol. Ideally, a notification
could be generated using simple modifications on the
original packet, thus ensuring quick generation in the
data plane.

3. Notifications must be transmitted with high prior-
ity: Queuing delays at each hop can be much larger
than uncongested network RTTs. Transmitting notifi-
cations at high priority avoids these delays, informing
the source as quickly as possible. Ideally, the notifi-
cation will be extremely small and prioritizing them
will not significantly delay the transmission of already
enqueued data packets.

4. Safeguards must ensure that notifications do not
aggravate congestion events: The transmission of
high-priority notifications takes resources away from
other traffic. We must ensure that notifications do not
consume too many resources, aggravating congestion
events. In the presence of persistent congestion, notifi-
cations should be dropped and sources should timeout,
ensuring the stability of the network.

5. Notifications must be sent to the transport layer:
Lower-layer mechanisms for regulating transmission
rates do not have sufficient flow-level information to

make informed decisions about the state of congestion.
As a result, they must employ heuristics, possibly harm-
ing high-percentile flow completion times. Moreover,
by hiding congestion/drop information from transport,
they prevent it from making the best decision possible.

While simple, these principles are fundamental for
achieving predictable flow completion times. ICMP Source
Quench does not satisfy (see Table 1) Design Principles
1-4 and QCN does not satisfy principles 3-5. In the next
section, we discuss how the design of FastLane adheres to
these principles.

Principle 1 2 3 4 5
Source Quench × × × × �

QCN
� � × × ×

FastLane
� � � � �

Table 1: Design principles satisfied by Source Quench,
QCN, and FastLane.

3. Design of FastLane
In this section, we begin with an overview of FastLane.
Next, we delve into the details of FastLane’s notifications.
We show that they provide pinpoint information to the
source, consume very few network resources, and can
be generated with low latency. Later, we describe the
safeguards FastLane employs to ensure that notifications
do not consume excessive resources during periods of
extreme congestion. We conclude this section by discussing
the transport modifications required to support FastLane.

3.1 Overview

When multiple sources share a path, the queues of a switch
on it may start to fill. Initially, the switch has sufficient
resources to buffer arriving packets. Eventually, it runs out
of capacity and must drop some packets. This is where
FastLane takes action. For every dropped packet, it sends a
notification back to the source, informing it which packet
was lost.

To provide the source with sufficient information to
respond effectively, the notification must contain at least
(i) the transport header and length of the dropped packet
and (ii) a flag that differentiates it from other packets. The
notification is sent to the source with the highest priority,
informing it of the drop as quickly as possible. Upon
receiving this notification, the source determines precisely
what data was dropped and retransmits accordingly.

During periods of congestion, it may be best to post-
pone retransmitting the dropped packet. Section 3.4 de-
scribes how transports decide when to retransmit. To pro-
tect against extreme congestion, FastLane also employs
safeguards, capping the bandwidth and buffers used by
notifications (Section 3.3).

 87

Figure 2: Transforming packets into notifications.

3.2 Generating Notifications

Drop notifications must provide sources with sufficient
information to retransmit the dropped packet (Principle
1). To achieve this goal, they should include (i) a flag
/ field differentiating them from other packets, (ii) the
source and destination IP addresses and ports denoting
the appropriate flow, (iii) the sequence number and packet
length to denote which bytes were lost, and (iv) the
acknowledgement number and control bits so the source
can determine the packet type (i.e., SYN, ACK, FIN).

A naive approach to generating notifications would
involve the control plane’s general-purpose CPU. But the
control plane could become overwhelmed when traffic
bursts lead to drops, generating many notifications within
a short duration.

Instead, we developed a series of simple packet trans-
formations that can quickly be performed in the data plane
(Principle 2). The transformations to create a FastLane no-
tification are depicted in Figure 2. We start with the packet
to be dropped and then (i) flip the source and destination
IP address, (ii) set the IP TOS field, and (iii) truncate the
packet, removing all data past the TCP header. We then
forward the packet on to the input port from which it
arrived. The input port assigns and transmits the packet
with the highest priority (Principle 3). While we expect
that this approach would be performed in hardware, we
note that transforming a packet only takes 12 lines of Click
code [24].

Our transformations need to provide one more piece
of information - the length of the original packet. We
have two options for accomplishing this (i) we can avoid
modifying the total length field in the IP header, keeping
it the same as the original packet, or (ii) we can create a
TCP option that contains the length and is not truncated.
FastLane implements the former approach in this paper.

This approach relies solely on simple packet manipu-
lation. Prior work has demonstrated that such operations
can be performed very quickly in the data plane [13]. Ad-
ditionally, sending the packet back on the input port, while
not strictly necessary, avoids the need to perform an addi-
tional IP lookup. Lastly, as the IP header checksum is a 16
bit one’s complement checksum, flipping the source and
destination IP addresses does not change its value. We can
simply update it incrementally for the changes in the TOS
field.

3.3 Controlling Resource Consumption

Notifications sent in response to drops can contribute to
congestion in the reverse path. They take bandwidth and
buffers away from regular packets, exacerbating conges-
tion events. As FastLane prioritizes notifications so they
arrive as quickly as possible, safeguards must be in place
to ensure that they do not harm network performance.

Our safeguards take the form of bandwidth and buffer
caps (Principle 4). To understand how to set these caps,
we must analyze both average and short-term packet loss
behavior and the resulting increase in notification load. A
high-level goal when setting these caps is for notifications
to be dropped when the network is experiencing such
extreme congestion, that the best option is for sources to
timeout.

3.3.1 Controlling Bandwidth

To understand how much bandwidth should be provisioned
for drop notifications, we analyze the impact that average
packet drop behavior has on notification load. Through
this approach, we can bound worst-case bandwidth use.

Given a drop probability, p, we calculate the fraction of
the load used by notifications as:

ln = psn/(sr+ psn), (1)

where sr is the average size of a regular (non-notification)
packet and sn is the size of the notification. To obtain a
quantitative result, we assume that packets are 800 B long
and notifications are 64 B long. We choose the packet
size based on reports from production datacenters [12].
Based on these assumptions, we see that just 1% of the
load would be used by notifications if 12% of the packets
were being dropped. As a 12% drop rate would cause
TCP’s throughput to plummet, we cap the links of every
switch, clocking out notifications at a rate limited to 1%
of the capacity of the link. We ensure that our approach is
work conserving – both FastLane’s notifications and regular
traffic use each other’s spare capacity when available.

When FastLane’s notifications are generated faster than
they are clocked out, the buffers allocated to them start
to fill. Once these buffers are exhausted, notifications
are dropped. We argue that at this point, the network
is so congested that letting the drop occur and triggering
a timeout is the best course of action for returning the
network to a stable state. We show how to size the buffers
used by notifications next.

3.3.2 Controlling Buffers

Traffic bursts may lead to many packets being dropped
over short timescales. As a result, many drop notifications
may be created and buffered at the switch. We need
to determine how much buffering to set aside for drop
notifications, so we can leave as much as possible for
regular transmissions. To do this, we consider a variety

 88

IP	
SRC	

IP	
DST	

TOS	
(0x0)	

Transport	
Header	 Payload	

IP	
SRC	

IP	
DST	

TOS	
(0x4)	

Transport	
Header	

 |= 0x04

Figure 3: The fraction of a switch’s buffers used by notifi-
cations when ports receive bursts simultaneously.

of factors, including burst size and how many bursts can
arrive simultaneously at a switch.

We begin by looking at a single burst. In the worst case,
there may be no buffering available to absorb the packets
of the burst, and each dropped packet will generate a
notification. Then the number of bytes necessary to store
the resulting notifications is approximated as follows:

sb× sn/sr×(1−1/pin), (2)

where sb is the size of the burst, sn is the size of the
notification, sr is the size of the average regular data packet
and pin is the number of ports simultaneously sending
to the same destination. The first part of this equation
calculates how many notifications (in bytes) would be
created if all of the packets in the burst were dropped.
The second part of the equation accounts for the fact that
the port receiving the burst is simultaneously transmitting
packets. This means that sb / pin bytes will sent by the
output port while receiving the burst. They will not be
dropped and notifications for them will not be generated.

Multiple bursts may arrive at the same switch simulta-
neously. For each one, we will need to store the number
of bytes specified by Equation 2. However, the same input
port cannot simultaneously contribute to multiple bursts.
When combined with Equation 2, this means that assign-
ing an input port to a new burst reduces the number of
notifications generated by the previous one.

To provide some intuition for the implications of this
property, we plot the fraction of buffers consumed when
varying numbers of a switch’s ports simultaneously receive
bursts. For this calculation we assume (i) burst sizes of
160KB, doubling the typical burst size reported by prior
work [8] and (ii) a 48-port switch with 128KB per port as
seen in production TOR switches [2].

In Figure 3, we depict the fraction of the switch’s buffers
consumed when varying numbers of its ports receive
simultaneous bursts. When calculating these values, we
assume all input ports are used and are spread evenly
across the bursts.

From this figure, we observe that increasing the number
of ports that are simultaneously receiving bursts beyond a
certain point decreases the number of drops and hence
the number of notifications generated. To understand
why this happens, we look at Equation 2. As the number
of simultaneous burst increases, the number of ports

contributing to each goes to 1, driving the number of
bytes used by notifications to zero.

Based on this analysis, we see that allocating 2.5%
of switch buffers should be sufficient to support drop
notifications. In our evaluation we use a cap of 2.5%×
128KB = 3.2KB. However, we note that FastLane is still
useful even when its buffer allocation is exhausted and
some notifications are dropped. Environments with strict
deadlines will see a larger fraction of flows complete
on time [21, 31]. Scenarios with hundreds of sources
participating in Incast will complete faster because there
will be fewer rounds of timeouts and synchronized pull-
backs.

3.4 Transport Modifications

Now that we have described how to generate notifications
safely and efficiently, we turn our attention to the transport
modifications required to make use of them (Principle 5).
Here, we discuss how TCP uses notifications to improve
high-percentile flow completion times. Later we present
our proposed modifications to pFabric.

3.4.1 TCP

Our modifications to TCP leverage notifications to (i)
quickly retransmit dropped packets and (ii) support multi-
path transmission.

Retransmission and Rate Throttling: The goal of Fast-
Lane is to enable transport protocols to quickly identify
and retransmit dropped packets. However, in certain cases,
retransmitting as quickly as possible may aggravate con-
gestion events. In the presence of persistent congestion,
retransmitted packets may be dropped at the point of con-
gestion, over and over again, creating a ping-pong effect.
This wastes both upstream bandwidth and buffers and is
hence undesirable.

Our modifications to TCP must strike a balance between
retransmitting dropped packets as quickly as possible
and delaying transmission to mitigate congestion events.
Addressing this problem for Control Packets (i.e., SYN, FIN,
ACK) is simple. We retransmit them immediately as they
are small and hence unlikely to significantly contribute to
congestion1.

The retransmission of data packets is more challenging
to address. Ideally, we would wait precisely the amount
of time necessary to avoid a packet drop before retrans-
mitting. Unfortunately, given the complex dynamics of
the network in addition to unpredictable server delays,
determining the wait time is very difficult. Instead, we
propose a simpler approach. We measure the ping-pong

1 Cases where control packet retransmission significantly adds to conges-
tion are extreme. In this situation, we rely on the bandwidth and buffer
caps to drop notifications, forcing timeouts and returning the network to
a stable state.

 89

behavior to determine how much to throttle the number
of simultaneous retransmissions.

Every TCP source maintains a list of entries for pack-
ets being retransmitted, sorted by their sequence number.
Here, retransmitted packets are those which are unac-
knowledged and for which notifications have been received
since the last timeout. Entries in this list are annotated
with the number of retransmission attempts entry.retx as
well as a flag indicating whether a packet is being retrans-
mitted entry.issent. The source also maintains two variables
sim_ret x and bound_sim. sim_ret x tracks the number
of retransmissions in flight, while bound_sim sets the up-
per bound. Similarly to TCP’s congestion recovery scheme,
on the first drop notification triggering recovery, we set
bound_sim to α= cwnd

2
. For every drop notification while

in recovery mode, we exponentially decrease bound_sim
according to the following equation:

bound_sim←α/max(ent ries.ret x)

We then traverse the list, in order of sequence number, re-
transmitting packets for which ent r y.issent is false until
sim_ret x ≥ bound_sim. As acknowledgments for retrans-
mitted packets arrive, reducing sim_ret x , additional pack-
ets in the list are retransmitted. When all of the packets in
the list are acknowledged, the source exits recovery. The
algorithm for processing drop notifications is presented in
1.

Algorithm 1 Maintains a list of entries for dropped packets
If entry.seqno exists in list

ent r y.ret x ← ent r y.ret x+1
ent r y.issent← 0
sim_ret x ← sim_ret x−1

Else
create new entry for seqno
ent r y.ret x ← 1
ent r y.issent← 0
insert entry into list

bound_sim←α/max(ent ries.ret x)

For entry in list
If sim_ret x < bound_sim && ent r y.issent is 0

retransmit packet having ent r y.seqno
ent r y.issent← 1
sim_ret x ← sim_ret x+1

For clarity, we omit the following functionality. As TCP
relies on cumulative acknowledgements, we must always
resend the packet with the smallest sequence number to
ensure forward progress. This means that even if sim_ret x
equals bound_sim, we must retransmit the first packet
whenever a notification arrives for it. We achieve this by
allowing sim_ret x to grow above bound_sim when it is
necessary to satisfy this constraint.

Supporting Multiple Paths: The cumulative nature of ac-
knowledgments makes it challenging to extend TCP to ef-
fectively use multiple paths. Cumulative acknowledgments
do not specify the number of packets that have arrived
out of order. This number is likely to be high in multipath
environments (unless switches restrict themselves to flow
hashing). Packets received out of order have left the system
and are no longer contributing to congestion. Thus this in-
formation would allow TCP to safely inflate its congestion
window and hence achieve faster completion times.

To address this problem, we introduce a new TCP option
that contains the number of out-of-order bytes received
past the cumulative acknowledgment. When a source
receives an acknowledgment containing this option, it
accordingly inflates the congestion window. This allows
more packets to be transmitted and reduces dependence
on the slowest path (i.e., the one whose data packet was
received late).

How much the congestion window should be increased
depends on whether the acknowledgment is a duplicate.
If the acknowledgement is new, then the window should
be inflated by number of out-of-order bytes stored in the
TCP option. If the acknowledgment is a duplicate, then
the window should be inflated by the maximum of the
new out-of-order value and the current inflation value.
This ensures correct operation when acknowledgments
themselves are received out-of-order.

3.4.2 pFabric

pFabric is a recent proposal that combines small switch
buffers, fine-grained prioritization, and small RTOs to
improve high percentile flow completion times [10]. To
leverage the multiple paths available in the datacenter,
pFabric avoids relying on in-order delivery. Instead it uses
SACKs to determine when packets are lost and timeouts to
determine when to retransmit them.

When a FastLane notification arrives, we have pFabric
store it in a table, just like TCP. But, the response to no-
tifications is based on the congestion control algorithm
of pFabric. Before resending any data packets, the source
sends a probe to the destination. The probe packet is used
as an efficient way to ensure that congestion has passed.
Once the probe is acknowledged, the source begins resend-
ing up to bound_sim packets. In this case, bound_sim
starts at 1 whenever a notification arrives, increasing ex-
ponentially with every successful retransmission, in effect
simulating slow start.

From these examples, we see how different transport
protocols can use drop notifications in different ways. In
the next section, we describe our implementation.

4. Evaluation
This section evaluates the performance of FastLane under
a wide variety of network configurations and application

 90

workloads — varying short flow sizes from 2KB to 32KB,
network utilization from 20% to 80%, the fraction of total
load contributed to by short flows from 10% to 50%, buffer
sizes from 16KB to 128KB, and the resource caps imposed
on FastLane from 0.25× to 2× of those computed in §3.

We evaluate the following protocols in this section: (i)
TCP, using NewReno [18] (ii) TCP-Codel, using an early
marking scheme to reduce buffer bloat [25], (iii) TCP-
Quench, using ICMP source quench messages triggered
by Codel, (iv) TCP-Codel-FL-FH, integrating FastLane
and using the existing flow-hashing based load balancing
scheme with TCP-Codel, (v) TCP-Codel-FL-PS, the same
as TCP-Codel-FL-FH, but with packet scatter to more
evenly balance load, (vi) TCP-Codel-CP, the same as TCP-
Codel-FL-PS, but with notifications sent to the receiver
and echoed back as in CP [14], (vii) DCTCP, using fine-
grained marking and rate reduction to reduce buffer
consumption [8], (viii) pFabric, using shallow buffers,
fine-grained timeouts, and fine-grained prioritization to
reduce flow completion times [10], and (ix) pFabric-FL,
using FastLane to assist pFabric in preventing timeouts. For
all protocols, we send data in the first RTT, similar to TCP
FastOpen [26].

4.1 Methodology

We now describe the network and protocol configuration,
and application workloads used in our evaluation.

Network Configurations. Our NS-3 [5] based simulator
uses a 128-server FatTree topology, with an oversubscrip-
tion factor of 4. The network has 10 Gig links with 128KB
per port when running TCP-based protocols and 64KB
per port when running pFabric. These numbers are based
on the amount of buffering typically available in TOR
switches [2] and pFabric’s buffer calculation [10], respec-
tively. Based on [22], we model server processing delays
as taking 5μs per packet, processing up to 16 packets in
parallel.

For our Click-based implementation, we use a 16-server,
full bisection bandwidth, FatTree topology running on
Emulab [4]. Each link in the topology is 1 Gig. Given
the reduced link speeds, we scale buffers to 64KB per port.

Timeouts. For our simulations, we set the timeout for TCP-
based protocols to be 1ms and for pFabric to be 250μs.
1ms timeouts for TCP-based protocols is considered ag-
gressive based on prior work [8]; setting 250μs timeouts
for pFabric balances pFabric’s desire for small timeouts
with the practical limitations of timeout generation and
unpredictable server delays [22, 30]. However, for our
Click-based implementation, we use the traditional data-
center timeout value of 10ms [8].

Notifications and Load balancing. When using FastLane,
we institute bandwidth and buffer caps on notifications.
Based on our analysis in §3, we cap the bandwidth to

1% and the buffers to 2.5% of 128KB = 3.2KB. For load
balancing, we use flow hashing when in-order delivery is
required (i.e., for TCP) and use packet scatter otherwise.

Application workflows, short flows and long flows. All
experiments use request-response workflows. Requests are
initiated by a 10 byte packet to the server. We classify
requests into two categories: short and long. Short requests
result in a response that can be a flow of size 2, 4, 8, 16,
or 32KB, with equal probability, as typically observed in
datacenters [8]. Similar to partition-aggregate workflows,
the sources initiate small requests in parallel, such that
the total response size is 32 KB, 64KB, 96KB, 128KB, or
160KB with equal probability. Note that 160KB / 2KB =
80 senders, twice the number of workers typically sending
to the same aggregator [8]. Long requests generate a
response that is 1MB in length and follow an all-to-all
traffic pattern [8].

4.2 Simulation Results

We start by evaluating, in §4.2.1, the performance of
FastLane across a range of utilizations (defined as as the
average load on the core) for a workload where 10% of
the load is caused by short request-response workflows
and 90% of the load is caused by long workflows. This is
the distribution typically seen in production datacenters
[12]. Then, in §4.2.2, we keep the utilization constant at
60% and vary the fraction of the load caused by the short
request-response workflows. Finally, in §4.2.3, we evaluate
FastLane’s sensitivity to (i) bandwidth and buffer caps, (ii)
smaller buffer sizes, and (iii) varying amounts of server
latency.

4.2.1 Varying Utilization

Figure 4 shows the 99.9th percentile flow completion times
for all the evaluated protocols, for network utilizations of
20% and 80%; results for other utilizations are very similar.
We observe that for the evaluated workloads and flow sizes:
(i) TCP-Quench, TCP-Codel, and DCTCP achieve similar
flow completion times; and (ii) FastLane effectively assists
TCP-Codel and pFabric.

Note that, for most protocols, the high-percentile flow
completion times for short flows do not increase signifi-
cantly as the utilization increases from 20% to 80%. In-
tuitively, the protocols other than TCP are successful at
reducing buffer utilization for long flows. As a result, while
we observed a significant increase in average completion
time of long flows, the high-percentile flow completion
times for short flows do not change significantly since the
short flows represent to at most 8% of the utilizaiton.

Quantitatively, we see that at 20% utilization, using
FastLane with packet scatter reduces the 2KB flow com-
pletion times for TCP-Codel from 1.12ms to 0.21ms (an
81% reduction) and for pFabric from 0.38ms to 0.18ms

 91

(a) Flow Completion times for short flows at 20% utilization

(b) Flow Completion times for short flows at 80% utilization. Note: TCP’s 99.9th percentile flow completion
is often > 2 ms.

Figure 4: 99.9th percentile flow completion time for varying network utilization.

(a 52% reduction). At 80% utilization, the respective im-
provements are very similar.

From Figure 4, it may seem as though packet scatter
does not provide significant benefits over flow hashing (see
TCP-Codel-FL-PS and TCP-Codel-FL-FH). This is primarily
due to the short flow sizes — if we turn our attention to
the long 1 MB flows, we notice that FL-PS reduces their
average completion times by 62%. Since pFabric already
employs packet scatter, FastLane does not effect its long
flow performance, other than at 80% utilization where it
reduces average completion times by up to 38%.

Also note, from Figure 4, that the direct notification of
FastLane and indirect notification of CP offer similar per-
formance benefits for this particular setup. However, direct
notification can offer significant performance benefits in
many real-world scenarios. For example, when the drop oc-
curs on a heavily congested path, sending the notification
along this same path to the receiver significantly increases
the time taken to inform the source, inflating flow com-
pletion times. Paths can experience heavy congestion due
to many reasons including uneven load balancing, topo-
logical asymmetries, and failures. In Figure 5, we evaluate
the performance of FastLane against CP in presence of one

such event — the failure of a core to agg link, degrading it
from 10Gbps to 1Gbps. In this Figure, we see that 99.9th
percentile flow completion times can reduce by an addi-
tional 82% when notifications are sent directly instead of
being forwarded to the receiver.

Based on results in Figure 4, we focus on FastLane’s
ability to reduce flow completion times of both TCP-Codel
and pFabric in the remainder of the section. However, as
discussed earlier, FastLane is indeed intended to assist any
transport protocol for efficient handling of packet drops.

Figure 5: Reduction in CP’s 99.9th percentile flow comple-
tion time.

 92

4.2.2 Varying Fraction

We now evaluate the performance of FastLane with total
load fixed to 60% and the short flows contributing to a
larger fraction of the network load (see Figure 6(a) and
Figure 6(b)). Even when 50% of the load is due to short
flows, FastLane provides significant benefit to TCP-Codel
(e.g. FL-PS reduces the 99.9th percentile completion times
of both 2 and 4KB flows by over 70%). And FastLane’s ben-
efits for 32KB flows increase under this traffic mix because
the more bursty workload leads more flows to experience
timeouts, providing FastLane more opportunities to help.
Similar observations apply to FastLane’s improvement to
pFabric (Figure 6(b)).

For long flows, results for TCP-Codel are similar to the
case of short flows contributing to 10% of the network load.
For pFabric, in the extreme case of short flows contributing
to 50% of the load, average long flow completion times do
inflate by 23%. We argue that this is a worthwhile tradeoff
to make as FastLane decreases latency-sensitive, short flow
completion times by up to 47% in this scenario.

4.2.3 Sensitivity Analysis

We now evaluate the performance of FastLane with varying
bandwidth and buffer caps for the notifications, varying
buffer sizes, and varying server latency. For these experi-
ments, we set the total network load to be 60% and con-
sider the scenario where short flows contribute to 50% of
the network load. This workload has the greatest number
of bursts and should hence stress FastLane the most.

Sensitivity to Bandwidth and Buffer Caps: We now eval-
uate the sensitivity of FastLane to the 1% bandwidth and
2.5% buffer caps that we use throughout the evaluation.
We simultaneously scale the bandwidth and buffer caps by
the same factor (e.g., a scaling of 0.5 reduces the band-
width and buffers available to notifications by half). Nor-
mally, FastLane’s notifications may use extra bandwidth
beyond that specified by the cap when the link is idle (i.e.,
they are work conserving). In this experiment, we do not
allow use of extra resources to accurately understand the
effect of the cap.

Figures 7(a) and 7(b) show the 99.9th percentile com-
pletion time for varying flow sizes, normalized by the
completion times when no scaling is used (i.e., cap scaling
= 1). The characteristics of FastLane with TCP-Codel and
FastLane with pFabric are quite different. Both do not see
a significant performance hit until we scale the bandwidth
and buffers to below 0.75. However, FastLane’s perfor-
mance degrades more gradually when assisting pFabric
because pFabric’s fine-grained timeouts reduce the per-
formance impact of packet drops. We conclude that our
current bandwidth and buffer caps balance the need to
be robust to extreme congestion environments with the
desire to consume fewer resources.

Small Buffer Performance: We now evaluate how Fast-
Lane performs with smaller buffer sizes. We start with the
default TCP-Codel and pFabric buffers of 128KB and 64KB,
respectively, and reduce them to see the performance im-
pact. We keep the buffer cap constant at 3.2KB throughout
this experiment.

In Figure 8(a), we report the results for FastLane
when assisting TCP-Codel. The numbers for each flow
are normalized by the 99.9th percentile completion time
that would occur at 128KB (each protocol and flow is
normalized separately). We see that with FastLane, TCP-
Codel’s 99.9th percentile flow completion times do not
degrade as we reduce buffer sizes. Without FastLane,
TCP-Codel’s performance degrades rapidly and severely.
However, we note that FastLane is not immune to the
impact of buffer reduction. Its average flow completion
times do increase as buffer sizes decrease. In particular,
average long flow completion times increase by 98% from
1.89 ms to 3.76 ms as we go from 128KB to 32KB.

Figure 8(b) shows the results for the same experiment
performed with pFabric. FastLane is not able to prevent
the 99.9th percentile completion times of 8, 16 and 32KB
flows from increasing. Average long flow completion times
suffer as well, increasing by approximately 5× for both
FastLane and unaided pFabric as we reduce buffers from
64KB to 16KB. However, we note that pFabric already
tries to use the minimum buffering possible. Second as
these numbers are normalized to what each flow would
achieve in Figure 6(b), FastLane outperforms pFabric even
in situations where they have same normalized value. Thus,
FastLane improves pFabric’s short flow performance at all
of these points.

These results show us that FastLane improves TCP-
Codel’s ability to use small buffers and does not harm
pFabric’s ability to do the same. The ability to degrade
gracefully in the presence of small buffers is important.
Buffering typically consumes 30% of the space and power
of a switch ASIC, limiting the number of ports a single
switch can support [9].

Server Parallelism: Our simulations have a server model
that processes 16 packets in parallel. As server hardware
varies greatly, we explore how different amounts of paral-
lelism affect flow completion times. Figure 9 reports the
reduction in 99.9th percentile flow completion times for
TCP-Codel and pFabric as a function of server parallelism.
FastLane’s performance improvement does not diminish as
the amount of parallelism increases.

4.3 Implementation Results

We now discuss the implementation results for FastLane.
For ease of implementation, we disabled the more ad-
vanced features of Linux TCP (i.e., SACK, DSACK, Times-
tamps, FRTO, Cubic). However, we retained ECN with
Codel-based marking. To ensure that FastLane provides

 93

(a) TCP-Codel when assisted by FastLane with flow hashing
(FL-FH) and with packet scatter (FL-PS)

(b) pFabric when assisted by FastLane (FL)

Figure 6: Reduction in 99.9th percentile flow completion time for varying fraction of short flows.

Figure 7: FastLane’s sensitivity to the bandwidth and buffer caps when aiding TCP-Codel (left) and pFabric (right).

Figure 8: Reduction in 99.9th percentile completion time for varying buffer sizes for TCP-Codel (left) and pFabric (right)
with and without FastLane. In this figure, TCP refers to TCP-Codel.

Figure 9: 99.9th percentile reduction in flow completion
time with varying server parallelism.

useful functionality beyond that provided by SACK, DSACK,
Timestamps, FRTO, and Cubic, we also report how Fast-
Lane compares to TCP with these features enabled.

We begin by running the same base workload as the
simulation, varying the utilization while keeping the frac-
tion of load contributed by short flows constant at 10%
(see Section 4.2.1). Then we evaluate how FastLane per-
forms under a workload consisting of longer flow sizes.
To avoid the hardware limits of our virtualized topology
(Emulab), we partition the nodes into frontend and back-
end servers, with frontend servers requesting data from
backend servers.

4.3.1 Varying Utilization

Figure 10 reports the reduction in 99.9th percentile flow
completion times when FastLane assists TCP under var-
ious utilizations. We see that FastLane reduces the flow
completion times of short flows by up to 68% (e.g., at

 94

Figure 10: (Implementation) Reduction in TCP’s 99.9th
percentile flow completion time when assisted by FastLane.

20% utilization, 8KB flows complete in 4.6 ms with Fast-
Lane as compared to 14.4 ms with unaided TCP). Average
long flow completion times reduce at high utilizations as
well - we report a 23% reduction at 80% load. But at
low utilizations, FastLane’s long flow performance slightly
underperforms unaided TCP’s.

Table 2 compares FastLane’s completion times to TCP
with SACK, DSACK, Timestamps, FRTO, and Cubic enabled.
In general, FastLane achieves a comparable reduction as
that reported in Figure 10, demonstrating its utility. The
one point where FastLane slightly underperforms TCP is
for 32KB flows at 20% utilization. This occurs because the
inflation in flow completion times occurs after the 99.9th
percentile for this flow size, utilization, and workload.

Util 2KB 4KB 8KB 16KB 32KB

20% 51% 61% 68% 63% −4%

40% 55% 63% 64% 55% 46%

60% 44% 53% 58% 51% 40%

80% 32% 42% 48% 40% 22%

Table 2: (Implementation) Reduction in 99.9th percentile
flow completion vs TCP with advanced features.

4.3.2 Long Flows

Our implementation setup allows us to evaluate the flow
completion times of longer flows, while maintaining man-
ageable runtimes. Table 3 reports the reduction in average
flow completion times when FastLane is used versus un-
aided TCP and TCP with the advanced features enabled
(TCP-A). Flow sizes are 1, 16, or 64 MB with equal prob-
ability. We see that FastLane reduces average completion
times by as much as 31% at high utilizations. However,
when the network is under-utilized, FastLane may slightly
underperform TCP for long flows. We believe that this per-
formance impact is small and that the benefits of FastLane
far outweigh its modest cost.

5. Related Work
Researchers have proposed a few types of protocols to re-
duce the completion time of flows in datacenter networks.
The first type focuses on minimally modifying network

FL (TCP) FL (TCP-A)

Util 1MB 16MB 64MB 1MB 16MB 64MB

20% -4% -4% -4% 6% 3% 2%

40% 10% 7% 8% 14% 12% 11%

60% 28% 26% 26% 21% 23% 23%

80% 29% 30% 28% 25% 29% 31%

Table 3: (Implementation) Reduction in average comple-
tion time of long flows

hardware. Examples of these protocols include DCTCP,
HULL, and D2TCP [8, 9, 29]. FastLane can improve upon
these proposals by reducing the cost of drops.

Alternatively, other proposals such as D3 and PDQ have
opted instead to rely on network modifications to support
explicit reservations [21, 31]. During every RTT, these
proposals request resources for the next one. Most flows in
the datacenter are short and can complete within one RTT
[12]. FastLane could enable these proposals to transmit in
the first RTT, thus reducing flow completion times.

Finally, [32] proposes to orchestrate the datacenter
bridging protocols [3] into a stack. DeTail, like other loss-
less interconnects [6], requires relatively larger per-port
buffers to guarantee that packets are not dropped. Back-of-
the-envelope calculations suggest that these requirements
are higher than the buffers currently available for com-
modity 10Gbps switches [2].

6. Conclusion
In this paper, we presented FastLane, an in-network drop
notification mechanism for reducing the high percentile
flow completion time of short flows. FastLane allows
switches to generate packet drop notifications and transmit
them directly to the respective sources. Sources are, thus,
informed of packet drops as quickly as theoretically possible,
allowing them to respond in-time.

Using extensive implementation and simulation results,
we demonstrated that FastLane significantly reduces the
99.9th percentile flow completion time of short flows (as
much as by 81%) using minimal bandwidth and buffer
resources. We have extended TCP and pFabric to leverage
the functionality of FastLane, demonstrating the transport-
agnostic nature of our approach.

Acknowledgments

This research is supported in part by NSF CISE Expeditions Award
CCF-1139158, LBNL Award 7076018, and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Services, Google,
SAP, The Thomas and Stacey Siebel Foundation, Adatao, Adobe,
Apple, Inc., Blue Goji, Bosch, C3Energy, Cisco, Cray, Cloudera,
EMC, Ericsson, Facebook, Guavus, Huawei, Informatica, Intel, Mi-
crosoft, NetApp, Pivotal, Samsung, Splunk, Virdata and VMware.

 95

References
[1] 802.1qau - congestion notification.

http://www.ieee802.org/1/pages/802.1au.html.

[2] Arista 7050 switches. http://www.aristanetworks.com.

[3] Data center bridging. http://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns224/ns783/at_a_glance_c45-
460907.pdf.

[4] Emulab. http://www.emulab.net.

[5] Ns3. http://www.nsnam.org/.

[6] ABTS, D., AND KIM, J. High performance datacenter net-
works: Architectures, algorithms, and opportunities. Syn-
thesis Lectures on Computer Architecture 6, 1 (2011).

[7] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable,
commodity data center network architecture. In SIGCOMM
(2008).

[8] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J.,
PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.
Data center TCP (DCTCP). In SIGCOMM (2010).

[9] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B., VAH-
DAT, A., AND YASUDA, M. Less is more: Trading a little band-
width for ultra-low latency in the data center. In NSDI
(2012).

[10] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pFabric: Minimal near-
optimal datacenter transport. In SIGCOMM (2013).

[11] BAKER, F. Requirements for IP version 4 routers, 1995.

[12] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

[13] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F. A., AND HOROWITZ, M. Forwarding
metamorphosis: fast programmable match-action process-
ing in hardware for SDN. In SIGCOMM (2013).

[14] CHENG, P., REN, F., SHU, R., AND LIN, C. Catch the whole lot
in an action: Rapid precise packet loss notification in data
center. In NSDI (2014).

[15] CRISAN, D., ANGHEL, A. S., BIRKE, R., MINKENBERG, C.,
AND GUSAT, M. Short and fat: TCP performance in CEE
datacenter networks. In Hot Interconnects (2011), IEEE.

[16] DEAN, J., AND BARROSO, L. A. The tail at scale. Commun.
ACM 56, 2 (2013), 74–80.

[17] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G.,
LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL,
P., AND VOGELS, W. Dynamo: Amazon’s highly available
key-value store. In SOSP (2007).

[18] FLOYD, S., AND HENDERSON, T. The NewReno modification
to TCP’s fast recovery algorithm, 1999.

[19] GONT, F. Deprecation of ICMP source quench messages,
2012.

[20] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S., KIM,
C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SENGUPTA, S. VL2:
a scalable and flexible data center network. In SIGCOMM
(2009).

[21] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing flows
quickly with preemptive scheduling. In SIGCOMM (2012).

[22] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M., AND

VAHDAT, A. Chronos: predictable low latency for data center
applications. In SoCC (2012).

[23] KOHAVI, R., AND LONGBOTHAM, R. Online experi-
ments: Lessons learned, September 2007. http://exp-
platform.com/Documents/IEEEComputer2007 OnlineEx-
periments.pdf.

[24] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND

KAASHOEK, M. F. The click modular router. ACM Trans.
Comput. Syst. 18 (2000).

[25] NICHOLS, K., AND JACOBSON, V. Controlling queue delay.
Queue 10, 5 (2012), 20:20–20:34.

[26] RADHAKRISHNAN, S., CHENG, Y., CHU, J., JAIN, A., AND RAGHA-
VAN, B. TCP fast open. In CoNext (2011).

[27] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A., WISCHIK,
D., AND HANDLEY, M. Improving datacenter performance
and robustness with multipath TCP. In SIGCOMM (2011).

[28] SAROLAHTI, P. Linux TCP.
http://0gram.me/misc/network/linuxtcp.pdf.

[29] VAMANAN, B., HASAN, J., AND VIJAYKUMAR, T. Deadline-aware
datacenter TCP (D2TCP). In SIGCOMM (2012).

[30] VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT, E., AN-
DERSEN, D. G., GANGER, G. R., GIBSON, G. A., AND MUELLER,
B. Safe and effective fine-grained TCP retransmissions for
datacenter communication. In SIGCOMM (2009).

[31] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND ROWTRON,
A. Better never than late: meeting deadlines in datacenter
networks. In SIGCOMM (2011).

[32] ZATS, D., DAS, T., MOHAN, P., BORTHAKUR, D., AND KATZ, R. H.
DeTail: Reducing the flow completion time tail in datacenter
networks. In SIGCOMM (2012).

 96

