
Hopper: Decentralized Speculation-aware Cluster
Scheduling at Scale

Xiaoqi Ren1, Ganesh Ananthanarayanan2, Adam Wierman1, Minlan Yu3

1California Institute of Technology,
2Microsoft,

3University of Southern California,
{xren,adamw}@caltech.edu, ga@microsoft.com, minlanyu@usc.edu

ABSTRACT
As clusters continue to grow in size and complexity,
providing scalable and predictable performance is an in-
creasingly important challenge. A crucial roadblock
to achieving predictable performance is stragglers, i.e.,
tasks that take significantly longer than expected to
run. At this point, speculative execution has been widely
adopted to mitigate the impact of stragglers. However,
speculation mechanisms are designed and operated in-
dependently of job scheduling when, in fact, schedul-
ing a speculative copy of a task has a direct impact
on the resources available for other jobs. In this work,
we present Hopper, a job scheduler that is speculation-
aware, i.e., that integrates the tradeoffs associated with
speculation into job scheduling decisions. We imple-
ment both centralized and decentralized prototypes of
the Hopper scheduler and show that 50% (66%) improve-
ments over state-of-the-art centralized (decentralized)
schedulers and speculation strategies can be achieved
through the coordination of scheduling and speculation.

CCS Concepts
�Networks → Cloud computing; �Computer sys-
tems organization → Distributed architectures;

Keywords
speculation; decentralized scheduling; straggler; fair-
ness

1. INTRODUCTION
Data analytics frameworks have successfully realized

the promise of“scaling out”by automatically composing

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787481

user-submitted scripts into jobs of many parallel tasks
and executing them on large clusters. However, as clus-
ters increase in size and complexity, providing scalable
and predictable performance is an important ongoing
challenge for interactive analytics frameworks [2, 32].
Indeed, production clusters at Google and Microsoft [17,
23] acknowledge this as a prominent goal.

As the scale and complexity of clusters increase, hard-
to-model systemic interactions that degrade the perfor-
mance of tasks become common [12, 23]. Consequently,
many tasks become “stragglers”, i.e., running slower
than expected, leading to significant unpredictability (and
delay) in job completion times – tasks in Facebook’s
Hadoop cluster can run up to 8× slower than expected [12].
The most successful and widely deployed straggler mit-
igation solution is speculation, i.e., speculatively run-
ning extra copies of tasks that have become stragglers
(or likely to), and then picking the earliest copy that
finishes, e.g., [12, 14, 15, 24, 50]. Speculation is com-
monplace in production clusters, e.g., in our analysis of
Facebook’s Hadoop cluster, speculative tasks account
for 25% of all tasks and 21% of resource usage.

Speculation is intrinsically intertwined with job sche-
duling because spawning a speculative copy of a task has
a direct impact on the resources available for other jobs.
Aggressive speculation can improve the performance of
the job at hand but hurt the performance of other jobs.
Despite this, speculation policies deployed today are all
designed and operated independently of job scheduling;
schedulers simply allocate slots to speculative copies in
a “best-effort” fashion, e.g., [14, 15, 24, 36].

Coordinating speculation and scheduling decisions is
an opportunity for significant performance improvement.
However, achieving such coordination is challenging, par-
ticularly as schedulers themselves scale out. Schedulers
are increasingly becoming decentralized in order to scale
to hundreds of thousands of machines with each ma-
chine equipped with tens of compute slots for tasks.
This helps them make millions of scheduling decisions
per second, a requirement about two orders of magni-
tude beyond the (already highly-optimized) centralized
schedulers, e.g., [10, 29, 49]. In decentralized designs



multiple schedulers operate autonomously, with each of
them scheduling only a subset of the jobs, e.g., [19, 23,
36]. Thus, the coordination between speculation and
scheduling must be achieved without maintaining cen-
tral information about all the jobs.
Contribution of this paper: In this paper we present
the design of the first speculation-aware job scheduler,
Hopper, which dynamically allocates slots to jobs keep-
ing in mind the speculation requirements necessary for
predictable performance. Hopper incorporates a variety
of factors such as data locality, estimates of task ex-
ecution times, fairness, dependencies (DAGs) between
tasks, etc. Further, Hopper is compatible with all cur-
rent speculation algorithms and can operate as either a
centralized or decentralized scheduler; achieving scala-
bility by not requiring any central state.

The key insight behind Hopper is that a scheduler
must anticipate the speculation requirements of jobs
and dynamically allocate capacity depending on the
marginal value (in terms of performance) of extra slots
which are likely used for speculation. A novel observa-
tion that leads to the design of Hopper is that there is a
sharp “threshold” in the marginal value of extra slots –
an extra slot is always more beneficial for a job below
its threshold than it is for any job above its thresh-
old. The identification of such a threshold then allows
Hopper to use different resource allocation strategies de-
pending on whether the system capacity is such that all
jobs can be allocated more slots than their threshold or
not. This leads to a dynamic, adaptive, online sched-
uler that reacts to the current system load in a manner
that appropriately weighs the value of speculation.

Importantly, the core components of Hopper can be
decentralized effectively. The key challenge to avoiding
the need to maintain a central state is the fact that
stragglers create heavy-tailed task durations, e.g., see
[12, 14, 25]. Hopper handles this by adopting a “power
of many choices” viewpoint to approximate the global
state, which is fundamentally more suited than the tra-
ditional “power of two choices” viewpoint due to the
durations and frequency of stragglers.

To demonstrate the potential of Hopper, we have built
three demonstration prototypes by augmenting the cen-
tralized scheduling frameworks Hadoop [3] (for batch
jobs) and Spark [49] (for interactive jobs), and the de-
centralized framework Sparrow [36]. Hopper incorpo-
rates many practical features of jobs into its scheduling.
Among others, it estimates the amount of intermedi-
ate data produced by the job and accounts for their
pipelining between phases, integrates data locality re-
quirements of tasks, and provides fairness guarantees.

We have evaluated our three prototypes on a 200
node private cluster using workloads derived from Face-
book’s and Microsoft Bing’s production traces. The de-
centralized and centralized implementations of Hopper

reduce the average job completion time by up to 66%
and 50% compared to state-of-the-art scheduling and
straggler mitigation techniques. The gains are consis-

tent across common speculation algorithms (LATE [50],
GRASS [14], and Mantri [15]), DAGs of tasks, and local-
ity constraints, while providing fine-grained control on
fairness. Importantly, the gains do not result from im-
proving the speculation mechanisms but from improved
coordination of scheduling and speculation decisions.

2. BACKGROUND & RELATED WORK
We begin by presenting a brief overview of existing

cluster schedulers: how they allocate resources across
jobs, both centralized and decentralized (§2.1), and how
they handle straggling tasks (§2.2). This overview high-
lights the lack of coordination that currently exists be-
tween scheduling and straggler mitigation strategies such
as speculation.

2.1 Cluster Schedulers
Job scheduling – allotting compute slots to jobs for

their tasks – is a classic topic with a large body of work.
The most widely-used scheduling approach in clus-

ters today is based on fairness which, without loss of
generality, can be defined as equal sharing (or weighted
sharing) of the available resources among jobs (or their
users) [4, 26, 30, 45, 47]. Fairness, of course, comes with
performance inefficiencies, e.g., [41, 48].

In contrast, the performance-optimal approach for
job scheduling is Shortest Remaining Processing Time
(SRPT), which assigns slots to jobs in ascending order
of their remaining duration (or, for simplicity, the re-
maining number of tasks). SRPT’s optimality in both
single [39] and multi-server [37] settings motivates a fo-
cus on prioritizing small jobs and has led to many sched-
ulers such as [31, 33, 42].

The schedulers mentioned above are all centralized;
however, motivated by scalability, many clusters are be-
ginning to adopt decentralized schedulers, e.g., at Google
[23], Apollo [17] at Microsoft, and the recently proposed
Sparrow [36] scheduler. The scalability of decentralized
designs allows schedulers to cope with growing cluster
sizes and increasing parallelism of jobs (due to smaller
tasks [34]), allowing them to scale to millions of schedul-
ing decisions (for tasks) per second.

Importantly, the literature on cluster scheduling (both
centralized and decentralized) ignores an important as-
pect of clusters: straggler mitigation via speculation.
No current schedulers coordinate decisions with specu-
lation mechanisms, while our analysis shows that spec-
ulative copies account for a sizeable fraction of all tasks
in production clusters, e.g., in Facebook’s Hadoop clus-
ter, speculative tasks account for 25% of all tasks and
21% of resource usage.

2.2 Straggler Mitigation via Speculation
Dealing with straggler tasks, i.e., tasks that take sig-

nificantly longer than expected to complete, is an im-
portant challenge for cluster schedulers, one that was
called out in the original MapReduce paper [24], and a
topic of significant subsequent research [12, 14, 15, 50].



Clusters already blacklist problematic machines (e.g.,
faulty disks or memory errors) and avoid scheduling
tasks on them. However, despite blacklisting, strag-
glers occur frequently, often due to intrinsically complex
causes such as IO contention, interference by periodic
maintenance operations, and hardware behaviors which
are hard to model and circumvent [12, 22, 35]. Straggler
prevention based on comprehensive root-cause analyses
is an open research challenge.

The most effective, and indeed the most widely de-
ployed, technique has been speculative execution. Spec-
ulation techniques, monitor the progress of running tasks,
compare them to the progress of completed tasks of the
job, and spawn speculative copies for those progressing
much slower, i.e., straggling. It is then a race between
the original and speculative copies of the task and on
completion of one, the other copies are killed.1

There is considerable (statistical and systemic) so-
phistication in speculation techniques, e.g., ensuring early
detection of stragglers [15], predicting duration of new
(and running) tasks [16], and picking lightly loaded ma-
chines to spawn speculative copies [50]. The techniques
also take care to avoid speculation when a new copy is
unlikely to benefit, e.g., when the single input source’s
machine is the cause behind the straggling [46].

Speculation has been highly effective in mitigating
stragglers, bringing the ratio of the progress rates of
the median task of a job to its slowest down from 8×
(and 7×) to 1.08× (and 1.1×) in Facebook’s production
Hadoop cluster (and Bing’s Dryad cluster).

Speculation has, to this point, been done indepen-
dently of job scheduling. This is despite the fact that
when a speculative task is scheduled it takes resources
away from other jobs; thus there is an intrinsic tradeoff
between scheduling speculative copies and scheduling
new jobs. In this paper, we show that integrating these
two via speculation-aware job scheduling can speed up
jobs by considerably, even on average. Note that these
gains are not due to improving the speculative execution
techniques, but instead come purely from the integra-
tion between speculation and job scheduling decisions.

3. MOTIVATION
The previous section highlights that speculation and

scheduling are currently designed and operated inde-
pendently. Here, we illustrate the value of coordinated
speculation and scheduling using simple examples.

3.1 Strawman Approaches
We first explore two baselines that characterize how

scheduling and speculation interact today. In our ex-

1Schedulers avoid checkpointing a straggling task’s current
output and spawning a new copy for just the remaining work
due to the overheads and complexity of doing so. In gen-
eral, even though the speculative copy is spawned on the
expectation that it would be faster than the original, it is
extremely hard to guarantee that in practice. Thus, both
are allowed to run until the first completes.

B3 

A3 

A2 

A1 

time 

0 30 20 

A4+ 

B1 

10 

A4 

Slot 1 

Slot 2 

Slot 3 

Slot 4 

Slot 5 
Slot 6 
Slot 7 

B2 

B5 

B4+ 

B4 

(a) Best-effort Speculation.

A3 

A2 

A1 

time 

B1+ 

0 32 

A4+ 

B1 

12 

A4 

Slot 1 

Slot 2 

Slot 3 

Slot 4 

Slot 5 
Slot 6 
Slot 7 

B2 

B4 

B3 

B2+ 

B3+ 

B4+ 

B5 

22 2 

(b) Budgeted Speculation

Figure 1: Combining SRPT scheduling and specu-
lation for two jobs A (4 tasks) and B (5 tasks) on
a 7-slot cluster. The + suffix indicates speculation.
Copies of tasks that are killed are colored red.

B2 

A3 

A2 

A1 

0 22 

A4+ 

B1 

12 

A4 

Slot 1 

Slot 2 

Slot 3 

Slot 4 

Slot 5 
Slot 6 
Slot 7 

B4 

B3 

B3+ 

B4+ 

B5 

time 

Figure 2: Hopper: Comple-
tion time for jobs A and B
are 12 and 22. The + suf-
fix indicates speculation.

!" !#" !$" !%" !&" !'"

()*+," $-" $-" $-" &-" #-"
(./0" #-" #-" #-" #-" #-"

1" 1#"1$"1%"1&"

()*+," #-" #-" #-" %-"
(./0" #-" #-" #-" #-"

Table 1: torig and tnew

are durations of the
original and specula-
tive copies of each task.

amples we assume that stragglers can be detected af-
ter a task has run for 2 time units and that, at this
point, a speculation is performed if the remaining run-
ning time (trem) is longer than the time to run a new
copy (tnew). When the fastest copy of a task finishes,
other running copies of the same task are killed. Note
that while these examples have all jobs arrive at time
0, Hopper is designed to work in an online setting.
Best-Effort Speculation: A simple approach, which
is also the most common in practice, is to treat specula-
tive tasks the same as regular tasks. The job scheduler
allocates resources for speculative tasks in a“best effort”
manner, i.e., whenever there is an open slot.

Consider the example in Figure 1a with two jobs A
(4 tasks) and B (5 tasks) that are scheduled using the
SRPT policy. The scheduler has to wait until time 10
to find an open slot for the speculative copy of A4, de-
spite detecting it was straggling at time 2.2 Clearly,
the scheduler can do better. If it had allocated a slot to
A’s speculative task at time 2 (instead of letting B use
it), then job A’s completion time would have reduced,
without slowing job B (see Table 1 for task durations).

Note that similar inefficiencies occur under Fair sche-
duling in this example.
Budgeted Speculation: The main problem for best-
effort speculation is a lack of available slots for specu-
lation when needed. Thus, an alternative approach is
to have the job scheduler reserve a fixed “budget” of
slots for speculative tasks. Budgeting the right size of
the resource pool for speculation, however, is challeng-

2At time 10, when A1 finishes, the job scheduler allocates
the slot to job A because its remaining processing is smaller
than job B’s. Job A speculates task A4 because A4’s trem =
torig−currentTime = 30−10 = 20> tnew = 10 (see Table 1).



ing because of time-varying straggler characteristics and
fluctuating cluster utilizations. If the resource pool is
too small, it may not be enough to immediately support
all the tasks that need speculation. If the pool is too
large, resource are left idle.

Figure 1b illustrates budgeted speculation with three
slots (slot 5 − 7) being reserved for speculation. This,
unfortunately, leads to slots 6 and 7 lying fallow from
time 0 to 12. If the wasted slot had been used to run a
new task, say B1, then job B’s completion time would
have been reduced. It is easy to see that similar wastage
of slots occurs with the Fair scheduler. Note that reserv-
ing one or two instead of three slots will not solve the
problem, since three speculative copies are required to
run simultaneously at a later time.

3.2 Challenges in Coordination
In contrast to the two baselines discussed above, Fig-

ure 2 shows the benefit of coordinated decision making.
At time 0− 10, we allocate 1 extra slot to job A (for

a total of 5 slots), thus allowing it to speculate task A4
promptly. After time 10, we can dynamically reallocate
the slots to job B. This reduces the average completion
time compared to both the budgeted and best-effort
strategies. The joint design budgeted slot 5 until time
2 but after task A4 finished, it used all the slots.

Doing such dynamic allocation is already challeng-
ing in a centralized environment, and it becomes more
so in a decentralized setting. In particular, decentral-
ized speculation-aware scheduling has additional con-
straints. Since the schedulers are autonomous, there is
no central state and thus, no scheduler has complete in-
formation about all the jobs in the cluster. Further, ev-
ery scheduler has information about only a subset of the
cluster (the machines it probed). Since decentralization
is mainly critical for interactive jobs (sub-second or a
few seconds), time-consuming gossiping between sched-
ulers is infeasible. Finally, running all the schedulers on
one multi-core machine cramps that machine and caps
scalability, the original drawback they aim to alleviate.

In the above example, this means making the alloca-
tion as in Figure 2 when jobs A and B autonomously
schedule their tasks without complete knowledge of uti-
lizations of the slots or even each other’s existence.

Thus, the challenges for speculation-aware job schedul-
ing are: (i) dynamically allocating/budgeting slots for
speculation based on the distribution of stragglers and
cluster utilization while being (approximately) fair and,
in decentralized settings, (ii) using incomplete informa-
tion about the machines and jobs in the cluster.

4. Hopper: SPECULATION-AWARE
SCHEDULING

The central question in the design of a speculation-
aware job scheduler is how to dynamically (online) bal-
ance the slots used by speculative and original copies
of tasks across jobs. A given job will complete more

0.6 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

(Normalized) number of slots

(N
or

m
al

iz
ed

) 
co

m
pl

et
io

n 
tim

e

(a) β = 1.4

0.6 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

(Normalized) number of slots

(N
or

m
al

iz
ed

) 
co

m
pl

et
io

n 
tim

e

(b) β = 1.6

Figure 3: The impact of number of slots on single
job performance. The number of slots is normalized
by job size (number of tasks within the job). β is
the Pareto shape parameter for the task size distri-
bution. (In our traces 1 < β < 2.) The red vertical
line shows the threshold point.

quickly if it is allowed to do more speculation, but this
comes at the expense of other jobs in the system.

Hopper’s design is based on the insight that the bal-
ance between speculative and original tasks must dy-
namically depend on cluster utilization. The design
guidelines that come out of this insight are supported
by theoretical analysis in a simple model [8]. We omit
the analytic support due to space constraints and fo-
cus on providing an intuitive justification for the design
choices. Pseudocode 1 shows the basic structure.3

We begin our discussion of speculation-aware job sche-
duling by introducing the design features of Hopper in
a centralized setting. We focus on single-phased jobs
in §4.1, and then generalize the design to incorporate
DAGs of tasks (§4.2), data locality (§4.4), and fairness
(§4.3). Finally, in §5, we discuss how to adapt the de-
sign to a decentralized setting.

4.1 Dynamic Resource Allocation
The examples in §3 illustrate the value of dynamic al-

location of slots for speculation. Our analysis indicates
that this dynamic allocation can be separated into two
regimes: whether the cluster is in “high” or “low” load.

The distinction between these two regimes follows
from the behavior of the marginal return (in terms of
performance) that jobs receive from being allocated slots.
It is perhaps natural to expect that the performance of
a job will always improve when it is given additional
slots (because these can be used for additional spec-
ulative copies) and that the value of additional slots
has a decreasing marginal return (because an extra slot
is more valuable when the job is given few slots than
when the job already has many slots). However, sur-
prisingly, a novel observation that leads to the design of
Hopper is that the marginal return of an extra slot has a
sharp threshold (a.k.a., knee) where, below the thresh-
old, the marginal return is large and (nearly) constant

3For ease of exposition, Pseudocode 1 considers the (online)
allocation of all slots to jobs present at time t. Of course,
in the implementation, slots are allocated as they become
available. See Pseudocode 2 and 3 for more details.



1: procedure Hopper(〈Job〉 J(t), int S, float β)
totalVirtualSizes ← 0

2: for each Job j in J(t) do
j.V (t) = (2/β) j.Trem

. j.Trem: remaining number of tasks
. j.V (t): virtual job size

totalVirtualSizes += j.V (t)
3: SortAscending(J(t), V (t))
4: if S < totalVirtualSizes then
5: for each Job j in J(t) do

j.slots← bmin(S, j.V (t))c
S ← max(S − j.slots, 0)

6: else
7: for each Job j in J(t) do

j.slots← b(j.V (t)/totalVirtualSizes)× Sc

Pseudocode 1: Hopper (centralized) allocating S slots
to the set of jobs present at time t, J(t), with task
distribution parameter β.

and, above the threshold, the marginal return is small
and decreasing.

Figure 3 illustrates this threshold using a simulation
of a sample job with 200 tasks (with Pareto sizes, com-
mon in production traces) and LATE [50] speculation
when assigned various numbers of slots. Crucially, there
is a marked change in slope beyond the vertical dashed
line, indicating the change in the marginal value of a
slot. Note, that such a threshold exists for different job
sizes, speculation algorithms, etc. Further, in the con-
text of a simple model, we can prove the existence of a
sharp threshold [8].

The most important consequence of the discussion
above is that it is desirable to ensure every job is allo-
cated enough slots to reach the threshold (if possible)
before giving any job slots beyond this threshold. Thus,
we refer to this threshold as the “desired (minimum) al-
location” for a job or simply the “virtual job size”.

Guideline 1. It is better to give resources to a job
that has not reached the desired (minimum) allocation
than a job that has already reached the point.

This guideline yields the key bifurcation in the Hop-

per design, as illustrated in line 4 of Pseudocode 1. Ad-
ditionally, it highlights that there are three important
design questions, which we address in the following sec-
tions: (i) How can we determine the desired allocation
(virtual size) of a job? (ii) How should slots be allocated
when there are not enough to give each job its desired
allocation, i.e., when the cluster is highly utilized? (iii)
How should slots be allocated when there are more than
enough to give each job its desired allocation, i.e., when
the cluster is lightly utilized?

(i) Determining the virtual size of a job
Determination of the “desired (minimum) allocation”,
a.k.a., the “virtual” size, of a job is crucial to deter-
mining which regime the system is in, and thus how
slots should be allocated among jobs. While the vir-
tual job size is learned empirically by Hopper through

measurements of the threshold point during operation,
it is important to point out that it is also possible to
derive a useful static rule of thumb analytically, which
can give intuition for the design structure.

In particular, the task durations in production traces
(e.g., Facebook and Bing traces described in §7) typ-
ically follow a heavy-tailed Pareto distribution, where
the Pareto tail parameter β (which is often 1 < β < 2)
represents the likelihood of stragglers [12, 13, 14, 25].
Roughly, smaller β means that stragglers are more dam-
aging, i.e., if a task has already run for some time, there
is higher likelihood of the task running longer.

Given the assumption of Pareto task durations, we
can prove analytically (in a simple model) that the thresh-
old point defining the “desired (minimum) allocation” is
max(2/β, 1), which corresponds exactly to the vertical
line in Figure 3 (see [8] for details). While we show only
two examples here, the estimate this provides is robust
across varying number of tasks, β, etc. 4

Thus, we formally define the “virtual job size” Vi(t)
for job i at any time t, as its number of remaining tasks
(Ti(t)) multiplied by 2/β (since β < 2 in our traces),
i.e., Vi(t) = 2

βTi(t). This virtual job size determines

which regime the scheduler should use; see line 2 in
Pseudocode 1. In practice, since β may vary over time,
it is learned online by Hopper (see §7) making it adaptive
to different threshold points as in Figure 3.

(ii) Allocation when the cluster is highly utilized
When there are not enough slots to assign every job its
virtual size, we need to decide how to distribute this
“deficiency” among the jobs. The scheduler could either
spread the deficiency across all jobs, giving them all less
opportunity for speculation, or satisfy as many jobs as
possible with allocations equaling their virtual sizes.

Hopper does the latter. Specifically, Hopper processes
jobs in ascending order of their virtual sizes Vi(t), giving
each job its desired (minimum) allocation until all the
slots are exhausted (see lines 3 − 5 in Pseudocode 1).
This choice is in the spirit of SRPT, and is motivated
both by the optimality of SRPT and the decreasing
marginal return of additional slots, which magnifies the
value of SRPT. Additionally, our theoretical analysis (in
[8]) shows the optimality of this choice in the context
of a simple model.

Guideline 2. At all points in time, if there are not
enough slots for every job to get its desired (minimum)
allocation, i.e., a number of slots equal to its virtual
size, then slots should be dedicated to the smallest jobs
and each should be given a number of slots equal to its
virtual size.

4We make the simplifying assumption that task durations of
each job are also Pareto distributed. A somewhat surprising
aspect given the typical values of β (1 < β < 2) is that even
when so many slots are allocated for redundant speculative
copies, faster “clearing” of tasks is overall beneficial.



Note that prioritization of small jobs may lead to un-
fairness for larger jobs, an issue we address shortly in
§4.3.

(iii) Allocation when the cluster is lightly utilized
At times when there are more slots in the cluster than
the sum of the virtual sizes of jobs, we have slots left
over even after allocating every job its virtual size. The
scheduler’s options for dividing the extra capacity are
to either split the slots across jobs, or give all the extra
slots to a few jobs in order to complete them quickly.

In contrast to the high utilization setting, in this situ-
ation Hopper allocates slots proportionally to the virtual
job sizes, i.e., every job i receives (Vi(t)/

∑
j Vj(t))S

slots, where S is the number of slots available in the
system and Vi(t) is the virtual size; see line 7 in Pseu-
docode 1. Note that this is, in a sense, the opposite of
the prioritization according to SRPT.

The motivation for this design is as follows. Given
that all jobs are already receiving their (minimum) de-
sired level of speculation, scheduling is less important
than speculation. Thus, prioritization of small jobs is
not crucial, and the goal should be to extract the maxi-
mum value from speculation. Since stragglers are more
likely to occur in larger jobs (stragglers occur in propor-
tion to the number of tasks in a job, on average5), the
marginal improvement in performance due to an addi-
tional slot is proportionally higher for large jobs. Thus,
they should get prioritization in proportion to their size
when allocating the extra slots. Our analytic work in
[8] highlights that this allocation is indeed optimal in a
simple model.

Guideline 3. At all points in time, if there are enough
slots to give every job its desired (minimum) allocation,
then, the slots should be shared “proportionally” to the
virtual sizes of the jobs.

Since the guidelines specify allocations at the granu-
larity of every job, it is easy to cope with any fluctua-
tions in cluster load (say, from lightly to highly utilized)
in an online system.

4.2 Incorporating DAGs of Tasks
The discussion to this point has focused on single-

phased jobs. In practice, many jobs are defined by
multiple-phased DAGs, where the phases are typically
pipelined. That is, downstream tasks do not wait for
all the upstream tasks to finish but read the upstream
outputs as the tasks finish, e.g., [6]. Pipelining is ben-
eficial because the upstream tasks are typically bottle-
necked on other non-overlapping resources (CPU, mem-
ory), while the reading downstream takes network re-
sources. The additional complexity DAGs create for
our guidelines is the need to balance the gains due to

5Machines in the cluster are equally likely to cause a strag-
gler [12]; known problematic machines are already black-
listed (see §2).

overlapping network utilization with the improvements
that come from favoring upstream phases with fewer
remaining tasks.

We integrate this tradeoff into Hopper using a weight-
ing factor, α per job, set to be the ratio of remaining
work in the downstream phase’s network transfer to the
remaining work in the upstream phase. Specifically, α
favors jobs with higher remaining communication and
lower remaining tasks in the current phase. The exact
details of estimating α are deferred to §6.3.

Given the weighting factor α, there are two key ad-
justments that we make to the guidelines discussed so
far. First, in Guideline 2, the prioritization of jobs based
on the virtual size Vi(t) is replaced by a prioritization
based on max{Vi(t), V ′

i (t)}, where Vi(t) is the virtual re-
maining number of tasks in the current phase and V ′

i (t)
is the virtual remaining work in communication in the
downstream phase.6 Second, we redefine the virtual size
itself as Vi(t) = 2

βTi(t)
√
αi. This form follows from the

analysis in [8] and is similar in spirit to the optimality
of square-root proportionality in load balancing across
heterogeneous servers [21].

For DAGs that are not strict chains, but are wide
and “bushy”, we calculate α by summing over all the
running and their respective downstream phases.

4.3 Incorporating Fairness
While fairness is an important constraint in clusters,

conversations with data center operators reveal that it
is not an absolute requirement. Thus, we relax the
notion of fairness currently employed by cluster sched-
ulers, e.g., [47], which enforce that if there are N(t)
active jobs and S available slots at time t, then each
job is assigned S/N(t) slots.

Specifically, to allow some flexibility while still tightly
controlling unfairness, we define a notion of approximate
fairness as follows. We say that a scheduler is ε-fair if it
guarantees that every job receives at least (1−ε)S/N(t)
slots at all times t. The fairness knob ε → 0 indicates
absolute fairness while ε→ 1 focuses on performance.

Hopper can be adjusted to guarantee ε-fairness in a
very straightforward manner. In particular, if a job
receives slots less than its fair share, i.e., fewer than
(1− ε)S/N(t) slots, the job’s capacity assignment is in-
creased to (1 − ε)S/N(t). Next, the remaining slots
are allocated to the remaining jobs according to Guide-
lines 2 or 3, as appropriate. Note that this is a form of
projection from the original (unfair) allocation into the
feasible set of allocations defined by the fairness con-
straints.

Our experimental results (§7.3) highlight that even
at moderate values of ε, nearly all jobs finish faster
than they would have under fair scheduling. This fact,
though initially surprising, is similar to the conclusions

6Results in [31] show that picking the max{Ti(t), T
′
i (t)} is 2-

speed optimal for completion times when stragglers are not
considered.



Scheduler2 

Job  Req 

Req 

Req …
  

……  …
  

Reqqqqq

Response 

d probes 

Worker 

Worker 

Worker 

Worker 

Scheduler1 

Figure 4: Decentralized scheduling architecture.

about SRPT-like policies. Despite being intuitively un-
fair to large job sizes, it in fact improves the average re-
sponse time of every job size (when job sizes are heavy-
tailed) compared to fair schedulers [28, 43, 44].

4.4 Incorporating Data Locality
As such, the guidelines presented does not consider

data locality [11, 48] in the scheduling of tasks. Tasks
reading their data from remote machines over the net-
work run slower. In addition, such remote reads also
increase contention with other intermediate tasks (like
reduce tasks) that are bound to read over the network.

We devise a simple relaxation approach for balancing
adherence to our guidelines and locality. Specifically,
we adjust the ordering of jobs in Guideline 2 to include
information about locality. Instead of allotting slots to
the jobs with the smallest virtual sizes, we allow for
picking any of the smallest k% of jobs whose tasks can
run with data locality on the available slots. In practice,
a small value of k (≤ 5%) suffices due to high churn in
task completions and slot availabilities (§7.4).

5. DECENTRALIZED Hopper
In this section, we adapt the guidelines described in

§4 to design a decentralized (online) scheduler. Decen-
tralized schedulers are increasingly prominent as cluster
sizes grow. As we explain in this section, a key benefit
of our guidelines in §4 is that they can be decentralized
with little performance loss.

Decentralized schedulers, like the recently proposed
Sparrow [36], broadly adopt the following design (see
Figure 4). There are multiple independent schedulers
each of which is responsible for scheduling one or a sub-
set of jobs; for simplicity, a single job never spans across
schedulers. Every scheduler assigns the tasks of its jobs
to machines in the cluster (referred to as workers) that
executes the tasks. The architecture allows for an in-
coming job to be assigned to any of the available sched-
ulers, while also seamlessly allowing new schedulers to
be dynamically spawned.

A scheduler first pushes reservation requests for its
tasks to workers; each request contains the identifier
of the scheduler placing the request along with the re-
maining number of unscheduled tasks in the job. When
a worker is vacant, it pulls a task from the correspond-
ing scheduler based on the reservation requests in its
waiting queue. In this framework, workers decide which
job’s task to run and the scheduler for the correspond-
ing job decides which task to run within the chosen job.

Probe count

R
at

io
 in

 jo
b

 d
u

ra
ti

o
n

o
ve

r 
C

en
tr

al
iz

ed
 S

ch
ed

u
le

r

 

 

Hopper

Sparrow

2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

Util.=90%
Util.=80%
Util.=70%
Util.=60%

(a) Number of probes, d

Refuse count

R
at

io
 in

 jo
b

 d
u

ra
ti

o
n

o
ve

r 
C

en
tr

al
iz

ed
 S

ch
ed

u
le

r

 

 

0 2 4 6 8 10
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

Util.=90%
Util.=80%
Util.=70%
Util.=60%

(b) Number of refusals

Figure 5: The impact of number of probes and num-
ber of refusals on Hopper’s performance.

This decoupling naturally facilitates the design of Hop-

per.
Though we adopt an overall design structure simi-

lar to Sparrow for the decentralization of Hopper, it is
important to note that Hopper’s design is fundamentally
different because it integrates straggler mitigation based
on the guidelines behind Hopper introduced in §4.

Decentralizing Hopper involves the following steps: ap-
proximating worker-wide information at each scheduler
(§5.1), deciding if the number of slots are constrained
(§5.2), and calculating virtual sizes (§5.3).

5.1 Power of Many Choices
Decentralized schedulers have to approximate the glo-

bal state of the cluster – the states of all the workers
– since they are unaware of other jobs in the system.
A common way to accomplish this is via the “power of
two choices”[38]. This celebrated and widely used result
highlights that, in many cases, one nearly matches the
performance of a centralized implementation by query-
ing two workers for their queue lengths, and choosing
the shorter of the queues. In fact, this intuition under-
lies the design of Sparrow as well, which combines the
idea with a form of“late binding”; schedulers send reser-
vation requests for every task to two workers and then
let workers pull a task from the corresponding scheduler
when they have a free slot. We adopt “late binding”, as
used in Sparrow, but replace the “power of two choices”
with the “power of many choices”.

The reason for this change is that the effectiveness
of the “power of two choices” relies on having light-
tailed task size distributions. The existence of stragglers
means that, in practice, task durations are heavy-tailed,
e.g., [12, 14, 25]. Recent theoretical results have proven



that, when task sizes are heavy-tailed, probing d > 2
choices can provide orders-of-magnitude improvements
[18]. The value in using d > 2 comes from the fact
that large tasks, which are more likely under heavy-
tailed distributions, can cause considerable backing up
of worker queues. Two choices may not be enough to
avoid such backed-up queues, given the high frequency
of straggling tasks. More specifically, d > 2 allows the
schedulers to have a view of the jobs that is closer to
the global view.

We use simulations in Figure 5a to highlight the ben-
efit of using d > 2 probing choices in Hopper and to
contrast this benefit with Sparrow, which relies on the
power of two choices. Our simulation considers a clus-
ter of 50 schedulers and 10,000 workers and jobs with
Pareto distributed (β = 1.5) task sizes. Job perfor-
mance with decentralized Hopper is within just 15% of
the centralized scheduler; the difference plateaus be-
yond d = 4. Note that Sparrow (which does not co-
ordinate scheduling and speculation) is > 100% off for
medium utilizations and even further off for high uti-
lizations (not shown on the figure in order to keep the
scale visible). Further, workers in Sparrow pick tasks
in their waiting queues in a FCFS fashion. The lack
of coordination between scheduling and speculation re-
sults in a long waiting time for speculative copies in the
queues which diminishes the benefits of multiple probes.
Thus parrow cannot extract the same benefit Hopper has
from using more than two probes. Of course, these are
rough estimates since the simulations do not capture
overheads due to increased message processing, which
are included in the evaluations in §7.

5.2 Is the system capacity constrained?
In the decentralized setting workers implement our

scheduling guidelines. Recall that Guideline 2 or Guide-
line 3 is applied depending on whether the system is
constrained for slots or not. Thus, determining which
to follow necessitates comparing the sum of virtual sizes
of all the jobs and the number of slots in the cluster,
which is trivial in a centralized scheduler but requires
communication in an decentralized setting.

To keep overheads low, we avoid costly gossiping pro-
tocols among schedulers regarding their states. Instead,
we use the following adaptive approach. Workers start
with the conservative assumption that the system is ca-
pacity constrained (this avoids overloading the system
with speculative copies), and thus each worker imple-
ments Guideline 2, i.e., enforces an SRPT priority on
its queue. Specifically, when a worker is idle, it sends
a refusable response to the scheduler corresponding to
the reservation request of the job it chooses from its
queue. However, since the scheduler queues many more
reservation requests than tasks, it is possible that its
tasks may have all been scheduled (with respect to vir-
tual sizes). A refusable response allows the scheduler to
refuse sending any new task for the job if the job’s tasks
are all already scheduled to the desired speculation level

procedure ResponseProcessing(Response response )
Job j ← response.job
if response.type = non-refusable then

Accept()
else

if (j.current occupied < j.virtual size) Accept ()
else Refuse()

Pseudocode 2: Scheduler Methods.

procedure Response(〈Job〉 J , int refused count)
. J : list of jobs in queue of the worker excluding

already refused jobs
if refused count ≥ refusal threshold then

j ← J .PickAtRandom()
SendResponse(j, non-refusable)

else
j ← J.min(virtual size)
SendResponse(j, refusable)

Pseudocode 3: Worker: choosing the next task to
schedule.

(ResponseProcessing in Pseudocode 2). In its refusal, it
sends information about the job with the smallest vir-
tual size in its list which still has unscheduled tasks (if
such an “unsatisfied” job exists).

Subsequently, the worker sends a refusable response
to the scheduler corresponding to second smallest job
in its queue, and so forth till it gets a threshold number
of refusals. Note that the worker avoids probing the
same scheduler more than once. Several consecutive
refusals from schedulers without information about any
unsatisfied jobs suggests that the system is not capacity
constrained. At that point, it switches to implement-
ing Guideline 3. Once it is following Guideline 3, the
worker randomly picks a job from the waiting queue
based on the distribution of job virtual sizes. If there
are still unsatisfied jobs at the end of the refusals, the
worker sends a non-refusable response (which cannot
be refused) to the scheduler whose unsatisfied job is the
smallest. Pseudocode 3 explains the Response method.

The higher the threshold for refusals, the better the
view of the schedulers for the worker. Our simulations
(with 50 schedulers and 10,000 workers) in Figure 5b
show that performance with two or three refusals is
within 10%− 15% of the centralized scheduler.

5.3 Updating Virtual Job Sizes
Computing the remaining virtual job size at a sched-

uler is straightforward. However, since the remaining
virtual size of a job changes as tasks complete, vir-
tual sizes need to be updated dynamically. Updat-
ing virtual sizes accurately at the workers that have
queued reservations for tasks of this job would require
frequent message exchanges between workers and sched-
ulers, which would create significant overhead in com-
munication and processing of messages. So, our ap-
proach is to piggyback updates for virtual sizes on other
communication messages that are anyway necessary be-
tween a scheduler and a worker (e.g., schedulers send-



ing reservation requests for new jobs, workers sending
responses to probe system state and ask for new tasks).
While this introduces a slight error in the virtual re-
maining sizes, our evaluation shows that the approx-
imation provided by this approach is enough for the
gains associated with Hopper.

Crucially, the calculation of virtual sizes is heavily
impacted by the job specifics. Job specific properties of
the job DAG and the likelihood of stragglers are cap-
tured through α and β, respectively, which are learned
online. Note that jobs from different applications may
have heterogeneous α and β.

6. IMPLEMENTATION OVERVIEW
We now give an overview of the implementation of

Hopper in decentralized and centralized settings.

6.1 Decentralized Implementation
Our decentralized implementation uses the Sparrow

[36] framework, which consists of many schedulers and
workers (one each on every machine) [9]. Arbitrarily
many schedulers can operate concurrently; though we
use 10 in our experiments. Schedulers allow submissions
of jobs using Thrift RPCs [1].

A job is broken into a set of tasks with their depen-
dencies (DAG), binaries and locality preferences. The
scheduler places requests at the workers for its tasks;
if a task has locality constraints, its requests are only
placed on the workers meeting its constraints [13, 40,
49]. The workers talk to the client executor processes
(e.g., Spark executor). The executor processes are re-
sponsible for executing task binaries and are long-lived
to avoid startup overheads (see [36] for a more detailed
explanation).

Our implementation modifies the scheduler as well
as the worker. The workers implement the core of the
guidelines in §4 – determining if the system is slot-
constrained and accordingly prioritizing jobs as per their
virtual sizes. This required modifying the FIFO queue
at the worker in Sparrow to allow for custom ordering
of the queued requests. The worker, nonetheless, aug-
ments its local view by coordinating with the scheduler.
This involved modifying the “late binding” mechanism
both at the worker and scheduler. The worker, when it
has a free slot, works with the scheduler in picking the
next task (using Pseudocode 3). The scheduler deals
with a response from the worker as per Pseudocode 2.

Even after all the job’s tasks have been scheduled
(including its virtual size), the job scheduler does not
“cancel” its pending requests; there will be additional
pending requests with any probe ratio over one. Thus,
if the system is not slot-constrained, it would be able to
use more slots (as per Guideline 3).

In our decentralized implementation, for tasks in the
input phase (e.g., map phase), when the number of
probes exceeds the number of data replicas, we queue up
the additional requests at randomly chosen machines.

Consequently, these tasks may run without data local-
ity, and our results in §7 include such loss in locality.

6.2 Centralized Implementation
We implement Hopper inside two centralized frame-

works: Hadoop YARN (version 2.3) and Spark (version
0.7.3). Hadoop jobs read data from HDFS [5] while
Spark jobs read from in-memory RDDs.

Briefly, these frameworks implement two level schedul-
ing where a central resource manager assigns slots to
the different job managers. When a job is submitted
to the resource manager, a job manager is started on
one of the machines, that then executes the job’s DAG
of tasks. The job manager negotiates with the resource
manager for resources for its tasks.

We built Hopper as a scheduling plug-in module to the
resource manager. This makes the frameworks use our
design to allocate slots to the job managers. We also
piggybacked on the communication protocol between
the job manager and resource manager to communicate
the intermediate data produced and read by the phases
of the job to vary α accordingly; locality and other pref-
erences are already communicated between them.

6.3 Estimating Intermediate Data Sizes
Recall from §4.2 that our scheduling guidelines rec-

ommend scaling every job’s allocation by
√
α in the

case of DAGs. The purpose of the scaling is to capture
pipelining of the reading of upstream tasks’ outputs.

The key to calculating α is estimating the size of
the intermediate output produced by tasks. Unlike the
job’s input size, intermediate data sizes are not known
upfront. We predict intermediate data sizes based on
similar jobs in the past. Clusters typically have many
recurring jobs that execute periodically as newer data
streams in, and produce intermediate data of similar
sizes.

Our simple approach to estimating α works sufficiently
well for our evaluations (accuracy of 92%, on average).
However, we realize that workloads without many multi-
waved or recurring jobs and without tasks whose dura-
tion is dictated by their input sizes, need more sophis-
ticated models of task executions.

7. EVALUATION
We evaluate our prototypes of Hopper – with both

decentralized and centralized scheduling – on a 200 ma-
chine cluster. We focus on the overall gains of the decen-
tralized prototype of Hopper in §7.2 and evaluate the de-
sign choices that led to Hopper in §7.3. Then, in §7.4 we
evaluate the gains with Hopper in a centralized scheduler
in order to highlight the value of coordinating schedul-
ing and speculation. The key highlights are:

1. Hopper’s decentralized prototype improves the av-
erage job duration by up to 66% compared to an
aggressive decentralized baseline that combines Spar-
row with SRPT (§7.2).



2. Hopper ensures that only 4% of jobs slow down
compared to Fair scheduling, and jobs which do
slow down do so by ≤ 5% (§7.3).

3. Centralized Hopper improves job completion times
by 50% compared to centralized SRPT (§7.4).

7.1 Setup
Cluster Deployment: We deploy our prototypes on
a 200-node private cluster. Each machine has 16 cores,
34GB of memory, 1Gbps network and 4 disks. The
machines are connected using a network with no over-
subscription.7

Workload: Our evaluation runs jobs in traces from
Facebook’s production Hadoop [3] cluster (3, 500 ma-
chines) and Microsoft Bing’s Dryad cluster (O(1000)
machines) from Oct-Dec 2012. The traces consist of a
mix of experimental and production jobs. Their tasks
have diverse resource demands of CPU, memory and
IO, varying by a factor of 24× (refer to [27] for de-
tailed quantification). We retain the inter-arrival times
of jobs, their input sizes and number of tasks, resource
demands, and job DAGs of tasks. Job sizes follow a
heavy-tailed distribution (quantified in detail in [12]).
Each experiment is a replay of a representative 6 hour
slice from the trace. It is repeated five times and we
report the median.

To evaluate our prototype of decentralized Hopper, we
use in-memory Spark [49] jobs. These jobs are typical of
interactive analytics whose tasks vary from sub-second
durations to a few seconds. Since the performance of
any decentralized scheduler depends on the cluster uti-
lization, we speed-up the trace appropriately, and eval-
uate on (average) utilizations between 60% and 90%,
consistent with Sparrow [36].
Stragglers: The stragglers in our experiments are those
that occur naturally, i.e., not injected via any model of
a probability distribution or via statistics gathered from
the Facebook and Bing clusters. Importantly, the fre-
quency and lengths of stragglers observed in our eval-
uations are consistent with prior studies, e.g., [14, 15,
50]. While Hopper’s focus is not on improving straggler
mitigation algorithms, our experiments certainly serve
to emphasize the importance of such mitigation.
Baseline: We compare decentralized Hopper to Sparrot-
SRPT, an augmented version of Sparrow [36]. Like
Sparrow, it performs decentralized scheduling using a
“batched” power-of-two choices. In addition, it also in-
cludes an SRPT heuristic. In short, when a worker
has a slot free, it picks the task of the job that has the
least unfinished tasks (instead of the standard FIFO or-
dering in Sparrow). Finally, we combine Sparrow with
LATE [50] using“best effort”speculation (§3); we do not
consider “budgeted” speculation due to the difficulty of
picking a fixed budget.

The combination of Sparrow-SRPT and LATE per-
forms strictly better than Sparrow, and serves as an ag-
7Results with a 10Gbps network are qualitatively similar.

�
��
��
��
��
��
��
��

�� �� �� �� 	� 	� 
�

���������	
�����

���������	
������
����
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������

(a) Facebook

�

��

��

��

��

��

��

��

�� �� �� �� 	� 	� 
�

���������	
�����

���������	
������
����
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������

(b) Bing

Figure 6: Hopper’s gains with cluster utilization.

�

��

��

��

��

��

��
�	
������ �	
������

����
������������ ! "

�
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

#�� $�� ��%

���

���%

���
&���

(a) Facebook

�

��

��

��

��

��

��
�	
������ �	
������

����
����������	�� �!

�
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

"�� #�� ��$

���

���$

���
%���

(b) Bing

Figure 7: Hopper’s gains by job bins over Sparrow-
SRPT.

gressive baseline. Our improvements over this aggres-
sive benchmark highlight the importance of coordinat-
ing scheduling and speculation.

We compare centralized Hopper to a centralized SRPT
scheduler with LATE speculation. Again, this is an
aggressive baseline since it sacrifices fairness for perfor-
mance. Thus, improvements can be interpreted as com-
ing solely from better coordination of scheduling and
speculation.

7.2 Decentralized Hopper’s Improvements
In our experiments, unless otherwise stated, we set

the fairness allowance ε as 10%, probe ratio as 4 and
speculation algorithm in every job to be LATE [50].
Our estimation of α (§6.3) has an accuracy of 92% on
average. As the workload executes, we also continu-
ally fit the parameter β of task durations based on the
completed tasks (including stragglers); the error in β’s
estimate falls to ≤ 5% after just 6% of the jobs have
executed.
Overall Gains: Figure 6 plots Hopper’s gains for vary-
ing utilizations, compared to stock Sparrow and Sparrow-
SRPT. Jobs, overall, speedup by 50% − 60% at uti-
lization of 60%. The gains compared to Sparrow are
marginally better than Sparrow-SRPT. When the uti-
lization goes over 80%, Hopper’s gains compared to both
are similar. An interesting point is that Hopper’s gains
with the Bing workload in Figure 6b are a touch higher
(difference of 7%), perhaps due to the larger difference
in job sizes between small and large jobs, allowing more
opportunity for Hopper. Gains fall to < 20% when uti-
lization is high (≥ 80%), naturally because there is
not much room for any optimization at that occupancy.



�

��

��

��

��

���

� �� �� �� ��

��	
���

����

�
��	������������

��
���
�������������

�
�
�

(a) Distribution

�

��

��

��

��

��

� � � � � � 	


������ ����

�
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������������

(b) DAG

Figure 8: (a) CDF of Hopper’s gains, and (b) gains
as the length of the job’s DAG varies; both at 60%
utilization.

While not plotted, gains at utilizations ≤ 30% are no
more than 14%. Expectedly, at such low utilizations,
there is little requirement for smarter speculation or
probing.

Note that the above utilizations are on average and
there is considerable variation. At 80% average uti-
lization, Hopper allocates 53% of jobs using Guideline 2
(high utilization) and the remaining 47% of jobs using
Guideline 3 (low utilization). This indicates that 53%
of jobs in the experimental run arrived such that the
cluster did not have enough slots to allocate every job
its virtual size.

The results so far highlight that Sparrow-SRPT is
a more aggressive baseline than Sparrow, and so we
compare only to it for the rest of our evaluation.
Job Bins: Figure 7 dices the gains by job size (num-
ber of tasks). Gains for small jobs are less compared to
large jobs. This is expected given that our baseline of
Sparrow-SRPT already favors the small jobs. Nonethe-
less, Hopper’s smart allocation of speculative slots of-
fers 18% − 32% improvement. Gains for large jobs,
in contrast, are over 50%. This not only shows that
there is sufficient room for the large jobs despite fa-
voring small jobs (due to the heavy-tailed distribution
of job sizes [12, 13]) but also that the value of decid-
ing between speculative tasks and unscheduled tasks of
other jobs increases with the number of tasks in the job.
With trends of smaller tasks and hence, larger number
of tasks per job [34], Hopper’s allocation becomes im-
portant.
Distribution of Gains: Figure 8a plots the distribu-
tion of gains across jobs. While the median gains are
just higher than the average, there are > 70% gains
at higher percentiles. Encouragingly, gains even at the
10th percentile are 15% and 10%, which shows Hopper’s
ability to improve even worse case performance.
DAG of Tasks: The scripts in our Facebook (Hive
scripts [7]) and Bing (Scope [20]) workloads produce
DAGs of tasks which often pipeline data transfers of
downstream phases with upstream tasks [6]. The com-
munication patterns in the DAGs are varied (e.g., all-
to-all, many-to-one etc.) and thus the results also serve
to underscore Hopper’s generality. As Figure 8b shows,
Hopper’s gains hold across DAG lengths.

0

20

40

60

80

100

Overall < 50 51-150 151-500 > 500

LATE +Hopper vs. LATE + Sparrow-SRPT

Mantri + Hopper vs. Mantri + Sparrow-SRPT

GRASS + Hopper vs. GRASS + Sparrow-SRPT

Job Bin (Number of tasks)

R
e

d
u

c
ti
o

n
 (

%
) 

in
 

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 9: Hopper’s results are independent of the
straggler mitigation strategy.

Speculation Algorithm: We now experimentally eval-
uate Hopper’s performance with different speculation me-
chanisms. LATE [50] is deployed in Facebook’s clus-
ters, Mantri [15] is in operation in Microsoft Bing, and
GRASS citegrass is a recently reported straggler miti-
gation system that was demonstrated to perform near-
optimal speculation. Our experiments still use Sparrow-
SRPT as the baseline but pair with the different strag-
gler mitigation algorithms. Figure 9 plots the results.

While the earlier results were achieved in conjunction
with LATE, a remarkable point about Figure 9 is the
similarity in gains even with Mantri and GRASS. This
indicates that as long as the straggler mitigation algo-
rithms are aggressive in asking for speculative copies,
Hopper will appropriately balance speculation and sche-
duling. Overall, it emphasizes the aspect that resource
allocation across jobs (with speculation) has a higher
performance value than straggler mitigation within jobs.

7.3 Evaluating Hopper’s Design Decisions
We now evaluate the sensitivity of decentralized Hop-

per to our key design decisions: fairness and probe ratio.
Fairness: As we had described in §4.3, the fairness
knob ε decides the leeway for Hopper to trade-off fairness
for performance. Thus far, we had set ε to be 10% of
the perfectly fair share of a job (ratio of total slots to
jobs), now we analyze its sensitivity to Hopper’s gains.

Figure 10a plots the increase in gains as we increase
ε from 0 to 30%. The gains quickly rise for small values
of ε, and beyond ε = 15% the increase in gains are flat-
ter with both the Facebook as well as Bing workloads.
Conservatively, we set ε to 10%.

An important concern, nonetheless, is the amount of
slowdown of jobs compared to a perfectly fair allocation
(ε = 0), i.e., when all the jobs are guaranteed their fair
share at all times. Any slowdown of jobs is because of
receiving fewer slots. Figure 10b measures the number
of jobs that slowed down, and for the slowed jobs, Fig-
ure 10c plots their average and worst slowdowns. Note
that fewer than 4% of jobs slow down with Hopper com-
pared to a fair allocation at ε = 10%. The correspond-
ing number for the Bing workload is 3.8%. In fact,
both the average and worst slowdowns are limited at
ε = 10%, thus demonstrating that Hopper’s focus on
performance does not unduly slow down jobs.
Probe Ratio: An important component of decentral-
ized scheduling is the probe ratio – the number of re-



�

��

��

��

� � �� �� �� �� ��

�	
���

����

�	������������

�
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

(a) Sensitivity

�

�

��

��

� � �� �� �� �� ��
���	
�������

��
��
�
��
�
	


��
�
�


(b) (%) of Jobs Slowed

0

5

10

15

20

25

0 5 10 15 20 25 30

Average Worst

Fairness ɛ (%)

In
c
re

a
s
e

 (
%

) 
in

 

J
o

b
 d

u
ra

ti
o

n
 o

f 

S
lo

w
e

d
 J

o
b

s

(c) Magnitude (%) of Slowdown

Figure 10: ε Fairness. Figure (a) shows sensitivity of
gains to ε. Figure (b) shows the fraction of jobs that
slowed down compared to a fair allocation, and (c)
shows the magnitude of their slowdowns (average
and worst).

0

10

20

30

40

50

60

2 2.5 3 3.5 4 4.5 5

Util=60% Util=70%

Util=80% Util=90%

Probe Ratio

R
e

d
u

c
ti
o

n
 (

%
) 

in
 

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 11: Power of d choices: Impact of the number
of probes on job completion.

quests queued at workers to number of tasks in the job.
A higher probe ratio reduces the chance of a task be-
ing stuck in the queue of a busy machine, but also in-
creases messaging overheads. While the power-of-two
choices [38] and Sparrow [36] recommend a probe ratio
of 2, we adopt a probe ratio of 4 based on our analysis
in §5.

Figure 11 confirms that higher probe ratios are indeed
beneficial. As the probe ratio increase from 2 onwards,
the payoff due to Hopper’s scheduling and straggler mit-
igation results in gains increasing until 4; at utilizations
of 70% and 80%, using 3.5 works well too. At 90% uti-
lization, however, gains start slipping even at a probe
ratio of 2.5. However, the benefits at such high utiliza-
tions are smaller to begin with.

7.4 Centralized Hopper’s Improvements
To highlight the fact that Hopper is a unified design,

appropriate for both decentralized and centralized sys-
tems, we also evaluate Hopper in a centralized setting
using Hadoop and Spark prototypes. Figure 12 plots
the gains for the two prototypes with Facebook and
Bing workloads. We achieve gains of ∼ 50% with the

0

20

40

60

80

100
Hadoop

Spark

Job Bin

R
e

d
u

c
ti
o

n
 (

%
) 

in
 

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

������� ��	 �
�


�	


�
�

�		

��		

(a) Gains

0

10

20

30

40

50

60

2 3 4 5 6 7 8

Hadoop

Spark

R
e

d
u

c
ti
o

n
 (

%
) 

in
 

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Length of Job’s DAG

(b) DAG

Figure 12: Centralized Hopper’s gains over SRPT,
overall and broken by DAG length (Facebook work-
loads).

two workloads, with individual job bins improving by
up to 80%.

As with the decentralized setting, gains for small jobs
are lower due to the baseline of SRPT already favoring
small jobs. Between the two prototypes, gains for Spark
are consistently higher (albeit, modestly). Spark’s small
task durations makes it more sensitive to stragglers and
thus it spawns many more speculative copies. This
makes Hopper’s scheduling more crucial.
DAG of Tasks: Like in the decentralized implementa-
tion, Hopper’s gains hold consistently over varying DAG
lengths, see Figure 12. Note that there is a contrast be-
tween Spark jobs and Hadoop jobs. Spark jobs have fast
in-memory map phases, thus making intermediate data
communication the bottleneck. Hadoop jobs are less
bottlenecked on intermediate data transfer, and spend
more of their time in the map phase [13]. This differ-
ence is captured via α, which is learned as described in
§6.3.
Data Locality: Recall from §4.4 that we achieve data
locality using a relaxation heuristic to allow any k sub-
sequent jobs (as a % of total jobs).

As Figure 13a shows, a small relaxation of k = 3%,
which is what we have used so far, achieves appreciable
increase in locality in Spark. Gains are steady for a bit
but then start dropping beyond a k value of 7%. This
is because the deviation from the theoretical guidelines
overshadows any increase in gains from locality. The
fraction of data local tasks, naturally, increases with k
(Figures 13a). Hadoop results are similar (13b).

Note that even when we enhance a centralized SRPT
scheduler to include the above locality heuristic, it gains
no more than 20% compared to centralized SRPT (with-
out the locality heuristic). This indicates that Hopper’s
gains are predominantly due to coordinated speculation
and scheduling.

8. CONCLUSIONS
With launching speculative copies of tasks being a

common approach for mitigating the impact of strag-
glers, schedulers face a decision between scheduling spec-
ulative copies of some jobs versus original copies of other
jobs. While this question is seemingly simple, we find



�

��

��

��

��

���

�

��

��

��

� � � � � ��

��	
� ����	��

����	��������
����� ���

�
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

�
�
�
�
����

	
�
�

(a) Spark

�
��
��
��
��
���

�

��

��

��

� � � � � ��

��	
� ����	��

����	��������
���������

�
�
�
�
�
��
�
	

�
�


�	



�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

�
�
�
�
����

	
�
�

(b) Hadoop

Figure 13: Centralized Hopper: Impact of Locality
Allowance (k) (see §6.2) with Facebook workload.

that the problem is not only unsolved thus far, but also
has significant performance implications.

This paper proposes Hopper, the first speculation-aware
job scheduler, and implements both decentralized and
centralized prototypes. We deploy our prototypes (built
in Sparrow [36], Spark [49] and Hadoop [3]) on a 200
machine cluster, and see job speed ups of 66% in decen-
tralized settings and 50% in centralized settings com-
pared to current state-of-the-art schedulers. In addi-
tion to providing performance improvements in both
centralized and decentralized settings, Hopper is com-
patible with all current speculation algorithms and in-
corporates data locality, fairness, DAGs of tasks, etc.;
thus, it represents a unified speculation-aware schedul-
ing framework.

9. ACKNOWLEDGMENT
We would like to thank Michael Chien-Chun Hung,

Shivaram Venkataraman, Masoud Moshref, Niangjun
Chen, Qiuyu Peng, and Changhong Zhao for their in-
sightful discussions. We would like to thank the anony-
mous reviewers and our shepherd, Lixin Gao, for their
thoughtful suggestions. This work was supported in
part by National Science Foundation (NSF) with Grants
(CNS-1319820, CNS-1423505).

10. REFERENCES
[1] Apache Thrift. https://thrift.apache.org/.

[2] Cloudera Impala.
http://www.cloudera.com/content/cloudera/en/
products-and-services/cdh/impala.html.

[3] Hadoop. http://hadoop.apache.org.

[4] Hadoop Capacity Scheduler. http://hadoop.
apache.org/docs/r1.2.1/capacity scheduler.html.

[5] Hadoop Distributed File System.
http://hadoop.apache.org/hdfs.

[6] Hadoop Slowstart. https://issues.apache.org/jira/
browse/MAPREDUCE-1184/.

[7] Hive. http://wiki.apache.org/hadoop/Hive.

[8] Hopper Technical Report. https://sites.google.
com/site/sigcommhoppertechreport/.

[9] Sparrow. https://github.com/radlab/sparrow.

[10] The Next Generation of Apache Hadoop
MapReduce. http://developer.yahoo.com/blogs/
hadoop/posts/2011/02/mapreduce-nextgen/.

[11] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with Skewed Popularity Content
in MapReduce Clusters. In EuroSys, 2011.

[12] G. Ananthanarayanan, A. Ghodsi, S. Shenker,
and I. Stoica. Effective Straggler Mitigation:
Attack of the Clones. In USENIX NSDI, 2013.

[13] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and
I. Stoica. PACMan: Coordinated Memory
Caching for Parallel Jobs. In USENIX NSDI,
2012.

[14] G. Ananthanarayanan, M. Hung, X. Ren,
I. Stoica, A. Wierman, and M. Yu. GRASS:
Trimming Stragglers in Approximation Analytics.
In USENIX NSDI, 2014.

[15] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, E. Harris, and B. Saha. Reining in the
Outliers in Map-Reduce Clusters Using Mantri. In
USENIX OSDI, 2010.

[16] E. Bortnikov, A. Frank, E. Hillel, and S. Rao.
Predicting Execution Bottlenecks in Map-Reduce
Clusters. In USENIX HotCloud, 2012.

[17] E. Boutin, J. Ekanayake, W. Kin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable
and Coordinated Scheduling for Cloud-Scale
Computing. In USENIX OSDI, 2014.

[18] M. Bramson, Y. Lu, and B. Prabhakar.
Randomized load balancing with general service
time distributions. In Proceedings of Sigmetrics,
pages 275–286, 2010.

[19] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy
and Efficient Parallel Processing of Massive Data
Sets. Proceedings of the VLDB Endowment, (2),
2008.

[20] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy
and Efficient Parallel Processing of Massive
Datasets. In VLDB, 2008.

[21] H. Chen, J. Marden, and A. Wierman. On the
Impact of Heterogeneity and Back-end Scheduling
in Load Balancing Designs. In INFOCOM. IEEE,
2009.

[22] J. Dean. Achieving Rapid Response Times in
Large Online Services. In Berkeley AMPLab
Cloud Seminar, 2012.

[23] J. Dean and L. Barroso. The Tail at Scale.
Communications of the ACM, (2), 2013.



[24] J. Dean and S. Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters.
Communications of the ACM, 2008.

[25] F. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized Task-aware
Scheduling for Data Center Networks. In ACM
SIGCOMM, 2014.

[26] A. Ghodsi, M. Zaharia, B. Hindman,
A. Konwinski, S. Shenker, and I. Stoica.
Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types. In USENIX NSDI,
2011.

[27] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-Resource Packing for
Cluster Schedulers. In ACM SIGCOMM, 2014.

[28] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve
web performance. ACM Transactions on
Computer Systems (TOCS), 21(2):207–233, 2003.

[29] B. Hindman, A. Konwinski, M. Zaharia,
A. Ghodsi, A. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In USENIX
NSDI, 2011.

[30] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair
Scheduling for Distributed Computing Clusters.
In ACM SOSP, 2009.

[31] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint
Optimization of Overlapping Phases in
MapReduce. Performance Evaluation, 2013.

[32] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive Analysis of Web-Scale
Datasets. In VLDB, 2010.

[33] B. Moseley, A. Dasgupta, R. Kumar, and
T. Sarlós. On Scheduling in Map-reduce and
Flow-shops. In ACM SPAA, 2011.

[34] K. Ousterhout, A. Panda, J. Rosen,
S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and I. Stoica. The Case for Tiny Tasks
in Compute Clusters. In USENIX HotOS, 2013.

[35] K. Ousterhout, R. Rasti, S. Ratnasamy,
S. Shenker, and B. Chun. Making Sense of
Performance in Data Analytics Frameworks. In
USENIX NSDI, 2015.

[36] K. Ousterhout, P. Wendell, M. Zaharia, and
I. Stoica. Sparrow: Distributed, Low Latency
Scheduling. In ACM SOSP, 2013.

[37] K. Pruhs, J. Sgall, and E. Torng. Online
scheduling. Handbook of scheduling: algorithms,
models, and performance analysis, pages 15–1,
2004.

[38] A. Richa, M. Mitzenmacher, and R. Sitaraman.
The power of two random choices: A survey of
techniques and results. Combinatorial
Optimization, 2001.

[39] L. Schrage. A proof of the optimality of the
shortest remaining processing time discipline.
Operations Research, 16(3):687–690, 1968.

[40] B. Sharma, V. Chudnovsky, J. L. Hellerstein,
R. Rifaat, and C. R. Das. Modeling and
Synthesizing Task Placement Constraints in
Google Compute Clusters. In ACM SOCC, 2011.

[41] J. Tan, X. Meng, and L. Zhang. Delay Tails in
MapReduce Scheduling. ACM SIGMETRICS
Performance Evaluation Review, 2012.

[42] Y. Wang, J. Tan, W. Yu, L. Zhang, and X. Meng.
Preemptive ReduceTask Scheduling for Fast and
Fair Job Completion. USENIX ICAC, 2013.

[43] A. Wierman. Fairness and scheduling in single
server queues. Surveys in Operations Research
and Management Science, 16(1):39–48, 2011.

[44] A. Wierman and M. Harchol-Balter. Classifying
scheduling policies with respect to unfairness in
an m/gi/1. In ACM SIGMETRICS Performance
Evaluation Review, volume 31, pages 238–249.
ACM, 2003.

[45] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar,
V. Kumar, S. Parekh, K. Wu, and A. Balmin.
FLEX: a Slot Allocation Scheduling Optimizer for
MapReduce Workloads. In Middleware 2010.
Springer, 2010.

[46] N. Yadwadkar, G. Ananthanarayanan, and
R. Katz. Wrangler: Predictable and Faster Jobs
using Fewer Resources. In ACM SoCC, 2014.

[47] M. Zaharia, D. Borthakur, J. S. Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Job
scheduling for multi-user mapreduce clusters. In
UC Berkeley Technical Report
UCB/EECS-2009-55, 2009.

[48] M. Zaharia, D. Borthakur, J. S. Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling. In
ACM EuroSys, 2010.

[49] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In USENIX NSDI, 2012.

[50] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce Performance
in Heterogeneous Environments. In USENIX
OSDI, 2008.


