
Efficient Non-greedy Optimization of Decision Trees

Mohammad Norouzi1∗ Maxwell D. Collins2 ∗ Matthew Johnson3

David J. Fleet4 Pushmeet Kohli5
1,4 Department of Computer Science, University of Toronto

2 Department of Computer Science, University of Wisconsin-Madison
3,5 Microsoft Research

Abstract

Decision trees and randomized forests are widely used in computer vision and ma-
chine learning. Standard algorithms for decision tree induction optimize the split
functions one node at a time according to some splitting criteria. This greedy pro-
cedure often leads to suboptimal trees. In this paper, we present an algorithm for
optimizing the split functions at all levels of the tree jointly with the leaf param-
eters, based on a global objective. We show that the problem of finding optimal
linear-combination (oblique) splits for decision trees is related to structured pre-
diction with latent variables, and we formulate a convex-concave upper bound on
the tree’s empirical loss. Computing the gradient of the proposed surrogate ob-
jective with respect to each training exemplar is O(d2), where d is the tree depth,
and thus training deep trees is feasible. The use of stochastic gradient descent for
optimization enables effective training with large datasets. Experiments on sev-
eral classification benchmarks demonstrate that the resulting non-greedy decision
trees outperform greedy decision tree baselines.

1 Introduction

Decision trees and forests [5, 22, 4] have a long and rich history in machine learning [10, 7]. Recent
years have seen an increase in their popularity, owing to their computational efficiency and applica-
bility to large-scale classification and regression tasks. A case in point is Microsoft Kinect where
decision trees are trained on millions of exemplars to enable real-time human pose estimation from
depth images [23].

Conventional algorithms for decision tree induction are greedy. They grow a tree one node at a
time following procedures laid out decades ago by frameworks such as ID3 [22] and CART [5].
While recent work has proposed new objective functions to guide greedy algorithms [21, 12], it
continues to be the case that decision tree applications (e.g., [9, 14]) utilize the same dated methods
of tree induction. Greedy decision tree induction builds a binary tree via a recursive procedure as
follows: beginning with a single node, indexed by i, a split function si is optimized based on a
corresponding subset of the training data Di such that Di is split into two subsets, which in turn
define the training data for the two children of the node i. The intrinsic limitation of this procedure
is that the optimization of si is solely conditioned on Di, i.e., there is no ability to fine-tune the
split function si based on the results of training at lower levels of the tree. This paper addresses
this limitation by proposing a general framework for non-greedy learning of the split parameters for
tree-based methods. We focus on binary trees, while extension to n-ary trees is possible. We show
that our joint optimization of the split functions at different levels of the tree under a global objective
not only promotes cooperation between the split nodes to create more compact trees, but also leads
to better generalization performance.

∗Part of this work was done while M. Norouzi and M. D. Collins were at Microsoft Research, Cambridge.

1

One of the key contributions of this work is establishing a link between the decision tree optimiza-
tion problem and the problem of structured prediction with latent variables [26]. We present a novel
formulation of the decision tree learning that associates a binary latent decision variable with each
split node in the tree and uses such latent variables to formulate the tree’s empirical loss. Inspired
by advances in structured prediction [24, 25, 26], we propose a convex-concave upper bound on the
empirical loss. This bound acts as a surrogate objective that is optimized using stochastic gradi-
ent descent (SGD) to find a locally optimal configuration of the split functions. One complication
introduced by this particular formulation is that the number of latent decision variables grows expo-
nentially with the tree depth d. As a consequence, each gradient update will have a complexity of
O(2dp) for p-dimensional inputs. One of our technical contributions is showing how this complexity
can be reduced to O(d2p) by modifying the surrogate objective, thereby enabling efficient training
of deep trees.

2 Related work

Finding optimal split functions at different levels of a decision tree according to some global ob-
jective, such as a regularized empirical risk, is NP-complete [11] due to the discrete and sequential
nature of the decisions in a tree. Thus, finding an efficient alternative to the greedy approach has
remained a difficult objective despite many prior attempts.

Bennett [1] proposes a non-greedy multi-linear programming based approach for global tree op-
timization and shows that the method produces trees that have higher classification accuracy than
standard greedy trees. However, their method is limited to binary classification with 0-1 loss and
has a high computation complexity, making it only applicable to trees with few nodes.

The work in [15] proposes a means for training decision forests in an online setting by incrementally
extending the trees as new data points are added. As opposed to a naive incremental growing of the
trees, this work models the decision trees with Mondrian Processes.

The Hierarchical Mixture of Experts model [13] uses soft splits rather than hard binary decisions to
capture situations where the transition from low to high response is gradual. The use of soft splits at
internal nodes of the tree yields a probabilistic model in which the log-likelihood is a smooth func-
tion of the unknown parameters. Hence, training based on log-likelihood is amenable to numerical
optimization via methods such as expectation maximization (EM). That said, the soft splits neces-
sitate the evaluation of all or most of the experts for each data point, so much of the computational
advantage of the decision trees are lost.

Murthy and Salzburg [17] argue that non-greedy tree learning methods that work by looking ahead
are unnecessary and sometimes harmful. This is understandable since their methods work by mini-
mizing empirical loss without any regularization, which is prone to overfitting. To avoid this prob-
lem, it is a common practice (see Breiman [4] or Criminisi and Shotton [7] for an overview) to limit
the tree depth and introduce limits on the number of training instances below which a tree branch
is not extended, or to force a diverse ensemble of trees (i.e., a decision forest) through the use of
bagging [4] or boosting [8]. Bennett and Blue [2] describe a different way to overcome overfitting
by using max-margin framework and the Support Vector Machines (SVM) at the split nodes of the
tree. Subsequently, Bennett et al. [3] show how enlarging the margin of decision tree classifiers
results in better generalization performance.

Our formulation for decision tree induction improves on prior art in a number of ways. Not only
does our latent variable formulation of decision trees enable efficient learning, but it also handles any
general loss function while not sacrificing the O(dp) complexity of inference imparted by the tree
structure. Further, our surrogate objective provides a natural way to regularize the joint optimization
of tree parameters to discourage overfitting.

3 Problem formulation

For ease of exposition, this paper focuses on binary classification trees, withm internal (split) nodes,
and m+ 1 leaf (terminal) nodes. Note that in a binary tree the number of leaves is always one more
than the number of internal (non-leaf) nodes. An input, x ∈ Rp, is directed from the root of the
tree down through internal nodes to a leaf node. Each leaf node specifies a distribution over k class
labels. Each internal node, indexed by i ∈ {1, . . . ,m}, performs a binary test by evaluating a node-

2

+1

h1

-1

h2

θ1 θ2

+1

h3

θ3 θ4

f([+1,−1,+1]
T

) = [0, 0, 0, 1]
T

= 14

θ = ΘTf(h) = θ4

-1

h1

+1

h2

θ1 θ2

+1

h3

θ3 θ4

f([−1,+1,+1]
T

) = [0, 1, 0, 0]
T

= 12

θ = ΘTf(h) = θ2

Figure 1: The binary split decisions in a decision tree with m = 3 internal nodes can be thought as
a binary vector h = [h1, h2, h3]

T. Tree navigation to reach a leaf can be expressed in terms of a
function f(h). The selected leaf parameters can be expressed by θ = ΘTf(h).

specific split function si(x) : Rp → {−1,+1}. If si(x) evaluates to −1, then x is directed to the
left child of node i. Otherwise, x is directed to the right child. And so on down the tree. Each split
function si(·), parameterized by a weight vector wi, is assumed to be a linear threshold function,
i.e., si(x) = sgn(wi

Tx). We incorporate an offset parameter to obtain split functions of the form
sgn(wi

Tx− bi) by appending a constant “−1” to the input feature vector.

Each leaf node, indexed by j ∈ {1, . . . ,m+ 1}, specifies a conditional probability distribution over
class labels, l ∈ {1, . . . , k}, denoted p(y = l | j). Leaf distributions are parametrized with a vector
of unnormalized predictive log-probabilities, denoted θj ∈ Rk, and a softmax function; i.e.,

p(y = l | j) =
exp

{
θj[l]

}∑k
α=1 exp

{
θj[α]

} , (1)

where θj[α] denotes the αth element of vector θj .

The parameters of the tree comprise the m internal weight vectors, {wi}mi=1, and the m+ 1 vectors
of unnormalized log-probabilities, one for each leaf node, {θj}m+1

j=1 . We pack these parameters
into two matrices W ∈ Rm×p and Θ ∈ R(m+1)×k whose rows comprise weight vectors and leaf
parameters, i.e., W ≡ [w1, . . . ,wm]

T and Θ ≡ [θ1, . . . ,θm+1]
T. Given a dataset of input-output

pairs, D ≡ {xz, yz}nz=1, where yz ∈ {1, . . . , k} is the ground truth class label associated with
input xz ∈ Rp, we wish to find a joint configuration of oblique splits W and leaf parameters Θ
that minimize some measure of misclassification loss on the training dataset. Joint optimization of
the split functions and leaf parameters according to a global objective is known to be extremely
challenging [11] due to the discrete and sequential nature of the splitting decisions within the tree.

One can evaluate all of the split functions, for every internal node of the tree, on an input x by
computing sgn(Wx), where sgn(·) is the element-wise sign function. One key idea that helps
linking decision tree learning to latent structured prediction is to think of anm-bit vector of potential
split decisions, e.g., h = sgn(Wx) ∈ {−1,+1}m, as a latent variable. Such a latent variable
determines the leaf to which a data point is directed, and then classified using the leaf parameters.
To formulate the loss for an input-output pair, (x, y), we introduce a tree navigation function f :
Hm → Im+1 that maps an m-bit sequence of split decisions (Hm ≡ {−1,+1}m) to an indicator
vector that specifies a 1-of-(m+ 1) encoding. Such an indicator vector is only non-zero at the index
of the selected leaf. Fig. 1 illustrates the tree navigation function for a tree with 3 internal nodes.

Using the notation developed above, θ = ΘTf(sgn(Wx)) represents the parameters corresponding
to the leaf to which x is directed by the split functions in W . A generic loss function of the form
`(θ, y) measures the discrepancy between the model prediction based on θ and an output y. For
the softmax model given by (1), a natural loss is the negative log probability of the correct label,
referred to as log loss,

`(θ, y) = `log(θ, y) = − θ[y] + log

(k∑
β=1

exp(θ[β])

)
. (2)

3

For regression tasks, when y ∈ Rq , and the value of θ ∈ Rq is directly emitted as the model
prediction, a natural choice of ` is squared loss,

`(θ,y) = `sqr(θ,y) = ‖θ − y‖2 . (3)
One can adopt other forms of loss within our decision tree learning framework as well. The goal of
learning is to find W and Θ that minimize empirical loss, for a given training set D, that is,

L(W,Θ;D) =
∑

(x,y)∈D

`
(
ΘTf(sgn(Wx)), y

)
. (4)

Direct global optimization of empirical loss L(W,Θ;D) with respect to W is challenging. It is a
discontinuous and piecewise-constant function of W . Furthermore, given an input x, the navigation
function f(·) yields a leaf parameter vector based on a sequence of binary tests, where the results of
the initial tests determine which subsequent tests are performed. It is not clear how this dependence
of binary tests should be formulated.

4 Decision trees and structured prediction

To overcome the intractability in the optimization of L, we develop a piecewise smooth upper bound
on empirical loss. Our upper bound is inspired by the formulation of structured prediction with latent
variables [26]. A key observation that links decision tree learning to structured prediction, is that
one can re-express sgn(Wx) in terms of a latent variable h. That is,

sgn(Wx) = argmax
h∈Hm

(hTWx) . (5)

In this form, decision tree’s split functions implicitly map an input x to a binary vector h by max-
imizing a score function hTWx, the inner product of h and Wx. One can re-express the score
function in terms of a more familiar form of a joint feature space on h and x, as wTφ(h,x), where
φ(h,x) = vec (hxT), and w = vec (W). Previously, Norouzi et al. [19, 20] used the same re-
formulation (5) of linear threshold functions to learn binary similarity preserving hash functions.

Given (5), we re-express empirical loss as,

L(W,Θ;D) =
∑

(x,y)∈D

`(ΘTf(ĥ(x)), y) ,

where ĥ(x) = argmax
h∈Hm

(hTWx) .
(6)

This objective resembles the objective functions used in structured prediction, and since we do not
have a priori access to the ground truth split decisions, ĥ(x), this problem is a form of structured
prediction with latent variables.

5 Upper bound on empirical loss

We develop an upper bound on loss for an input-output pair, (x, y), which takes the form,

`(ΘTf(sgn(Wx)), y) ≤ max
g∈Hm

(
gTWx + `(ΘTf(g), y)

)
− max

h∈Hm
(hTWx) . (7)

To validate the bound, first note that the second term on the RHS is maximized by h = ĥ(x) =

sgn(Wx). Second, when g = ĥ(x), it is clear that the LHS equals the RHS. For all other values
of g, the RHS can only get larger than when g = ĥ(x) because of the max operator. Hence, the
inequality holds. An algebraic proof of (7) is presented in the supplementary material.

In the context of structured prediction, the first term of the upper bound, i.e., the maximization
over g, is called loss-augmented inference, as it augments the standard inference problem, i.e., the
maximization over h, with a loss term. Fortunately, the loss-augmented inference for our decision
tree learning formulation can be solved exactly, as discussed below.

It is also notable that the loss term on the LHS of (7) is invariant to the scale of W , but the upper
bound on the right side of (7) is not. As a consequence, as with binary SVM and margin-rescaling
formulations of structural SVM [25], we introduce a regularizer on the norm of W when optimizing
the bound. To justify the regularizer, we discuss the effect of the scale of W on the bound.

4

Proposition 1. The upper bound on the loss becomes tighter as a constant multiple of W increases,
i.e., for a > b > 0:

max
g∈Hm

(
agTWx + `(ΘTf(g), y)

)
− max

h∈Hm
(ahTWx) ≤

max
g∈Hm

(
bgTWx + `(ΘTf(g), y)

)
− max

h∈Hm
(bhTWx).

(8)

Proof. Please refer to the supplementary material for the proof.

In the limit, as the scale of W approach +∞, the loss term `(ΘTf(g), y) becomes negligible com-
pared to the score term gTWx. Thus, the solutions to loss-augmented inference and inference
become almost identical, except when an element of Wx is very close to 0. Thus, even though a
larger ‖W‖ yields a tighter bound, it makes the bound approach the loss itself, and therefore be-
comes nearly piecewise-constant, which is hard to optimize. In fact, based on Proposition 1, one
easy way to decrease the upper bound is to increase the norm of W , which does not affect the loss.

Our experiments indicate that when the norm of W is regularized, a lower value of the loss at both
training and validation time can be achieved. We therefore constrain the norm of W to obtain an
objective with better behavior and generalization. Since each row of W acts independently in a
decision tree in the split functions, it is reasonable to constrain the norm of each row independently.
Summing over the bounds for different training pairs and constraining the norm of rows of W , we
obtain the following optimization problem, called the surrogate objective:

minimize L′(W,Θ;D) =
∑

(x,y)∈D

(
max
g∈Hm

(
gTWx + `(ΘTf(g), y)

)
− max

h∈Hm
(hTWx)

)
s.t. ‖wi‖2 ≤ ν for all i ∈ {1, . . . ,m} ,

(9)

where ν ∈ R+ is a regularization parameter and wi is the ith row of W . For all values of ν, we
have L(W,Θ;D) ≤ L′(W,Θ;D). Instead of using the typical Lagrange form for regularization,
we employ hard constraints to enable sparse gradient updates of the rows of W , since as explained
below, the gradients for most rows of W are zero at each step of training.

6 Optimizing the surrogate objective

Even though minimizing the surrogate objective of (9) entails non-convex optimization,
L′(W,Θ;D) is much better behaved than empirical loss in (4). L′(W,Θ;D) is piecewise linear
and convex-concave in W , and the constraints on W define a convex set.

Loss-augmented inference. To evaluate and use the surrogate objective in (9) for optimization, we
must solve a loss-augmented inference problem to find the binary code that maximizes the sum of
the score and loss terms:

ĝ(x) = argmax
g∈Hm

(
gTWx + `(ΘTf(g), y)

)
. (10)

An observation that makes this optimization tractable is that f(g) can only take on m+1 distinct
values, which correspond to terminating at one of the m+1 leaves of the tree and selecting a leaf
parameter from {θj}m+1

j=1 . Fortunately, for any leaf index j ∈ {1, . . . ,m+1}, we can solve

argmax
g∈Hm

(
gTWx + `(θj , y)

)
s. t. f(g) = 1j , (11)

efficiently. Note that if f(g) = 1j , then ΘTf(g) equals the jth row of Θ, i.e., θj . To solve (11)
we need to set all of the binary bits in g corresponding to the path from the root to the leaf j to be
consistent with the path direction toward the leaf j. However, bits of g that do not appear on this path
have no effect on the output of f(g), and all such bits should be set based on g[i] = sgn(wi

Tx) to
obtain maximum gTWx. Accordingly, we can essentially ignore the off-the-path bits by subtracting
sgn(Wx)

T
Wx from (11) to obtain,

argmax
g∈Hm

(
gTWx + `(θj , y)

)
= argmax

g∈Hm

((
g − sgn(Wx)

)T
Wx + `(θj , y)

)
. (12)

5

Algorithm 1 Stochastic gradient descent (SGD) algorithm for non-greedy decision tree learning.

1: Initialize W (0) and Θ(0) using greedy procedure
2: for t = 0 to τ do
3: Sample a pair (x, y) uniformly at random from D
4: ĥ← sgn(W (t)x)
5: ĝ← argmaxg∈Hm

{
gTW (t)x + `(ΘTf(g), y)

}
6: W (tmp) ←W (t) − η ĝxT + η ĥxT

7: for i = 1 to m do
8: W

(t+1)
i, . ← min

{
1,
√
ν
/∥∥W (tmp)

i, .

∥∥
2

}
W

(tmp)
i, .

9: end for
10: Θ(t+1) ← Θ(t) − η ∂

∂Θ`(Θ
Tf(ĝ), y)

∣∣
Θ=Θ(t)

11: end for

Note that sgn(Wx)
T
Wx is constant in g, and this subtraction zeros out all bits in g that are not on

the path to the leaf j. So, to solve (12), we only need to consider the bits on the path to the leaf j for
which sgn(wi

Tx) is not consistent with the path direction. Using a single depth-first search on the
decision tree, we can solve (11) for every j, and among those, we pick the one that maximizes (11).

The algorithm described above is O(mp) ⊆ O(2dp), where d is the tree depth, and we require
a multiple of p for computing the inner product wix at each internal node i. This algorithm is
not efficient for deep trees, especially as we need to perform loss-augmented inference once for
every stochastic gradient computation. In what follows, we develop an alternative more efficient
formulation and algorithm with time complexity of O(d2p).

Fast loss-augmented inference. To develop a faster loss-augmented inference algorithm, we for-
mulate a slightly different upper bound on the loss, i.e.,

`(ΘTf(sgn(Wx)), y) ≤ max
g∈B1(sgn(Wx))

(
gTWx + `(ΘTf(g), y)

)
− max

h∈Hm

(
hTWx

)
, (13)

where B1(sgn(Wx)) denotes the Hamming ball of radius 1 around sgn(Wx), i.e., B1(sgn(Wx)) ≡
{g ∈ Hm | ‖g − sgn(Wx)‖H ≤ 1}, hence g ∈ B1(sgn(Wx)) implies that g and sgn(Wx) differ
in at most one bit. The proof of (13) is identical to the proof of (7). The key benefit of this new
formulation is that loss-augmented inference with the new bound is computationally efficient. Since
ĝ and sgn(Wx) differ in at most one bit, then f(ĝ) can only take d + 1 distinct values. Thus we
need to evaluate (12) for at most d+ 1 values of j, requiring a running time of O(d2p).

Stochastic gradient descent (SGD). A reasonable approach to minimizing (9) uses stochastic gra-
dient descent (SGD), the steps of which are outlined in Alg 1. Here, η denotes the learning rate,
and τ is the number of optimization steps. Line 6 corresponds to a gradient update in W , which is
supported by the fact that ∂

∂W hTWx = hxT. Line 8 performs projection back to the feasible region
of W , and Line 10 updates Θ based on the gradient of the loss. Our implementation modifies Alg 1
by adopting common SGD tricks, including the use of momentum and mini-batches.

Stable SGD (SSGD). Even though Alg 1 achieves good training and test accuracy relatively quickly,
we observe that after several gradient updates some of the leaves may end up not being assigned to
any data points and hence the full tree capacity may not be exploited. We call such leaves inac-
tive as opposed to active leaves that are assigned to at least one training data point. An inactive
leaf may become active again, but this rarely happens given the form of gradient updates. To dis-
courage abrupt changes in the number of inactive leaves, we introduce a variant of SGD, in which
the assignments of data points to leaves are fixed for a number of gradient update steps. Thus, the
bound is optimized with respect to a set of data point to leaf assignment constraints. When the im-
provement in the bound becomes negligible the leaf assignment variables are updated, followed by
another round of optimization of the bound. We call this algorithm Stable SGD (SSGD) because it
changes the assignment of data points to leaves more conservatively than SGD. Let a(x) denote the
1-of-(m+ 1) encoding of the leaf to which a data point x should be assigned to. Then, SSGD with

6

SensIT Connect4 Protein MNIST

6 10 14 18
Depth

0.6

0.7

0.8
Te

st
 a

cc
ur

ac
y

6 10 14 18
Depth

0.5

0.6

0.7

0.8

6 10 14 18
Depth

0.4

0.5

0.6

0.7

6 10 14 18
Depth

0.5

0.6

0.7

0.8

0.9

6 10 14 18
Depth

0.5
0.6
0.7
0.8
0.9
1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

6 10 14 18
Depth

0.5
0.6
0.7
0.8
0.9
1.0

6 10 14 18
Depth

0.5
0.6
0.7
0.8
0.9
1.0

6 10 14 18
Depth

0.6

0.7

0.8

0.9

1.0

Axis-aligned
CO2
Non-greedy
Random
OC1

Figure 2: Test and training accuracy of a single tree as a function of tree depth for different methods.
Non-greedy trees achieve better test accuracy throughout different depths. Non-greedy exhibit less
vulnerability to overfitting.

fast loss-augmented inference relies on the following upper bound on loss,

`(ΘTf(sgn(Wx)), y) ≤ max
g∈B1(sgn(Wx))

(
gTWx + `(ΘTf(g), y)

)
− max

h∈Hm|f(h)=a(x)

(
hTWx

)
.

(14)
One can easily verify that the RHS of (14) is larger than the RHS of (13), hence the inequality.

Computational complexity. To analyze the computational complexity of each SGD and SSGD
step, we note that Hamming distance between ĝ (defined in (10)) and ĥ = sgn(Wx) is bounded
above by the depth of the tree d. This is because only those elements of ĝ corresponding to the path
to a selected leaf can differ from sgn(Wx). Thus, for SGD the expression (ĝ − ĥ)xT needed for
Line 6 of Alg 1 can be computed in O(dp), if we know which bits of ĥ and ĝ differ. Accordingly,
Lines 6 and 7 can be performed in O(dp). The computational bottleneck is the loss augmented
inference in Line 5. When fast loss-augmented inference is performed inO(d2p) time, the total time
complexity of gradient update for both SGD and SSGD becomesO(d2p+k), where k is the number
of labels.

7 Experiments

Experiments are conducted on several benchmark datasets from LibSVM [6] for multi-class classi-
fication, namely SensIT, Connect4, Protein, and MNIST. We use the provided train, validation, test
sets when available. If such splits are not provided, we use a random 80%/20% split of the training
data for train and validation sets and a random 64%/16%/20% split for train, validation, test sets.

We compare our method for non-greedy learning of oblique trees with several greedy baselines,
including conventional axis-aligned trees based on information gain, OC1 oblique trees [17] that
use coordinate descent for optimization of the splits, and random oblique trees that select the best
split function from a set of randomly generated hyperplanes based on information gain. We also
compare with the results of CO2 [18], which is a special case of our upper bound approach applied
greedily to trees of depth 1, one node at a time. Any base algorithm for learning decision trees can
be augmented by post-training pruning [16], or building ensembles with bagging [4] or boosting [8].
However, the key differences between non-greedy trees and baseline greedy trees become most
apparent when analyzing individual trees. For a single tree the major determinant of accuracy is the
size of the tree, which we control by changing the maximum tree depth.

Fig. 2 depicts test and training accuracy for non-greedy trees and four other baselines as function of
tree depth. We evaluate trees of depth 6 up to 18 at depth intervals of 2. The hyper-parameters for
each method are tuned for each depth independently. While the absolute accuracy of our non-greedy

7

100 101 102 103
0

1,000

2,000

3,000

4,000

Regularization parameter ν (log)

N
um

.a
ct

iv
e

le
av

es

Tree depth d =10

100 101 102 103
0

1,000

2,000

3,000

4,000

Regularization parameter ν (log)

Tree depth d =13

100 101 102 103
0

1,000

2,000

3,000

4,000

Regularization parameter ν (log)

Tree depth d =16

Figure 3: The effect of ν on the structure of the trees trained by MNIST. A small value of ν prunes
the tree to use far fewer leaves than an axis-aligned baseline used for initialization (dotted line).

trees varies between datasets, a few key observations hold for all cases. First, we observe that non-
greedy trees achieve the best test performance across tree depths across multiple datasets. Second,
trees trained using our non-greedy approach seem to be less susceptible to overfitting and achieve
better generalization performance at various tree depths. As described below, we think that the norm
regularization provides a principled way to tune the tightness of the tree’s fit to the training data.
Finally, the comparison between non-greedy and CO2 [18] trees concentrates on the non-greediness
of the algorithm, as it compares our method with its simpler variant, which is applied greedily one
node at a time. We find that in most cases, the non-greedy optimization helps by improving upon
the results of CO2.

6 10 14 18
Depth

0

300

600

900

1200

1500

1800

Tr
ai

ni
ng

 ti
m

e
(s

ec
) Loss-aug inf

Fast loss-aug inf

Figure 4: Total time to execute
1000 epochs of SGD on the Connect4
dataset using loss-agumented infer-
ence and its fast varient.

A key hyper-parameter of our method is the regularization
constant ν in (9), which controls the tightness of the up-
per bound. With a small ν, the norm constraints force the
method to choose a W with a large margin at each inter-
nal node. The choice of ν is therefore closely related to the
generalization of the learned trees. As shown in Fig. 3, ν
also implicitly controls the degree of pruning of the leaves
of the tree during training. We train multiple trees for dif-
ferent values of ν ∈ {0.1, 1, 4, 10, 43, 100}, and we pick
the value of ν that produces the tree with minimum valida-
tion error. We also tune the choice of the SGD learning rate,
η, in this step. Such ν and η are used to build a tree using
the union of both the training and validation sets, which is
evaluated on the test set.

To build non-greedy trees, we initially build an axis-aligned tree with split functions that threshold a
single feature, optimized using conventional procedures that maximize information gain. The axis-
aligned split is used to initialize a greedy variant of the tree training procedure, called CO2 [18].
This provides initial values for W and Θ for the non-greedy procedure.

Fig. 4 shows an empirical comparison of training time for SGD with loss-augmented inference
and fast loss-augmented inference. As expected, run-time of SGD with loss-augmented inference
exhibits exponential growth with deep trees whereas its fast variant is much more scalable. We
expect to see better speedup factors for larger datasets. Connect4 only has 55, 000 training points.

8 Conclusion

We present a non-greedy method for learning decision trees using stochastic gradient descent to op-
timize an upper bound on the tree’s empirical loss on a training dataset. Our model poses the global
training of decision trees in a well-characterized optimization framework. This makes it simpler
to pose extensions that could be considered in future work. Efficiency gains could be achieved by
learning sparse split functions via sparsity-inducing regularization onW . Further, the core optimiza-
tion problem permits applying the kernel trick to the linear split parameters W , making our overall
model applicable to learning higher-order split functions or training decision trees on examples in
arbitrary reproducing kernel Hilbert spaces.

Acknowledgment. MN was financially supported in part by a Google fellowship. DF was finan-
cially supported in part by NSERC Canada and the NCAP program of the CIFAR.

8

References
[1] K. P. Bennett. Global tree optimization: A non-greedy decision tree algorithm. Computing Science and

Statistics, pages 156–156, 1994.

[2] K. P. Bennett and J.A. Blue. A support vector machine approach to decision trees. In Department
of Mathematical Sciences Math Report No. 97-100, Rensselaer Polytechnic Institute, pages 2396–2401,
1997.

[3] K. P. Bennett, N. Cristianini, J. Shawe-Taylor, and D. Wu. Enlarging the margins in perceptron decision
trees. Machine Learning, 41(3):295–313, 2000.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression trees. Chapman &
Hall/CRC, 1984.

[6] C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines, 2001.

[7] A. Criminisi and J. Shotton. Decision Forests for Computer Vision and Medical Image Analysis. Springer,
2013.

[8] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics,
pages 1189–1232, 2001.

[9] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking,
and action recognition. IEEE Trans. PAMI, 33(11):2188–2202, 2011.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning (Ed. 2). Springer, 2009.

[11] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information
Processing Letters, 5(1):15–17, 1976.

[12] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration mod-
els: A new state of the art. ECCV, 2012.

[13] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural Comput.,
6(2):181–214, 1994.

[14] E. Konukoglu, B. Glocker, D. Zikic, and A. Criminisi. Neighbourhood approximation forests. In Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2012, pages 75–82. Springer, 2012.

[15] B. Lakshminarayanan, D. M. Roy, and Y. H. Teh. Mondrian forests: Efficient online random forests. In
Advances in Neural Information Processing Systems, pages 3140–3148, 2014.

[16] J. Mingers. An empirical comparison of pruning methods for decision tree induction. Machine Learning,
4(2):227–243, 1989.

[17] S. K. Murthy and S. L. Salzberg. On growing better decision trees from data. PhD thesis, John Hopkins
University, 1995.

[18] M. Norouzi, M. D. Collins, D. J. Fleet, and P. Kohli. Co2 forest: Improved random forest by continuous
optimization of oblique splits. arXiv:1506.06155, 2015.

[19] M. Norouzi and D. J. Fleet. Minimal Loss Hashing for Compact Binary Codes. ICML, 2011.

[20] M. Norouzi, D. J. Fleet, and R. Salakhutdinov. Hamming Distance Metric Learning. NIPS, 2012.

[21] S. Nowozin. Improved information gain estimates for decision tree induction. ICML, 2012.

[22] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[23] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi,
A. Kipman, et al. Efficient human pose estimation from single depth images. IEEE Trans. PAMI, 2013.

[24] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. NIPS, 2003.

[25] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interde-
pendent and structured output spaces. ICML, 2004.

[26] C. N. J. Yu and T. Joachims. Learning structural SVMs with latent variables. ICML, 2009.

9

	Introduction
	Related work
	Problem formulation
	Decision trees and structured prediction
	Upper bound on empirical loss
	Optimizing the surrogate objective
	Experiments
	Conclusion

