
Typing Correspondence Assertions for

Communication Protocols

Andrew D. Gordon
Microsoft Research

Alan Jeffrey
DePaul University

Submission to TCS on June 26, 2001
Final revision of March 19, 2002

Abstract

Woo and Lam propose correspondence assertions for specifying au-
thenticity properties of security protocols. Prior work on checking corre-
spondence assertions depends on model-checking and is limited to finite-
state systems. We propose a dependent type and effect system for checking
correspondence assertions. Since it is based on type-checking, our method
is not limited to finite-state systems. This paper presents our system in
the simple and general setting of the π-calculus. We show how to type-
check correctness properties of example communication protocols based
on secure channels. In a related paper, we extend our system to the more
complex and specific setting of checking cryptographic protocols based on
encrypted messages sent over insecure channels.

1 Introduction

Correspondence Assertions To a first approximation, a correspondence as-
sertion about a communication protocol is an intention that follows the pattern:

If one principal ever reaches a certain point in a protocol, then some
other principal has previously reached some other matching point in
the protocol.

We record such intentions by annotating the program representing the pro-
tocol with labelled assertions of the form begin L or end L. These assertions
have no effect at runtime, but notionally indicate that a principal has reached a
certain point in the protocol. The following more accurately states the intention
recorded by these annotations:

If the program embodying the protocol ever asserts endL, then there
is a distinct previous assertion of begin L.

Woo and Lam [WL93] introduce correspondence assertions to state intended
properties of authentication protocols based on cryptography. Consider a proto-
col where a principal a generates a new session key k and transmits it to b. We
intend that if a run of b ends a key exchange believing that it has received key k
from a, then a generated k as part of a key exchange intended for b. We record

1

this intention by annotating a’s generation of k by the label begin 〈a, b, k〉, and
b’s reception of k by the label end 〈a, b, k〉.

A protocol can fail a correspondence assertion because of several kinds of
bug. One kind consists of those bugs that cause the protocol to go wrong
without any external interference. Other kinds are bugs where an unreliable or
malicious network or participant causes the protocol to fail. Such bugs include
vulnerabilities to attacks such as replay or man-in-the-middle attacks, where an
active opponent on the network can cause b to accept a message more times
than it was sent, or to accept a message as if it came from a when in fact it
came from the opponent.

This Paper We show in this paper that correctness properties expressed by
correspondence assertions can be proved by type-checking. We embed corre-
spondence assertions in a concurrent programming language (the π-calculus of
Milner, Parrow, and Walker [Mil99]) and present a new type and effect system
that guarantees safety of well-typed assertions. We show several examples of
how correspondence assertions can be proved by type-checking.

Woo and Lam’s paper introduces correspondence assertions but provides no
techniques for proving them. Clarke and Marrero [CM00] use correspondence
assertions to specify properties of e-commerce protocols, such as authorizations
of transactions. Lowe [Low95] discusses several forms of authenticity property
achieved by security protocols; in his terminology, correspondence assertions
are “injective agreement” properties. Prior work on checking correspondence
assertions includes a project by Marrero, Clarke, and Jha [MCJ97] to apply
model-checking techniques to finite state versions of security protocols. Since
our work is based on type-checking, it is not limited to finite state systems.
Moreover, type-checking is compositional: we can verify components in isolation,
and know that their composition is safe, without having to verify the entire
system. Unlike Marrero, Clarke, and Jha’s work, however, the system of the
present paper does not deal with cryptographic primitives, and nor does it deal
with an arbitrary opponent. Still, in another paper [GJ01a], we adapt our type
and effect system to the setting of the spi-calculus [AG99], an extension of the
π-calculus with abstract cryptographic primitives. This adaptation can show,
moreover, that properties hold in the presence of an arbitrary untyped opponent.

The rest of this paper is organised as follows. We introduce correspondence
assertions, by example, in Section 2. Section 3 introduces a typed π-calculus
in which correspondence assertions may be verified by type-checking. Section 4
explains several applications. Section 5 explains the soundness proof for our
type system. Section 6 discusses related work and Section 7 concludes. An
appendix includes proofs of the two theorems stated in the main body of the
paper.

A conference paper contains part of the material of this paper [GJ01b].

Review of The Untyped π-Calculus Milner, Parrow, and Walker’s π-
calculus is a concurrent formalism to which many kinds of concurrent com-
putation may be reduced. Its simplicity makes it an attractive vehicle for devel-
oping the ideas of this paper, while its generality suggests they may be widely
applicable. Its basic data type is the name, an unguessable identifier for a
communications channel. Computation is based on the exchange of messages,

2

tuples of names, on named channels. Programming in the π-calculus is based
on the following constructs (written, unusually, with keywords, for the sake of
clarity). The rest of the paper contains many examples. An output process
out x〈y1, . . . , yn〉 represents a message 〈y1, . . . , yn〉 sent on the channel x. An
input process inp x(z1, . . . , zn); P blocks till it finds a message sent on the chan-
nel x, reads the names in the message into the variables z1, . . . , zn, and then
runs P . The process P | Q is the parallel composition of the two processes P
and Q; the two may run independently or communicate on shared channels.
The name generation process new(x); P generates a fresh name, calls it x, then
runs P . Unless P reveals x, no other process can use this fresh name. The
replication process repeat P behaves like an unbounded parallel array of repli-
cas of P . The process stop represents inactivity; it does nothing. Finally, the
conditional if x = y then P else Q compares the names x and y. If they are the
same it runs P ; otherwise it runs Q.

2 Correspondence Assertions, by Example

This section introduces the idea of defining correspondence assertions by anno-
tating code with begin- and end-events. We give examples of both safe code
and of unsafe code, that is, of code that satisfies the correspondence assertions
induced by its annotations, and of code that does not.

A transmit-acknowledge handshake is a standard communications idiom,
easily expressed in the π-calculus: along with the actual message, the sender
transmits an acknowledgement channel, upon which the receiver sends an ac-
knowledgement. We intend that:

During a transmit-acknowledge handshake, if the sender receives an
acknowledgment, then the receiver has obtained the message.

Correspondence assertions can express this intention formally. Suppose that
a and b are the names of the sender and receiver, respectively. We annotate the
code of the receiver b with a begin-assertion at the point after it has received the
message msg . We annotate the code of the sender a with an end-assertion at the
point after it has received the acknowledgement. We label both assertions with
the names of the principals and the transmitted message, 〈a, b,msg〉. Hence, we
assert that if after sending msg to b, the sender a receives an acknowledgement,
then a distinct run of b has received msg .

Suppose that c is the name of the channel on which principal b receives
messages from a. Here is the π-calculus code of the annotated sender and
receiver:

Rcver(a, b, c) ∆=
inp c(msg , ack);
begin 〈a, b,msg〉;
out ack〈〉

Snder(a, b, c) ∆=
new(msg); new(ack);
out c〈msg , ack〉; inp ack();
end 〈a, b,msg〉

The sender creates a fresh message msg and a fresh acknowledgement channel
ack , sends the two on the channel c, waits for an acknowledgement, and then
asserts an end-event labelled 〈a, b,msg〉.

3

The receiver gets the message msg and the acknowledgement channel ack
off c, asserts a begin-event labelled 〈a, b,msg〉, and sends an acknowledgement
on ack .

For the sake of simplicity, in this paper we represent the principal associated
with code only informally, outside our π-calculus. The names of definitions, and
their parameters, should suggest the owner of each process.

We say a program is safe if it satisfies the intentions induced by the begin-
and end-assertions. More precisely, a program is safe just if for every run
of the program and for every label L, there is a distinct begin-event labelled L
preceding every end-event labelled L. (We formalize this definition in Section 5.)

Here are three combinations of our examples: two safe, one unsafe.

new(c);
Snder(a, b, c) |
Rcver(a, b, c)

(Example 1: safe)

Example 1 uses one instance of the sender and one instance of the receiver to
represent a single instance of the protocol. The restriction new(c); makes the
channel c private to the sender and the receiver. This assembly is safe; its only
run correctly implements the handshake protocol.

new(c);
Snder(a, b, c) |
Snder(a, b, c) |
repeat Rcver(a, b, c)

(Example 2: safe)

Example 2 uses two copies of the sender—representing two attempts by a single
principal a to send a message to b—and a replicated copy of the receiver—
representing the principal b willing to accept an unbounded number of messages.
Again, this assembly is safe; any run consists of an interleaving of two correct
handshakes.

new(c);
Snder(a, b, c) |
Snder(a′, b, c) |
repeat Rcver(a, b, c)

(Example 3: unsafe)

Example 3 is a variant on Example 2, where we keep the replicated receiver b, but
change the identity of one of the senders, so that the two senders represent two
different principals a and a′. These two principals share a single channel c to the
receiver. Since the identity a of the sender is a parameter of Rcver(a, b, c) rather
than being explicitly communicated, this assembly is unsafe. There is a run in
which a′ generates msg and ack , and sends them to b; b asserts a begin-event
labelled 〈a, b,msg〉 and outputs on ack ; then a′ asserts an end-event labelled
〈a′, b,msg〉. This end-event has no corresponding begin-event so the assembly
is unsafe, reflecting the possibility that the receiver can be mistaken about the
identity of the sender.

4

3 Typing Correspondence Assertions

3.1 Types and Effects

Our type and effect system is based on the idea of assigning types to names
and effects to processes. A type describes what operations are allowed on a
name, such as what messages may be communicated on a channel name. An
effect describes the collection of labels of events the process may end while not
itself beginning. We compute effects based on the intuition that end-events
are accounted for by preceding begin-events; a begin-event is a credit while an
end-event is a debit. According to this metaphor, the effect of a process is an
upper bound on the debt a process may incur. If we can assign a process the
empty effect, we know all of its end-events are accounted for by begin-events.
Therefore, we know that the process is safe, that is, its correspondence assertions
are true.

An essential ingredient of our typing rules is the idea of attaching a latent
effect to each channel type. We allow any process receiving off a channel to
treat the latent effect as a credit towards subsequent end-events. This is sound
because we require any process sending on a channel to treat the latent effect
as a debit that must be accounted for by previous begin-events. Latent effects
are at the heart of our method for type-checking events begun by one process
and ended by another.

The following table describes the syntax of types and effects. As in most
versions of the π-calculus, we make no lexical distinction between names and
variables, ranged over by a, b, c, x, y, z. An event label, L, is simply a tuple of
names. Event labels identify the events asserted by begin- and end-assertions.
An effect, e, is a multiset, that is, an unordered list, of event labels, written as
[L1, . . . , Ln]. A type, T , takes one of two kinds. The first kind, Name, is the
type of pure names, that is, names that only support equality operations, but
cannot be used as channels. We use Name as the type of names that identify
principals, for instance. The second kind, Ch(x1:T1, . . . , xn:Tn)e, is a type of
a channel communicating n-tuples of names, of types T1, . . . , Tn, with latent
effect e. The names x1, . . . , xn are bound; the scope of each xi consists of
the types Ti+1, . . . , Tn, and the latent effect e. We identify types up to the
consistent renaming of bound names.

Names, Event Labels, Effects, and Types:

a, b, c, x, y, z names, variables
L ::= 〈x1, . . . , xn〉 event label: tuple of names
e ::= [L1, . . . , Ln] effect: multiset of event labels
T ::= type

Name pure name
Ch(x1:T1, . . . , xn:Tn)e channel with latent effect e

For example:

• Ch()[], a synchronization channel (that is, a channel used only for syn-
chronization) with no latent effect.

• Ch(a:Name)[〈b〉], a channel for communicating a pure name, costing [〈b〉]
to senders and paying [〈b〉] to receivers, where b is a fixed name.

5

• Ch(a:Name)[〈a〉], a channel for communicating a pure name, costing [〈a〉]
to senders and paying [〈a〉] to receivers, where a is the name communicated
on the channel.

• Ch(a:Name, b:Ch()[〈a〉])[], a channel with no latent effect for communicat-
ing pairs of the form a, b, where a is a pure name, and b is the name
of a synchronization channel, costing [〈a〉] to senders and paying [〈a〉] to
receivers.

The following is a convenient shorthand for the lists of typed variable declara-
tions found in channel types:

Notation for Typed Variables:

~x:~T ∆= x1:T1, . . . , xn:Tn where ~x = x1, . . . , xn and ~T = T1, . . . , Tn

ε
∆= () the empty list

The following table defines the sets of free names of variable declarations, and
of event labels, effects, and types.

Free Names of Typed Variables, Event Labels, Effects, and Types:

fn(ε:ε) ∆= ∅
fn(~x:~T , x:T) ∆= fn(~x:~T) ∪ (fn(T)− {~x})
fn(〈x1, . . . , xn〉) = {x1, . . . , xn}
fn([L1, . . . , L1])

∆= fn(L1) ∪ · · · ∪ fn(Ln)
fn(Name) ∆= ∅
fn(Ch(~x:~T)e) ∆= fn(~x:~T) ∪ (fn(e)− {~x})

For any of these forms of syntax, we write −{x←y} for the operation of capture-
avoiding substitution of the name y for each free occurrence of the name x.
We write −{~x←~y}, where ~x = x1, . . . , xn and ~y = y1, . . . , yn for the iterated
substitution −{x1←y1} · · · {xn←yn}.

3.2 Syntax of our Typed π-Calculus

The calculus of this paper is an asynchronous, polyadic π-calculus, with a con-
ditional based on name equality. We expect our techniques could be applied to
other standard variations of the π-calculus.

We explained the informal semantics of begin- and end-assertions in Sec-
tion 2, and of the other constructs in Section 1.

Processes:

P, Q,R ::= process
out x〈y1, . . . , yn〉 polyadic asynchronous output
inp x(y1:T1, . . . , yn:Tn); P polyadic input
if x = y then P else Q conditional
new(x:T); P name generation
P | Q composition
repeat P replication
stop inactivity

6

begin L; P begin-assertion
end L;P end-assertion

There are two name binding constructs: input and name generation. In
an input process inp x(y1:T1, . . . , yn:Tn); P , each name yi is bound, with scope
consisting of Ti+1, . . . , Tn, and P . In a name restriction new(x:T); P , the name
x is bound; its scope is P . We write P{x←y} for the outcome of a capture-
avoiding substitution of the name y for each free occurrence of the name x in
the process P . We identify processes up to the consistent renaming of bound
names. We let fn(P) be the set of free names of a process P . We sometimes
write an output as out x〈~y〉 where ~y = y1, . . . , yn, and an input as inp x(~y:~T); P ,
where ~y:~T is a variable declaration written in the notation introduced in the
previous section. We write out x〈~y〉;P as a shorthand for out x〈~y〉 | P .

Free Names of Processes:

fn(out x〈~y〉) ∆= {x} ∪ {~y}
fn(inp x(~y:~T); P) ∆= {x} ∪ fn(~y:~T) ∪ (fn(P)− {~y})
fn(if x = y then P else Q) ∆= {x, y} ∪ fn(P) ∪ fn(Q)
fn(new(x:T); P) ∆= fn(T) ∪ (fn(P)− {x})
fn(P | Q) ∆= fn(P) ∪ fn(Q)
fn(repeat P) ∆= fn(P)
fn(stop) ∆= ∅
fn(begin 〈~y〉; P) ∆= {~y} ∪ fn(P)
fn(end 〈~y〉;P) ∆= {~y} ∪ fn(P)

3.3 Intuitions for the Type and Effect System

As a prelude to our formal typing rules, we present the underlying intuitions.
Recall the intuition that end-events are costs to be accounted for by begin-
events. When we say a process P has effect e, it means that e is an upper
bound on the begin-events needed to precede P to make the whole process safe.
In other words, if P has effect [L1, . . . , Ln] then beginL1; · · · ; beginLn; P is safe.

Typing Assertions An assertion begin L;P pays for one end-event labelled
L in P ; so if P is a process with effect e, then begin L; P is a process with effect
e−[L], that is, the multiset e with one occurrence of L deleted. So we have a
typing rule of the form:

P : e ⇒ begin L; P : e−[L]

If P is a process with effect e, then end L; P is a process with effect e+[L],
that is, the concatenation of e and [L]. We have a rule:

P : e ⇒ end L; P : e+[L]

Typing Name Generation and Concurrency The effect of a name gener-
ation process new(x:T); P , is simply the effect of P . To prevent scope confusion,
we forbid x from occurring in this effect.

7

P : e, x /∈ fn(e) ⇒ new(x:T); P : e

The effect of a concurrent composition of processes is the multiset union of
the constituent processes.

P : eP , Q : eQ ⇒ P | Q : eP +eQ

The inactive process asserts no end-events, so its effect is empty.

stop : []

The replication of a process P behaves like an unbounded array of replicas of
P . If P has a non-empty effect, then its replication would have an unbounded ef-
fect, which could not be accounted for by preceding begin-assertions. Therefore,
to type repeat P we require P to have an empty effect.

P : [] ⇒ repeat P : []

Typing Communications We begin by presenting the rules for typing com-
munications on monadic channels with no latent effect, that is, those with types
of the form Ch(y:T)[]. The communicated name has type T . An output out x〈z〉
has empty effect. An input inp x(y:T); P has the same effect as P . Since the
input variable in the process and in the type are both bound, we may assume
they are the same variable y.

x : Ch(y:T)[], z : T ⇒ out x〈z〉 : []
x : Ch(y:T)[], P : e, y /∈ fn(e) ⇒ inp x(y:T); P : e

Next, we consider the type Ch(y:T)e` of monadic channels with latent effect
e`. The latent effect is a cost to senders, a benefit to receivers, and is the scope
of the variable y. We assign an output out x〈z〉 the effect e`{y←z}, where we
have instantiated the name y bound in the type of the channel with z, the name
actually sent on the channel. We assign an input inp x(y:T); P the effect e− e`,
where e is the effect of P . To avoid scope confusion, we require that y is not
free in e− e`.

x : Ch(y:T)e`, z : T ⇒ out x〈z〉 : e`{y←z}
x : Ch(y:T)e`, P : e, y /∈ fn(e− e`) ⇒ inp x(y:T); P : e− e`

The formal rules for input and output in the next section generalize these
rules to deal with polyadic channels.

Typing Conditionals When typing a conditional if x = y then P else Q,
it is useful to exploit the fact that P only runs if the two names x and y are
equal. To do so, we check the effect of P after substituting one for the other.
Suppose then process P{x←y} has effect eP {x←y}. Suppose also that process
Q has effect eQ. Let eP ∨eQ be the least upper bound of any two effects eP and
eQ. Then eP ∨ eQ is an upper bound on the begin-events needed to precede the
conditional to make it safe, whether P or Q runs. An example in Section 4.2
illustrates this rule.

P{x←y} : eP {x←y}, Q : eQ ⇒ if x = y then P else Q : eP ∨ eQ

8

3.4 Typing Rules

Our typing rules depend on several operations on effect multisets, most of which
were introduced informally in the previous section. Here are the formal defini-
tions.

Operations on effects: e + e′, e ≤ e′, e− e′, L ∈ e, e ∨ e′

[L1, . . . , Lm] + [Lm+1, . . . , Lm+n] ∆= [L1, . . . , Lm+n]
e ≤ e′ if and only if e′ = e + e′′ for some e′′

e− e′ ∆= the smallest e′′ such that e ≤ e′ + e′′

L ∈ e if and only if [L] ≤ e

e ∨ e′ ∆= the smallest e′′ such that e ≤ e′′ and e′ ≤ e′′

The typing judgments of this section depend on an environment to assign a
type to all the variables in scope. Our typing rules ensure that the names listed
in an environment are always pairwise distinct.

Environments:

E ::= ~x:~T environment
dom(~x:~T) ∆= {~x} domain of an environment

To equate two names in an environment, needed for typing conditionals,
we define a name fusion function. We obtain the fusion E{x←x′} from E by
turning all occurrences of x and x′ in E into x′.

Fusing x with x′ in E: E{x←x′}
(x1:T1, . . . , xn:Tn){x←x′} ∆=

(x1{x←x′}):(T1{x←x′}); . . . ; (xn{x←x′}):(Tn{x←x′})
where E; x:T ∆=

{
E if x ∈ dom(E)
E, x:T otherwise

The following table summarizes the five judgments of our type system, which
are inductively defined by rules in subsequent tables. Judgment E ` ¦ means
environment E is well-formed. Judgment E ` T means type T is well-formed.
Judgment E ` x : T means name x is in scope with type T . Judgment E `
〈~x〉 : 〈~y:~T 〉 means tuple 〈~x〉 matches the variable declaration ~y:~T . Judgment
E ` P : e means process P has effect e.

Judgments:

E ` ¦ good environment
E ` T good type T
E ` x : T good name x of type T

E ` 〈~x〉 : 〈~y:~T 〉 good message ~x matching ~y:~T
E ` P : e good process P with effect e

The rules defining the first three judgments are standard. The names listed
in a good environment, or in a channel type, are guaranteed to include no
duplicates, that is, if E ` ¦ where E = ~x:~T , or if E′ ` Ch(~x:~T)e, then the list ~x
includes no duplicates.

9

Good environments, types, and names:

(Env ∅)

∅ ` ¦

(Env x)
E ` T x /∈ dom(E)

E, x:T ` ¦

(Type Name)
E ` ¦

E ` Name

(Type Chan)
E, ~x:~T ` ¦ fn(e) ⊆ dom(E) ∪ {~x}

E ` Ch(~x:~T)e

(Name x)
E′, x:T,E′′ ` ¦

E′, x:T, E′′ ` x : T

The next judgment, E ` 〈~x〉 : 〈~y:~T 〉, is an auxiliary judgment used for typing
output processes; it is used in the rule (Proc Output) to check that the message
〈~x〉 sent on a channel of type Ch(~y:~T)e matches the variable declaration ~y:~T .

Good message:

(Msg 〈〉)
E ` ¦

E ` 〈〉 : 〈〉

(Msg x) (where y /∈ {~y} ∪ dom(E))
E ` 〈~x〉 : 〈~y:~T 〉 E ` x : (T{~y←~x})

E ` 〈~x, x〉 : 〈~y:~T , y:T 〉

Finally, here are the rules for typing processes. The effect of a process is an
upper bound; the rule (Proc Subsum) allows us to increase this upper bound.
Intuitions for all the other rules were explained in the previous section.

Good processes:

(Proc Subsum) (where e ≤ e′ and fn(e′) ⊆ dom(E))
E ` P : e

E ` P : e′

(Proc Output)
E ` x : Ch(~y:~T)e E ` 〈~x〉 : 〈~y:~T 〉

E ` out x〈~x〉 : (e{~y←~x})
(Proc Input) (where fn(e− e′) ⊆ dom(E))
E ` x : Ch(~y:~T)e′ E, ~y:~T ` P : e

E ` inp x(~y:~T); P : e− e′

(Proc Cond)
E ` x : T E ` y : T E{x←y} ` P{x←y} : eP {x←y} E ` Q : eQ

E ` if x = y then P else Q : eP ∨ eQ

(Proc Res) (where x /∈ fn(e))
E, x:T ` P : e

E ` new(x:T); P : e

(Proc Par)
E ` P : eP E ` Q : eQ

E ` P | Q : eP + eQ

(Proc Repeat)
E ` P : []

E ` repeat P : []

(Proc Stop)
E ` ¦

E ` stop : []

10

(Proc Begin) (where fn(L) ⊆ dom(E))
E ` P : e

E ` begin L; P : e− [L]

(Proc End) (where fn(L) ⊆ dom(E))
E ` P : e

E ` end L;P : e + [L]

Section 5 presents our main type safety result, Theorem 2, that E ` P : []
implies P is safe. Like most type systems, ours is incomplete. There are safe
processes that are not typeable in our system. For example, we cannot assign
the process if x = x then stop else (end x; stop) the empty effect, and yet it is
perfectly safe.

4 Applications

In this section, we present some examples of using correspondence assertions to
validate safety properties of communication protocols. For more examples, in-
cluding examples with cryptographic protocols which are secure against external
attackers, see the companion paper [GJ01a].

In these examples, we write out x〈~y〉;P as a shorthand for out x〈~y〉 | P .

4.1 Transmit-Acknowledge Handshake

Recall the untyped sender and receiver code from Section 2. Suppose we make
the type definitions:

Msg ∆= Name Ack(a, b,msg) ∆= Ch()[〈a, b,msg〉]
Host ∆= Name Req(a, b) ∆= Ch(msg :Msg , ack :Ack(a, b,msg))[]

Suppose also that we annotate the sender and receiver code, and the code of
Example 1 as follows:

Snder(a:Host , b:Host , c:Req(a, b)) ∆=
new(msg :Msg);
new(ack :Ack(a, b,msg));
out c〈msg , ack〉;
inp ack();
end 〈a, b,msg〉

Rcver(a:Host , b:Host , c:Req(a, b)) ∆=
inp c(msg :Msg , ack :Ack(a, b,msg));
begin 〈a, b,msg〉;
out ack〈〉

Example1 (a:Host , b:Host) ∆=
new(c:Req(a, b));

Snder(a, b, c) |
Rcver(a, b, c)

We can then check that a:Host , b:Host ` Example1 (a, b) : []. Since the system
has the empty effect, by Theorem 2 it is safe. It is routine to check that Exam-
ple 2 from Section 2 also has the empty effect, but that Example 3 cannot be
type-checked (as to be expected, since it is unsafe).

4.2 Hostname Lookup

In this example, we present a simple hostname lookup system, where a client b
wishing to ping a server a can contact a name server query , to get a network
address ping for a. The client can then send a ping request to the address ping ,
and get an acknowledgement from the server. We shall check two properties:

11

• When the ping client b finishes, it believes that the ping server a has been
pinged.

• When the ping server a finishes, it believes that it was contacted by the
ping client b.

We write “a was pinged by b” as shorthand for 〈a, b〉, and “b tried to ping a”
for 〈b, a, a〉. (Our subsequent work [GJ01a] differentiates event labels via tag
primitives rather than via ad hoc encodings.) These examples are well-typed,
with types (such as Hostname and Query) which we define later in this section.

Our whole system is as follows. Let h1, . . . , hn be the names of n principals,
and let ping1, . . . , pingn be channels on which each principal maintains a ping
server. The name server listens for requests on the query channel. We model
the whole system, including an attempt by host hj to ping host hi as follows.

System(query , h1, . . . , hn, ping1, . . . , pingn, i, j) ∆=
NameServer(query , h1, . . . , hn, ping1, . . . , pingn) |
PingServer(h1, ping1) | · · · | PingServer(hn, pingn) |
PingClient(hi, hj)

Here are the definitions of the ping client and server:

PingClient(a:Hostname, b:Hostname, query :Query) ∆=
new(res : Res(a));
out query〈a, res〉;
inp res(ping : Ping(a));
new(ack : Ack(a, b));
begin “b tried to ping a”;
out ping〈b, ack〉;
inp ack();
end “a was pinged by b”

PingServer(a : Hostname, ping : Ping(a)) ∆=
repeat

inp ping(b : Hostname, ack : Ack(a, b));
begin “a was pinged by b”;
end “b tried to ping a”;
out ack〈〉

If these processes are safe, then any ping request and response must come as
matching pairs. In practice, the name server would require some data structure
such as a hash table or database, but for this simple example we just use a large
if-statement:

NameServer(
query :Query ,
h1:Hostname, . . . , hn:Hostname,
ping1:Ping(h1), . . . , pingn:Ping(hn)

) ∆=
repeat

inp query(h, res);
if h = h1 then out res〈ping1〉 else · · ·
if h = hn then out res〈pingn〉 else stop

12

To get the system to type-check, we use the following types:

Hostname ∆= Name

Ack(a, b) ∆= Ch()[“a was pinged by b”]
Ping(a) ∆= Ch(b:Hostname, ack :Ack(a, b))[“b tried to ping a”]
Res(a) ∆= Ch(ping :Ping(a))[]
Query ∆= Ch(a:Hostname, res:Res(a))[]

The most subtle part of type-checking the system is the conditional in the name
server. A typical branch is:

hi : Hostname, ping i : Ping(hi), h : Hostname, res : Res(h)
` if h = hi then out res〈ping i〉 else · · · : []

When type-checking the then-branch, (Proc Cond) assumes h = hi by applying
a substitution to the environment:

(hi : Hostname, ping i : Ping(hi), h : Hostname, res : Res(h)){h←hi}
= (hi : Hostname, ping i : Ping(hi), res : Res(hi))

In this environment, we can type-check the then-branch:

hi : Hostname, ping i : Ping(hi), res : Res(hi)
` out res〈ping i〉 : []

If (Proc Cond) did not apply the substitution to the environment, this example
could not be type-checked, since:

hi : Hostname, ping i : Ping(hi), h : Hostname, res : Res(h)
0 out res〈ping i〉 : []

Overall, we can derive the following judgment, provided i, j ∈ 1..n, to show that
the whole system is safe:

query :Query , h1:Hostname, . . . , ping1:Ping(h1), . . . `
System(query , h1, . . . , hn, ping1, . . . , pingn, i, j) : []

4.3 Functions

It is typical to code the λ-calculus into the π-calculus, using a return channel
k as the destination for the result. For instance, the hostname lookup example
of the previous section can be rewritten in the style of a remote procedure call.
The client and server are now:

PingClient(a:Hostname, b:Hostname, query :Query) ∆=
let (ping : Ping(a)) = query 〈a〉;
begin “b tried to ping a”;
let () = ping 〈b〉;
end “a was pinged by b”

PingServer(a : Hostname, ping : Ping(a)) ∆=
fun ping(b:Hostname) {

begin “a was pinged by b”;
end “b tried to ping a”;
return 〈〉

}

13

The name server is now:

NameServer(
query :Query ,
h1:Hostname, . . . , hn:Hostname,
ping1:Ping(h1), . . . , pingn:Ping(hn)

) ∆=
fun query(h:Hostname) {

if h = h1 then return 〈ping1〉 else · · ·
if h = hn then return 〈pingn〉 else stop

}
In order to provide types for these examples, we have to provide a function type
with latent effects. These effects are precondition/postcondition pairs, which act
like Hoare triples. In the type (~x:~T)e → (~y:~U)e′ we have a precondition e which
the callee must satisfy, and a postcondition e′ which the caller must satisfy. For
example, the types for the hostname lookup example are:

Ping(a) ∆= (b:Hostname)[“b tried to ping a”] → ()[“a was pinged by b”]
Query ∆= (a:Hostname)[] → (ping :Ping(a))[]

which specifies that the remote ping call has a precondition “b tried to ping a”
and a postcondition “a was pinged by b”.

This can be coded into the π-calculus using a translation [Mil99] in contin-
uation passing style. We assume that the type of each function is declared in
advance.

fun f(~x:~T) {P} ∆= repeat inp f(~x:~T , k:Ch(~y:~U)e′); P
where f : (~x:~T)e → (~y:~U)e′

let (~y:~U) = f 〈~x〉; P ∆= new(k:Ch(~y:~U)e′); out f〈~x, k〉; inp k(~y:~U); P
return 〈~z〉 ∆= out k〈~z〉

(~x:~T)e → (~y:~U)e′ ∆= Ch(~x:~T , k:Ch(~y:~U)e′)e

This translation is standard, except for the typing. It is routine to verify its
soundness.

5 Formalizing Correspondence Assertions

In this section, we give the formal definition of the trace semantics for the π-
calculus with correspondence assertions, which is used in the definition of a safe
process. We then state the main result of this paper, which is that effect-free
processes are safe.

We give the trace semantics as a labelled transition system. Following Berry
and Boudol [BB92] and Milner [Mil99] we use a structural congruence P ≡ Q,
and give our operational semantics up to ≡.

Structural Congruence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q, Q ≡ R ⇒ P ≡ R (Struct Trans)

14

P ≡ P ′ ⇒ inp x(~y:~T); P ≡ inp x(~y:~T); P ′ (Struct Input)
P ≡ P ′, Q ≡ Q′ ⇒

if x = y then P else Q ≡
if x = y then P ′ else Q′

(Struct If)

P ≡ P ′ ⇒ new(x:T); P ≡ new(x:T); P ′ (Struct Res)
P ≡ P ′ ⇒ P | R ≡ P ′ | R (Struct Par)
P ≡ P ′ ⇒ repeat P ≡ repeat P ′ (Struct Repl)
P ≡ P ′ ⇒ begin L;P ≡ begin L;P ′ (Struct Begin)
P ≡ P ′ ⇒ end L; P ≡ end L; P ′ (Struct End)

P | stop ≡ P (Struct Par Zero)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
repeat P ≡ P | repeat P (Struct Repl Par)

new(x:T); (P | Q) ≡ P | new(x:T); Q (Struct Res Par) (where x /∈ fn(P))
new(x1:T1); new(x2:T2); P ≡

new(x2:T2); new(x1:T1); P
(Struct Res Res)
(where x1 6= x2, x1 /∈ fn(T2), x2 /∈ fn(T1))

There are four actions in this labelled transition system:

• P
begin L−−−−→ P ′ when P reaches a begin L assertion.

• P
end L−−−→ P ′ when P reaches an end L assertion.

• P
gen 〈x〉−−−−→ P ′ when P generates a new name x.

• P
τ−→ P ′ when P can perform an internal action.

For example:

(new(x:Name); begin 〈x〉; end 〈x〉; stop)
gen 〈x〉−−−−→ (begin 〈x〉; end 〈x〉; stop)

begin 〈x〉−−−−−→ (end 〈x〉; stop)
end 〈x〉−−−−→ (stop)

Next, we give the syntax of actions α, and their free and generated names.

Actions:

α, β ::= actions
begin L begin-event
end L end-event
gen 〈x〉 name generation
τ internal

Free names, fn(α), and generated names, gn(α), of an action α:

fn(τ) ∆= ∅ gn(τ) ∆= ∅
fn(begin L) ∆= fn(L) gn(begin L) ∆= ∅

fn(end L) ∆= fn(L) gn(end L) ∆= ∅
fn(gen 〈x〉) ∆= {x} gn(gen 〈x〉 ∆= {x}

15

The labelled transition system P
α−→ P ′ is defined here.

Transitions: P
α−→ P ′

out x〈~x〉 | inp x(~y); P τ−→ P{~y←~x} (Trans Comm)
if x = x then P else Q

τ−→ P (Trans Match)
if x = y then P else Q

τ−→ Q (Trans Mismatch) (if x 6= y)

begin L; P
begin L−−−−→ P (Trans Begin)

end L;P end L−−−→ P (Trans End)

new(x:T); P
gen 〈x〉−−−−→ P (Trans Gen)

P
α−→ P ′ ⇒ P | Q α−→ P ′ | Q (Trans Par) (if gn(α) ∩ fn(Q) = ∅)

P ≡ P ′, P ′ α−→ Q′, Q′ ≡ Q ⇒ P
α−→ Q (Trans ≡)

From this operational semantics, we can define the traces of a process, with
reductions P

s−→ P ′ where s is a sequence of actions.

Traces:

s, t ::= α1, . . . , αn trace

Free names, fn(s), and generated names, gn(s), of a trace s:

fn(α1, . . . , αn) ∆= fn(α1) ∪ · · · ∪ fn(αn)
gn(α1, . . . , αn) ∆= gn(α1) ∪ · · · ∪ gn(αn)

Traced transitions: P
s−→ P ′

P ≡ P ′ ⇒ P
ε−→ P ′ (Trace ≡)

P
α−→ P ′′, P ′′ s−→ P ′ ⇒ P

α,s−−→ P ′ (Trace Action) (where fn(α) ∩ gn(s) = ∅)

We require a side-condition on (Trace Action) to ensure that generated
names are unique, otherwise we could observe traces such as

(new(x); new(y); stop)
gen 〈x〉,gen 〈x〉−−−−−−−−−→ (stop)

Having formally defined the trace semantics of our π-calculus, we can define
when a trace is a correspondence: this is when every end L has a distinct,
matching begin L. For example:

begin L, end L is a correspondence
begin L, end L, end L is not a correspondence

begin L, begin L, end L, end L is a correspondence

We formalize this by counting the number of begin L and end L actions there
are in a trace.

Beginnings, begins (α), and endings, ends (α), of an action α:

begins (begin L) ∆= [L] ends (begin L) ∆= []
begins (end L) ∆= [] ends (end L) ∆= [L]

begins (gen 〈x〉) ∆= [] ends (gen 〈x〉) ∆= []
begins (τ) ∆= [] ends (τ) ∆= []

16

Beginnings, begins (s), and endings, ends (s), of a trace s:

begins (α1, . . . , αn) ∆= begins (α1) + · · ·+ begins (αn)
ends (α1, . . . , αn) ∆= ends (α1) + · · ·+ ends (αn)

Correspondence:

A trace s is a correspondence if and only if ends (s) ≤ begins (s).

A process is safe if every trace is a correspondence.

Safety:

A process P is safe if and only if for all traces s and processes P ′

if P
s−→ P ′ then s is a correspondence.

A subtlety of this definition of safety is that although we want each end-event
of a safe process to be preceded by a distinct, matching begin-event, a trace st
may be a correspondence by virtue of a later begin-event in t matching an earlier
end-event in s. For example, a trace like end L, begin L is a correspondence.

To see why our definition implies that a matching begin-event must precede
each end-event in each trace of a safe process, suppose a safe process has a trace
s, endL, t. By definition of traces, the process also has the shorter trace s, endL,
which must be a correspondence, since it is a trace of a safe process. Therefore,
the end-event end L is preceded by a matching begin-event in s.

We can now state the formal result of the paper, Theorem 2, that every
effect-free process is safe. This gives us a compositional technique for verifying
the safety of communications protocols. It follows from a subject reduction
result, Theorem 1. The most difficult parts of the formal development to check
in detail are the parts associated with the (Proc Cond) rule, because of its use
of a substitution applied to an environment. Proofs are in the appendix.

Theorem 1 (Subject Reduction) Suppose E ` P : e.

(1) If P
τ−→ P ′ then E ` P ′ : e.

(2) If P
begin L−−−−→ P ′ then E ` P ′ : e + [L].

(3) If P
end L−−−→ P ′ then E ` P ′ : e− [L], and L ∈ e.

(4) If P
gen 〈x〉−−−−→ P ′ and x /∈ dom(E) then E, x:T ` P ′ : e for some type T .

Theorem 2 (Safety) If E ` P : [] then P is safe.

6 Related Work

Correspondence assertions are not new; we have already discussed prior work
on correspondence assertions for cryptographic protocols [WL93, MCJ97]. A
contribution of our work is the idea of directly expressing correspondence asser-
tions by adding annotations to a general concurrent language, in our case the
π-calculus.

17

Gifford and Lucassen introduced type and effect systems [GL86, Luc87] to
manage side-effects in functional programming. There is a substantial litera-
ture. Early work on concurrent languages includes systems by Nielson and Niel-
son [NN93, NN94] and Talpin [Tal93]. Recent applications of type and effect sys-
tems include memory management for high-level [TT97] and low-level [CWM99]
languages, race-condition avoidance [FA99], and access control [SS00].

Milner’s system of sorts [Mil99], the first type system for the π-calculus,
regulates the data sent on channels. Pierce and Sangiorgi [PS96] propose a
refinement based on subtyping channel types. Our type system omits subtyping,
for the sake of simplicity, but we expect it would be a straightforward addition.

Later type systems for the π-calculus also regulate process behaviour; for ex-
ample, session types [THK94, HVK98] regulate pairwise interactions and linear
types [Kob98] help avoid deadlocks. A recent paper [DG00] explicitly proposes
a type and effect system for the π-calculus, and the idea of latent effects on
channel types. This idea can also be represented in a recent general frame-
work for concurrent type systems [IK01]. Still, the types of our system are
dependent in the sense that they may include the names of channels. Another
system of dependent types for a concurrent language is Flanagan and Abadi’s
system [FA99] for avoiding race conditions in the concurrent object calculus of
Gordon and Hankin [GH98]. Chaki, Rajamani, and Rehof’s technique [CRR02]
for model-checking π-calculus programs is influenced, in part, by the use of
dependent types in the present work.

The rule (Proc Cond) for typing a conditional if x = y then P else Q checks
the positive branch P under the assumption that the names x and y are the
same; we formalize this by substituting y for x in the type environment and
the process P . Given that names are the only kind of value, this technique
is simpler than the standard one from dependent type theory [NPS90, Bar92]
of defining typing judgments with respect to an equivalence relation on values.
Honda, Vasconcelos, and Yoshida [HVY00] also use the technique of applying
substitutions to environments while type-checking.

In their study of a distributed π-calculus, Hennessy and Riely [HR98] pro-
pose an alternative technique for exploiting the name equality x = y when
type-checking the positive branch of such a conditional. Their rule relies on
computing intersection types in the presence of a subtype relation. In an envi-
ronment where x:T and y:U , they check the positive branch P of a conditional
under the additional assumptions x:U and y:T , hence effectively assigning to
both x and y the intersection of the types T and U .

7 Conclusions

The long term objective of this work is to check secrecy and authenticity prop-
erties of security protocols by typing. This paper introduces several key ideas
in the minimal yet general setting of the π-calculus: the idea of expressing cor-
respondences by begin- and end-annotations, the idea of a dependent type and
effect system for proving correspondences, and the idea of using latent effects
to type correspondences begun by one process and ended by another. Several
examples demonstrate the promise of this system. Unlike a previous approach
based on model-checking, type-checking correspondence assertions is not limited
to finite-state systems.

18

A companion paper [GJ01a] begins the work of applying these ideas to cryp-
tographic protocols as formalized in Abadi and Gordon’s spi-calculus [AG99],
and has already proved useful in identifying known issues in published proto-
cols. Our first type system for spi is specific to cryptographic protocols based
on symmetric key cryptography. Instead of attaching latent effects to channel
types, as in this paper, we attach them to a new type for nonces, to formalize
a specific idiom for preventing replay attacks. A subsequent paper extends our
type system to cope with asymmetric cryptography [GJ02]. One avenue for
future work is type inference algorithms.

The type system of the present paper has independent interest. It intro-
duces the ideas in a more general setting than the spi-calculus, and shows in
principle that correspondence assertions can be type-checked in any of the many
programming languages that may be reduced to the π-calculus.

Acknowledgements We had useful discussions with Andrew Kennedy and
Naoki Kobayashi. Tony Hoare commented on a draft of this paper. The anony-
mous referees provided useful comments. Alan Jeffrey was supported in part by
Microsoft Research during some of the time we worked on this paper.

19

A Proofs

This appendix develops proofs of the two theorems stated in the main body of
the paper. We begin in Section A.1 with some basic facts about the type system.
Section A.2 proves properties of the unusual operation—found in the rule (Proc
Cond) for typing conditionals—of applying a substitution to an environment.
Section A.3 proves standard weakening, exchange, and substitution lemmas for
the type system. Finally, Section A.4 proves Theorems 1 and 2.

A.1 Basic Facts

We use the notation E ` J to refer to any judgment of the system. So J ranges
over fragments of the form ¦, x:T , 〈~x〉 : 〈~y:~T 〉, or P : e.

Free names, fn(J) of a judgment fragment J :

fn(¦) ∆= ∅
fn(x:T) ∆= {x} ∪ fn(T)
fn(〈~x〉 : 〈~y:~T 〉) ∆= {~x} ∪ fn(〈~y:~T 〉)
fn(P : e) ∆= fn(P) ∪ fn(e)

Lemma 1 (Free Names) If E ` J then fn(J) ⊆ dom(E).

Proof We prove by induction the more general result that if E ` J then
fn(J) ⊆ dom(E) and that if E, x : T, E′ ` ¦ then fn(T) ⊆ dom(E). 2

Lemma 2 (Implied Judgment) If E,E′ ` J then E ` ¦.

Proof An induction on the proof of E,E′ ` J . 2

Lemma 3 (Variable Typing) If E ` x : T then E = E′, x:T, E′′.

Proof An analysis of the proof of E ` x : T . 2

Lemma 4 (Unique Types) If E ` x : T and E ` x : T ′ then T = T ′.

Proof An analysis of the proof of E ` x : T . 2

A.2 Applying Substitutions to Environments

Recall the definition from Section 3.4 of the auxiliary notation E;x:T used in
the definition of applying a substitution to an environment. It adds a singleton
list x:T to E provided x is not already declared in E. As a convenience, we
extend this notation to arbitrary lists.

Environment addition: E; E′

E; E′ ∆= E, (E′ − dom(E))

This definition makes use of an operator to delete entries from an environment.

20

Deletion of Names Y from Environment E: E − Y

∅− Y
∆= ∅

(E, x:T)− Y
∆=

{
E − Y if x ∈ Y
(E − Y), x:T otherwise

Lemma 5 Environment addition is associative, that is
E; (E′; E′′) = (E; E′); E′′.

Proof First show the following equivalences:

dom(E − Y) = dom(E)− Y dom(E, E′) = dom(E) ∪ dom(E′)
(E, E′)− Y = (E − Y), (E′ − Y) E − (Y ∪ Y ′) = (E − Y)− Y ′

The result then follows directly. 2

We recall the definition of applying a substitution to an environment.

Fusing x with x′ in E: E{x←x′}
(x1:T1, . . . , xn:Tn){x←x′} ∆=

(x1{x←x′}):(T1{x←x′}); . . . ; (xn{x←x′}):(Tn{x←x′})

For example, (x:T, x′:T){x←x′} = x′:T . Notice that applying a substitution to
an environment that contains multiple declarations of the same variable deletes
duplicate entries: (x:T, x:T){x←x′} = x′:T .

The following equation is useful for analysing the outcome of applying a
substitution to the well-formed concatenation of two environments.

Lemma 6 (E, E′){y←y′} = (E{y←y′}); (E′{y←y′}).

Proof An induction on E′. The base case, when E′ = ∅, is trivial. For the
inductive step, suppose that E′ = (E′′, x:T). Then, by induction and Lemma 5:

(E, E′){y←y′} = (E, E′′, x:T){y←y′}
= (E, E′′){y←y′}; (x{y←y′}:T{y←y′})
= (E{y←y′}); (E′′{y←y′}); (x{y←y′}:T{y←y′})
= (E{y←y′}); ((E′′, x:T){y←y′})
= (E{y←y′}); (E′{y←y′})

as required. 2

We end this section by showing that all judgments of the type system are
preserved by substituting one variable for another, provided the types of the
variables are compatible.

Variable compatibility:

Let x and y be E-compatible if and only if {x, y} ⊆ dom(E) implies
there is T such that both E ` x : T and E ` y : T .

21

Lemma 7 (Fusion) If y and y′ are E-compatible and E ` J
then E{y←y′} ` J {y←y′}.

Proof By induction on the proof of E ` J .

(Env x)

E ` T x /∈ dom(E)
E, x:T ` ¦

By definition, since y and y′ are (E, x:T)-compatible, they are also E-
compatible. By induction hypothesis, this and E ` T imply E{y←y′} `
T{y←y′}.

Case x{y←y′} ∈ dom(E{y←y′}) By Lemma 2 E{y←y′} ` ¦. By defini-
tion, (E, x:T){y←y′} = E{y←y′}, and so we have (E, x:T){y←y′} `
¦.

Case x{y←y′} 6∈ dom(E{y←y′}) Since we have E{y←y′} ` T{y←y′}
and x{y←y′} 6∈ dom(E{y←y′}) we can apply Rule (Env x) to get
the required result: (E, x:T){y←y′} ` ¦.

(Type Chan)

E, x1:T1, . . . , xn:Tn ` ¦ fn(e) ⊆ dom(E) ∪ {~x}
E ` Ch(x1:T1, . . . , xn:Tn)e

Since the names x1, . . . , xn are bound, we may assume that {y, y′} ∩
{x1, . . . , xn} = ∅. By definition, since y and y′ are E-compatible and
{y, y′}∩{x1, . . . , xn} = ∅ it follows that y and y′ are (E, x1:T1, . . . , xn:Tn)-
compatible. By induction hypothesis, this and E, x1:T1, . . . , xn:Tn ` ¦
imply (E, x1:T1, . . . , xn:Tn){y←y′} ` ¦. From fn(e) ⊆ dom(E) ∪ {~x} it
follows that fn(e{y←y′}) ⊆ dom(E{y←y′}) ∪ {~x}. By (Type Chan), this
and E{y←y′}, x1:T1{y←y′}, . . . , xn:Tn{y←y′} ` ¦ imply

E{y←y′} ` Ch(x1:T1{y←y′}, . . . , xn:Tn{y←y′})(e{y←y′}),

that is, E{y←y′} ` (Ch(x1:T1, . . . , xn:Tn)e){y←y′}.
(Name x)

E′, x:T, E′′ ` ¦
E′, x:T, E′′ ` x : T

We have two cases:

Case x = y or x = y′. By induction hypothesis, we get:

E′{y←y′}; y′:T{y←y′}; E′′{y←y′} ` ¦

22

We consider two subcases. First, y′ ∈ dom(E′{y←y′}). Since y and y′

are (E′, x:T, E′′)-compatible, we have that y′:T{y←y′} ∈ E′{y←y′}
and so we get:

E′{y←y′}; y′ : T{y←y′}; E′′{y←y′} ` y′:T{y←y′}

Second, y′ /∈ dom(E′{y←y′}). Directly, we have:

E′{y←y′}; y′:T{y←y′}; E′′{y←y′} ` y′:T{y←y′}

Case x 6= y and x 6= y′. By induction hypothesis, we get:

E′{y←y′};x:T{y←y′}; E′′{y←y′} ` ¦
Hence, E′{y←y′}; x:T{y←y′}; E′′{y←y′} ` x:T{y←y′} as required.

The arguments for the other rules are similar. 2

A.3 Weakening, Exchange, Substitution

We prove three standard properties of the type system.

Lemma 8 (Weakening) If E,E′ ` J , E ` T and x /∈ dom(E,E′) then
E, x:T,E′ ` J .

Proof An induction on the proof of E,E′ ` J .

(Proc Cond)

E, E′ ` y : U E, E′ ` y′ : U
(E, E′){y←y′} ` P{y←y′} : eP {y←y′} E, E′ ` Q : eQ

E, E′ ` if y = y′ then P else Q : eP ∨ eQ

Define:

D = E{y←y′} D′ = E′{y←y′} − dom(D) S = T{y←y′}
Then since x 6∈ dom(E, E′) we can use Lemma 6 to get that:

(E,E′){y←y′} = (D, D′) (E, x:T, E′){y←y′} = (D,x:S, D′)

By Lemma 7 we have that D ` S. By Lemma 1 we have that y ∈
dom(E, E′), hence y′ 6= x, and therefore x /∈ dom(D,D′). So we can use
induction to get:

E, x:T, E′ ` y : U

E, x:T, E′ ` y′ : U

E, x:T, E′ ` Q : eQ

D, x:S, D′ ` P{y←y′} : eP {y←y′}
and then, by Rule (Proc Cond) we have:

E, x:T, E′ ` if y = y′ then P else Q : eP ∨ eQ

as required.

23

The arguments for the other rules are standard. 2

Lemma 9 (Exchange) If E, x:T, x′:T ′, E′ ` J and E ` T ′

then E, x′:T ′, x:T, E′ ` J .

Proof By induction on the proof of E, x:T, x′:T ′, E′ ` J .

(Proc Cond)

E, x:T, x′:T ′, E′ ` y : U E, x:T, x′:T ′, E′ ` y′ : U
(E, x:T, x′:T ′, E′){y←y′} ` P{y←y′} : eP {y←y′}
E, x:T, x′:T ′, E′ ` Q : eQ

E, x:T, x′:T ′, E′ ` if y = y′ then P else Q : eP ∨ eQ

Define:

D = E{y←y′} D′ = E′{y←y′} − dom(D; z:S; z′:S′)
z = x{y←y′} z′ = x′{y←y′}
S = T{y←y′} S′ = T ′{y←y′}

Then we can use Lemma 6 to get that:

(E, x:T, x′:T ′, E′){y←y′} = (D; z:S; z′:S′), D′

(E, x′:T ′, x:T, E′){y←y′} = (D; z′:S′; z:S), D′

and we can use induction to get:

E, x′:T ′, x:T,E′ ` y : U

E, x′:T ′, x:T,E′ ` y′ : U

E, x′:T ′, x:T,E′ ` Q : eQ

and Lemma 7 to get:

D ` S′

We have that:

(D; z:S; z′:S′), D′ ` P{y←y′} : eP {y←y′}

If we can show that:

(D; z′:S′; z:S), D′ ` P{y←y′} : eP {y←y′}

then we can use Rule (Proc Cond) to complete. We consider three cases:

(1) z ∈ dom(D) or z′ ∈ dom(D): In this case, we have that D; z:S; z′:S′ =
D; z′:S′; z:S, so the result is immediate.

(2) z = z′ /∈ dom(D): This can only happen when x = y and x′ =
y′, or when x = y′ and x′ = y. In either case, by the hypoth-
esis of Rule (Proc Cond), and the fact that z, z′ /∈ dom(D), so
x, x′ /∈ dom(E), we have that T = T ′ = U , and so S = S′. Thus,
D; z:S; z′:S′ = D; z′:S′; z:S, so the result is immediate.

24

(3) z, z′ /∈ dom(D) and z 6= z′: So (D; z:S; z′:S′) = (D, z:S, z′:S′) and
(D; z′:S′; z:S) = (D, z′:S′, z:S), so we can use induction to get the
required result.

The arguments for the other rules are standard. 2

Lemma 10 (Substitution) If E, ~y:~T , E′ ` J and E ` 〈~x〉 : 〈~y:~T 〉 then we
have E, (E′{~y←~x}) ` (J {~y←~x}).

Proof First show the result in the case where ~x and ~y are of length 1, by
appeal to Lemma 7 (Fusion). The result then follows by induction on the length
of ~x and ~y. 2

A.4 Proofs of Theorems 1 and 2

This final appendix contains proofs of the two theorems stated in the main body
of the paper: subject reduction, Theorem 1, and safety, Theorem 2.

We begin the development with two technical lemmas.

Lemma 11 (Subsumption Elimination) If E ` P : e then for some e′ ≤ e,
E ` P : e′ is derivable without using the rule (Proc Subsum). Moreover, e′ is
the minimum effect for P in E, that is, for all e′′, if E ` P : e′′ then e′ ≤ e′′.

Proof An induction on the proof of E ` P : e. 2

Lemma 12 (≡ Elimination) If P
α−→ P ′ then for some Q ≡ P and Q′ ≡ P ′,

Q
α−→ Q′ is derivable without using the rule (Trans ≡).

Proof An induction on the derivation of P
α−→ P ′. 2

Next, we show that structural congruence preserves typings.

Proposition 1 (Subject Congruence) If E ` P : e and P ≡ Q then E `
Q : e.

Proof Prove by induction on the derivation of ≡ that if P ≡ Q then:

(1) If E ` P : e then E ` Q : e.

(2) If E ` Q : e then E ` P : e.

This induction uses Lemmas 8 (Weakening), 1 (Free Names), 9 (Exchange), and
11 (Subsumption Elimination). 2

We can now prove subject reduction.

Proof of Theorem 1 Suppose E ` P : e.

(1) If P
τ−→ P ′ then E ` P ′ : e.

(2) If P
begin 〈~x〉−−−−−→ P ′ then E ` P ′ : e + [〈~x〉].

(3) If P
end 〈~x〉−−−−→ P ′ then E ` P ′ : e− [〈~x〉], and 〈~x〉 ∈ e.

25

(4) If P
gen 〈x〉−−−−→ P ′ and x /∈ dom(E) then E, x:T ` P ′ : e for some type T .

Proof

(1) If P
τ−→ P ′ derives from (Trans Comm) then by Lemma 12 (≡ Elimination):

P ≡ out x〈~x〉 | inp x(~y:~T); Q | R P ′ ≡ Q{~y←~x} | R
so by Proposition 1 (Subject Congruence), Lemma 11 (Subsumption Elim-
ination) and the type rules (Proc Par), (Proc Input) and (Proc Output),
we have:

E ` x : Ch(~y:~T)eC E ` 〈~x〉 : 〈~y:~T 〉
E, ~y:~T ` Q : eQ E ` R : eR

(eC{~y←~x}+ (eQ − eC) + eR) ≤ e fn(eQ − eC) ⊆ dom(E)

then by Lemma 10 (Substitution) and type rule (Proc Par) we have:

E ` (Q{~y←~x} | R) : (eQ{~y←~x}+ eR)

so some multiset algebra and the condition that fn(eQ − eC) ⊆ dom(E)
gives:

(eQ{~y←~x}+ eR) ≤ ((eC + (eQ − eC)){~y←~x}+ eR)
= (eC{~y←~x}+ ((eQ − eC){~y←~x}) + eR)
= (eC{~y←~x}+ (eQ − eC) + eR)
≤ e

so by type rule (Proc Subsum) and Proposition 1 (Subject Congruence):

E ` P ′ : e

as required.

The cases when P
τ−→ P ′ derives from (Trans Match) or (Trans Mismatch)

are similar.

(2) If P
begin 〈~x〉−−−−−→ P ′ then by Lemma 12 (≡ Elimination):

P ≡ begin 〈~x〉; Q | R P ′ ≡ Q | R
so by Proposition 1 (Subject Congruence), Lemma 11 (Subsumption Elim-
ination) and the type rules (Proc Par) and (Proc Begin), we have:

E ` Q : eQ E ` R : eR

{~x} ⊆ dom(E) ((eQ − [〈~x〉]) + eR) ≤ e

so by (Proc Par) we have:

E ` (Q | R) : (eQ + eR)

and some multiset algebra gives (eQ+eR) ≤ (e+[〈~x〉]) so by (Proc Subsum)
and Proposition 1 (Subject Congruence):

E ` P ′ : e + [〈~x〉]
as required.

26

(3) If P
end 〈~x〉−−−−→ P ′ then by Lemma 12 (≡ Elimination):

P ≡ end 〈~x〉Q | R P ′ ≡ Q | R
so by Proposition 1 (Subject Congruence), Lemma 11 (Subsumption Elim-
ination) and the type rules (Proc Par) and (Proc End), we have:

E ` Q : eQ E ` R : eR

{~x} ⊆ dom(E) (eQ + [〈~x〉] + eR) ≤ e

by (Proc Par) we have:

E ` (Q | R) : (eQ + eR)

and some multiset algebra gives (eQ+eR) ≤ (e−[〈~x〉]) so by (Proc Subsum)
and Proposition 1 (Subject Congruence):

E ` P ′ : e− [〈~x〉]
and 〈~x〉 ∈ e as required.

(4) If P
gen 〈x〉−−−−→ P ′ and x /∈ dom(E) then by Lemma 12 (≡ Elimination):

P ≡ new(x:T); Q P ′ ≡ Q

so by Proposition 1 (Subject Congruence), Lemma 11 (Subsumption Elim-
ination) and the type rule (Proc Res), we have:

E, x:T ` Q : eQ eQ ≤ e

so by (Proc Subsum) and Proposition 1 (Subject Congruence):

E, x:T ` P ′ : e

as required. 2

The next lemma is the central fact needed in the proof of safety.

Lemma 13 If E ` P : e and P
s−→ P ′ and gn(s)∩ dom(E) = ∅ then ends (s) ≤

begins (s) + e.

Proof By induction on the derivation of P
s−→ P ′.

(1) If P
τ−→ P ′′ t−→ P ′ then by Theorem 1 (Subject Reduction), E ` P ′′ : e, so

by induction:
ends (t) ≤ begins (t) + e

as required.

(2) If P
begin 〈~x〉−−−−−→ P ′′ t−→ P ′ and {~x} ∩ gn(t) = ∅ then by Theorem 1 (Subject

Reduction), E ` P ′′ : e + [〈~x〉], so by induction:

ends (t) ≤ begins (t) + e + [〈~x〉]
so:

ends (s) = ends (t)
≤ begins (t) + e + [〈~x〉]
= begins (s) + e

as required.

27

(3) If P
end 〈~x〉−−−−→ P ′′ t−→ P ′ and {~x} ∩ gn(t) = ∅ then by Theorem 1 (Subject

Reduction), E ` P ′′ : e− [〈~x〉] and 〈~x〉 ∈ e, so by induction:

ends (t) ≤ begins (t) + e− [〈~x〉]

so:

ends (s) = ends (t) + [〈~x〉]
≤ begins (t) + e− [〈~x〉] + [〈~x〉]
= begins (t) + e

= begins (s) + e

as required.

(4) If P
gen 〈x〉−−−−→ P ′′ t−→ P ′ and {x} ∩ gn(t) = ∅ then by Theorem 1 (Subject

Reduction), we have that E, x:T ` P ′′ : e for some type T , so by induction:

ends (t) ≤ begins (t) + e

so:
ends (s) ≤ begins (s) + e

as required.

(5) If P ≡ P ′ then s = ε, and so ends (s) = [] ≤ e = begins (s) + e. 2

Proof of Theorem 2 If E ` P : [] then P is safe.

Proof Suppose that P
s−→ P ′ for some trace s and process P ’. Without

loss of generality, we may assume that gn(s) ∩ dom(E) = ∅ (we can always
suitably rename the freshly generated names). By Lemma 13, we have ends(s) ≤
begins (s) + [], that is, ends (s) ≤ begins (s). Hence, P is safe. 2

28

References

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148:1–70, 1999.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Com-
puter Science, Volume II. Oxford University Press, 1992.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, April 1992.

[CM00] E. Clarke and W. Marrero. Using formal methods for analyzing se-
curity. Available at http://www.cs.cmu.edu/∼marrero/abstract.html,
2000.

[CRR02] S. Chaki, S.R. Rajamani, and J. Rehof. Types as models: Model
checking message-passing programs. In 29th ACM Symposium on
Principles of Programming Languages (POPL’02), pages 45–57,
2002.

[CWM99] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. In 26th ACM Symposium on Principles
of Programming Languages (POPL’99), pages 262–275, 1999.

[DG00] S. Dal Zilio and A.D. Gordon. Region analysis and a π-calculus
with groups. In Mathematical Foundations of Computer Science 2000
(MFCS2000), volume 1893 of Lectures Notes in Computer Science,
pages 1–21. Springer, 2000. Accepted for publication in the Journal
of Functional Programming.

[FA99] C. Flanagan and M. Abadi. Object types against races. In J.C.M.
Baeten and S. Mauw, editors, CONCUR’99: Concurrency Theory,
volume 1664 of Lectures Notes in Computer Science, pages 288–303.
Springer, 1999.

[GH98] A.D. Gordon and P.D. Hankin. A concurrent object calculus: Re-
duction and typing. In High Level Concurrent Languages (HLCL’98),
volume 16(3) of Electronic Notes in Theoretical Computer Science.
Elsevier, 1998.

[GJ01a] A.D. Gordon and A. Jeffrey. Authenticity by typing for security
protocols. In 14th IEEE Computer Security Foundations Workshop,
pages 145–159. IEEE Computer Society Press, 2001. An extended
version appears as Microsoft Research Technical Report MSR–TR–
2001–49, May 2001.

[GJ01b] A.D. Gordon and A. Jeffrey. Typing correspondence assertions for
communication protocols. In Mathematical Foundations of Program-
ming Semantics 17, volume 45 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2001. Pages 99–120 of the Prelimi-
nary Proceedings, BRICS Notes Series NS-01-2, BRICS, University
of Aarhus, May 2001. An extended version appears as Microsoft Re-
search Technical Report MSR–TR–2001–48, May 2001.

29

[GJ02] A.D. Gordon and A. Jeffrey. Types and effects for asymmetric cryp-
tographic protocols. In 15th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, 2002. To appear.

[GL86] D.K. Gifford and J.M. Lucassen. Integrating functional and imper-
ative programming. In ACM Conference on Lisp and Functional
Programming, pages 28–38, 1986.

[HR98] M. Hennessy and J. Riely. Resource access control in systems of
mobile agents. In 3rd International Workshop on High-Level Con-
current Languages (HLCL’98), volume 16(3) of Electronic Notes in
Theoretical Computer Science. Elsevier, 1998.

[HVK98] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
European Symposium on Programming (ESOP’98), volume 1381 of
Lectures Notes in Computer Science, pages 122–128. Springer, 1998.

[HVY00] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow
as typed process behaviour. In European Symposium on Programming
(ESOP’00), volume 1782 of Lectures Notes in Computer Science,
pages 180–199. Springer, 2000.

[IK01] A. Igarashi and N. Kobayashi. A generic type system for the pi
calculus. In 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 128–141, 2001.

[Kob98] N. Kobayashi. A partially deadlock-free typed process calculus. ACM
Transactions on Programming Languages and Systems, 20:436–482,
1998.

[Low95] G. Lowe. A hierarchy of authentication specifications. In 10th Com-
puter Security Foundations Workshop, pages 31–43. IEEE Computer
Society Press, 1995.

[Luc87] J.M. Lucassen. Types and effects, towards the integration of func-
tional and imperative programming. PhD thesis, MIT, 1987. Avail-
able as Technical Report MIT/LCS/TR–408, MIT Laboratory for
Computer Science.

[MCJ97] W. Marrero, E.M. Clarke, and S. Jha. Model checking for security
protocols. In DIMACS Workshop on Design and Formal Verification
of Security Protocols, 1997. Preliminary version appears as Techni-
cal Report TR–CMU–CS–97–139, Carnegie Mellon University, May
1997.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[NN93] F. Nielson and H. Riis Nielson. From CML to process algebras. In
CONCUR 93—Concurrency Theory, volume 715 of Lectures Notes
in Computer Science, pages 493–508. Springer, 1993.

30

[NN94] H. Riis Nielson and F. Nielson. Higher-order concurrent programs
with finite communication topology. In 21st ACM Symposium
on Principles of Programming Languages (POPL’94), pages 84–97,
1994.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-
Löf ’s Type Theory: An Introduction. Oxford University Press, 1990.

[PS96] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-
cesses. Mathematical Structures in Computer Science, 6(5):409–454,
1996.

[SS00] C. Skalka and S. Smith. Static enforcement of security with types. In
P. Wadler, editor, International Conference on Functional Program-
ming (ICFP’00), pages 34–45, 2000.

[Tal93] J.-P. Talpin. Aspects théoretiques et pratiques de l’inférence de types
et d’effets. Thése de doctorat, Université Paris VI and Ecole des
Mines de Paris, May 1993.

[THK94] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In 6th European Conference on Parallel Lan-
guages and Architecture (PARLE’94), volume 817 of Lectures Notes
in Computer Science, pages 398–413. Springer, 1994.

[TT97] M. Tofte and J.-P. Talpin. Region-based memory management. In-
formation and Computation, 132(2):109–176, 1997.

[WL93] T.Y.C. Woo and S.S. Lam. A semantic model for authentication
protocols. In IEEE Symposium on Security and Privacy, pages 178–
194, 1993.

31

