
Finely-Competitive Paging

Avrim Blum� Carl Burchy Adam Kalaiz
Abstract

We construct an online algorithm for paging that
achieves anO(r + log k) competitive ratio when com-
pared to an offline strategy that is allowed the additional
ability to “rent” pages at a cost of1=r. In contrast,
the competitive ratio of theMarking algorithm for this
scenario isO(r log k). Our algorithm can be thought
of in the standard setting as having a “fine-grained”
competitive ratio, achieving anO(1) ratio when the re-
quest sequence consists of a small number of working
sets, gracefully decaying toO(log k) as this number in-
creases.

Our result is a generalization of the result in Bartal
et al. [2] that one can achieve anO(r + logn) ratio
for the unfairn-state uniform-space Metrical Task Sys-
tem problem. That result was a key component of the
polylog(n) competitive randomized algorithm given in
that paper for the general Metrical Task System prob-
lem. One motivation of this work is that it may be a first
step toward achieving a polylog(k) randomized compet-
itive ratio for the much more difficultk-server problem.

1. Introduction

Paging is a classic online problem. In this problem,
an online algorithm controls a cache ofk pages and is
faced with a sequence of memory requests�1; �2; : : :.
When an item outside the current cache is requested, the
algorithm incurs a page fault and (in the classic paging
problem) must load the requested page into the cache,
evicting some other page of its choice. The goal of the
algorithm is to minimize the number of page faults it
makes.

Within the framework of competitive analysis, Fiat
et al. [6] (see also [4]) describe a randomized algorithm�Carnegie Mellon University. E-mail:avrim+@cs.cmu.edu .
Supported in part by NSF grant CCR-9732705.yCarnegie Mellon University. E-mail:cburch+@cs.cmu.edu .
Supported in part by an NSF graduate fellowship.zCarnegie Mellon University. E-mail:akalai+@cs.cmu.edu .
Supported in part by an NSF graduate fellowship.

called Marking and show that it achieves anO(log k)
competitive ratio. The competitive ratio is the worst-
case ratio (over request sequences) of the expected num-
ber of page faults by the online algorithm to the number
of page faults incurred by the optimal offline algorithm
that knows the entire sequence in advance. Fiat et al.
show, moreover, that any paging algorithm must have a
competitive ratio of at least
(log k). We consider in
this paper the question of whether one can perform bet-
ter thanMarking in a somewhat subtle sense. In partic-
ular, we consider the following question: suppose that
on a page fault, theofflinealgorithm is allowed the ad-
ditional power to “rent” the requested page at a cost of
only 1=r (think of r = log k), compared with the cost
of 1 for actually loading the page into the cache. Rent-
ing means that the memory request is serviced but the
requested page isnot brought into the cache and the
offline cache isnot modified. So, for instance, if the
offline algorithm rents a page and then the same page
is requested again, the offline algorithm incurs another
page fault. Theonlinealgorithm is given no such priv-
ilege. (Technically, it is convenient to allow the online
algorithm to rent for a cost of 1; this can help the on-
line algorithm by at most a factor of two.) The question
we examine is, what competitive ratio can be achieved
in this scenario? For instance, can one still achieve anO(logk) competitive ratio whenr = log k? This ques-
tion can be thought of as an application of Seiden’s [14]
notion of an “unfair” competitive ratio — unfair because
the offline algorithm has this extra ability to rent cheaply
— to the paging problem.

For this harder unfair problem, no algorithm can
achieve a competitive ratio less thanr (consider a se-
quence where each request is to a new page), nor can any
algorithm achieve a competitive ratio less thanO(log k).
Marking achieves competitive ratioO(r log k). We
consider the question of whether one can achieve ratioO(r+log k). The main result of this paper is that we can,
using an algorithm based on the Randomized Weighted-
Majority algorithmWMR from machine learning [12]
(also calledHedge [8]) together with a notion of phases
similar toMarking.

1



1.1. Motivation

Because the problem stated above is not obviously
self-motivating, we begin by presenting two motiva-
tions, one from paging and another from thek-server
problem.

Finely-competitive paging: Request sequences in
practice often consist of a core working set of fre-
quently requested pages, together with occasional as-
sorted memory requests, where this working set may
change over time. Suppose that, in hindsight, the re-
quest sequence can be partitioned into time periodst1; t2; : : : ; tm with the following property. Each time
period ti has a working setWi (jWij � k), such that
there are at mostoi requests to pagesoutsideWi during
the time period. In this scenario, one offline strategy in
our “unfair” model is in each time period to load the cur-
rent working set into the cache and to rent the requests
outside the current working set. This has a cost of1r (o1 + � � �+ om)+jW1j+ jW2 nW1j+ � � �+ jWm nWm�1j :
Takingr = log k, an algorithm with unfair competitive
ratioO(r+ log k) must pay at mostO(logk) times this,
or O ((o1 + � � �+ om) + (log k)(jW1j+jW2 nW1j+ � � �+ jWm nWm�1j)) :
So, if the sequence involves only a few working sets or
if their differences are small compared to theoi, the on-
line algorithm is only a small (constant) factor from the
optimal service sequence.

Here is a simple concrete example. Suppose that the
request sequence repeatedly cycles over a fixed set ofk + 1 pages. In that case, the deterministic LRU algo-
rithm has competitive ratiok (it faults on every request)
andMarking has competitive ratioO(log k) (in expecta-
tion, it makesO(logk) page faults per cycle). However,
our algorithm in this case is required to have anO(1) ra-
tio because we can view this sequence as having a single
fixed working set of sizek, with one additional request
per cycle. In other words, in the unfair model, the offline
algorithm could simply incur a cost of1=r = 1= logk
per cycle by renting.

In a sense, this goal can be viewed as follows. The
motivation of the competitive ratio measure itself is to
allow the online algorithm to perform worse on “harder”
sequences but to require it to perform better on “easier”
ones. Unfairness provides a more fine-grained measure,
in which we split the offline cost into an “easy” compo-
nent (the rentals) and a “hard” component (the loads).

We require the algorithm to be constant-competitive
with respect to the easy component and only allow anO(logk) ratio with respect to the hard component.

Because of the working set phenomenon, researchers
have tried designing cache systems that in a certain sense
add such a renting ability. One practical implementation
is to reserve the main cache for the supposed working
set while adding a second, smaller cache of potential
working-set candidates [10].

In Section 5 we give results of a simple experiment
on paging traces made available by Fiat and Rosen [7]
showing that these traces do, in a sense, contain working
sets of this flavor.

The k-server problem: The question of the best pos-
sible randomized competitive ratio for thek-server prob-
lem of Manasse, McGeoch, and Sleator [13] remains a
major open question. Koutsoupias and Papadimitriou’s
proof [11] that the work-function algorithm achieves anO(k) competitive ratio was a breakthrough result, espe-
cially given that
(k) is a lower bound for deterministic
algorithms. However, it is conceivable that a random-
ized algorithm could achieve a polylog(k) ratio. Hope
that this might be possible comes from the Bartal et
al. result [2] giving a polylog(n) competitive ratio for
the simplern-state Metrical Task System (MTS) Prob-
lem. At the core of this result is an algorithm for achiev-
ing anO(r+ logn) ratio for ther-unfair uniform-space
MTS problem. Essentially, the “r” term is the competi-
tive ratio of a recursive application of the algorithm run
on a subspace, which is being abstracted to a single point
in the current space. The uniform-space MTS problem
is roughly equivalent to the paging problem in a domain
of k+1 pages total. Thus, our result can be thought of as
a generalization of thisO(r+logn) bound to the paging
problem. The motivation is that this could potentially be
one step toward achieving a polylog(k) bound for the
more generalk-server problem. Of course, there are
many additional issues involved in attempting to con-
struct such a recursivek-server algorithm. We discuss
some of these issues in Section 6.

2. A warmup: The case ofk + 1 pages

We can view the special case of the paging prob-
lem in which there are onlyk + 1 distinct pages re-
quested as an MTS problem on a uniform space ofk+1
points. For ther-unfair version of this problem, Bartal
et al. [2] prove that a randomized work-function-based
algorithm achieves competitive ratior+O(logk). Blum
and Burch [3] prove that Herbster and Warmuth’s sim-
pler “experts” algorithmVariable-Share [9] achieves a



similar bound. We begin by showing that an even sim-
pler algorithm (simpler to describe and to analyze), also
achieves anO(r + log k) bound, though it has some-
what worse constants than the others. We call this algo-
rithm thePhased Randomized Weighted-Majorityalgo-
rithm (Phased-WMR). It is this algorithm that we then
extend to the general paging problem.

The Phased-WMR algorithm, in the context of the(k + 1)-page paging problem, works as follows. Each
phase proceeds until every one of thek + 1 pages has
hadr requests. At the beginning of the phase, we as-
sociate to each page a weightwi which is initialized
to 1. The weightswi define a probability distributionp(i) = wi=W , whereW = Pj wj ; this is our prob-
ability over pagesnot to have in the cache. (For ex-
ample, initially all weights are1 and so each page is
equally likely to be the one outside the cache.) When
a page is requested, we multiply the page’s weight by� (� < 1 is a parameter of the algorithm) and read-
just our probability distribution accordingly. Notice that
this effectively increases the probability that the page
is in the cache. Operationally, ifp is the probabil-
ity distribution before the request andp0 is the distri-
bution after, the readjustment can be implemented by
the rule, “on a request to pagej not in the cache, rent
with probability p0(j)=p(j) and load with probability(p(j)�p0(j))=p(j); in the latter case we evict each pagei with probability(p0(i) � p(i))=(p(j) � p0(j)).” Note
that the expected cost to our algorithm for this request toj is simplyp(j).

In the terminology of the machine learning litera-
ture, we could think of having an “expert” associated
to each of thek + 1 subsets ofk pages advocating that
the cache contain thesek pages, and we could think of
thePhased-WMR algorithm as the standard Random-
ized Weighted Majority algorithmWMR [12], with the
small modification that we reinitialize the algorithm pe-
riodically at phase boundaries.

A well-known theorem of Littlestone and Warmuth
[12, 5] states that the expected loss incurred byWMR is
at most L ln(1=�) + lnn1� � ; (1)

whereL is the loss of the best expert in hindsight andn
is the number of experts. This formula assumes that if
an algorithm has probability distributionp among ex-
perts, and the experts receive loss vector`, then the
expected loss of the algorithm isp � ` (e.g., if ex-
pert j receives loss of 1 and the rest receive loss of 0,
then the algorithm’s expected loss isp(j)). As noted
above, this is exactly the case in our setting. There-
fore, in our context, this implies that the expected cost
of the Phased-WMR algorithm per phase is at most

1 + (r ln(1=�) + ln(k + 1))=(1 � �). (The “1+” is
the initialization cost for choosing a random page at the
beginning of the phase.) Now, noting that the offline al-
gorithm must pay at least 1 per phase, either to evict a
page or to rent a pager times, we have the following
theorem.

Theorem 1 The competitive ratio of thePhased-WMR
algorithm for ther-unfair (k+ 1)-page paging problem
is at most 1 + r ln(1=�) + ln(k + 1)1� � :
Notice that the bound of Theorem 1 is of the desiredO(r + logk) form. For� = 3=4, we get approximately1+1:15r+4 ln(k+1):As� ! 1, the bound approaches1 + (1 + "=2)r + 1" ln k.

For the general paging problem, we extend the
Phased-WMR algorithm to have one “expert” for ev-
ery sequenceof pages marked in the previous phase,
which the expert believes should be the order in which
pages are evicted during the current phase. The two dif-
ficulties that this approach entails are (1) there are now
many more experts, and (2) the possible cost for switch-
ing between two different experts has increased from1
to k. We deal with the first issue by considering “pools”
of multiple experts. The second issue involves substan-
tially more effort.

3. The general case: Phases and the offline
cost

We begin the description of the general case by defin-
ing the notion of “phase” that the online algorithm uses
and proving a lower bound for the offline cost based on
this notion. Then in Section 4 we describe how the al-
gorithm behaves within each phase and prove an upper
bound on the expected online cost. Because our online
algorithm is not a “lazy” algorithm, we separately ana-
lyze its expected number of page faults (the easier part
of the analysis) and its expected cost for modifying its
probability distribution over caches (the harder analy-
sis). To define the initial state of our problem, we as-
sume the cache is empty before the first request occurs.

Like the Marking algorithm, we divide the request
sequence into phases. We say that pagej is marked
when it has accumulated at leastr requests within the
phase. The phase reaches its end whenk pages become
marked.

Let Mi denote the set of pages marked in phasei.
(DefineM0 to be the empty set.) Also, let`i;j denote
the number of requests to pagej in phasei. We definemi as the number of pages marked in phasei but not in



the previous phase (jMi nMi�1j). Finally, we defineoi
as the total offline cost for renting pages outsideMi�1[Mi; that is,oi = 1r Pj 62Mi�1[Mi `i;j.

As in the standard analysis ofMarking, this use of
phases gives a convenient lower bound on the offline
player’s cost.

Lemma 2 If costOPT(�) is the optimal offline cost for
the task sequence, then we havecostOPT(�) � 12Xi (mi + oi) :
Proof. Consider two phasesi � 1 andi. Notice that for
all but thek pages in the offline cache at the beginning
of phasei � 1, the offline algorithm must either load
the page into its cache, at a cost of1, or service all re-
quests to that page (if any) by renting, at a cost of at least(`i�1;j + `i;j)=r. Therefore, any offline algorithm must
pay at leastcostOPT(�i�1�i) � 0@Xj min�1; `i�1;j + `i;jr �1A�k
in these two phases. For pagesj marked in phasesi� 1
or i, we know`i�1;j + `i;j � r; for other pagesj, we
know `i;j < r sincej is not marked in phasei. These
facts imply0@Xj min�1; `i�1;j + `i;jr �1A � k� 0@ Xj2Mi�1[Mi 11A+0@ Xj 62Mi�1[Mi `i;jr 1A � k= (k +mi) + oi � k = mi + oi :

Also note that the offline algorithm must pay at leastm1+o1 in the first phase. Let�i represent the sequence
of requests in phasei. Then we get the following.2costOPT(�) � costOPT ((�1�2)(�3�4) � � �)+costOPT (�1(�2�3)(�4�5) � � �)� ((m2 + o2) + (m4 + o4) + � � �)+ ((m1 + o1) + (m3 + o3) + � � �)= Xi (mi + oi) :

4. The online algorithm

We now describe a randomized online algorithm
whose expected cost in each phasei isO(r+logk) more
than the offline bound of12 (mi + oi) given in Lemma 2.
To describe the algorithm, we usept(j) to denote the
probability that pagej is in the cache after servicing thetth request.

We divide the description and analysis of the algo-
rithm into two parts. First, we describe how the algo-
rithm determines the probabilitiespt(j), and we use this
to bound the expected number of page faults incurred by
the algorithm. We then describe how the algorithm loads
and ejects pages to maintain these probabilities, and we
bound the additional cost incurred by those operations.

4.1. The online cache probabilities and expected
number of page faults

The algorithm determines the probabilitiespt(j)
based on a weighted average over a collection of “ex-
perts”. At the beginning of phasei, the algorithm hasMi�1 in its cache, and initializes one expert for each
of thek! permutations of the pages inMi�1. Each ex-
pert behaves like a deterministic version of the Mark-
ing algorithm, where the given permutation determines
the order in which unmarked pages are thrown out, and
pages are considered marked when they have receivedr requests. Specifically, the expert for permutationP
behaves as follows:� Any page requested at leastr times in this phase is

considered marked.� On a page fault, rent the requested page if it is not
yet marked. Otherwise, load the requested page
into the cache, throwing out the first (according to
permutationP) unmarked page that is still in the
cache.

Notice that at the end of the phase, each expert has ex-
actlyMi in its cache, maintaining our initial assumption.

Each expert is initialized with a weight of 1 and we
use theWMR algorithm with� = 1=2 to update the
weights; that is, we multiply the weight of an expert
by � whenever it incurs a page fault. The probabili-
tiespt(j) are determined in the natural way from these
weights. Specifically,pt(j) is the result of dividing the
total weight on experts having pagej in their cache by
the total weight on all the experts. If we select a cache
according to a distribution matching these probabilities,
then our algorithm’s expected number of page faults will
match the expected cost toWMR.



Lemma 3 By combining these experts usingWMR, the
online algorithm’s expected number of page faults in
phasei is at most(2:8r + 2 lnk)mi + (1:4r)oi.
Proof. For concreteness, let us first consider the casemi = 0. In this case, none of the experts will rec-
ommend loading any pages and the algorithm will haveMi�1 = Mi in its cache throughout the phase. Thus it
pays a total ofroi, meeting the desired bound.

In the general case, a “good” expert is one in which
themi pages ofMi�1 that werenotmarked come first in
its permutation, and thek �mi marked pages ofMi�1
come last. There aremi!(k�mi)! of these good experts,
and each one makes at most2rmi+roi page faults in the
phase for the following reason. For each of themi pagesj 2Mi nMi�1, it incurs a total ofr page faults until the
page is finally marked and brought into the cache. For
each of themi pagesj 2Mi�1 nMi, it incurs at mostr
page faults after throwing it out (since these pages do not
become marked). Finally, the expert always rents pagesj 62Mi�1 [Mi, and the total cost for these isroi.

The formula in equation (1) for the loss of theWMR
algorithm can be generalized to the case where we have
a “pool” of many good experts. In this case, the bound
becomes L ln(1=�) + ln(n=ngood)1� � ; (2)

whereL is an upper bound on the loss of any expert
in the pool,ngood is the number of experts in the pool,
andn is the total number of experts. In our case,L =2rmi + roi andn=ngood = k!=(mi!(k�mi)!) = � kmi�.
If we choose� = 1=2 and maintain probabilitiespt(j)
according to the expert weights as above, then the total
expected number of page faults of our algorithm is at
most 1:4(2rmi + roi) + 2 ln� kmi�� 1:4(2rmi + roi) + 2mi lnk= (2:8r + 2 lnk)mi + (1:4r)oi :

For the purpose of analyzing the movement cost, it is
helpful to modify the algorithm described above in two
ways. First of all, when an expert has been determined
to be “bad” — that is, if a page it has thrown out be-
comes marked — we give it an infinite penalty, setting
its weight to 0. Second, when an expert throws out some
pagej, we penalize it for all requests to that page that
have occurred so far in the phase; i.e., we penalize it as
if it had thrown the page out at the very beginning. No-
tice that the first modification only helps the algorithm,
and the second modification has already been factored in

to the upper boundL on the loss of the “good” experts
calculated in the proof above.

These two modifications allow us to write the proba-
bility that a given page is in the cache of the algorithm
in terms of thenumberof requests to each page so far in
the phase, without reference to the order in which those
requests occurred. This is useful in proving the lemma
below.

Lemma 4 If there is a request to pagej at timet, thenpt+1(j) � pt(j) and for allj0 6= j, pt+1(j0) � pt(j0).
Proof sketch. The easy part of the lemma is the state-
ment that when a request is made to pagej, the prob-
ability that j is in the cache increases. That happens
becauseWMR penalizes all experts that do not havej in
their cache and does not penalize those that do. Further-
more, if pagej becomes marked by this request, thenpt+1(j) = 1. The harder part is the statement about
pagesj0 6= j because of the possibility of correlations
among pages.

To analyze these pages, we can directly write out a
formula forp(j0) in terms of the requests so far. In par-
ticular, letm be the number of pages marked so far that
were not in the cache at the start of the current phase
(so all experts of nonzero weight have evicted exactlym
pages), and for pagesji thatwerein the cache at the start
of the phase, definelji to be the number of hits to that
page during this phase or1 if there werer hits. Then
we have1� p(j0) =�lj0 Pfj1;j2;:::;jm�1 6=j0g �lj1+lj2+:::+ljm�1Pfj1;j2;:::;jmg �lj1+lj2+:::+ljm :
It can then be verified that this is an increasing function
of all j 6= j0, and ofm.

4.2. Moving between probabilities

At any point in time, our algorithm maintains a prob-
ability distributionq over caches (experts), which in-
duces page probabilitiesp(j) over pages. The section
above describes one distributionq using theWMR algo-
rithm. However, notice that for the purpose of comput-
ing the expected number of page faults (as in Lemma 3),
any two distributions over caches that induce the same
page probabilities are equivalent. Therefore, we are free
to deviate from the instructions given by theWMR algo-
rithm so long as we are faithful to the page probabilitiesp(j). This is important for the next part of our analysis,



where we bound the expected cost incurred by moving
between probability distributions.

In particular, we now examine the following ques-
tion. Given a distributionq over caches that induces
probabilitiesp(j) over pages, and given a new target
set of page probabilitiesp0(j) that satisfies

Pj p0(j) =k, we want to move to some new distributionq0 over
caches that inducesp0. At a minimum, any algorithm
must load an expected

Pp0(j)>p(j) (p0(j) � p(j)) num-
ber of pages to move from the page probabilitiesp top0. Achieving this is easily possible in a setting where
there are onlyk + 1 pages total, but it is harder in gen-
eral. In this section, we show a method for achieving an
expected cost of at most2Pp0(j)>p(j) (p0(j) � p(j)).

A simple example will help illustrate the difficulty
and the algorithm. Say thatk = 2 and initially our cache
is [A;B] with probability1=2 and[C;D] with probabil-
ity 1=2. This induces page probabilitiesp; say we want
to convert this to a new distributionp0 as follows.

page A B C Dp 12 12 12 12p0 34 14 12 12
If we momentarily forget about the cache capacity ofk,
we can easily move to a new cache distributionq̂ consis-
tent withp0: we can simply evictB with probability1=2
if our cache is[A;B] and loadA with probability1=2 if
our cache is[C;D]. Soq̂ is the following.

cache [A] [A;B] [C;D] [A;C;D]q̂ 14 14 14 14
The[A;C;D]possibility, unfortunately, exceeds the size
limit of k = 2. However, there is (and there must be) a
cache that has a vacancy, in this case[A]. We rebalance
by adding pageD to the small cache and evictingD
from the large cache. This new cache distribution is now
only over legal caches, and we use this forq0.

cache [A;D] [A;B] [C;D] [A;C]q0 14 14 14 14
In other words, the strategy in this case is: “if our
cache is[A;B] then with probability1=2 do nothing
and with probability1=2 evict B and loadD; if our
cache is[C;D] then with probability1=2 do nothing
and with probability1=2 evict D and loadA.” This
strategy seems a bit strange becausep0(D) = p(D)
yet we sometimes evict or loadD, but this is neces-
sary in this situation. As you can see, the expected num-
ber of page loads in this example is1=2, which equals2Pp0(j)>p(j) (p0(j) � p(j)).

Our strategy, in general, is as follows. To move
from a set of probabilitiesp to p0, for any pagej withp0(j) < p(j), we evict j from our cache (if present)

with probability1 � p0(j)=p(j). Next, for pages withp0(j) > p(j), we add them to a cache not containingj
with probability(p0(j) � p(j))=(1 � p(j)). This gives
us a cache distribution̂q with the correct probabilitiesp0
and loading cost

Pp0(j)>p(j) (p0(j) � p(j)), but it may
create caches that are too large.

Fortunately, the expected number of pages in the
cache is

P p0(j) = k. Thus, if there are caches with
more thank pages, there must be caches with fewer
than k pages. Take a cache with more thank pages
and one with fewer thank pages, and some page that
is in the larger but not the smaller. We can evict the
page from the larger cache and load it in to the smaller
cache in such a way as to not changep0. If the two
caches do not have equal probabilities, we cannot im-
mediately reduce the probability of both of the original
caches to 0. However, one of the two caches will end
with probability 0, and thus we are always making dis-
crete progress in decreasing the total excess and shortage
in cache sizes, over all caches with nonzero probability.
Furthermore, the total probability of performing a load
in the rebalancing step is no more than the probability of
loading a page in the increase step, since each load re-
quired for a rebalance originates from an increased prob-
ability. The expected number of loads is no more than2Pp0(j)>p(j) (p0(j) � p(j)).
Lemma 5 Given a probability distributionq on caches,
this implies page probabilitiesp. Given a new set of
page probabilitiesp0, we can move to a new prob-
ability distribution q0 on caches with expected cost2Pp0(j)>p(j) (p0(j) � p(j)).
4.3. Bounding the online movement cost

The final step to showing that our algorithm achieves
the required bound is to use Lemmas 4 and 5 to show
that its cost for maintaining the page probabilitiespt(j)
is at most its expected number of page faults, which we
have already bounded in Lemma 3.

Lemma 6 Using the movement strategy given in
Lemma 5, the expected cost for the algorithm of Sec-
tion 4.1 for maintaining its probability distribution is at
most twice its expected number of page faults.

Proof. Consider the expert weights before receiving a
request to pagej. Let p be the page probabilities be-
fore the request andp0 be the page probabilities after the
request. Sincej is the only page whose probability of
being in the cache increases (Lemma 4), the expected
cost from Lemma 5 is at most2 (p0(j) � p(j)). This is
clearly at most2(1� p(j)), which is twice the probabil-
ity of incurring a page fault.



0

2

4

6

8

10
b

es
t 

fi
xe

d
 c

ac
h

e 
/ o

p
t

0 2 4 6 8 10 12 14 16 18 20
cache size k

Figure 1. fgrep trace

Combining Lemmas 3 and 6 to bound the total ex-
pected online cost, and using Lemma 2 as our bound on
the offline cost, we conclude with our competitive ratio
of O(r + logk).
Theorem 7 There is an algorithm whoser-unfair com-
petitive ratio for the paging problem is6(2:8r+ 2 lnk).
5. Experiments

As described in Section 1.1, the performance mea-
sure considered here can be viewed as a kind of
fine-grained competitive ratio for the standard (no-
rental) paging problem. In particular, we can think of
our goal as being to simultaneously achieve constant-
competitiveness with respect to the number of page
faults of the bestfixedcache (working set) in hindsight,
a slightly worse ratio compared to the best partition
into two working sets in hindsight, and so on up to anO(logn)-competitive ratio with respect to OPT.

To get some sense of the interestingness of this per-
formance measure, we examined page trace data from
Fiat and Rosen [7].1 For each trace, and for each choice
of cache sizek, we considered two quantities: (1) the
number of page faults incurred by the best fixed cache
in hindsight (i.e., this is just the number of requests to
pages not in that set), and (2) the number of page faults
incurred by the optimal offline page replacement policy
(OPT). The ratio of these two quantities is plotted in Fig-
ures 1 and 2 for two of these traces. The point to notice
from these traces is that depending on the cache size, the
ratio of these quantities can vary substantially, and for
many cache sizes it might be better to have a small com-
petitive ratio compared to the best single cache, rather
than a large ratio compared to OPT.2 This suggests that
having both properties simultaneously would be a desir-
able quality for an online algorithm.

1http://www.math.tau.ac.il/˜rosen/results.html .
2It is actually possible for the best fixed cache to do better than

OPT, because OPT is required to bring the requested page intoits
cache on a page fault.

0

1

2

3

4

5

b
es

t 
fi

xe
d

 c
ac

h
e 

/ o
p

t

0 2 4 6 8 10 12 14 16 18 20
cache size k

Figure 2. gzip trace

6. Conclusions

This paper presents an algorithm for achieving anO(r + logk) competitive ratio for ther-unfair paging
problem, which we can view as achieving a fine-grained
form of competitive ratio in the standard paging setting.
The main technique we use for doing so is theWMR ap-
proach from online machine learning, though a number
of technical issues must be addressed in order to make
it work. In particular, in the standard machine learning
setting, one need not worry about “costs” for switching
between experts as we have here. Moreover, the diame-
ter of the space (the maximum possible cost for switch-
ing between two experts) isk, so the generic bound of
[3] cannot be used here. A drawback of this approach
is that the resulting algorithm is not time-efficient in its
straightforward implementation, though it appears pos-
sible to improve on this somewhat.

An interesting question is whether an algorithm for
the unfair scenario can be used to get improved bounds
for thek-server problem [13] if we probabilistically ap-
proximate a space using the Hierarchically Separated
Trees of Bartal [1]. Bartal et al. [2] determine how to
do so for the MTS problem, but there are several chal-
lenges to extending this to thek-server problem. Even
assuming that the game is being played on a metric space
of poly(k) points, and that the HST for the space is bal-
anced, it is still not clear how to manage the recursion. In
particular, unlike in the MTS problem, there are varying
numbers of servers that can be placed in each subspace
by both the online and offline algorithms. This means,
for instance, that the abstraction would have to consider
what it means to have multiple servers at a single point
in the uniform space.

This paper demonstrates an algorithm with anO(r+logk) ratio, but it is not as good as one may hope. We
would like an algorithm (preferably simple and efficient)
whose ratio isr + O(log k), as Bartal et al. [2] demon-
strate for the uniform-space MTS problem. A slightly
simpler goal is a ratio of(1 + ")r + (1 + 1=")O(log k)



(as in Theorem 1 for the case ofk + 1 points). An al-
gorithm with either ratio would provide additional hope
for application of Bartal’s HST approximation to thek-
server problem.

References

[1] Y. Bartal. On approximating arbitrary metrics by tree
metrics. InProc ACM Symposium on Theory of Com-
puting, pages 161–168, May 1998.

[2] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A
polylog(n)-competitive algorithm for metrical task sys-
tems. InProc ACM Symposiumon Theory of Computing,
pages 711–719, 1997.

[3] A. Blum and C. Burch. On-line learning and the met-
rical task system problem. InProc ACM Workshop on
Computational Learning Theory, pages 45–53, 1997.

[4] A. Borodin, N. Linial, and M. Saks. An optimal on-
line algorithm for metrical task systems.J of the ACM,
39(4):745–763, 1992.

[5] N. Cesa-Bianchi, Y. Freund, D. Helmbold, D. Haussler,
R. Schapire, and M. Warmuth. How to use expert ad-
vice. InProc ACM Symposium on Theory of Computing,
pages 382–391, 1993.

[6] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and
N. Young. Competitive paging algorithms.J of Algo-
rithms, 12:685–699, 1991.

[7] A. Fiat and Z. Rosen. Experimental studies of access
graph based heuristics: beating the LRU standard? In
Proceedings of the 8th Symposium on Discrete Algo-
rithms, pages 63–72, 1997.

[8] Y. Freund and R. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. J Comp Syst Sci, 55(1):119–139, 1997.

[9] M. Herbster and M. Warmuth. Tracking the best expert.
J Machine Learning, 32(2):286–294, 1998.

[10] L. John and A. Subramanian. Design and perfor-
mance evaluation of a cache assist to implement selec-
tive caching. InProc International Conference on Com-
puter Design, pages 610–518, October 1997.

[11] E. Koutsoupias and C. Papadimitriou. On thek-server
conjecture.J of the ACM, 42(5):971–983, 1995.

[12] N. Littlestone and M. Warmuth. The weighted majority
algorithm. Information and Computation, 108(2):212–
261, 1994.

[13] M. Manasse, L. McGeoch, and D. Sleator. Competitive
algorithms for server problems.J Algorithms, 11:208–
230, 1990.

[14] S. Seiden. Unfair problems and randomized algorithms
for metrical task systems.Information and Computation,
1998. To appear.


