Finely-Competitive Paging

Avrim Blum* Carl BurcH Adam Kalaf

Abstract called Marking and show that it achieves a(log k)
competitive ratio. The competitive ratio is the worst-
We construct an online algorithm for paging that case ratio (over request sequences) of the expected num-
achieves arO(r + log k) competitive ratio when com- ber of page faults by the online algorithm to the number
pared to an offline strategy that is allowed the additional of page faults incurred by the optimal offline algorithm
ability to “rent” pages at a cost ofl/r. In contrast, that knows the entire sequence in advance. Fiat et al.
the competitive ratio of thMarking algorithm for this show, moreover, that any paging algorithm must have a
scenario isO(rlog k). Our algorithm can be thought competitive ratio of at leas(log). We consider in
of in the standard setting as having a “fine-grained” this paper the question of whether one can perform bet-
competitive ratio, achieving af (1) ratio when there- ter thanMarking in a somewhat subtle sense. In partic-
quest sequence consists of a small number of workingular, we consider the following question: suppose that
sets, gracefully decaying @(log k) as this number in- on a page fault, thefflinealgorithm is allowed the ad-

creases. ditional power to “rent” the requested page at a cost of
Our result is a generalization of the result in Bartal only 1/ (think of » = log k), compared with the cost
et al. [2] that one can achieve a@(r + logn) ratio of 1 for actually loading the page into the cache. Rent-

for the unfairn-state uniform-space Metrical Task Sys- ing means that the memory request is serviced but the
tem problem. That result was a key component of therequested page isot brought into the cache and the
polylog(n) competitive randomized algorithm given in offline cache isnot modified. So, for instance, if the
that paper for the general Metrical Task System prob- offline algorithm rents a page and then the same page
lem. One motivation of this work is that it may be a first is requested again, the offline algorithm incurs another
step toward achieving a polyl¢g) randomized compet- page fault. Theonlinealgorithm is given no such priv-
itive ratio for the much more difficuk-server problem. ilege. (Technically, it is convenient to allow the online
algorithm to rent for a cost of 1; this can help the on-
line algorithm by at most a factor of two.) The question
we examine is, what competitive ratio can be achieved
in this scenario? For instance, can one still achieve an
o _)) O(log k) competitive ratio whem = log k? This ques-
Paging is a classic online problem. In this problem, tjon can be thought of as an application of Seiden’s [14]
an online algorithm controls a cache lofages and is notjon of an “unfair’ competitive ratio — unfair because

faced with a sequence of memory requestsps, . . . the offline algorithm has this extra ability to rent cheaply
When an item outside the current cache is requested, the__ (o the paging problem.

algorithm incurs a page fault and (in the classic paging
problem) must load the requested page into the cache, _ .)
evicting some other page of its choice. The goal of the ~FOF this harder unfair problem, no algorithm can

algorithm is to minimize the number of page faults it 2chieve a competitive ratio less thar(consider a se-
makes. quence where each request is to a new page), nor can any

Within the framework of competitive analysis, Fiat 2/90rithmachieve a competitive ratio less tiaflog k).

et al. [6] (see also [4]) describe a randomized algorithm Mark_ing achieves _competitive ratio)(r log k). _ We)
consider the question of whether one can achieve ratio

1. Introduction

*Carnegie Mellon University. E-mailavrim+@cs.cmu.edu . O(r+log k). The main result of this paper is that we can,
SUI?PO"Qd in pa””by NSF grant CCR'?ZS”?F- using an algorithm based on the Randomized Weighted-
Carnegie Mellon University. E-maitburch+@cs.cmu.edu Majority algorithmWMR from machine learning [12]

Supported in part by an NSF graduate fellowship. . .
tcarnegie Mellon University. E-maibkalai+@cs.cmu.edu . (E::‘IS_O called—|ed_ge [8]) together with a notion of phases
Supported in part by an NSF graduate fellowship. similar toMarking.

1.1. Motivation We require the algorithm to be constant-competitive
with respect to the easy component and only allow an
Because the problem stated above is not obviouslyO(log k) ratio with respect to the hard component.

self-motivating, we begin by presenting two motiva- Because of the working set phenomenon, researchers
tions, one from paging and another from theserver have tried designing cache systems thatin a certain sense
problem. add such a renting ability. One practical implementation

is to reserve the main cache for the supposed working
Finely-competitive paging: Request sequences in set while adding a second, smaller cache of potential
practice often consist of a core working set of fre- working-set candidates [10].
guently requested pages, together with occasional as- In Section 5 we give results of a simple experiment
sorted memory requests, where this working set may on paging traces made available by Fiat and Rosen [7]
change over time. Suppose that, in hindsight, the re- showing that these traces do, in a sense, contain working
qguest sequence can be partitioned into time periodssets of this flavor.
t1,t9, ..., 1, with the following property. Each time
periodt; has a working set¥; (|W;| < k), such that
there are at most; requests to pagesutsidelV; during
the time period. In this scenario, one offline strategy in
our “unfair” model is in each time period to load the cur-
rent working set into the cache and to rent the requests
outside the current working set. This has a cost of

The k-server problem: The question of the best pos-
sible randomized competitive ratio for theserver prob-
lem of Manasse, McGeoch, and Sleator [13] remains a
major open question. Koutsoupias and Papadimitriou’s
proof [11] that the work-function algorithm achieves an
O(k) competitive ratio was a breakthrough result, espe-
1(01 ot om) cially_given that2(k) is a I_ower bOl_md for deterministic

r algorithms. However, it is conceivable that a random-
HWi + [Wo \ Wi|+ -+ Wi \ W1 ized algorithm could achieve a polylpg ratio. Hope
that this might be possible comes from the Bartal et
al. result [2] giving a polylo¢r) competitive ratio for
the simplern-state Metrical Task System (MTS) Prob-

Takingr = log k, an algorithm with unfair competitive
ratio O (r + log k) must pay at mosP(log k) times this,

or lem. At the core of this result is an algorithm for achiev-
O (01 + -+ om) + (log k) (|W1] ing anO(r + log n) ratio for ther-unfair uniform-space
F W \ Wi+ - Wi \ Win_1]) - MTS problem. Essentially, the-” term is the competi-

tive ratio of a recursive application of the algorithm run
So, if the sequence involves only a few working sets or on a subspace, which is being abstracted to a single point

if their differences are small compared to thethe on- in the current space. The uniform-space MTS problem
line algorithm is only a small (constant) factor from the is roughly equivalent to the paging problem in a domain
optimal service sequence. of k+1 pages total. Thus, our result can be thought of as

Here is a simple concrete example. Suppose that thea generalization of thi®(r +1og n) bound to the paging
request sequence repeatedly cycles over a fixed set oproblem. The motivation s that this could potentially be
k + 1 pages. In that case, the deterministic LRU algo- one step toward achieving a polyldg bound for the
rithm has competitive ratié (it faults on every request) more generak-server problem. Of course, there are

andMarking has competitive rati@(log k) (in expecta- many additional issues involved in attempting to con-
tion, it makesO(log k) page faults per cycle). However, struct such a recursivie-server algorithm. We discuss
our algorithmin this case is required to have(3i) ra- some of these issues in Section 6.

tio because we can view this sequence as having a single
fixed working set of sizé, with one additional request
per cycle. In other words, in the unfair model, the offline
algorithm could simply incur a cost df/r = 1/logk
per cycle by renting. We can view the special case of the paging prob-
In a sense, this goal can be viewed as follows. The lem in which there are only + 1 distinct pages re-
motivation of the competitive ratio measure itself is to quested as an MTS problem on a uniform space-pfl
allow the online algorithm to perform worse on “harder” points. For the--unfair version of this problem, Bartal
sequences but to require it to perform better on “easier” et al. [2] prove that a randomized work-function-based
ones. Unfairness provides a more fine-grained measurealgorithm achieves competitive ratia- O (log k). Blum
in which we split the offline cost into an “easy” compo- and Burch [3] prove that Herbster and Warmuth’s sim-
nent (the rentals) and a “hard” component (the loads). pler “experts” algorithm/ariable-Share [9] achieves a

2. Awarmup: The case oft + 1 pages

similar bound. We begin by showing that an even sim- 1 + (rIn(1/8) + In(k + 1))/(1 — 3). (The “I4" is
pler algorithm (simpler to describe and to analyze), also the initialization cost for choosing a random page at the
achieves arO(r + log k) bound, though it has some- beginning of the phase.) Now, noting that the offline al-
what worse constants than the others. We call this algo-gorithm must pay at least 1 per phase, either to evict a
rithm thePhased Randomized Weighted-Majogtgo- page or to rent a pagetimes, we have the following
rithm (Phased-WMR). It is this algorithm that we then theorem.
extend to the general paging problem.

The Phased-WMR algorithm, in the context of the . .
(k + 1)-page paging problem, works as follows. Each _algorlthm for ther-unfair
phase proceeds until every one of the- 1 pages has Is at most
hadr requests. At the beginning of the phase, we as- rin(1/8) + In(k + 1)
sociate to each page a weight which is initialized 1 1-3 :
to 1. The weightsy; define a probability distribution
p(i) = w;/W, whereW = 5 . w;; this is our prob- Notice that the bound of Theorem 1 is of the desired
ability over pagesot to have in the cache. (For ex- O(r + logk) form. Forg = 3/4, we get approximately
ample, initially all weights ard and so each page is 1+1.15r+41In(k+1). As/g — 1, the bound approaches
equally likely to be the one outside the cache.) When 1+ (1+¢/2)r+ Llnk.
a page is requested, we multiply the page’s weight by For the general paging problem, we extend the
8 (8 < 1 is a parameter of the algorithm) and read- Phased-WMR algorithm to have one “expert” for ev-
just our probability distribution accordingly. Notice tha ery sequenceof pages marked in the previous phase,
this effectively increases the probability that the page which the expert believes should be the order in which
is in the cache. Operationally, i is the probabil- pages are evicted during the current phase. The two dif-
ity distribution before the request and is the distri- ficulties that this approach entails are (1) there are now
bution after, the readjustment can be implemented by many more experts, and (2) the possible cost for switch-
the rule, “on a request to pagenot in the cache, rent ing between two different experts has increased ftom
with probability p'(7)/p(j) and load with probability to k. We deal with the first issue by considering “pools”
(p(7)—7'(4))/p(5); in the latter case we evict each page of multiple experts. The second issue involves substan-
i with probability (p' (¢) — p(¢))/(p(5) — p'(5))." Note tially more effort.
that the expected cost to our algorithm for this request to
J is simplyp(j). 3. The general case: Phases and the offline

In the terminology of the machine learning litera- cost
ture, we could think of having an “expert” associated
to each of theé: + 1 subsets ok pages advocating that i L i
the cache contain thegepages, and we could think of . we begl_n the o‘l‘escr|pt”|on of the ger_1era| case by defin-
the Phased-WMR algorithm as the standard Random- ing the nqtlon of “phase” that the onllr_we algorithm uses
ized Weighted Majority algorithitVMR [12], with the and proving a lower bound for the offline cost based on

small modification that we reinitialize the algorithm pe- hiS notion. Then in Section 4 we describe how the al-
riodically at phase boundaries. gorithm behaves within each phase and prove an upper

A well-known theorem of Littlestone and Warmuth 20und on the expected online cost. Because our online

[12, 5] states that the expected loss incurre\iyiR is algorithm is not a *lazy” algorithm, we separately ana-
at r;mst lyze its expected number of page faults (the easier part

Lln(1/8) +Inn of the gnalys_is)_and its expected cost for modifying its
1.5 (1) p_robablllty QIStrIbUtI_Or_] over caches (the harder analy-
sis). To define the initial state of our problem, we as-
wherel is the loss of the best expert in hindsight and sume the cache is empty before the first request occurs.
is the number of experts. This formula assumes that if Like the Marking algorithm, we divide the request
an algorithm has probability distributign among ex- sequence into phases. We say that pade marked
perts, and the experts receive loss veatpthen the when it has accumulated at leastequests within the

Theorem 1 The competitive ratio of thehased-WMR
(k + 1)-page paging problem

expected loss of the algorithm is - ¢ (e.g., if ex- phase. The phase reaches its end whpages become
pert j receives loss of 1 and the rest receive loss of 0, marked.
then the algorithm’s expected lossji§j)). As noted Let M; denote the set of pages marked in phase

above, this is exactly the case in our setting. There- (Define M, to be the empty set.) Also, lét ; denote
fore, in our context, this implies that the expected cost the number of requests to pagén phasei. We define
of the Phased-WMR algorithm per phase is at most m; as the number of pages marked in phabat not in

the previous phaseX/; \ M;_1|). Finally, we define; 4. The online algorithm

as the total offline cost for renting pages outslde ; U

M;; thatis,o; = % ZjQM,_luM, ti - We now describe a randomized online algorithm

As in the standard analysis ®&farking, this use of whose expected cost in each phas) (r+log k) more

phases gives a convenient lower bound on the offline than the offline bound og(mi +0;) given in Lemma 2.

player’s cost. To describe the algorithm, we ugg(j) to denote the
probability that pagé is in the cache after servicing the

Lemma 2 If costopr (o) is the optimal offline cost for ~ ¢th request.

the task sequence, then we have We divide the description and analysis of the algo-

rithm into two parts. First, we describe how the algo-

rithm determines the probabilitigs(j), and we use this

to bound the expected number of page faults incurred by

the algorithm. We then describe how the algorithmloads

and ejects pages to maintain these probabilities, and we

Proof. Consider two phases— 1 and:. Notice that for bound the additional cost incurred by those operations.

all but thek pages in the offline cache at the beginning

of phasei — 1, the offline algorithm must either load 4.1. The online cache probabilities and expected

the page into its cache, at a costlofor service all re- number of page faults

guests to that page (if any) by renting, at a cost of at least

(li-1,; + €i j) /7. Therefore, any offline algorithmmust ~ The algorithm determines the probabilitigs(;)

pay at least based on a weighted average over a collection of “ex-
perts”. At the beginning of phasg the algorithm has

. Gy i+ 0 M;_4 in its cache, and initializes one expert for each

costopr(0i_10i) > me{l, #} —k of the k! permutations of the pages i;_;. Each ex-
pert behaves like a deterministic version of the Mark-

ing algorithm, where the given permutation determines

in these two phases. For pagesiarked in phases— 1 the order in which unmarked pages are thrown out, and

or¢, we know¢;_; ; + £; ; > r, for other pageg, we pages are considered marked when they have received

know ¢; ; < r sincej is not marked in phase These 1 requests. Specifically, the expert for permutatjn

facts imply behaves as follows:

1
COStopT(O') > 5 Z (mz + Oi) .

7

¢ Any page requested at leastimes in this phase is
}) k considered marked.

¢ On a page fault, rent the requested page if it is not
ls yet marked. Otherwise, load the requested page
> (Z 1) + (Z %) —k into the cache, throwing out the first (according to
JEM:i_1 UM, JEM:_1UM, permutation”) unmarked page that is still in the
= (/f—l—mi)—l—oi—k’:mi—i—oi. cache.

Notice that at the end of the phase, each expert has ex-
actly M; in its cache, maintaining our initial assumption.
Each expert is initialized with a weight of 1 and we
use theWMR algorithm with 3 = 1/2 to update the
weights; that is, we multiply the weight of an expert
by 5 whenever it incurs a page fault. The probabili-

Also note that the offline algorithm must pay at least
my + o1 in the first phase. Let; represent the sequence
of requests in phase Then we get the following.

2costopr(0) > costopr ((0102)(0304) -+)

+costopr (01(0203)(0405) -) tiesp:(j) are determined in the natural way from these
> ((ma+o2)+ (ma+o4)+-) weights. Specificallyp; (j) is the result of dividing the
+((my+o01) + (ms+o03) +) total Weight_on experts having pagen their cache by
the total weight on all the experts. If we select a cache
- Z (mi +0;) . according to a distribution matching these probabilities,

: then our algorithm’s expected number of page faults will
- match the expected costWMR.

Lemma 3 By combining these experts usMiMR, the to the upper bound on the loss of the “good” experts
online algorithm’s expected number of page faults in calculated in the proof above.
phasei is at most(2.87 + 21In k)m; + (1.4r)o;. These two modifications allow us to write the proba-
bility that a given page is in the cache of the algorithm

Proof. For concreteness, let us first consider the casein terms of thenumberof requests to each page so far in
m; = 0. In this case, none of the experts will rec- the phase, without refe_re_nce to the_ order_in which those
ommend loading any pages and the algorithm will have requests occurred. This is useful in proving the lemma
M;_1 = M; in its cache throughout the phase. Thus it below.
pays a total of-o;, meeting the desired bound.) .

In the general case, a “good” expert is one in which Lémma 4 If there is a request to pageat timet, then
them; pages of\/;_; that werenotmarked come firstin pe+1(j) > pe(y) andforally” £ j, pey1(5') < pe(i’)-
its permutation, and the — m; marked pages aof/;_;
come last. There ane;!(k—m;)! of these good experts, Proof sketch. The easy part of the lemma is the state-
and each one makes at m@stn; +ro; page faultsinthe ment that when a request is made to pagéhe prob-
phase for the following reason. For each ofthepages ability that j is in the cache increases. That happens
j € M;\ M;_,, itincurs a total of- page faults untiithe pecaus&/MR penalizes all experts that do not havie
page is finally marked and brought into the cache. For their cache and does not penalize those that do. Further-
each of then; pagesj € M;_; \ M;, itincurs at most more, if pagej becomes marked by this request, then
page faults after throwing it out (since these pages do notp,,,(j) = 1. The harder part is the statement about
become marked). Finally, the expert always rents pagespages;’ + j because of the possibility of correlations
Jj & M;_1 U M;, and the total cost for theseiis; . among pages.

The formula in equation (1) for the loss of tWéMIR To analyze these pages, we can directly write out a
algorithm can be generalized to the case where we hav&ormula forp(;’) in terms of the requests so far. In par-
a “pool” of many good experts. In this case, the bound ticular, letm be the number of pages marked so far that

becomes I a1 | were not in the cache at the start of the current phase
n(1/B) +1n(n/ngood) , (2) (so all experts of nonzero weight have evicted exaatly
1-p pages), and for paggsthatwerein the cache at the start

where L is an upper bound on the loss of any expert of the phase, defing, to be the number of hits to that
in the pool,ny,.q is the number of experts in the pool, page during this phase ob if there werer hits. Then

andn is the total number of experts. In our cage— we have

2rm; + ro; andn/ngeeq = k!/(ml(k —my)!) = (ﬂ’j .

If we choosed = 1/2 and maintain probabilities; (7) 1—p(j') =

according to the expert weights as above, then the total B S N T S
expected number of page faults of our algorithm is at {]1"72""’]m_1¢‘7l} E—

most 2o fjudaygmy BT

| k It can then be verified that this is an increasing function
14(27“7774 + 7“02’) 4+ 21n m; of a”_] ;é j/, and ofm.

< 142rmi 4+ ro;) + 2miInk
(2.8 4+ 2Ink)m; + (1.47)0; .

. 4.2. Moving between probabilities

For the purpose of analyzing the movement cost, itis At any point in time, our algorithm maintains a prob-
helpful to modify the algorithm described above in two ability distributionq over caches (experts), which in-
ways. First of all, when an expert has been determinedduces page probabilities j) over pages. The section
to be “bad” — that is, if a page it has thrown out be- above describes one distributipnsing theWMR algo-
comes marked — we give it an infinite penalty, setting rithm. However, notice that for the purpose of comput-
its weight to 0. Second, when an expert throws out someing the expected number of page faults (as in Lemma 3),
pagej, we penalize it for all requests to that page that any two distributions over caches that induce the same
have occurred so far in the phase; i.e., we penalize it aspage probabilities are equivalent. Therefore, we are free
if it had thrown the page out at the very beginning. No- to deviate from the instructions given by téMR algo-
tice that the first modification only helps the algorithm, rithm so long as we are faithful to the page probabilities
and the second modification has already been factored inp(j). This is important for the next part of our analysis,

where we bound the expected cost incurred by moving with probability1 — p'(j)/p(j). Next, for pages with
between probability distributions. p'(§) > p(j), we add them to a cache not containjhg
In particular, we now examine the following ques- with probability (p’(j) — p(5))/(1 — p(j)). This gives
tion. Given a distributiory over caches that induces us a cache distributiopwith the correct probabilities’
probabilitiesp(j) over pages, and given a new target and loading cos} . ;- (¢'(j) — p(j)), butit may

set of page probabilitigg (j) that satisfies _; p'(j) = create caches that are too large.

k, we want to move to some new distributighover Fortunately, the expected number of pages in the
caches that induces. At a minimum, any algorithm cache isy_ p’(j) = k. Thus, if there are caches with
must load an expectedl , ;)-,(;y (P'(J) = p(j)) num- more thank pages, there must be caches with fewer
ber of pages to move from the page probabilifie® than k pages. Take a cache with more tharpages

p’. Achieving this is easily possible in a setting where and one with fewer thak pages, and some page that
there are only: + 1 pages total, but it is harder in gen- is in the larger but not the smaller. We can evict the
eral. In this section, we show a method for achieving an page from the larger cache and load it in to the smaller
expected cost ofat mosty .\ ;) (P'(7) = p(j))- cache in such a way as to not changde If the two

A simple example will help illustrate the difficulty caches do not have equal probabilities, we cannot im-
and the algorithm. Say that= 2 and initially our cache ~ mediately reduce the probability of both of the original

is [A, B] with probability1/2 and[C', D] with probabil- caches to 0. However, one of the two caches will end
ity 1/2. This induces page probabilitipssay we want with probability 0, and thus we are always making dis-
to convert this to a new distributigr as follows. crete progress in decreasing the total excess and shortage

in cache sizes, over all caches with nonzero probability.

page ﬁl ? (f 11) Furthermore, the total probability of performing a load
p/ 2 0733 in the rebalancing step is no more than the probability of
p 2 31 2 32 loading a page in the increase step, since each load re-

If we momentarily forget about the cache capacity:pf qu?r_ed for a rebalance originates from an increased prob-
we can easily move to a new cache distributi@onsis- ability. The ex?epted ngmber of loads is no more than
tent withp’: we can simply evicB with probability1 /2 22 pyspi (P'0) = p(9))-

if our cache id A, B] and loadA with probability1/2 if

. . ' Lemma5 Given a probability distributiorg on caches,
our cache i$C, D]. Sogq is the following.

this implies page probabilities. Given a new set of
cache [A] [A,B] [C,D] [A,C, D] page probabilitiesp’, we can move to a new prob-
G 1 1 1 ability distribution ¢ on caches with expected cost

- . 2 Zp’(j)>p(j) (P'(3) — p(3))-
The[A, C, D] possibility, unfortunately, exceeds the size

limit of £ = 2. However, there is (and there must be) a 4 3. Bounding the online movement cost
cache that has a vacancy, in this chég We rebalance

q 1 2 2 2

by adding pageD to the small cache and evicting The final step to showing that our algorithm achieves
from the large cache. This new cache distributionis now e required bound is to use Lemmas 4 and 5 to show
only over legal caches, and we use thisfor that its cost for maintaining the page probabilitigé;)
cache [4,D] [A,B] [C,D] [A,C] is at most its expected _number of page faults, which we
¢ % % % % have already bounded in Lemma 3.

In other words, the strategy in this case is: “if our Lemma6 Using the movement strategy given in

cache is[4, B] then with probabilityl/2 do nothing Lemma 5, the expected cost for the algorithm of Sec-

and with probabilityl/2 evict B and loadD; if our tion 4.1 for maintaining its probability distribution is at

cache is[C, D] then with probabilityl/2 do nothing ~ most twice its expected number of page faults.

and with probabilityl/2 evict D and loadA.” This

strategy seems a bit strange becap§d) = p(D) Proof. Consider the expert weights before receiving a

yet we sometimes evict or loaf?, but this is neces- request to pagg. Let p be the page probabilities be-

sary in this situation. As you can see, the expected num-fore the request and be the page probabilities after the

ber of page loads in this examplelig2, which equals request. Sincg is the only page whose probability of

23 piiyspiy (P'G) = p(5))- being in the cache increases (Lemma 4), the expected
Our strategy, in general, is as follows. To move cost from Lemma 5 is at mo&t(p’(j) — p(j)). Thisis

from a set of probabilitieg to p’, for any pagej with clearly at mose(1 — p(4)), which is twice the probabil-

P (j) < p(j), we evictj from our cache (if present) ity of incurring a page fault. L]

best fixed cache / opt
best fixed cache / opt

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
cache size k cache size k

Figure 1. fgrep trace Figure 2. gzip trace
Combining Lemmas 3 and 6 to bound the total ex- §. Conclusions

pected online cost, and using Lemma 2 as our bound on
the offline cost, we conclude with our competitive ratio

of O(r + log k). This paper prese_n_ts an _algorithm for qchievi_ng an
O(r + log k) competitive ratio for the--unfair paging

Theorem 7 There is an algorithm whoseunfaircom- problem, which we can view as achieving a fine-grained

petitive ratio for the paging problem &2.8r 4 2In k). form of competitive ratio in the standard paging setting.
The main technique we use for doing so is MR ap-

5. Experiments proach from online machine learning, though a number

of technical issues must be addressed in order to make

As described in Section 1.1, the performance mea- it work. In particular, in the standard machine learning
sure considered here can be viewed as a kind ofS€tting, one need not worry about “costs” for switching
fine-grained competitive ratio for the standard (no- P&tween experts as we have here. Moreover, the diame-
rental) paging problem. In particular, we can think of ter of the space (the maximum possible cost for switch-
our goal as being to simultaneously achieve constant-INg Petween two experts) i so the generic bound of
competitiveness with respect to the number of page [3] cannot be used here. A drawback of this approach
faults of the bestixedcache (working set) in hindsight, 'S th_at the resul'glng algor|thn_1 is not tlme_-efﬂuent in its
a slightly worse ratio compared to the best partition Straightforward implementation, though it appears pos-
into two working sets in hindsight, and so on up to an SiPIe toimprove on this somewhat. _

O(log n)-competitive ratio with respect to OPT. An interesting question is whether an algorithm for

To get some sense of the interestingness of this per_the unfair scenario can be used to get improved bounds
formance measure, we examined page trace data fronfor thek-server problem [13] if we probabilistically ap-
Fiat and Rosen [7.For each trace, and for each choice Proximate a space using the Hierarchically Separated
of cache sizek, we considered two quantities: (1) the Trees of Bartal [1]. Bartal et al. [2] determine how to
number of page faults incurred by the best fixed cache do so for the MTS problem, but there are several chal-
in hindsight (i.e., this is just the number of requests to lenges to extending this to theserver problem. Even
pages not in that set), and (2) the number of page faultsassuming that the game is being played on a metric space
incurred by the optimal offline page replacement policy ©f poly(k) points, and that the HST for the space is bal-
(OPT). The ratio of these two quantities is plotted in Fig- anced, itis still not clear how to manage the recursion. In
ures 1 and 2 for two of these traces. The point to notice Particular, unlike in the MTS problem, there are varying
from these traces is that depending on the cache size, th@umbers of servers that can be placed in each subspace
ratio of these quantities can vary substantially, and for by both the online and offline algorithms. This means,
many cache sizes it might be better to have a small com-for instance, that the abstraction would have to consider
petitive ratio compared to the best single cache, ratherWhat it means to have multiple servers at a single point
than a large ratio compared to OPThis suggests that i the uniform space.

having both properties simultaneously would be a desir- ~ This paper demonstrates an algorithm withCar +
able quality for an online algorithm. log k) ratio, but it is not as good as one may hope. We

rr— . . esults himi would like an algorithm (preferably simple and efficient)
ttp://www.math.tau.ac.il/"rosen/results.htm . F _
2|t is actually possible for the best fixed cache to do bettanth whose ratio is- + O(log k)' as Bartal et al. [2] demon

OPT, because OPT is required to bring the requested pagaétsnto SFrate for the_ uniform-space MTS problem. A slightly
cache on a page fault. simpler goal is a ratio ofl + ¢)r + (1 4+ 1/¢)O(log k)

(as in Theorem 1 for the case bf+ 1 points). An al-
gorithm with either ratio would provide additional hope
for application of Bartal's HST approximation to tlke
server problem.

References

[1] Y. Bartal. On approximating arbitrary metrics by tree
metrics. InProc ACM Symposium on Theory of Com-
puting, pages 161-168, May 1998.

[2] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A
polylog(n)-competitive algorithm for metrical task sys-
tems. InProc ACM Symposium on Theory of Computing
pages 711-719, 1997.

[3] A. Blum and C. Burch. On-line learning and the met-
rical task system problem. IRroc ACM Workshop on
Computational Learning Theorpages 45-53, 1997.

[4] A. Borodin, N. Linial, and M. Saks. An optimal on-
line algorithm for metrical task system§.of the ACM
39(4):745-763, 1992.

[5] N. Cesa-Bianchi, Y. Freund, D. Helmbold, D. Haussler,
R. Schapire, and M. Warmuth. How to use expert ad-
vice. InProc ACM Symposium on Theory of Computing
pages 382-391, 1993.

[6] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and
N. Young. Competitive paging algorithmsl of Algo-
rithms, 12:685-699, 1991.

[7] A. Fiat and Z. Rosen. Experimental studies of access
graph based heuristics: beating the LRU standard? In
Proceedings of the 8th Symposium on Discrete Algo-
rithms, pages 63-72, 1997.

[8] Y. Freund and R. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. J Comp Syst Scb5(1):119-139, 1997.

[9] M. Herbster and M. Warmuth. Tracking the best expert.
J Machine Learning32(2):286—294, 1998.

[10] L. John and A. Subramanian. Design and perfor-
mance evaluation of a cache assist to implement selec-
tive caching. InProc International Conference on Com-
puter Designpages 610-518, October 1997.

[11] E. Koutsoupias and C. Papadimitriou. On theerver
conjectureJ of the ACM42(5):971-983, 1995.

[12] N. Littlestone and M. Warmuth. The weighted majority
algorithm. Information and Computatiqril08(2):212—
261, 1994.

[13] M. Manasse, L. McGeoch, and D. Sleator. Competitive
algorithms for server problemsl Algorithms 11:208—
230, 1990.

[14] S. Seiden. Unfair problems and randomized algorithms
for metrical task systemiformation and Computatign
1998. To appeatr.

