
Verified Implementations of the Information Card
Federated Identity-Management Protocol

Karthikeyan Bhargavan∗ Cédric Fournet∗ Andrew D. Gordon∗ Nikhil Swamy†

∗Microsoft Research †University of Maryland, College Park

ABSTRACT
We describe reference implementations for selected configurations
of the user authentication protocol defined by the Information Card
Profile V1.0. Our code can interoperate with existing implemen-
tations of the roles of the protocol (client, identity provider, and
relying party). We derive formal proofs of security properties for
our code using an automated theorem prover. Hence, we obtain the
most substantial examples of verified implementations of crypto-
graphic protocols to date, and the first for any federated identity-
management protocols. Moreover, we present a tool that down-
loads security policies from services and identity providers and
compiles them to a verifiably secure client proxy.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms Security, Verification

Keywords
Cryptographic protocol verification, Verified implementations, Web
Services Security, Federated identity management, CardSpace.

1. INTRODUCTION
Verified Reference Implementations of Protocols. One of the
successes of formal methods in security is the wide range of tools
now available for proving properties of cryptographic protocols.
Given a description in the formal style of Dolev and Yao [1983],
verifiers such as ProVerif [Blanchet, 2002] and AVISPA [et al, 2005]
can check nearly automatically various security properties of pro-
tocols against realistic threat models.

A significant barrier to the adoption of these tools is the effort of
writing a formal description and maintaining its consistency with
the informal specification. A promising solution is to build tools to
verify the code of reference implementations of security protocols.
A reference implementation is one optimised for clarity and ease of
verification and testing, not performance. The idea is (1) to check
security properties by extracting a formal description from imple-
mentation code and passing this description to an existing verifier,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

Figure 1: InfoCard: Card-based User Authentication

and (2) to check consistency between the reference implementation
and the informal specification in the same way as for any imple-
mentation, via interoperability testing with other implementations.

This paper reports the techniques underpinning the most com-
plex examples to date of such verified implementations.

Information Card Profile V1.0 (InfoCard). We have built and
verified reference implementations of various configurations of the
card-based user authentication protocol defined by the Information
Card Profile V1.0 [InfoCard Guide, Nanda, 2006]. We refer to this
protocol as InfoCard.

InfoCard is the core of a federated identity-management frame-
work that allows users to collect information cards issued by vari-
ous identity providers (IPs), such as web portals, governments, or
companies, and to use the cards to sign into various relying parties
(RPs), such as websites. An information card is a digital identity
consisting of a set of attributes. Possible attributes include real
names, pseudonyms, and email addresses. The client user interface
for choosing and maintaining information cards is known as the
identity selector (IS).

The InfoCard protocol is typically initiated by the web browser
of a user that visits the website of a relying party [Jones, 2006]. The
protocol allows the human user of the client computer to choose a
suitable card via IS, to prove the attributes recorded in the card
to RP, and to authenticate RP, via a message exchange with IP;
Figure 1 depicts a typical run.

The protocol is configurable in that message formats are deter-
mined by configuration data such as policies set by RP and IP. In
typical configurations, InfoCard amounts to a three-party authenti-
cation protocol between a client, an IP, and an RP, with various in-
tended privacy guarantees. For example, RP should not learn more
about the user identity than what is explicitly presented in the card.

There are multiple implementations of the various roles of the In-
foCard protocol. Windows CardSpace is the Microsoft implemen-
tation of an identity selector for Microsoft Windows; CardSpace
can be invoked from both Firefox (with a plugin) and Internet Ex-

1

Figure 2: Verification Architecture

plorer. The OSIS [2006] working group exists to coordinate efforts
to develop an open source identity selector. Microsoft makes avail-
able sample code for building identity provider and relying party
servers, and maintains public servers for test purposes.

There are some indications of early usage. CardSpace is dis-
tributed with Windows Vista. Leading online retailers (including
the second largest, the Otto group), and various banks have already
adopted the protocols. The largest relying party to date is Windows
Live; for example, Hotmail users can log in with InfoCard.

InfoCard is an important, worthwhile, and challenging example
for verification. It is important because of the likelihood of large
scale adoption. It is worthwhile because the protocols have yet to
be standardised and are not yet widely used—so there is an oppor-
tunity for details to be corrected. It is challenging because InfoCard
is highly configurable so that verification in full generality may be
out of reach of automatic verifiers.
Our Approach. Figure 2 presents an overview of our verification
architecture; it follows a framework first proposed by Bhargavan
et al. [2006b]. At the core of our approach are two implemen-
tations of a set of libraries, called Wssec, that provide common
cryptographic and networking functions used in web services secu-
rity protocols. The concrete version implements real cryptographic
operations and generates messages in a standardised XML format;
the symbolic version implements an abstract model of cryptogra-
phy, in the sense of Dolev and Yao [1983], and produces symbolic
messages.

Our verified InfoCard implementations consist of protocol-spe-
cific code that uses functionality provided by the generic Wssec
libraries. By linking application code with protocol code and the
concrete Wssec libraries, we produce an executable that can run on
the wire and exchange messages, and hence interoperate, with other
implementations of the protocol. By linking with the symbolic li-
braries instead, we produce an executable model that can generate
symbolic traces of the protocol, which are useful for debugging.
More significantly, we can automatically verify that this symbolic
model preserves the protocol security goals.

Our verifier is based on an existing tool chain consisting of the
model extractor FS2PV [Bhargavan et al., 2006b], which compiles
code written in F# (a dialect of ML) [Syme, 2005] to process mod-
els in an applied pi calculus [Abadi and Gordon, 1999, Abadi and
Fournet, 2001], and the state-of-the-art verifier ProVerif, which anal-
yses such models automatically. For many protocol implementa-
tions, the verifier either proves the security goals or produces a
counter-example. In some cases, however, the analysis may not ter-
minate; in others, it may take several gigabytes of memory. Hence,

for verification of our examples to be feasible, we make various
improvements. First, we implement additional inlining, dead-code
elimination, partial evaluation transformations in the model extrac-
tor FS2PV, which result in smaller, more specialised process mod-
els to be passed to the verifier. For example, there are different
but semantically equivalent representations of keys and nonces in
ProVerif; we choose representations that lead to more efficient veri-
fication than in the original FS2PV. Second, we rewrite parts of the
FS2PV libraries for web services security to optimise analysis with
ProVerif. Third, to deal with the complexity of the layered web
services security specifications, we write symbolic Wssec libraries
that manipulate abstract messages and not XML documents.

The protocol code in Figure 2 can either be written by hand,
or automatically generated based on metadata describing the pro-
tocol configuration. We formally define the set of possible Info-
Card configurations as an F# datatype and implement a tool, called
WSDL2FS, that downloads security policies from some given re-
lying parties and identity providers, infers the InfoCard configura-
tion, and generates protocol-specific F# code. The generated code
can then be verified using our tools before being deployed.

Structure of the Paper. Section 2 informally presents information
cards, the various protocol roles, the sequence of events making up
the protocol, the configuration possibilities, and the security goals.
Section 3 describes the web services security mechanisms upon
which InfoCard depends. Section 4 presents our formal model for
InfoCard configuration data, together with five example configu-
rations. Section 5 describes message traces, shown in Figures 4
and 5, derived from two of these examples. Section 6 describes
the construction of our implementations, including a technique for
automatically generating protocol-specific code from policies. Sec-
tion 7 presents verification results for our implementations. Using
our newly improved version of FS2PV, we prove authentication and
secrecy properties for our example configurations. Section 8 dis-
cusses related work and Section 9 concludes.

Contributions. To the best of our knowledge, the most substantial
prior verification of security properties of protocol code is work
by Bhargavan et al. [2006b,a], who verify trace properties of two-
party web services protocols. The main technical contributions of
the paper are as follows.

• Our verification of security properties of protocol code for
four significant configurations of InfoCard is the most com-
plex to date. Figures 4 and 5 indicate the numerous nested
encryptions and signatures arising from the use of web ser-
vice security. We verify trace properties of three party pro-
tocols; moreover, we verify privacy properties expressed as
behavioural equivalences rather than trace properties.

• We introduce the Wssec abstraction for efficient verifica-
tion of protocols layered on web services security. We need
this abstraction, together with additional optimisations of the
FS2PV model extractor and associated libraries, for our ver-
ifications to be feasible.

• We introduce a framework for policy-based generation of im-
plementation code for InfoCard clients, and its formal verifi-
cation. Verification on demand is a response to the difficulty
of verifying the protocol for all possible configurations. Gen-
eration of proxy code from metadata is a standard idea, but
we are not aware of any prior work to apply verification tech-
niques to confirm the correct construction of proxies.

This is the first paper to present formal descriptions of message
exchanges in the InfoCard specification, and to establish formal

2

authentication and privacy properties of parts of a complete imple-
mentation. Moreover, we show that, as with many configurable se-
curity protocols, some configurations have potential vulnerabilities.
Nonetheless, this paper is not a full security analysis of the spec-
ifications or implementations of InfoCard. A full analysis would
need to examine the deployed implementation code, the storage of
protocol data, the usability of identity selectors, and other factors.

Our verification results rely on the soundness of our symbolic
abstraction of the concrete Wssec libraries, as well as the correct-
ness of both FS2PV and ProVerif. We validate the concrete Wssec
libraries in three ways: by interoperability testing; by checking (by
hand) that symbolic traces conform to concrete traces on a series
of configurations; and by appealing to earlier, independent verifi-
cation results for protocols built on top of Wssec [Bhargavan et al.,
2006a]. The correctness of the core translations and algorithms
underpinning FS2PV and ProVerif are addressed elsewhere [Bhar-
gavan et al., 2006b, Blanchet, 2002, Blanchet et al., 2005]. The ad-
ditional optimisations for this work amount to standard, semantics-
preserving program transformations; we omit their formalisation.

2. THE INFOCARD PROTOCOL

2.1 Cards as Fragments of Identities
An information card represents an identity for the user who holds

the card; it is a container for a collection of claims that represent
private attributes of the card holder, plus configuration data that
controls the usage of the card—in particular the release of its con-
tents. Each claim value is of a particular claim type, such as last
name, gender, or email address.

There are two kinds of cards, self-issued and managed. A self-
issued card is created by the user’s client computer, and may con-
tain up to 15 claims with standardised claim types. The claim data
is stored at the client, typically protected by a password or a PIN. A
managed card is created by an external identity provider, and may
contain any kind of claims, encapsulating for instance application-
specific data, much like browser cookies. The claim data is stored
at the identity provider, but not at the client. Hence, the usage of the
card requires online access to the identity provider, as configured
within the card. In communications between the client and the card
issuer, a card is identified by a card reference, or cardId, which
uniquely identifies the card at the card issuer. The card reference is
stored at the client, and is not revealed to the relying party.

A user may hold a collection of cards of both kinds, may cre-
ate new self-issued cards, and may request managed cards from
identity providers. A relying party may require its user to present
cards with some specific claim types; the user may then obtain an
authentication token containing the corresponding claims from the
identity provider and present the token to the relying party.

2.2 Roles and Principals
Figure 1 depicts a typical usage of the InfoCard protocol. We

describe the roles involved in the protocol; for each role, we give
examples of principals that may instantiate the role.

User (U). The user is the human who owns a card and wishes
to control its usage to sign on to relying parties, while preserving
some privacy.

Identity Selector (IS). The identity selector is the secure subsys-
tem that manages collections of cards on behalf of the user; it inter-
acts with the user for card selection and communicates with iden-
tity providers. It is also the repository for the private data associ-
ated with self-issued cards. The IS could for instance be part of the
user’s operating system, as is the case for Windows CardSpace.

Client Application (A). The client application handles ordinary
interactions between users and relying parties. It could for instance
consist of an applet hosted by the browser, or could be a web service
client. It is typically less trusted than IS; it usually has no access to
the card-generated tokens carrying claim data.
Client Security Protocol Layer (C). We distinguish a security
protocol layer running at the local machine as the role C. Both the
IS and A roles communicate with remote parties through this secu-
rity protocol layer. It must be trusted in that, depending on the pro-
tocol configuration, it may manipulate unencrypted forms of both
application and card data.
Relying Party (RP). A relying party is a server that requires a
card-based token. It may be a website (such as http://relay.

labs.live.com) or a SOAP web service.
A relying party is identified and authenticated by its X.509 cer-

tificate. Servers using the same certificate are assumed to be part
of the same entity, typically an organisation recognised by the user.
InfoCard defines a procedure for extracting and presenting this or-
ganisation information from an X.509 certificate. A relying party
publishes a policy, either as part of its web page, or from a meta-
data server, stating the user authentication requirements. This pol-
icy may require that the user provide a card-based token issued by
a particular identity provider and asserting specific identity claims
about the user. In addition, it may state its privacy policy concern-
ing the usage of user information.
Identity Provider (IP). An identity provider issues and manages
cards for users. It is typically implemented as a website with a web
service for issuing security tokens (such as http://sts.labs.

live.com).
An identity provider is identified and authenticated by its X.509

certificate. It stores user authentication material and claim data for
the cards it has issued in a secure card database. It also publishes a
policy that specifies its authentication requirements; for instance, it
may require that the user secure her token request with a password.
The design of InfoCard is “IP-centric”: the identity provider must
be online, and must be trusted to provide accurate card informa-
tion to the user and secure card-based tokens to the relying party.
However, the user can prevent information about the relying party
from being sent to the identity provider, hence limiting the usage
information that the identity provider can collect.

2.3 Messages and Events
We now describe the messages and events in a typical interac-

tion between roles in the InfoCard protocol, as depicted in Fig-
ure 1. Section 4 defines several configurations of the protocol. The
configuration used here is our running example; we refer to it as
UserPassword-SOAP. For simplicity, we restrict our attention to
the core three-party protocol described in the InfoCard specifica-
tions. In practice, this protocol may be integrated into more gen-
eral scenarios that have, for instance, more exchanges between C
and RP before or after card-based authentication, or that require C
to contact several IPs.

We write R : E for a local event E at a role R, representing an
internal communication. We write R1→ R2 : M for a network mes-
sage from R1 to R2 that carries the data in M. To protect M, the
network message needs to be constructed and checked using cryp-
tography. In this section we omit the cryptography so as to empha-
sise the message contents; Section 5 provides the details.

The protocol begins when the client application A, running on
behalf of user U, wishes to make a service request at the relying
party RP. We assume that U has already obtained a card, with
reference cardId and some claims from an identity provider IP with
whom U shares a password pwdU,IP. We further assume that the

3

client security protocol layer C has retrieved the security policies
of RP and IP out-of-band. Given this pre-established configuration
data, the core protocol proceeds as follows. (The numbering of
events here corresponds to the numbering of interactions given in
Figure 1.)

(1) C : Request (RP, Mreq)

The security protocol layer C receives a request message
Mreq from the client application A for a relying party RP.

(2) U : Select InfoCard (cardId, IP, RP, pwdU,IP, typesRP)

From the previously retrieved policies of RP and IP, C ex-
tracts the claim types typesRP required by RP and triggers
the identity selector, which prompts the user U to select an
appropriate information card issued by IP for use at RP, and
to provide the associated password pwdU,IP as authentication
credential. The user should carefully review the identities of
IP and RP and the required typesRP before selecting a card.

(3) C→ IP : Request Token(cardId, pwdU,IP, RP, typesRP)

As the first network message, C sends a token request to IP.
This request includes the card reference, RP’s identity, and
the types of the required claims. The message is secured in
accordance with IP’s policy, using U’s password for authen-
tication.

(4) IP : Issue Token(U, cardId, RP, claims,display)
IP→ C : Token Response(RP, claims,display)

After authenticating and authorising the token request, IP is-
sues a security token that contains attribute values claims for
the required typesRP, and returns it to C. IP encrypts the
token for RP and provides a human-readable display token
display that contains attributes of the issued token, such as
data identifying the card and RP.

(5) U : Approve Token(display)

The identity selector presents the display token to the user for
her approval. The user should approve the token only if the
displayed attributes match her selected card and its intended
usage.

(6) C→ RP : Service Request (Mreq, claims)

C sends a service request to RP for A’s original request Mreq.
It secures this message in accordance with RP’s policy, and
endorses the message with the issued token, which contains
claims.

(7) RP : Accept Request (IP, claims, Mreq, Mresp)
RP→ C : Service Response(Mresp)

RP authorises the request based on the issuer IP and claims,
and responds with Mresp.

(8) C : Response(RP, Mreq, Mresp)

The protocol ends with C forwarding RP’s response to A.

2.4 Protocol Configuration Options
There are many configurable elements in the InfoCard protocol.

We highlight some of the security-critical options below.

User Credentials. The protocol configuration in Figure 1 assumes
the user shares a password with the identity provider, and uses this
password to authenticate her request for a token for a managed card.
Alternatively, the user may use other types of credentials, such as

self-issued cards or smartcard-based X.509 certificates, to authen-
ticate token requests.

Server Policies. Both the identity provider and relying party are
identified and authenticated by their X.509 certificates. However,
the details of their message security policies may differ; for ex-
ample, they may or may not require message signatures to be en-
crypted. Section 4 describes some common server policies.

Self-Issued vs Managed Cards. Figure 1 assumes the use of a
managed card. For self-issued cards, the identity selector (IS) itself
acts as IP. To create a self-issued card, IS generates a fresh card
reference (cardId) and some card-specific entropy (ηcardId, known
only to IS) and stores them with the claims in an encrypted card
store. When issuing a token for a self-issued card, IS signs the
token with a key kcardId,RP generated using ηcardId and the X.509
certificate of the target relying party. We refer to the key generation
algorithm as K and write:

kcardId,RP = K(ηcardId,RP) (computed by IS)

To create a managed card, the identity provider (IP) generates the
card reference and a card master key (kcardId, known only to IP) and

not. In particular, a relying party RP may ask for a private personal
identifier (PPID) that it can use to correlate different requests that
use the same card, for example to retrieve server-state associated
with the user. Informally, a PPID acts as a pseudonym for the card
user interacting with RP. To protect user privacy, the PPID should
prevent coalitions of relying parties from correlating visits to dif-
ferent RPs by the same user (identified by the same card). Hence,
there are two desired properties of a PPID; first, the PPIDs com-
puted for a given card and a given relying party must always be the
same; second, the PPIDs computed for a given card and different
relying parties must be different and difficult to correlate.

In practice, a PPID may be computed in three different ways.
First, when IP issues a token, based on a managed card cardId, with
token scope limited to RP, it computes a cryptographic hash based
on the card master key kcardId and RP’s X.509 certificate, possibly
with some additional entropy stored with the card:

ppidcardId,RP = H1(kcardId,RP) (computed by IP)

Second, when IP issues a token, based on a managed card cardId,
but with unlimited scope, C must first send it a PPID seed specific
to RP, computed as a hash of the card salt ηcardId and RP’s certifi-
cate; IP uses this seed to compute a PPID using the card master key:

seedcardId,RP = H2(ηcardId,RP) (computed by IS)
ppidcardId,RP = H3(kcardId,seedcardId,RP) (computed by IP)

Third, when IS generates a token based on a self-issued card, it
computes the PPID based on cardId and RP’s certificate:

ppidcardId,RP = H4(cardId,RP) (computed by IS)

2.5 Security Goals
An implementation of the InfoCard protocol consists of princi-

pals playing each of the roles U, A, IS, C, RP, and IP; the first is
played by a human, while the others are played by programs. The
behaviour of these roles varies depending on the choice of config-
uration options. However, irrespective of the configuration, every
implementation of InfoCard is expected to satisfy the authentica-
tion and secrecy goals stated in this section. The formal statements
below are our interpretation of properties expressed informally in
the specifications. We assume the symbolic threat model of Dolev
and Yao [1983]: the adversary may intercept, compute upon, and
send messages; it controls some principals; and it may actively in-
teract with any number of runs of the protocol. We say that a prin-
cipal is compromised when it is controlled by the adversary; other-
wise we say that it is compliant. We assume that the adversary is
given the secrets, such as passwords and keys, of all compromised
principals, but cannot guess the secrets of compliant principals.

Our formal statements rely on the following assumptions. Let
there be five compliant principals: a user A running a client security
protocol layer C, an identity provider I, and two relying parties R
and R′. The principal A uses C to make service requests at both
R and R′, and both relying parties accept tokens issued by I with
claim types typesR. The principals A and I share a password pwdA,I ,
and I has issued exactly two cards to A, with references cardId
and cardId′, both with the same secret data claimsA of type typesR.
The master keys, entropy, and salt corresponding to the two cards
are kept secret. There may be other compromised users, identity
providers, and relying parties, but we assume that A does not have
any interaction with them.
Authentication Properties. We specify the target authentication
properties as correspondence assertions [Woo and Lam, 1993] be-
tween protocol events. We write the assertion: E ⇒ E1 ∧ . . .∧En
to mean that in any run of a protocol, whenever the event E occurs,

the events E1, . . . ,En must have previously occurred. All quantifi-
cations of variables are explicit. Elements that are not quantified
are constants. We write [v] to indicate an optional element v in a
message.

In every run of an InfoCard implementation, even in the presence
of an active adversary, the properties A1–A3 must hold:

A1 Whenever I issues a token with claimsA for any relying party
RP (possibly R or R′), A must have selected the card and
claim types for use at RP.

∀cid, RP, display.
I : Issue Token(A, cid, [RP], claimsA, [display])⇒
A : Select InfoCard (cid, I, RP, pwdA,I , typesR)

Since both RP and display are optional in the Issue Token
event and the subsequent Token Response message, this as-
sertion should be read as a disjunction; either I specifically
issues a token for RP = R, and then A must have selected R
(and not say R′) as the relying party; or A may have selected
any relying party.

A2 Whenever R accepts a request Mreq with a token carrying
claimsA, the client C must have made the request, the user A
must have selected the card and approved the token, and I
must have issued the token.

∀Mreq, Mresp.
R : Accept Request (I, claimsA, Mreq, Mresp)⇒
∃cid, display.

C : Request(R, Mreq) ∧
A : Select InfoCard (cid, I, R, pwdA,I , typesR) ∧
I : Issue Token(A, cid, [R], claimsA, [display]) ∧
A : Approve Token([display])

A3 Whenever C accepts from R a service response Mresp, R must
have sent it in response to its request Mreq.

∀Mreq, Mresp.
C : Response(R, Mreq, Mresp)⇒

C : Request(R, Mreq) ∧
R : Accept Request (I, claimsA, Mreq, Mresp)

Property A1 specifies A’s authentication at I after processing
message (3); A2 specifies card-based authentication at R after pro-
cessing message (6); and A3 specifies response authentication and
correlation at C after processing message (7).

Secrecy Properties. Our target secrecy properties encode various
user privacy goals of the InfoCard protocol. Let A, C, I, R, R′ be
principals as before, but now let R′ be compromised.

The first privacy goal is that claimsA must never be released with-
out explicit approval from A. Moreover, if the issued token scope
is limited to R, then only R may obtain claimsA. In the following,
Attacker knows(X) means that the attacker is able to syntactically
derive X by performing standard cryptographic operations on the
messages that it has seen on the wire.

S1 The attacker may obtain claimsA only if A released it to some
relying party RP.

Attacker knows(claimsA)⇒
∃cid, RP, display.

A : Select InfoCard (cid, I, RP, pwdA,I , typesR) ∧
I : Issue Token(A, cid, [RP], claimsA, [display]) ∧
A : Approve Token([display])

5

S2 If issued token scopes are limited, then the adversary may
obtain claimsA only if A released it to R′:

Attacker knows(claimsA)⇒
∃cid, display.

A : Select InfoCard (cid, I, R′, pwdA,IP, typesRP) ∧
I : Issue Token(A, cid, [R′],claimsA, [display]) ∧
A : Approve Token([display])

The following privacy goal is that if a card does not contain per-
sonally identifiable data about the user, then a coalition of relying
parties cannot link uses of the card. For this property we assume
that both R and R′ are compromised, and that the issued token in-
cludes a PPID computed for the card and relying party. The prop-
erty is stated in terms of the equivalence, from the viewpoint of the
adversary, between two different versions of the user A.

S3 An implementation of the protocol where A always presents
the same card cardId to both R and R′ is observationally
equivalent to an implementation where A always presents
cardId to R and cardId′ to R′.

The fourth privacy goal is that if the token scope is not limited,
an IP should not be able to tell which RP is being used. To state
this property, we assume that I is compromised but both R and R′

are compliant, and that A always uses the same card cardId at both
R and R′.

S4 If the issued token scope is not limited, then an implemen-
tation of the protocol where A obtains a token from I for
use at R is observationally equivalent to an implementation
where A obtains a token from I for the same card for use
at R′.

3. WEB SERVICES SECURITY (REVIEW)
The InfoCard protocol is constructed upon the existing frame-

work for web services security. This framework consists of a suite
of specifications that include SOAP [Gudgin et al., 2003], WS-
Security [Nadalin et al., 2004], WS-SecurityPolicy [Kaler et al.,
2005], SAML [Cantor et al., 2005], XML-DSIG [Eastlake et al.,
2002a] and XML-ENC [Eastlake et al., 2002b]. The protocols de-
scribed by each of these specifications are highly configurable and
the resulting suite of protocols is flexible in the extreme. In this
section, we provide a brief review of the necessary concepts from
web services security.
Message formats and security. Messages are formatted in ac-
cordance with the SOAP messaging framework, which relies on
XML for the underlying representation. To secure a SOAP mes-
sage between two principals, WS-Security defines mechanisms to
sign the message body and chosen headers (using XML-DSIG) and
to encrypt the message body and sensitive cryptographic materials
(using XML-ENC). Alternatively, a SOAP message can also be se-
cured in its entirety by transmitting it over channels secured by
other means, such as TLS [Dierks and Rescorla, 2006]. In this
paper, we focus primarily on precisely modelling the former, and
simply assume that TLS provides a secure transport.
End-point References. Servers are usually identified by an end-
point reference (EPR). These consist of a URI for the service, plus
either an X.509 certificate or a Kerberos identity associated with
the server principal.
Authentication Tokens. WS-Security sets XML formats for the
security tokens used to identify and authenticate principals. Many
existing authentication credentials can be encapsulated within secu-
rity tokens, including username/password pairs, X.509 certificates,

Kerberos tickets, and SAML tokens. SAML tokens in particular
are commonly used within the InfoCard protocol to convey claims
about the client that are asserted by the identity provider.
Security Policies. WS-SecurityPolicy permits a server to use the
WSDL language [Christensen et al., 2002] to define and publish its
security policy together with a description of the service it provides.
The policy specifies the kinds of security tokens acceptable to the
service, how message signing and encryption keys are derived from
these tokens, which parts of a message should be signed or en-
crypted, the ordering of signatures and encryptions, and whether a
session and associated security context should be established.

To associate a principal with a SOAP message, a security token
for the principal is included as a SOAP header. For each type of
token, WS-Security specifies ways to derive signing and encryp-
tion keys, used to sign or encrypt a message. Moreover, if there
is already a message signature, a token can be used to endorse the
message by adding a secondary signature that covers the primary
message signature.

4. MODELLING CONFIGURATIONS
In this section, we present the F# data structures that constitute

our formal model of an InfoCard configuration. A configuration
sets the parameters for all instances of the roles that may be in-
volved in runs of the protocol. Given the security policies pub-
lished by RP and IP, their X.509 certificates, and a list of informa-
tion cards available to the user, we can automatically generate an
F# model of the configuration. We illustrate these data structures
by describing the UserPassword-SOAP example configuration. We
also briefly describe the other configurations used in the paper.

In overview, the UserPassword-SOAP configuration bases user
identity on managed information cards issued by IP; RP requests a
symmetric proof key to be associated with the issued token; and IP
expects U to authenticate herself using a username and password
associated with the managed card.
Protocol configurations. We model protocol configurations as
records with, for each role of the protocol, a field that sets the con-
figuration for the role. Our example configuration is as follows.
(We present the definition top-down, defining each element of this
configuration in turn.)

let config = {RP = [(rpEpr, rpPolicy)];
IP = [(ipEpr, ipPolicy, [cardsecret])];
IS = ([infocard], [])}

In the syntax of F#, a record is written as a sequence of equa-
tions between { and }; each equation binds a field label, such as
RP, to a term, such as [(rpEpr, rpPolicy)]. A list is written as a se-
quence of terms between [and], while a tuple is a sequence of
terms between (and). A constructor application is written as the
constructor name followed by parameters between (and), such as
Some(ipEpr, ipPolicy, [cardsecret]).

For both RP and IP, the configuration is an association list that
maps EPRs (consisting of a URI plus an X.509 certificate) to poli-
cies. For example, configurations with only self-issued cards have
no IP, so they set IP = []; configurations with a single IP (as is the
case for our UserPassword-SOAP example) set IP to a singleton.
In addition to a policy, each configuration entry for IP models its
database of issued cards as a list of card entries. In the example,
only one card has been issued, so the card list associated with ipEpr
has a single entry cardsecret associated with the user.

Finally, the configuration for the identity selector IS consists of
two lists: a list of card information for the managed cards, as well
as a list of card entries for the self-issued cards. In the example, IS
specifies a single managed card and no self-issued cards.

6

Name Issuer User credential Token scope Token key Encrypt Sigs
SelfIssued-SOAP (Figure 4) Self None RP Asymmetric true
UserPassword-TLS IP Password RP Symmetric true
UserPassword-SOAP (Figure 5) IP Password RP Symmetric true
UserCertificate-SOAP IP X.509 Certificate Any Asymmetric true
UserCertificate-SOAP-v IP X.509 Certificate Any Asymmetric false

Figure 3: Summary of Selected Example Configurations

Our model for EPRs is straightforward. We omit the (standard)
representation of X.509 certificates. In the example, we let:

let rpEpr = {address="http://rp.com/"; identity=rpX509Cert}
let ipEpr = {address="http://ip.com/"; identity=ipX509Cert}

Policies for IP and RP. A web services security policy specifies
the tokens that a client must include in a message in order to access
a service. Tokens can be included in messages either as endors-
ing tokens or as supporting tokens. WS-Security has specific rules
for including and proving possession of tokens for each token type.
The policy also includes a set of WS-SecurityPolicy options that
further qualify the message format. For simplicity, our configura-
tions have at most one endorsing token and one supporting token.

The record below defines the RP policy in the UserPassword-
SOAP configuration.

let rpPolicy = {endorse = IssuedToken(rpIssuedTokenPolicy);
support = NoToken;
options = options}

Hence, RP requires an endorsing token but no supporting token.
The term rpIssuedTokenPolicy, detailed next, specifies the form of
the issued token. The options field sets WS-SecurityPolicy options.

The rpIssuedTokenPolicy identifies the token issuer, and states
the claims and type of the proof key required by RP. In the exam-
ple, we define:

let rpIssuedTokenPolicy = {
issuer = IP(ipEpr);
rstTemplate = {

claims = [ClaimType("GivenName"); PPID];
proofKeyType = SymKey } }

This policy identifies IP as the token issuer using its EPR; it re-
quires a token with two claims: a given name and a PPID; it also
requires a symmetric proof key associated with the issued token.

The record below defines the IP policy.

let ipPolicy = {endorse = NoToken;
support = UsernameToken;
options = options; }

Unlike RP, IP requires the client to identify itself using a supporting
token rather than an endorsing token. In this case, the supporting
token is a token derived from the user’s username and password.

In the example, RP and IP rely on the same WS-SecurityPolicy,
recorded below:

let options = {deriveKeys = true; encryptSigs = true;
signatureConf = false; entropy = Both}

Card data. In addition to the policy, the state of IP includes a
database of cards that it has issued. In our example, there is a single
card, so the IP database is just a singleton list.

The terms below illustrate an entry in this database.

let infocard = {reference = "cardid";
issuer=ip(ipEpr);
reqAppTo=true;
userauth=UserPwdCred;
hashsalt=...}

let cardsecret = {usercard = infocard;
useridentity = UserPassword("user", "****");
claims = [(claimtype("name"), "alice")];
masterkey = ...}

The information card downloaded by the user from IP and locally
maintained by IS is represented by values such as infocard, with
five fields. The reference field contains a string that identifies the
card for the user and IP. The issuer field contains the EPR of the
card issuer. The reqAppTo field indicates whether or not the scope
of issued tokens based on this card is limited to a specific RP. The
userauth field states the kind of credential that the user must present
to IP to authenticate herself and retrieve a token associated with the
card; in our example, this credential type mandates the use of a
username and a password, as is the case in IP’s ipPolicy.

The secrets associated with cards are held in a database at IP;
the term cardsecret models a database entry. Its fields record: a
reference to the card issued to the user; the credentials that the user
must present to authenticate herself to IP; a list of claims associated
with the card; and a card master secret.
Limits of our Model. Our programming model leaves out some
details of the actual InfoCard configuration management. We as-
sume that all policies have been gathered and all discrepancies be-
tween them have been resolved. We do not model the indirection
of logical EPRs, opting instead for network EPRs only. We assume
that all InfoCards support all claims. We ignore the contents of dis-
play tokens. We assume that options such as derived keys apply
to all tokens in a message or none of them. We support only the
SAML 1.1 token type.
Selected configurations. Figure 3 summarises the main options
for the five protocol configurations that we formalize and verify.
Except for UserPassword-SOAP detailed above, we omit their di-
rect coding as F# data structures. The configuration UserPassword-
TLS differs from UserPassword-SOAP only in that it uses TLS to
secure messages rather than using SOAP message security.

We have selected these configurations based on two main crite-
ria. First, we aim to cover much of the variation in our model of the
issued token and InfoCard policy configurations. Second, as far as
possible, we model the scenarios that are presented in the Informa-
tion Card specifications. In the following sections we give detailed
traces for two of these configurations. In Section 5, we prove se-
curity properties for the first four. In Section 6, we discuss how
certain configuration choices, such as not encrypting signatures in
the fifth configuration, can lead to vulnerabilities.

5. DETAILED PROTOCOL NARRATIONS
We present protocol narrations for the first and third configura-

tions of Figure 3. These two configurations of the InfoCard proto-
col exercise the default recommended security policy options, and
are expected to be commonly deployed.
Cryptography. Each narration is a trace of protocol messages and
events corresponding to the abstract description in Section 2.3. Our
narrations consist of one or two message exchanges. All the op-
tional elements are fixed, in accordance with the specific configura-

7

Initially, C has: Card(cardId,claimsU),PK(kRP); RP has: kRP
(1) C : Request (RP, Mreq) C receives an application request
(2) U : Select InfoCard (cardId, C, RP, typesRP) User selects card
(4) C(IP) : Issue Token(U, cardId, claimsU, RP, display) C generates a self-issued token
(5) U : Approve Token(display) User approves token
(6) C : generate fresh k,η1,η2,(kproo f ,PK(kproo f)) Fresh session key, two nonces, and asymmetric key-pair

C→ RP : let Mek = RSAEnc(PK(kRP),k) in Encrypt session key for RP
let ksig = PSHA1(k,η1) in Derive message signing key
let kenc = PSHA1(k,η2) in Derive message encryption key
let ppidcardId,RP = H4(cardId,RP) in Compute PPID using card reference, RP’s identity
let kcardId,RP = K(cardId,RP) in Compute token signing key using card, RP’s identity
let Mtok = Assertion(Self,PK(kproo f),claimsU,RP,ppidcardId,RP) in SAML assertion with public key, claims, and PPID
let Mtoksig = RSASHA1(kcardId,RP,Mtok) in Self-signed SAML assertion
let Msaml = SAML(Mtok,Mtoksig) in Issued token
let Mmac = HMACSHA1(ksig,Mreq) in Message signature
let Mproo f = RSASHA1(kproo f ,Mmac) in Endorsing signature proving possession of kproo f
Service Request (Mek,η1,η2,PK(kcardId,RP),

AESEnc(kenc,Msaml),AESEnc(kenc,Mmac),
AESEnc(kenc,Mproo f),AESEnc(kenc,Mreq))

Request, with encrypted token, signatures and body

(7) RP : Accept Request (C, claimsU, Mreq, Mresp) RP accepts request and authorizes a response
RP : generate fresh η3,η4 Fresh nonces
RP→ C :let ksig = PSHA1(k,η3) in Derive message signing key

let kenc = PSHA1(k,η4) in Derive message encryption key
let Mmac = HMACSHA1(ksig,Mresp) in Message Signature
Service Response(η3,η4,AESEnc(kenc,Mmac),AESEnc(kenc,Mresp)) Service Response, with encrypted signatures and body

(8) C : Response(Mresp) C accepts response and sends it to application

Figure 4: Protocol Narration for the SelfIssued-SOAP Configuration

tion, and the network messages display all their cryptographic com-
ponents, as required by the security policies at the identity provider
and the relying party. The cryptographic algorithms used in our
narrations follow from web services security:

• for key derivation, we use the PSHA1 function that takes a
symmetric key and a nonce to generate a new symmetric key;

• for key encryption, we use RSA encryption (RSAEnc) and
write PK(k) for the public key corresponding to private key k;

• for message encryption, we use AES (AESEnc);

• for message signatures and endorsing signatures based on
symmetric keys, we use HMACSHA1;

• for endorsing signatures based on asymmetric keys, we use
RSA signature (RSASHA1).

The computations of PPIDs and token signing keys use the algo-
rithms K, H1, H2, H3, and H4 described in Section 2.4.
A common pattern for exchanging messages. Exchanges se-
cured using web services security follow a common pattern (called
a SymmetricBinding) that relies on the server having an X.509 cer-
tificate. Under this binding, a request sent by an initiator A to a
responder B is of the form

(Mek,η1,η2,AESEnc(kenc,Mmac),AESEnc(kenc,Mreq))

where Mek is an encrypted key token that contains a fresh symmet-
ric session key k generated by A and encrypted under PK(kB). The
initiator A also derives two keys, ksig and kenc from k plus fresh
nonces, η1 and η2; it then signs the message body Mreq with ksig,
which yields the message signature Mmac; it finally encrypts both
Mreq and Mmac with kenc. Upon receiving this message, B de-
crypts k, derives ksig and kenc using the nonces, decrypts Mmac
and Mreq using kenc, and verifies the signature Mmac over the mes-
sage body Mreq using ksig.

The response message from B has a similar structure; it includes
two fresh nonces used by B to derive keys, an encrypted signature
of the message body Mresp, and the encrypted message body. Since

A knows the session key k, it decrypts the message and verifies the
signature before accepting it.

This pattern of message exchange authenticates B using its X.509
public key, and provides secrecy and correlation between request
and response. However, it does not authenticate A to B. To this
end, the request may contain additional authentication tokens for A,
and endorsing signatures based on these tokens. These tokens and
signatures are then also encrypted using kenc.

SelfIssued-SOAP Configuration. Figure 4 depicts the protocol
narration for the client security protocol layer C (on behalf of a
user U and the client application A) sending a request to a relying
party RP, based on a self-issued card. The numbers on the left refer
to steps in the abstract description of the protocol in Section 2.3.
The narration consists of a single message exchange between C
and RP. (There is no separate IP.) C begins with a card with refer-
ence cardId and some secret attributes claimsU; RP starts with an
X.509 certificate with public key PK(kRP) known to C.

The narration is divided into three stages. The first stage de-
tails the interaction between the user U and the identity selector,
as U selects and approves a card to send to RP. The events in the
first stage correspond to the protocol events numbered (1), (2), (4),
and (5) in Section 2.3; here, C itself acts as the issuer, so the net-
work messages Request Token and Token Response are not present
(and so there is no counterpart to event (3) from Section 2.3). The
second stage details the Service Request from C to RP, while the
third stage details the Service Response.

The message exchange follows the SymmetricBinding pattern
described above; in addition, the Service Request message from C
to RP contains a self-signed card-based SAML token Msaml and
a corresponding endorsing signature Mproo f . C constructs Msaml
as follows: it first generates a fresh asymmetric key-pair (kproo f ,
PK(kproo f)) for the token; it computes a PPID H4(cardId,RP) and
a token signing key kcardId,RP specific to the card and RP; it then
constructs a SAML assertion Mtok that identifies the token issuer,
the token public key PK(kproo f), claimsU, RP, and ppidcardId,RP; the
full SAML token Msaml consists of this assertion and its signature
using key kcardId,RP. To prove possession of the token key kproo f ,
C signs the message signature Mmac using kproo f creating an en-

8

Initially, C has: cardId, PK(kIP), PK(kRP); IP has: kIP, PK(kRP), Card(cardId,claimsU,pwdU,IP,kcardId); RP has: kRP, PK(kIP)
(1) C : Request (RP, Mreq) C receives an application request
(2) U : Select InfoCard (cardId, C, RP, pwdU,IP, typesRP) User selects card and provides password
(3) C : generate fresh k1,η1,η2,ηce Fresh session key, two nonces, and client entropy for token key

C→ IP : let Mek = RSAEnc(PK(kIP),k1) in Encrypt session key for IP
let ksig = PSHA1(k1,η1) in Derive message signing key
let kenc = PSHA1(k1,η2) in Derive message encryption key
let Mrst = RST(cardId, typesRP,RP,ηce) in Token request message body
let Muser = (U, pwdU) in User authentication token
let Mmac = HMACSHA1(ksig,(Mrst ,Muser)) in Message signature
Request Token(Mek,η1,η2,

AESEnc(kenc,Mmac),AESEnc(kenc,Muser),
AESEnc(kenc,Mrst))

Token Request, with encrypted signatures, token and body

(4) IP : Issue Token(U, cardId, claimsU, RP, display) IP issues token for U to use at RP
IP : generate fresh η3,η4,ηse,kt Fresh nonces, server entropy, token encryption key
IP→ C : let ksig = PSHA1(k1,η3) in Derive message signing key

let kenc = PSHA1(k1,η4) in Derive message encryption key
let Mtokkey = RSAEnc(PK(kRP),PSHA1(ηce,ηse)) in Compute token key from entropies, encrypt for RP
let ppidcardId,RP = H1(kcardId,RP) in Compute PPID using card master key, RP’s identity
let Mtok = Assertion(IP,Mtokkey,claimsU,RP,ppidcardId,RP) in SAML assertion with token key, claims, and PPID
let Mtoksig = RSASHA1(kIP,Mtok) in SAML assertion signed by IP
let Mek = RSAEnc(PK(kRP),kt) in Token encryption key, encrypted for RP
let Menctok = (Mek,AESEnc(kt ,SAML(Mtok,Mtoksig))) in Encrypted issued token
let Mrstr = RSTR(Menctok,ηse) in Token response message body
let Mmac = HMACSHA1(ksig,Mrstr) in Message Signature
Token Response(η3,η4,AESEnc(kenc,Mmac),AESEnc(kenc,Mrstr))Token Response, with encrypted signature and body

(5) U : Approve Token(display) User approves token
(6) C : generate fresh k2,η5,η6,η7 Fresh session key, three nonces

C→ RP : let Mek = RSAEnc(PK(kRP),k2) in Encrypt session key for RP
let ksig = PSHA1(k2,η5) in Derive message signing key
let kenc = PSHA1(k2,η6) in Derive message encryption key
let kproo f = PSHA1(ηce,ηse) in Compute token key from entropies
let Mmac = HMACSHA1(ksig,Mreq) in Message signature
let kendorse = PSHA1(kproo f ,η7) in Derive a signing key from the issued token key
let Mproo f = HMACSHA1(kendorse,Mmac) in Endorsing signature proving possession of token key
Service Request (Mek,η5,η6,η7,Menctok,

AESEnc(kenc,Mmac),AESEnc(kenc,Mproo f),
AESEnc(kenc,Mreq))

Service Request, with issued token, encrypted signatures and body

(7) RP : Accept Request (IP, claimsU, Mreq, Mresp) RP accepts request and authorizes a response
RP : generate fresh η8,η9 Fresh nonces
RP→ C :let ksig = PSHA1(k2,η8) in Derive message signing key

let kenc = PSHA1(k2,η9) in Derive message encryption key
let Mmac = HMACSHA1(ksig,Mresp) in Message signature
Service Response(η8,η9,

AESEnc(kenc,Mmac),AESEnc(kenc,Mresp))
Service Response, with encrypted signatures and body

(8) C : Response(Mresp) C accepts response and sends it to application

Figure 5: Protocol Narration for the UserPassword-SOAP Configuration

dorsing signature Mproo f . Hence, the Service Request consists of
the encrypted session key Mek, two nonces, the encrypted SAML
token, an encrypted message signatures, an encrypted endorsing
signature, and the encrypted body.

After receiving and decrypting this message, RP verifies Mmac,
verifies the token issuer’s signature Mtoksig on the SAML assertion
Mtok, uses the public key PK(kproo f)) in Mtok to verify Mproo f , and
checks that the claimsU in Mtok satisfies its required typesRP, before
accepting the request Mreq and sending the response Mresp. The re-
sponse is signed and encrypted according to the SymmetricBinding
pattern.
UserPassword-SOAP Configuration. Figure 5 depicts the pro-
tocol narration for C sending a request to RP based on a managed
card issued by IP. Client C begins with a reference for the man-
aged card; IP begins with its own private key and a single card in
its database; RP begins with its own private key. Each principal
also knows the others’ public keys. The first stage of the narration
is similar to the SelfIssued-SOAP case, where U selects a particular
card, this time including a password for that card. The remainder
of the narration consists of two exchanges, first between C and IP
to obtain an issued token and then between C and RP, where C

authenticates itself to RP using the issued token.
The first message follows a SymmetricBinding pattern, with the

addition of a supporting username token Mu that serves to authenti-
cate U to IP. Mu is included in the Mmac along with the body of the
message Mrst and is included after encryption in the message. Mrst
identifies RP to limit the scope of the issued token. It also contains
the card reference, the claims requested by RP, and the client en-
tropy contribution ηce to the symmetric proof key. In addition to
the SymmetricBinding checks, IP authenticates the user using the
supporting username token.

The construction by IP of a SAML token is similar to the self-
issued case. However, since this configuration requires a symmetric
proof key, IP first derives a key from the entropies ηse and ηce,
then encrypts the resulting key for RP in Mtokkey. Additionally,
the token signature uses IP’s X.509 private key instead of a key
derived from the card. The entire SAML token is encrypted for RP
following a standard pattern in WS-Security for encrypting data—a
fresh symmetric key kt is encrypted to RP’s public key (Mek) and
the SAML token is encrypted using kt . The response body Mrstr
includes this encrypted token as well as the server entropy ηse.

After verifying IP’s response, C computes the proof key for the

9

Figure 6: Dual Structure of our Verified Implementation

token, kproo f , from the entropies. To prove to RP that it possesses
this key, C derives an endorsing key kendorse from kproo f , and uses
it to produce an endorsing signature Mproo f . Hence, the message to
RP includes Mproo f as well as the encrypted issued token Menctok.
Finally, RP’s response follows the SymmetricBinding pattern.

6. VERIFIED IMPLEMENTATIONS
To obtain a verifiable implementation of each protocol configura-

tion, we follow an approach proposed by Bhargavan et al. [2006b].
This approach (illustrated in Figure 6) involves developing dual
implementations of the protocol in F#; a concrete implementation
generates XML envelopes and uses concrete cryptography, while a
symbolic implementation uses an abstract model for message for-
mats and cryptography.

The top of Figure 6 mentions three files implementing the proto-
col-specific code for the roles C, RP, and IP, respectively, for some
given configuration. This code is written using libraries that imple-
ment various networking and cryptographic functions defined by
the web services security specifications. Each of these libraries has
two implementations.

The libraries on the right of Figure 6 represent concrete imple-
mentations. When protocol-specific code is linked with these li-
braries we obtain a reference implementation of the protocol that
produces standards-conformant SOAP envelopes. We validate this
implementation by testing interoperability with other independent
implementations of the protocol.

The libraries on the left represent a symbolic model for cryptog-
raphy, a concurrency model based on the pi calculus for commu-
nications, and an abstract message format. When protocol-specific
code is linked and executed with these libraries, we obtain a sym-
bolic trace of the protocol, as illustrated in Figures 4 and 5; such
traces are useful for debugging. More importantly, we can extract
and verify a model of the protocol implementation (by using an
enhanced version of the FS2PV tool and ProVerif, respectively).

An Abstract API for WS-Security.
Figure 7 shows fragments of the main F# interface Wssec.fsi and

of its symbolic and concrete implementations. The interface de-
clares several abstract types and exposes functions that manipulate
these types. For instance, the type bytes is implemented concretely
as a byte array; in the symbolic library we model bytes as pi cal-
culus names. Thus, for instance, when our code calls the library
to generate a fresh nonce, its implementation either uses a pseudo-
random number generator to generate an array of bytes, or symbol-
ically creates a new name in the pi calculus.

In both implementations, SOAP envelopes are represented by the
envelope datatype: a record with fields for the various components

Figure 7: Dual Implementations of Wssec

of an message. We abstract the wire formats of envelopes by intro-
ducing the polymorphic type α payload. This type represents values
of type α after they have been serialised; concretely, this type is
implemented as a list of XML elements. For instance, the interface
exposes the functions payload2body and body2payload. In the con-
crete case, these functions use our SOAP library for (de)serialising
the message body. In the symbolic case, no serialisation is per-
formed; both of them are modelled as identity functions. Similarly,
other functions enable (de)serialisation of all message components.

The types α enc and α dsig represent encrypted and signed val-
ues. In the concrete case, they are implemented using our libraries
for XML encryption and XML digital signatures. In the symbolic
case, they are modelled as algebraic types, with a different con-
structor for each kind of cryptographic operation. Figure 7 shows
a partial list of functions in the interface (such as aes_encrypt and
rsa_sign) that perform cryptographic operations. The types of these
functions ensure that only serialised data (of type α payload) can be
encrypted or signed.

Our protocol implementations use additional libraries with dual
implementations: the Prins.fs library implements functions for ma-
nipulating credentials such as X.509 certificates; the Infocard.fs li-
brary implements card stores; the Net.fs library implements net-
working functions, with interface

type connection
val send: (connection→envelope→unit)
val receive: (connection→envelope)

In this library, a connection is a TCP or TLS channel between prin-
cipals, which can be used to send and receive SOAP envelopes.

Infocard-specific Role Implementations. The code for roles C,
RP, and IP implement functions with the following types (defined
in the interfaces C.fsi, RP.fsi, IP.fsi):

val C: request→ response
val RP: response→unit
val IP: unit→unit

The function C is a proxy for the client application; it expects to be
called with the request as a parameter and returns the relying party’s
response. Similarly, RP is a proxy for the relying party service.
Finally, IP starts a process that serves token requests according to
the secret card data of an IP database (see Section 4).

For the configuration UserPassword-SOAP, the term shown be-
low represents the envelope constructed by the function C for the
Request Token message:

10

Configuration LOC Cryptographic operations Verified security properties Clauses Verification time
SelfIssued-SOAP(Figure 4) 1410 (80) 9, 3 A2-A3, S1–S3 800 38s
UserPassword-TLS 1426 (96) 0, 5, 17, 6 A1–A3, S1–S3 3800 24m 40s
UserPassword-SOAP(Figure 5) 1429 (99) 9, 11, 17, 6 A1–A3, S1–S3 3000 20m 53s
UserCertificate-SOAP 1429 (99) 13, 7, 11, 6 A1–A3, S1, S3–S4 2400 66m 21s
UserCertificate-SOAP-v 1429 (99) 7, 5, 7, 4 A3 fails 1200 10s

Figure 8: Verification Results for the Example Configurations

{headers = hdrs;
token = encKeyTok;
dsig = aes_encrypt kenc (hmacsha1 ksig (RST(r), hdrs, userTok));
supptok = aes_encrypt kenc userTok;
endorsements = [];
body = aes_encrypt ksig (RST(r))}

It uses signing and encryption functions from Wssec.fs, and relies
on some precomputed values: hdrs contains addressing headers,
encKeyTok is the encrypted session key Mek, ksig and kenc are the
derived signing and encryption keys, userTok is the username to-
ken, and RST(r) is the token request.

The next IP code fragment runs after it has received the Request
Token message, decrypted the body RST(r) and the username token
(u,p), and verified the signature:

let card = lookupCard u r.cardid in
check (card.user = u);
check (card.password = p);
let rstr = mkSamlRSTR r.keyinfo card in ...

The code looks up a card in its database (using the lookupCard func-
tion from Infocard.fs), checks that the username and password cor-
respond to the card, and constructs a token response with a SAML
token for the card.

The next RP code fragment runs after it has received a message
including a SAML token; it checks the token as follows:

let Saml(assertion, asig) = decryptSamlTok rpKey encSamlTok in
rsasha1_verify ipPubKey assertion asig;
let symProofKey = decryptAssertionKey rpKey assertion in ...

It decrypts the token using its private key rpKey, verifies that the
assertion is signed by IP, and decrypts the symmetric token key
embedded within the SAML assertion.

These code fragments illustrate that the Wssec.fs abstraction for
web services security enables simple, compact protocol-specific
coding. Every line expresses a cryptographic operation or checks a
protocol requirement. There is no need to mention any detail of the
underlying XML formats.
Automated Generation of Protocol-Specific Code. We have con-
structed a tool, called WSDL2FS, which we use to automatically
generate the protocol-specific role programs illustrated above.

As explained in Section 3, WS-SecurityPolicy permits a server to
publish a WSDL specification of its security policy. Given an EPR
for a relying party, WSDL2FS downloads its WSDL policy, resolves
the EPRs for all identity providers mentioned in this policy, and
recursively downloads the IP policies.

WSDL2FS also attempts to parse the policies and the collection
of information cards that the user possesses into the data structures
described in Section 4. In order for this step to succeed, it must
be able to solve several potential discrepancies between the down-
loaded policies and the information cards. For instance, the relying
party may require an endorsement using an issued token with scope
limited to itself, whereas the identity provider may not support such
a facility for any of the information cards that it has issued to the
user. If no discrepancies remain, our tool generates configuration-
specific F# programs for each of the three roles RP, IP and C.

Given a set of security goals (such as those of Section 2.5), we
translate the generated role programs together with the symbolic
WS-Security libraries to a model in ProVerif. If ProVerif is able
to discharge the proofs, the user can choose to link her application
with the implementation of C and the concrete libraries, and access
the service provided by the relying party.

Experimental Results. We generate full protocol implementa-
tions for all the configurations of Section 4; each implementation
has around 100 lines of protocol-specific code; the concrete code
for our libraries is around 5000 lines of F#, while the symbolic ver-
sion has around 1300 lines. (The bulk of the concrete code involves
serialising and de-serialising XML formats.)

We can run the same protocol code both symbolically, to gen-
erate symbolic traces, and concretely, to send messages over the
network. The symbolic traces generated by our SelfIssued-SOAP
and UserPassword-SOAP implementations coincide exactly to Fig-
ures 4 and 5. Our concrete implementations interoperate with IPs
and RPs that use other web services libraries, such as Microsoft
Windows Communication Foundation (WCF). As a first experi-
ment, we target the protocol between Windows Cardspace as client,
the identity provider http://sts.labs.live.com, and a rely-
ing party implemented as a WCF web service. This is one of
the first publicly available identity providers for managed cards.
The protocol configuration corresponds to our running example
UserPassword-SOAP; our client implementation produces and con-
sumes all four SOAP messages, with sizes 14KB, 10KB, 15KB,
and 5KB, respectively. We aim to experiment with other IPs and
ISs as they become available.

7. VERIFICATION RESULTS
We establish that our implementations meets the authentication

and secrecy properties given in Section 2.5.
We define the attacker interface Ipub as C.fsi, RP.fsi, IP.fsi, Net.fsi,

and Wssec.fsi. Hence, the attacker can initiate any number of ses-
sions between the client C, IP, and RP; she can intercept and send
messages on the network using functions in Net.fsi; and she can
decrypt, encrypt, and sign messages using functions in Wssec.fsi.
Our target security assertions are stated in terms of principals U,
C, IP, and RP that are not compromised by the attacker. However,
the interface Ipub includes the X.509 certificates of IP and RP, and
the user credential and card belonging to a bad user. Moreover, the
attacker can generate new certificates and deploy her own servers.

Our first security theorem deals with correspondences. Formally,
we say that a program S (consisting of several modules) is robustly
safe for a correspondence assertion q and an attacker interface Ipub
to mean that, for every attacker module O that is well-typed against
Ipub, and hence only uses the functions in this interface, the asser-
tion q holds in all runs of the program S composed with O.

For each InfoCard configuration C, let SC be the program con-
sisting of the symbolic libraries (Prins.fs, Infocard.fs, Net.fs, and
Wssec.fs) and the protocol-specific C.fs, RP.fs, and IP.fs; let Ipub
be defined as above.

11

THEOREM 1 (CORRESPONDENCES). For each of the first four
configurations C of Figure 3, the program SC is robustly safe for the
correspondence assertions A1–A3, S1–S2 and Ipub.

This theorem is established using an automated tool chain: a
model extractor FS2PV parses the program SC, optimises it using
transformations such as inlining, dead-code elimination, and par-
tial evaluation, and then compiles it to an applied pi calculus model
representing all the roles of the protocol. The correspondence as-
sertions are encoded as queries over protocol events in the syntax of
ProVerif, which then automatically verifies that the script satisfies
these queries.

THEOREM 2 (EQUIVALENCES). For each of the first four con-
figurations C in Figure 3, the program SC with interface Ipub satis-
fies the equivalence properties S3–S4.

To prove these properties, we use FS2PV to compile two versions
of the pi calculus script from SC, and use ProVerif to verify that
these versions are behaviourally equivalent [Blanchet et al., 2005].

Figure 8 summarises our verification results for our five example
configurations. Not all security properties apply to every configura-
tion; for instance, A1 applies only to configurations with managed
cards, and vacuously holds with self-issued cards since there is no
IP. For each configuration, we list the security properties verified
using our tools; the others trivially hold. The column LOC refers to
the number of lines of verified F# code (the protocol-specific code
is in parentheses); For each message of the protocol, Cryptographic
operations gives the number of cryptographic calls used to build
the message; Clauses refers to the number of logical rules gener-
ated by ProVerif during verification; and Verification time gives the
total runtime of ProVerif to verify all the security properties (using
a machine with 2 GB of memory and an Intel Pentium 4 at 3.60
GHz).
Vulnerable Configurations and Attacks. The last configuration
UserCertificate-SOAP-v in Figure 8 fails to verify property A3.
This configuration uses weak security policies for IP and RP that do
not require signatures to be encrypted. Messages with unencrypted
signatures are known to be vulnerable to man-in-the-middle attacks
in some cases. Indeed, ProVerif discovers such an attack on our
implementation. We describe the attack in terms of the message
elements in Figure 5.

The adversary intercepts the Service Request message from C
to RP, removes the issued token Msaml and its endorsing signa-
ture Mproo f , inserts her own card-based token M′saml (which she
may have obtained from IP using her own card), and signs the
unencrypted message signature Mmac with the token key k′proo f
for M′saml . When RP receives this message, it performs all the
checks as before, and then accepts the request Mreq as being as-
sociated with the adversary’s card and not the user’s. (This already
constitutes an attack on user card-based authentication.) It then
computes Mresp, possibly relying on details of the incorrect card
claims in M′saml , secures it as usual and sends it to the client C,
who accepts it, since nothing in the response tells C about the card
accepted at RP. Hence, the protocol concludes without error, with
C and RP having inconsistent states: RP has an incorrect card as-
sociated with the request, and C has a response computed using
someone else’s card.

A similar attack is found when IP’s policy does not require en-
crypted signatures: an adversary can then modify the Request Token
message in the same way. However, if IP checks that the cardId cor-
responds to the user and password (as our implementation does),
then the attack does not succeed. Conversely, if IP does not per-
form these checks (and some existing IPs do not) it may issue a

card-based token based on an incorrect user credential. Even then,
if it provides an accurate display, the user should be able to detect
the attack and should refuse to approve the token.

In configurations with self-issued cards, card references should
be generated with sufficient entropy to be unguessable (rather than,
say, as predictable sequence numbers) and should be kept secret.
Otherwise, ProVerif finds a violation of the secrecy property S3.
In the configuration SelfIssued-SOAP (Figure 4), the PPID is com-
puted using the function H4 using the card reference and informa-
tion from RP’s X.509 certificate. If the cardId were guessable or
known to RP, then since the other component of this computation
is a publicly known certificate, two colluding RPs can easily corre-
late usages of the same card at different RP. Hence, the privacy of
the user depends on the cardId being a strong secret.

Each of these three vulnerabilities stems from incorrect usages
of the protocol; we describe them here to warn users of potential
pitfalls. On the basis of our analysis, we recommend that IP and
RP use strong security policies, and that identity selectors generate
cryptographically random cardIds and keep them secret.

8. RELATED WORK
Cameron [2005] frames the social and technological background

to InfoCard in terms of a collection of informal Laws of Identity.
Formal models for protocols based on the web services standards

WS-Security, WS-SecurityPolicy, and WS-Trust were developed
during the standardisation process, with various design bugs be-
ing discovered and fixed [Bhargavan et al., 2004, Bhargavan et al.,
Kleiner and Roscoe, 2004, 2005, Backes et al., 2006]. Bhargavan
et al. [2004] also describe how to compile and verify declarative
web services policies from high-level security goals.

Pfitzmann and Waidner [2005] describe the security properties of
some earlier federated identity protocols, including Passport, Lib-
erty, Shibboleth, and SAML, although they do not develop a formal
analysis. Hansen et al. [2006] model SAML in the process calculus
LySa. Via static analysis, they check some security properties of
some configurations, and report vulnerabilities in others.

We verify secrecy and authentication properties of symbolic pro-
tocol models, derived directly from a reference implementation that
interoperates with existing implementations. Several tools extract
implementation code from verified formal models [Perrig et al.,
2001, Muller and Millen, 2001] or generate implementation code
using verified protocol compilers [Corin et al., 2007]—as opposed
to extracting models from code. We are unaware of any such code-
generation tools that have been developed sufficiently to interoper-
ate on any standard protocols.

Goubault-Larrecq and Parrennes [2005] are the first to derive
symbolic protocol models from implementation code, although they
report no verification results. Their code is a C implementation of
the Needham-Schroeder protocol. Although this protocol is a stan-
dard example in the research literature, it is not used in practice and
has no standard binary format. Hence, their code does not pass any
interoperability tests.

Bhargavan et al. [2006b,a] are the first to extract verifiable sym-
bolic models from interoperable implementation code. They also
consider security protocols based on web services, though the pro-
tocols implemented by their code are considerably simpler than the
CardSpace protocols in our study.

Giambiagi and Dam [2004] and Poll and Schubert [2007] check
conformance between the implementation code of security proto-
cols and abstract models. They do not verify any security properties
of the abstract models. In Schubert and Poll’s study, the abstract
model is a state machine for SSH, and the code is a pre-existing
(and presumably interoperable) Java implementation of SSH.

12

9. CONCLUSION
InfoCard is a good example of the trend toward composition

of protocols from large collections of independently standardised
specifications. Regarding this trend, Pfitzmann and Waidner [2005]
argue that “from a security point of view, the standards cannot cur-
rently be considered modular, because the first layer for which one
can specify and prove usual security goals is typically the high-
est one”. They describe this trend as a “challenge to the security-
research community”. Our work shows that the idea of verified ref-
erence implementations goes some way to meeting this challenge.

Acknowledgments
We thank Martín Abadi and Arun Nanda for detailed discussions
on drafts of this paper.

References
M. Abadi and C. Fournet. Mobile values, new names, and secure com-

munication. In 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104–115, 2001.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148:1–70, 1999.

M. Backes, S. Mödersheim, B. Pfitzmann, and L. Viganò. Symbolic and
cryptographic analysis of the secure WS-ReliableMessaging scenario.
In Foundations of Software Science and Computation Structures (FOS-
SACS), LNCS. Springer, 2006.

K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services
authentication. Theoretical Computer Science, 340(1):102–153.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying policy-based secu-
rity for web services. In 11th ACM Conference on Computer and Com-
munications Security (CCS’04), pages 268–277, October 2004.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verified reference implemen-
tations of WS-Security protocols. In WS-FM ’06, volume 4184 of LNCS.
Springer, 2006a.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable
implementations of security protocols. In 19th IEEE Computer Security
Foundations Workshop (CSFW’06), pages 139–152, 2006b.

B. Blanchet. From secrecy to authenticity in security protocols. In 9th Inter-
national Static Analysis Symposium (SAS’02), volume 2477 of Lecture
Notes in Computer Science, pages 342–359. Springer-Verlag, 2002.

B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected
equivalences for security protocols. In 20th IEEE Symposium on Logic
in Computer Science (LICS’05), pages 331–340, 2005.

K. Cameron. The laws of identity. At http://www.identityblog.com/
stories/2005/05/13/TheLawsOfIdentity.pdf, 2005.

Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Assertions and
protocols for the oasis security assertion markup language (saml) v2.0,
2005.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL) 1.2, 2002. At http://www.w3.org/TR/
2002/WD-wsdl12-20020709.

R. Corin, P-M. Dénielou, C. Fournet, K. Bhargavan, and J.J. Leifer. Secure
implementations of typed session abstractions. In 20th IEEE Computer
Security Foundations Symposium (CSF20), pages 170–186, 2007.

T. Dierks and E. Rescorla. The transport layer security (tls) protocol, ver-
sion 1.1, April 2006. URL http://www.ietf.org/rfc/rfc4346.
txt.

D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT–29(2):198–208, 1983.

D. Eastlake, J. Reagle, D. Solo, et al. XML-Signature Syntax
and Processing, 2002a. URL http://www.w3.org/TR/2002/
REC-xmldsig-core-20020212/. W3C Recommendation.

D. Eastlake, J. Reagle, et al. XML Encryption Syntax and
Processing, 2002b. URL http://www.w3.org/TR/2002/
REC-xmlenc-core-20021210/. W3C Recommendation.

A. Armando et al. The AVISPA Tool for the Automated Validation of In-
ternet Security Protocols and Applications. In 17th Conference on Com-
puter Aided Verification (CAV), LNCS, pages 281–285. Springer, 2005.

P. Giambiagi and M. Dam. On the secure implementation of security pro-
tocols. Science of Computer Programming, 50:73–99, 2004.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on
real C code. In VMCAI’05, volume 3385 of LNCS, pages 363–379.
Springer, 2005.

M. Gudgin et al. SOAP Version 1.2, 2003. URL http://www.w3.org/
TR/soap12. W3C Recommendation.

S. M. Hansen, J. Skriver, and H. Riis Nielson. Using static analysis to
validate the SAML single sign-on protocol. In Workshop on Issues in
the Theory of Security (WITS’06), pages 27–40, 2006.

M. Jones. A Guide to Supporting Information Cards within Web Appli-
cations and Browsers as of the Information Card Profile V1.0. Mi-
crosoft Corporation, December 2006. At http://go.microsoft.
com/fwlink/?LinkId=88956.

C. Kaler, A. Nadalin, et al. Web services security policy language (WS-
SecurityPolicy), version 1.1, July 2005.

E. Kleiner and A. W. Roscoe. Web services security: A preliminary study
using Casper and FDR. In Automated Reasoning for Security Protocol
Analysis (ARSPA 04), 2004.

E. Kleiner and A. W. Roscoe. On the relationship between web services
security and traditional protocols. In Mathematical Foundations of Pro-
gramming Semantics (MFPS XXI), 2005.

InfoCard Guide. A Guide to Interoperating with the Information Card Pro-
file V1.0. Microsoft Corporation and Ping Identity Corporation, Decem-
ber 2006. At http://go.microsoft.com/fwlink/?LinkId=87446.

F. Muller and J. Millen. Cryptographic protocol generation from CAPSL.
Technical Report SRI–CSL–01–07, SRI, 2001.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. OASIS Web Ser-
vices Security: SOAP Message Security 1.0 (WS-Security 2004), March
2004. OASIS Standard 200401.

A. Nanda. A Technical Reference for the Information Card Profile V1.0.
Microsoft Corporation, December 2006. At http://go.microsoft.
com/fwlink/?LinkId=87444.

OSIS: The Open-Source Identity System. OSIS, 2006. At http://osis.
netmesh.org/wiki/.

A. Perrig, D. Song, and D. Phan. AGVI – automatic generation, verifica-
tion, and implementation of security protocols. In 13th Conference on
Computer Aided Verification (CAV), LNCS, pages 241–245. Springer,
2001.

B. Pfitzmann and M. Waidner. Federated identity-management protocols.
In 11th International Workshop on Security Protocols (2003), volume
3364 of LNCS, pages 153–174. Springer, 2005.

E. Poll and A. Schubert. Verifying an implementation of SSH. In Workshop
on Issues in the Theory of Security (WITS’07), 2007.

D. Syme. F#, 2005. Project website at http://research.microsoft.
com/fsharp/.

T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols.
In IEEE Computer Society Symposium on Research in Security and Pri-
vacy, pages 178–194, 1993.

13

