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MatrixExplorer: a Dual-Representation System to Explore 
Social Networks

Nathalie Henry and Jean-Daniel Fekete 

Abstract— MatrixExplorer is a network visualization system that uses two representations: node-link diagrams and matrices.  Its 
design comes from a list of requirements formalized after several interviews and a participatory design session conducted with 
social science researchers.  Although matrices are commonly used in social networks analysis, very few systems support the 
matrix-based representations to visualize and analyze networks. 

MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in 
addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and 
compare findings across different layouts and find consensus among several clusterings.  MatrixExplorer also supports Node-link 
diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results.  
Matrix and node-link representations are kept synchronized at all stages of the exploration process. 

Index Terms— social networks visualization, node-link diagrams, matrix-based representations, exploratory process, matrix 
ordering, interactive clustering, consensus. 

 

 
Fig. 1. MatrixExplorer showing two synchronized representations of the same network: matrix on the left and node-link on the right. 

1 INTRODUCTION 
Information visualization has been used to support social network 

analysis since the 1930s.  Social scientists use visual representations 
both to explore datasets and to communicate their results.  Some 
information visualization systems focus on exploration, taking 
advantage of features of the human perceptual system to discern 
visual patterns in the data.  Others help researchers draw social 
networks, usually in the form of node-link diagrams to represent 
trees and graphs.  Although adjacency matrices have played an 
important role in social networks analysis since the 1940s [16], few 

social scientists use their visual representations to communicate their 
findings. 

This article presents MatrixExplorer (Figure 1), which offers both 
node-link and matrix representations to help sociologists and 
historians explore and communicate social networks.  The node-link 
diagrams provide intuitive representations for relatively small 
networks, and, when adequately visualized, remain a powerful means 
of communication.  MatrixExplorer also provides tools for 
reorganizing, clustering and filtering graphs using a matrix 
representation.  These matrices are always readable, even for large 
and dense graphs, and thus support exploration throughout the 
analysis process.  MatrixExplorer offers several novel features to 
help explore complex social networks, using the most suitable 
representation at any time. 

This paper is organized as follows: we first present related work 
and describe the requirements for a visual exploration system that we 
defined together with social sciences researchers.  We then describe 
MatrixExplorer and detail its major features for matrix-based 
representations.  We conclude with discussion and future work. 
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2 RELATED WORK 
Social networks are structures made of actors (generally humans) 

linked by relations.  For example, these relations may be phone calls 
or kinship.  Social networks are mostly trees or graphs; therefore 
social network visualization is closely related to graph visualization.  
A large amount of work has been done in the field of graph 
visualization; [22] presents a survey and the book of Battista et al. 
[4] is a good introduction.  Several applications are dedicated to end 
users’ visualization of social networks such as ContactMap [30], 
Vizster [20] or FlickrGraph.  In this article, we focus on tools for 
professional social science researchers. 

2.1 Social Networks Analysis and Visualization 
A large number of systems exist1 to visualize and analyze social 

networks and graphs in general.  We can broadly define two 
categories: programming-based and menu-based systems. 

Programming systems are highly tunable and provide a wide 
range of algorithms for visualization and analysis.  Among the most 
used are JUNG [31] and GraphViz [17].  These systems contain most 
of the effective and efficient algorithms to draw trees or graphs.  
However, they are generic and – since they do not provide any 
particular support for social network exploration and analysis – they 
should be specialized using some kind of programming, far beyond 
the skills of social science researchers. 

With menu-based systems, users can choose various algorithms 
from the file loading to the rendering, including the clustering or 
partitioning.  They provide a basic interface but do not require 
programming knowledge.  These systems contain dozens of 
algorithms and statistical measures; they answer almost all questions 
about social networks.  The only problem is to know how to ask 
them.  Expert users can parameterize each algorithm and end up with 
an effective visualization of their networks.  For novice users 
however, the exploration boils down to a long trial and error process.  
The most popular free systems of this category include Pajek [10], 
UCINet [6], Tulip[3] and, for non-free systems: VisuaLinks [35] and 
Analyst’s Notebook [24].  Pajek is certainly the most used in social 
sciences analysis.  In practice, we observed one Pajek specialist – 
member of our participatory design group.  He advised other 
researchers and gave them “recipes” in the form of a list of 
instructions to display their networks effectively. 

Menu-based systems are not intuitive enough to be used for a 
primary exploration of networks since they are designed to support 
fine analysis conducted by an expert, not to support the discovery 
process. 

GUESS [1] is a recent system oriented towards exploration.  It 
contains visualization, statistical and analytics features as well as a 
script language.  It only supports node-link representations but 
provides a relatively simple programming environment.  It remains 
unclear whether social science researchers will invest time to learn 
the syntax and reach and adequate level of understanding.  The same 
question arises for statistical packages where GUI-based system tend 
to attract more social science researchers than language-based 
packages like R [25], but both co-exist 

2.2 Matrix-Based Representations 
Bertin in “Semiology of graphics” [5] introduced visual matrices 

to represent networks.  Ghoniem et al. [18] showed that matrices 
outperform node-link diagrams for large graphs or dense graphs in 
several low-level reading tasks, except path finding.  Bertin showed 
that matrices can be used to exhibit high-level structures by finding 
good permutations of their rows and columns.  Thus, he qualified 
matrices as “reorderable”.  Reordering rows and columns of an 
adjacency matrix is similar to computing the layout for a node-link 
diagram: finding a layout that reveals some structure in the data.  
Related works can be divided into two categories: automatic and 
interactive systems. 

                                                 
1 A list is maintained at http://www.insna.org/INSNA/soft_inf.html 

2.2.1 Automatic Ordering 
Automatically reordering rows and columns of matrices is a well-
known problem with a wide range of related works across various 
fields such as mathematics, biology and architecture.  When 
considering adjacency matrices, the range is even broader because it 
is then related to linear algebra, graph seriation, as well as a long list 
of classical combinatorial optimization problems. 
Matrix ordering algorithms try to optimize an objective function 
useful for some network related operation.  Diaz et al. describes 
some of the most generic objective functions in [11]: Bandwidth, 
Minimum Linear Arrangement (MinLA), Cutwidth, Modified Cut, 
Vertex  Separation, Sum Cut, Profile, Edge Bisection and Vertex 
Bisection.  These algorithms find a linear order of the vertices of a 
graph that optimizes either a function of the edge length (the distance 
between the two vertices), or of the number of crossings of the 
edges.  Exact solutions to these functions are all NP-complete but 
some have good polynomial time approximations.  Among these 
functions, some have been used for matrix visualization.  Reducing 
the bandwith is related to diagonalizing the matrix, a goal expressed 
by Bertin.  It consists in finding an order that minimizes the 
maximum edge length.  No polynomial time approximation exists for 
the exact algorithm so Siirtola and Mäkinen devised a set of 
heuristics [33] to find an approximate solution.  The MinLA problem 
consists in finding an order minimizing the sum of all edge lengths.  
Simulated annealing [26] and spectral-sequencing algorithms [2] 
have been proposed to solve this problem.  Koren and Harel [27] 
proposed a linear-time heuristic which is still the state-of-the-art.  
The MinLA problem has been investigated by Koren and Harel as a 
way to improve 2D graph layouts by separating the axes [28], among 
several other methods.  They show results for 2D layouts, but not for 
matrices.  A systematic analysis of the other objective functions 
applied to visual matrix ordering is yet to be made. 
Reordering binary matrices for image compression, DNA sequencing 
and archeological dating have been successfully solved using 
spectral methods [2].  The optimal order is computed from the 
Laplacian matrix of the underlying graph and by using the row order 
of its eigenvector with the smallest non-zero eigenvalue.  This result 
is related to spectral methods for node-link graph layout that also 
uses the eigenvectors with the smallest non-zero eigenvalues of the 
same graph.  Whereas spectral methods are popular in 2D graph 
layout, to our knowledge, they have not been applied to matrix 
layout yet. 
All the previous methods are usually defined for adjacency (binary) 
matrices.  However, most of them can easily be generalized to 
weighted graphs. 
The second category of algorithms aims at organizing the matrix in 
blocks.  Automatic methods to compute block ordering emerged 
early [19]; [8] presents a panel of related works also named matrix 
partitioning or block clustering.  Most of these methods are issued 
from the bioinformatics field.  Bioinformatics researchers use matrix 
ordering algorithms to organize microarray data (heat maps 
presenting gene expressions per experimental conditions) in order to 
identify similar genes.  In the field of social networks analysis, 
researchers aim at finding groups of similar actors and defining their 
roles; this is called positional analysis and identified in [23] as a 
main interest.  Blockmodeling [13] intends to achieve this objective 
by decomposing the matrix in blocks of different shapes, using either 
clustering methods or equivalence relations defined on the graph.  
These methods focus on abstracting the matrix into higher level 
blocks, ignoring the details, whereas Bertin’s claim is that the Matrix 
is useful because it shows both the details and the overall structure 
when correctly ordered. 
Early work by Chauchat and Risson [7] has also investigated three 
classification methods to reorder Bertin’s matrices: automatic 
classification, factorial analysis and hierarchical analysis.  They have 
been used as a starting point by Bertin to manually reorder large 
matrices. 
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2.2.2 Automatic Ordering 
Interactive tools such as InfoZoom [34] or TableLens [32] focus 

on table data and propose interactive methods to reorder one 
dimension of the table according to one attribute (one column).  
Users can then quickly identify correlated columns.  However, the 
method is biased towards one dimension so users are unlikely to 
discover correlated rows.  Moreover, reordering a matrix according 
to several attributes using only 1D sorting is long and tedious, as the 
user has to think backwards.  To sort a matrix according to the 
names, then dates, then category, the user has to order first by 
category, then by dates and finally, by names. 

In the field of graph drawing, some work has been conducted 
towards human-guided algorithms [12].  However, to our 
knowledge, no system supports assisted matrix reordering. 

3 EXPLORATORY ANALYSIS REQUIREMENTS 
We used participatory design techniques describes by Mackay 

[29] to understand the needs of social science researchers.  After 
several interviews, we organized a participatory design session with 
professional social science researchers, selected for their frequent use 
of social network analysis tools.  The participants included: a 
sociologist, a psychologist, a social network analysis specialist, two 
historians and five computer science researchers in the fields of HCI 
and Information Visualization. We focused on three specific 
questions: 
1. How would you like to create a social network? 
2. How would you like to edit a created social network? 
3. How would you like to explore an unknown social network? 

The session was organized in four stages. First, we presented 
participants the state-of-the-art tools in the domain of social network 
analysis and a broad range of novel HCI and InfoVis techniques for 
interacting with graphs and data.  We explicitly avoided guiding 
them towards specific design techniques or tools.  In the second 
stage, they split into small groups and generated ideas in a 
brainstorming session, which were then ranked.  In the third stage, 
participants captured their ideas by creating paper prototypes (Figure 
2) and then filming what it would be like to interact with them2.  In 
the last stage, we reviewed the ideas altogether and gathered the 
common and important ones.  Summarizing the working sessions, 
we ended up with a list of requirements for social networks 
exploratory analysis. 

 

 
Fig. 2. Video Brainstorming showing a historian describing her ideas 
about using matrix-based representations to compare two networks. 

                                                 
2 See http://insitu.lri.fr/~nhenry/matrixExplorer/brainstorming/ 

3.1 Requirements 
R1 - Multiple representations: Participants used both node-link 
diagrams and matrix-based representations.  Although node-link 
diagrams are familiar and effective to communicate (for relatively 
small or filtered-clustered graphs), they acknowledged that matrix-
based representations were fast to display and easier to manipulate 
for large or dense graphs. 
 
R2 - Connected components: Real graphs contain several connected 
components.  Handling several connected components and being 
able to navigate within each of them, or compare them, is necessary 
for a system dealing with real datasets. 
 
R3 - Overview: Overview is a challenge for large graphs.  However, 
overviews are crucial for the exploratory process.  They are used 
both as starting points for the exploration and as stable maps during 
the navigation.  Overviews help users to build a mental map of their 
network.  Participants asked for an overview of each visualization at 
all stages of the exploration. 
 
R4 - Dataset general information: the type of graph, number of 
vertices, edges and, for each the number of attributes, their labels and 
types, should be displayed initially and be easy to access at any 
moment. 
 
R5 - Attributes: Taking attributes into account makes the difference 
between graph drawing and information visualization.  Participants 
were not interested in displaying a unique graph; they wanted to 
build several representations according to the different attributes of 
the edges and vertices.  The structure of the graph may be different 
depending on the chosen attributes.  Comparing these structures, 
understanding why they are similar or how they are different was 
their main concern.  They need an information visualization system 
which helps them to choose visual variables for each attribute and 
create multiple views of their dataset.  Consulting details for each 
vertex or edge was also a primary interest and therefore, details 
should always be visible or quickly accessible. 
 
R6 - Analytical information: Visualizing and interacting with the 
data does not exclude statistical and analytical features.  Participants 
wanted to get at least the basic network analysis data, such as 
number of actors, relations, density, diameter, five most connected 
actors, degree distribution.  They also asked for computed attributes 
on demand, such as centrality measures. 
 
R7 - Interaction vs. parameter tuning: Most of the participants were 
familiar with graph drawing and clustering algorithms.  However, 
their understanding was limited and they were unable to finely tune 
the parameters for these algorithms.  Thus, they asked for more 
interaction with the graph and less, or predefined, parameters.  They 
also noticed that manipulating and reorganizing the network 
interactively facilitated understanding and memorization. 
 
R8 - Layout: Computing the layout of a graph is necessary to find 
insights.  It means computing coordinates for vertices in node-link 
diagrams or computing a permutation of rows and columns for 
matrices.  In both cases, participants acknowledged that several 
layouts were required to understand a graph. 
Participants asked for both automatic and manual (interactive) 
solutions.  Automatic algorithms rarely provide satisfactory results 
but save users time and effort.  Interaction let the user improve the 
resulting layout.  Moreover, participants quoted that not being able to 
interact to drag a node or move a row or columns of a matrix was 
frustrating. 
 
R9 - Filtering: For large networks, filtering is a requirement which 
allows fine analysis of the network and its sub-parts.  However, 
filtering data may confuse users and lead them astray, especially if it 
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alters the data structure.  Therefore, participants asked that the 
system remind them that filtered data still exists. 
 
R10 - Clusters: In social networks analysis, cluster detection or 
community detection is very important and required for exploration. 
A large panel of automatic methods exists to cluster networks.  Users 
may also detect them manually.  As for the graph layout, participants 
wanted to combine interaction with automatic algorithms.  They 
expressed the need to handle several clusterings for a network and to 
annotate their clusters (giving each a name and a description). 
 
R11 - Outliers: Social researchers are interested in outliers.  For 
example, they try to understand why an actor has a different 
connection pattern or why two actors do not communicate within the 
same cluster.  A system should not only filter outliers as dataset 
noise but support their discovery. 
 
R12 - Consensus: Participants deal most of the time with multivariate 
data, i.e. several kind of relationships and attributes for actors.  Thus 
they compute several clusterings depending on the attributes chosen 
and the visual representations.  Participants asked for tools to 
identify a consensus among the clusters or differences. 
 
R13 - Aggregation: Participants agreed that aggregating networks 
based on the clusters or communities was a useful feature to reduce 
the network size and help present results.  However, they were 
concerned by the loss of information when dealing with aggregated 
networks and insisted in being able to get back to the full data when 
exploring the aggregated networks. 

4 MATRIXEXPLORER 
MatrixExplorer is a first attempt to fulfil social sciences researchers’ 
requirements for an exploratory system.  In this section, we describe 
MatrixExplorer’s main features. 

4.1 Coupling node-link diagrams and matrices 
MatrixExplorer is based on two representations: matrix-based and 

node-link diagrams meeting the first requirement of our users (R1).  
Node-link and matrix visualizations are synchronized in order to let 
the user work with both representations, switching smoothly from 
one to the other. 

Multiple visualizations are synchronized by selection and 
filtering.  Basically, if a user selects a set of actors in the matrix, this 
same set will be selected in all other visualizations (selection) and 
data filtered in one visualization will disappear from all others 
(filtering).  Selection improves the transition from one representation 
to the other and constitutes the core of the coupling.  Filtering 
preserves the coherence of the visualizations by presenting the same 
data, even if the attributes visualized are different. 

In addition, visualizations can be synchronized by any visual 
attribute, simply by interactively setting the same attribute for the 
same visual variable.  Thus, the user still has the possibility to not 
synchronize the visualizations in order to compare two attributes.  
With our system, users explore their networks using both 
representations, accomplishing tasks more easily with one 
representation or the other and visualizing the effect of a selection, or 
filtering, on all visualizations and their overviews. 

Figure 3 shows a dual-representation of a co-authoring network 
and the correspondence of visual patterns in matrix and node-link 
representations. The process to obtain both representations follows: 
the user first automatically ordered the matrix, identified clusters 
(communities) and attributed colors to identify them.  He then 
switched to a node-link diagram, displaying the community colors 
and laying the network out manually in order to better visualize how 
communities are linked and organized.  Finally, moving back and 
forth between both representations, he identified the global structure 
of the network. 

 
Fig. 3. Visual patterns in Matrix and Node-link representations of 
social networks. A represents an actor connecting several 
communities, B a community and C a clique (complete sub-graph). 

4.2 Overviews 

4.2.1 Datasets and workspace overview 
MatrixExplorer proposes a quick overview of the user workspace.  
This overview includes for each dataset: general information on the 
graph and a visual overview of the related visualizations created by 
the user (Figure 4).  This visualization covers requirements R4 
(dataset general information) and R6 (analytical information) as well 
as R3 (Overview). 

 

 
Fig. 4. Workspace Overview. In this session, the user created 4 
distinct visualizations (from left to right): matrix-based representation, 
node-link diagram of the full network, connected component 
visualization, and finally, matrix-based representation of one selected 
connected component. 

Information appearing for each graph is: name, directed or not, 
number of vertices, number of edges, number of connected 
components, number of vertex attributes and their labels, the number 
of edge attributes and their labels, global density of the graph, 
minimum and maximum degree, and in/out degree if the graph is 
directed.  We defined this list with social-science researchers, who 
specifically pointed out the lack of information about the attributed 
of vertices and edges (R4 and R6).  

The different visualizations related to a dataset are shown below 
this information, as thumbnails.  With the workspace overview, the 
user has a reminder of existing visualizations, as exploring a social 
network can generate many windows and can show/hide 
visualizations in one click. 
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4.2.2 Connected components overview 
The connected component visualization plays a special role in 

graph exploration.  First, it is always a readable overview of the 
graph, quickly showing its macro-structure. Secondly, it is a starting 
point of the exploration as it filters matrices and node-link 
visualizations according to the current selected connected 
component.  Social sciences researchers expressed this need in 
almost all interviews (R2). 

 

 
Fig. 5. Connected components visualization. 

We choose to visually organize connected components as a 
compact rectangle in order to build a mental map of the macro-
structure of the graphs (Figure 5).  In this figure, the visual variables 
(rectangle size and color) are simply mapped to the number of 
vertices of the components (their size) and sorted by decreasing size 
from top left to bottom right. One click on a rectangle representing a 
connected component filters the synchronized visualizations. The 
user may map the visual variables to other attributes (using the 
control panel shown on the right); change the layout, or even the 
desired representation. 

4.2.3 Visualizations overviews 
In MatrixExplorer, an overview is provided for each 

visualization, meeting the requirement R3.  The primary goal of an 
overview is to provide an overall picture of the visualization and thus 
help users identify the structure of the network and build a mental 
map. 

In addition, we observed that users also use overviews as context 
reminders.  While working on a matrix-based representation, they 
keep an eye on the node-link overview, to verify which part of the 
full graph they are working on.  Moreover, they can directly observe 
the impact of their manipulations on the node-link diagram. 

Finally, overviews are also navigation tools.  A rectangle 
represents the current visualization’s view.  The user can grab it and 
move it to display a different part of the graph. 

4.3 Visual variables 
Assigning visual variables for each network attribute (R5) is a 

key to create effective visualizations.  The InfoVis toolkit [15] 
provides the framework to interactively map attributes to visual 
variables for both node-link and matrix-based representations.  Users 
are able to control the visualizations of actors choosing shape, size, 
color, texture and label and the relations (links) by choosing shape, 
length, color, thickness and label. 

Useful interactions are also provided to favor direct manipulation 
(R7) and to improve the readability of the representations: a control 
panel lets the user assign each attribute to one or more visual 
variables, and dynamic filtering and sorting let the user choose what 
vertices are shown and in what order.  Moreover, labels are often a 
main concern of social sciences researchers (R5).  To show labels 
legibly on any visualization, The InfoVis Toolkit provides Excentric 
labeling and fisheye views. 

4.4 Interactive layout 
MatrixExplorer provides a number of graph drawing algorithms 

for node-link diagrams.  They are mostly based on the JUNG and 
GraphViz packages.  Essential interaction is also implemented such 
as moving nodes of the graph by clicking and dragging.  In this 
section, we focus only on innovative features to manipulate matrix-
based representations. We detail our interactive tools to reorganize 
their layouts (R8). We favored interaction and direct manipulation 
instead of iteratively adjusting a set of parameters (R7). 

4.4.1 Basic interaction 
MatrixExplorer provides a set of basic interaction tools essential, 

but not sufficient, for ordering large matrices.  These tools include 
moving one or more rows or columns using drag and drop.  They 
also include a feature (inspired by spreadsheet calculators) that 
allows users to sort rows and columns according to one attribute; for 
example, sorting rows according to the vertex names and columns 
according to the vertex degrees.  Thus, rows can be used to find a 
specific vertex, and columns to find most/least connected vertices.  
Compared with InfoZoom of TableLens, the two dimensions can be 
ordered, and then be used to show the impact of one attribute on 
another one.  MatrixExplorer also provides a tool to permute rows 
and columns circularly, similar to a “pan” tool in a paint program 
with the cells leaving on one side and entering on the opposite side. 

4.4.2 Automatic ordering 
As described in section 2.2.1, ordering algorithms focus either on 

ordering visual representations to let blocks emerge or on finding an 
optimal linear order for all the vertices of the graph.  In 
MatrixExplorer, we propose to mix the two perspectives: 

Block emerge if vertices directly linked in the graph are placed 
next to each other (consecutive ones in the matrix) – we propose to 
take into account a larger neighbourhood (distance>1) and to 
position vertices with similar connection patterns next to each other.  
To do this, we use the matrix of shortest paths (SP matrix) instead of 
the adjacency matrix.  Our algorithm is: 

Compute connected components 
For each component 
  Compute the SP matrix 
Compute a matrix of distances between rows 
  Apply the algorithm to find a linear order 
  Compute a matrix of distances between columns 
  Apply the algorithm to find a linear order 
End for. 
Connected components are independent blocks in the adjacency 

matrix so an order for their rows and columns is computed for each 
of them.  Computing the SP matrix improves notably the order 
quality: it reduces the impact of noise (which is important in real 
datasets) and gives more information for low degree vertices (for 
which the rows and columns are very sparse).  Computing the SP 
matrix is quadratic, as is the computation of the distance matrix for 
rows and the distance matrix for the columns.  This has an important 
impact, since we want to use automatic ordering interactively.  
Therefore, we chose two fast ordering algorithms from the 
bioinformatics field.  The first one is based on a hierarchical 
clustering, followed by a seriation (HCS) and is described in [14]; 
the second one is based on the traveling salesman problem (TSP) as 
presented in [9].  To solve TSP, we use a fast heuristic described in 
[21].  Matrices up to 1000 rows* 1000 columns can be ordered in 
seconds.  Ordering larger matrices introduces a noticeable delay.  So 
far, our user did not provide us with networks having a connected 
component larger than a thousand actors.  However, we are 
investigating faster algorithms such as AMADO [7]. 

Both algorithms are based on a metric – similarity for HCS, 
distance for TSP – between the rows (respectively columns) of the 
matrix.  Usually, this metric is either a Manhattan or Euclidian 
distance, or the Pearson correlation coefficient.  By default, we 
choose a Manhattan distance. 
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Figure 6 presents a matrix reordered using TSP.  The resulting 
matrix exhibits clearer blocks (diagonal with dense blocks); users 
can identify more clusters (R10) and articulation vertices between 
these clusters as dark color crosses here.  A well-ordered matrix also 
helps identify outliers (R11) such as isolated relations, missing 
relation in a community, or actor with special connection patterns. 

 

  
Fig. 6. Initial order (left) and TSP order (right).  Colors represent 
clusters found by the user.  Clusters are different in the two 
representations. Users found more clusters with TSP order. Headers 
red indicators (right) represents the distance between adjacent 
rows/columns. 

4.4.3 Towards assisted ordering 
In the second edition of “Semiology of graphics” [5], Bertin 

presents the results of three automatic ordering algorithms: automatic 
classification, factorial analysis and hierarchical analysis.  He argued 
that none of these algorithms found a satisfactory matrix layout and 
performed some manual permutations to perfect them.  We observed 
that automatic algorithms rarely provide a satisfying order for a 
given matrix and a user’s taste.  However, they save a substantial 
amount of time and effort and offer an initial layout which is better 
than a random one or a simple sort.  

MatrixExplorer’s goal is to propose a good initial matrix layout 
and to provide interactive tools to improve it, if needed.  A “good” 
order, according to our participants, is one that reveals dense blocks 
and conversely avoids sparse isolated values.  Sometimes, the initial 
layout – reflecting the data construction or collection method – is 
already good, as can be seen in Figure 6.  This is the reason why we 
chose our TSP automatic algorithm which works by iteratively 
improving a given order. 

Once a global layout is computed for the whole matrix, we 
propose that users interactively reorder sub-matrices they wish to 
explore.  There are two options to adapt our automatic ordering 
algorithm to sub-matrices: 1) extract the sub-matrix from the initial 
SP matrix, or 2) compute the sub-graph corresponding to the sub-
matrix selected by the user and then compute a new SP matrix. 

The obvious drawback of computing a new sub-graph is the 
additional computations required: extraction of the sub-graph, 
computation of connected components and computation of SP matrix 
for each component.  However, we observed that the number of 
vertices selected by the user is usually low, and thus the computation 
time is insignificant.  

The second drawback has more impact on the user’s 
understanding.  The SP matrix computed for a given sub-graph 
contains notably less information than the initial SP matrix.  
Moreover, it may be misleading as the influence of all the unselected 
vertices is not taken into account. We implemented both solutions.  

Figure 7 shows an example of the two sub-matrix ordering 
methods.  We observed that results obtained with the first solution 
were more interesting as they let more blocks emerge as expected 
(SP matrix containing more information). This led us to favor the 
first version over the second.  Figure 8 shows the sub-matrix 

reordered with the first solution, and the corresponding node-link 
diagrams. 

 

 
Fig. 7. In red sub-matrix to reorder.  TSP order using the SP sub-
matrix (middle), a new graph SP matrix (right). 

 
Fig. 8. a) Node-Link diagram with an initial layout using the twopi of 
GraphViz, b) sub-matrix reordered and colored by cluster interactively 
by the user, c) Node-Link diagram with a manual layout. 

A main drawback of matrix-based representations is the 1D order 
of all vertices, which makes it difficult to represent articulation 
vertices between several clusters.  However, well-ordered matrices 
let the user quickly identify communities and articulation vertices 
with a little training.  Once communities are identified, the node-link 
diagram may be reorganized and clearly present the results.  This is a 
major advantage of our dual-representation system: explore and 
discover with matrices, and present with node-link diagrams. 

4.4.4 Locks 
MatrixExplorer allows locking a set of rows and columns 

together before reordering a matrix.  This functionality was not 
explicitly requested by our users but was detected during the use of 
our prototype. This feature is useful when, for example, a user 
identifies a community (set of actors) and wants to find out which 
external actors communicate with it.  It is a constraint taken into 
account during the order computation: a single element is computed, 
representing the full set.  The order computed takes into account this 
single element instead of the whole set.  Our algorithm only keeps 
the first and last elements of the sequence and fills the distance 
between them in the SP matrix with a value of zero, to “glue” them 
together.  The order is then optimized, as shown earlier, to integrate 
the sequence of elements, but these two are kept together.  At the 
end, we insert the set back between the two elements. 

4.4.5 Filtering or forgetting 
We have implemented filtering in MatrixExplorer to fulfil the 

requirement R9 to reduce the size and complexity of a network and 
finely analyze its sub-parts.  Users can filter either actors or relations, 
according to one or a combination of all existing attributes 
(numerical, categorical or computed). In addition, to visualize the 
impact of an actor, or a set of relations on the network, 
MatrixExplorer provides a feature that “forgets” actors or relations 
and visualizes the resulting structure.  This tool is slightly different 
from filtering: first, the element is still visible although it is made 
translucent; second, the changes in the new structure are highlighted 
to let the user rapidly identify the impact. 
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In Figure 9, the user identifies an actor collaborating with a 
community as well as a few external actors.  He asks MatrixExplorer 
to forget all collaborations of this actor with the community by 
selecting it and visualizes the result. 

 

  
Fig. 9. Forgetting a number of collaboration for a key actor.  Red 
headers indicate rows/columns with different neighbors, green 
indicates same neighbors. Other colors indicate communities identified 
by the user. 

After the operation, the user can clearly see that the bottom right 
of the matrix is affected.  The matrix is split up into two independent 
blocks: two sub-graphs.  Thus, the forgotten actor identified is an 
articulation vertex (or a cut-point) between these two sub-graphs.  
Moreover, as several relations have been “forgotten”, the lower sub-
matrix has been reordered to let new blocks (communities colored in 
different nuance of brown) emerge, exhibiting the sub-graph 
structure. 

4.5 Interactive clustering 
The structure of the network changes, depending on the attribute 

or relation visualized.  For example, two clusters of actors may be 
identified while visualizing a kinship relation, but three different 
clusters may be identified while visualizing their phone calls.  
Therefore, MatrixExplorer supports multiple clusterings (expressed 
as R10). 

MatrixExplorer proposes two selection modes: click and drag or 
lasso.  The lasso is used for fuzzy selection.  Elements at the border 
of the lasso will be made translucent to denote the proportion that 
belongs to the selection.  We implemented the fuzzy selection in 
response to users’ observations.  As matrices are very similar to 
tables or spreadsheets, users tend to adopt an “exact” or “precise” 
behavior when selecting groups.  They spend considerable time 
determining whether a particular edge is included or not in a cluster.  
The lasso relaxes this behavior and exploration becomes more fluid. 

 

  
Fig. 10. Lasso selection on values visualization mode and resulting 
cluster visualization. 

We observed that users also created clusters based on edge 
attributes – such as isocontours – and not only on blocks.  We 
provided a tool to quickly switch from the standard visual mode 
showing colors based on an edge attribute, to colors based on cluster 
indices.  These cluster indices are displayed in a transient mode, 
similar to vizster X-ray mode [20].  Users switch to this cluster 
visualization mode by pressing a key or a mouse button and switch 

back to the normal visualization mode by releasing the key or button.  
Users may also choose to display one clustering with a particular 
visual variable such as color or shape, since each clustering is 
implemented by a categorical attribute added to the edges. 

4.6 Guiding the user: Finding a consensus 

4.6.1 Consensus among layouts 
Different layouts often imply different clusterings.  It is important 

to be able to identify common clusters among layouts: i.e. to find a 
consensus when it exists (R12).  MatrixExplorer offers this 
possibility.  The procedure simply consists in identifying clusters as 
described in the previous section and ordering the matrix according 
to another layout.  Clusters either explode in several parts or are 
conserved (Figure 11).  The same method can be used to compare 
clusters of actors for different kind of relations. 

In Figure 11, additional information on the clustering is displayed 
in the row and column headers. Depending on the algorithm used to 
reorder the matrix, this additional information is either a red 
histogram showing the distance between adjacent rows (columns) 
computed by TSP or the hierarchical clustering tree resulting of HCS 
presented as an icicle tree colored according to the similarity of its 
elements (blue and green in the Figure). 

 

 
Fig. 11. Consensus between TSP (left) and HCS (right).  We observed 
that a consensus exists for A, B and C. However, B is slightly different 
and lost some of its elements with HCS. 

4.6.2 Consensus among clusterings 
To find the differences between two clusterings, users have 

several options.  To see global differences, users may switch from 
one clustering visualization mode to the other (X-ray) or simply 
choose a visual variable for one clustering and another for the 
second; for example, shape and color.  We also provide a tool to 
precisely visualize the differences: users select two groups in each 
clustering and use the compare tool.  Common elements are then 
displayed in green, and elements that appear in only one cluster in 
red. 

5 CONCLUSION AND FUTURE WORK 
This article describes MatrixExplorer, a visualization system for 

exploring social networks for researchers in the social sciences.  The 
system uses a dual-representation of social networks, the exploration 
process using mainly the matrix-based representation.  We describe 
novel features designed to improve the usability of the matrix-based 
representations and propose a novel algorithm to reorder rows and 
columns of adjacency matrices that improve existing ordering 
methods designed for bioinformatics tables.  We also described 
solutions to assist the user with interactive multi-dimensional 
reordering, interactive clustering and multiple clustering 
comparisons. 
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We designed MatrixExplorer with social researchers.  We 
conducted several interviews and organized a participatory design 
session with sociologists, historians and social network analysts to 
formalize a list of requirements for a visual exploration system. 

Our future work will include the extension of our ordering 
algorithm to directed graphs.  In this case, the matrix of shortest 
paths between all vertices contains infinity values which are not 
supported by our current ordering algorithms. We also wish to 
improve the interactive clustering feature to support overlapping 
clusters and cluster hierarchies entry as well as cluster aggregation 
(requirement R13). We are also adding other ordering algorithms.  
To choose from these algorithms, we are studying which features 
could help users select the appropriate ones. 

Finally, more work is still to be done concerning the coupling of 
visualizations.  It is interesting to be able to synchronize and 
desynchronize visualizations (synchronizing on selection, filtering 
and datasets).  Creating an intuitive interface to visualize and manage 
synchronizations without introducing too much complexity is a 
challenge. 

 
This work will be available as an extension package of the 

InfoVis Toolkit. 
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