
Learning Human Interactions with the
Influence Model

Sumit Basu* Tanzeem Choudhury* Brian Clarkson*

Media Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
{sbasu,tanzeem,clarkson}@media.mit.edu

Alex (Sandy) Pentland
Media Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139
sandy@media.mit.edu

Abstract

We are interested in quantitatively modeling the interactions
between humans in conversational settings. While a variety of
models are potentially appropriate, such as the coupled HMM, all
require a very large number of parameters to describe the
interactions between chains. We propose as an alternative the
generative model developed in [1], the Influence Model, which
parametrizes the hidden state transition probabilities by taking a
convex combination of the pairwise transitions with constant
“influence” parameters. We develop a learning algorithm for this
model and show its abilities to model chain dependencies in
comparison to other standard models using synthetic data. We also
show early results of applying this model to human interaction
data.

1 Int r o duct io n

There is a long history of work in the social sciences aimed at understanding the
interactions between individuals and influencing their behavior. In the psychology
community, there are many instances of work studying these effects. For instance,
Wells and Petty [2] show how a speaker's confidence could be significantly
influenced by repeated head nodding from the audience. Studies of this kind give us
interesting insights into the workings of human dynamics. In many cases, the

* The first three authors contributed equally to this paper and are listed alphabetically.

TR 539: Condensed version submitted to NIPS’01

Perceptual Computing
Sumit Basu, Tanzeem Choudhury, Brian Clarkson, and Alex Pentland. "Learning Human Interactions with the Influence Model." MIT Media Laboratory Vision and Modeling Technical Report #539. June, 2001.

experimenters have been able to take quantitative measures of behavior changes by
looking at task performance or questionnaire responses. However, there are
important aspects of the behavior which can not be captured this way – how much
one person is influencing another's behavior, the intensity of the interaction, and so
on. Thus far, experimenters have relied on qualitative measures based on hand
annotations ("Bill talked more to Susan during this session" or "Joe was very angry
and always yelled at Jane") or anecdotal incidents. This has a number of problems –
it is difficult to know exactly what the experimenters meant by their measures, and
even more difficult to compare the results across different studies. Our goal is to
provide a means for quantifying these effects. Our backgrounds are in computer
vision, speech processing, and machine learning, and we believe that with the
relevant tools in hand we can make some progress towards this goal. This paper is
our first exploration into modeling these complex interactions.

The general scenario of our work involves a number of participants interacting with
each other and a number of actuators that can potentially affect their behavior.
Initially, we wish only to observe and model the effects of people and actuators on
each other, which will allow us to analyze and predict their behavior. In the long
term, we wish to use these models to build feedback systems that apply actuators
based on the results of analysis. Closing the loop in this way would eventually
result in a stochastic model for influencing human behavior. This would ideally
allow us to enhance the interaction between the individuals (e.g., prevent fights,
increase understanding, facilitate discussions). While we are still far from this goal,
we hope these first steps make some progress towards understanding human
interactions. To this end, we are currently working with a particular experimental
setup we call the "Facilitator Room," which we describe in Section 2.

While there are many possible ad hoc approaches to computing features for each of
these effects (e.g., interaction intensity), we wish to develop a common framework
in which we can analyze all of the effects of subjects influencing each other and
experimental variables influencing the subjects. The "Influence Model," developed
as a generative model by Chalee Asivathiratham in his PhD disseration [1], is a
possible means of representing the influences a number of Markov chains have on
each other. As we will describe in Section 3, this model seems very appropriate to
model the effects we are interested in. In this paper, we generalize the model with
hidden states/observations and develop an algorithm for learning its parameters
from data (Section 3.2). We then show the performance of this algorithm and model
with respect to other models using synthetic data. In Section 4, we show early
results of applying our model to interaction scenarios in the Facilitator Room. We
close with our preliminary conclusions and plans for future work.

2 The Fa c i l i t a to r Ro o m

In the interests of studying the interactions between humans and the influences of
various experimental variables, we have developed an experimental setup we call
the "Facilitator Room." This room is a 15 foot by 15 foot space with three couches
and a table. The room is instrumented with six pan-tilt-zoom cameras and an array
of microphones. From these sensors, we estimate features such as speaking rate,
speech pitch, relative speech energy, region-based motion energy, and blob tracking.
When using all sensors, this amounts to a data rate of 1.9 Gigabytes/hour. In the
experiments described in Section 4, we use a subset of the sensors resulting a data
rate of 1.1G/hr for two hours.

The room is also outfitted with a number of actuators meant to influence the
behavior of the participants. Currently we have speakers mounted behind each seat
intended to mask sounds with white noise, whisper items to individuals, and so on.
We have also installed lights focused on each seat whose colors and intensities are
under computer control. These are meant to change overall room lighting
conditions and also to spotlight individuals to affect others’ response to them. There
are five projectors in the room: three on the walls, one going to a main screen, and
one on the table. These are intended to show relevant information at appropriate
times in the hopes of changing the conversation pattern.

In the experiments in this paper, we have only begun to use the potential of this
room – at this point we are not using the actuators. However, we cannot study the
effects of actuators until we have modeled the baseline interactions among
individuals, and thus in this study we focus on the latter.

3 The Inf luence M o de l

In seeking a model appropriate to our goals, we turned to the work on dynamic
Bayes nets (DBN's) in the graphical models community (for a review of DBNs see
[3]). The most straightforward approach would be to model each participant with an
HMM and then take the outer product of all the state spaces. Unfortunately, the
number of states would be exponential in the number of chains N where Q is the
number of states per chain, i.e., QN, and the number of parameters in the transition
matrix would be Q2N. Furthermore, it would be difficult to interpret the parameters
of the resulting model – it would not be easy to determine, for example, whether a
given person had an effect on another.

The coupled HMM described by [4] and [5] for pairs of chains is a potential
solution here, as it models the dependency of one chain's state on both chains'

previous states, i.e., 1 1(| ,)i i j
t t tP S S S− − , as shown in Figure 1 (a). This keeps the

state space at 2N, with a QxQxQ transition table for each chain, for a total of 2Q3
transition parameters per chain.

x

x

x x

x

x

S

S

S

SChain 1

Chain N

t-1 t

x

x x

x

S

S

S

SChain 1

x

x

x x

x

x

S

S

S

S

S

SChain 1

Chain N

t-1 t

Chain 2

S

S

Figure 1: Possible DBN models for human interactions shown at times t-1 and t: (a)
a coupled HMM, (b) a generalized version of the coupled HMM with N chains, and
(c) pairwise chains of coupled HMMs.

The generalization of this model to N chains that makes sense here is for the next
state to depend on the value of all of the previous states, i.e., we should estimate

1
1 1(| ,...,)i N

t t tP S S S− − (see Figure 1). However, this requires a QNxQ transition table

for each chain, resulting in NQN+1 transition matrix parameters, which is still very
large. Another possibility is to model all possible pairs of chains with a standard

coupled HMM. Such a scheme would still require 3

2

N
Q

parameters for the

transition tables. Since we would like to estimate these parameters over fairly short
segments such as a fraction of a conversation, we wish to keep the number of
parameters to a minimum, and as a result continued to search for an appropriate
model.

3 .1 (Re) in troduc ing the Inf luence M o de l

In his dissertation, Asavathiratham [1] introduced the "Influence Model," a
generative model for describing the connections between many Markov chains with
a simple parametrization in terms of the “influence” each chain has on the others.
His work showed how complex phenomena involving interactions between large
numbers of chains could be simulated through this simplified model, such as the
up/down time for power stations across the US power grid. In his description, all
states were observed, and he did not develop a mechanism for learning the
parameters of the model. We thus nominally extend his model by adding the notion
of hidden states and observations. We also develop a learning algorithm for the
parameters in Section 3.2.

The graphical model for the influence model is identical to that of the generalized
N-chain coupled HMM, but there is one very important simplification. Instead of

keeping the entire 1
1 1(| ,...,)i N

t t tP S S S− − , we only keep 1(|)i j
t tP S S − and

approximate the former with:

 1
1 1 1(| ,...,) (|)i N i j

t t t ij t t
j

P S S S P S Sα− − −= ∑

In other words, we form the distribution for a given chain’s next state by taking a
convex combination of the pairwise conditional probabilities. As a result, we only
have N QxQ tables and N α parameters per chain, resulting in a total of NQ2 + N2
transition parameters. This is far fewer parameters than any of the above models.
The real question, of course, is whether we have retained enough modeling power to
determine the interactions between the participants.

Asavathiratham refers to the α 's as "influences," because they are constant factors
that tell us how much the state transitions of a given chain depend on a given
neighbor. It is important to realize the ramifications of these factors being constant:
intuitively, it means that how much we are influenced by a neighbor is constant, but
how we are influenced by it depends on its state. Another way to look at this is that
we are only modeling the first-order effects of our neighbors' influences on us: if
Joe yelling causes us to be quiet with certainty and Mark's yelling causes us to yell
back with certainty and our α ’s for both are equal, the combination of both yelling
will result in a distribution of our next action that has its probability mass equally
distributed over yelling and not yelling. This is what we are giving up in terms of
modeling power – while the fully-connected coupled HMM would allow us to
explicitly model the effect of the joint event of Joe and Mark yelling together, the
influence model does not (note, however, that the set of pairwise coupled HMMs
would also not be able to model this joint effect).

This simplification seems reasonable for the domain of human interactions and
potentially for many other domains. Furthermore, it gives us a small set of

interpretable parameters – the α values – which summarize the interactions
between the chains. By estimating these parameters, we can gain an understanding
of how much the chains influence each other.

In the sections below, we develop a learning algorithm for this model and show with
both synthetic and real data the kinds of interaction structure this model can capture.
Last, though we do not explore it in this paper, we can easily use this model to
estimate the effects of actuators on the participants. We would simply create a new
(observed) chain for each actuator and then observe its influences. In this case, to
investigate how the actuator changed the participants' behavior, we would have to
look at the probability tables as well as the α ’s.

3 .2 Lea rn ing fo r the In f luence M o de l

The problem of estimating the Influence Model from data can be stated as follows.

We are given sequences of observations, { }itx , from each chain i . The goal is to

estimate the amount of influence, ijα , that chain j has on chain i, along with the

pairwise conditional probability distributions that describe this inter-chain

influence, 1(|)i j
t tP S S − . In this section we develop methods for doing this and

illustrate them with synthetic data.

Figure 2: Graphs for (a) a generalized coupled HMM, (b) an Influence Model with
hidden states, (c) an Influence Model with observed states.

3 .2 .1 Expec ta t ion-M a ximiza t ion for the Inf luence M o de l

In Figure 2 we show the graphical model for the most general form of the Influence
Model with hidden states and continuous observations. Fitting this model to data
requires us to maximize the likelihood of Influence Model over its free parameters.
The likelihood function can be readily written as:

0 0 0 1(,) () (|) (|) (|)i i i i i i j
t t ij t t

ji i t

P S X P S P x S P x S P S Sα −
 =

∑∏ ∏∏

One possibility for estimating the parameters of this model is Expectation-
Maximization. The E-step requires us to calculate (| ,)P S X θ , which in most cases
amounts to applying the Junction Tree algorithm (for exact inference) or some
approximate inference scheme (variational, etc.). We will discuss the possibilities
for doing inference on this model later. The M-step is specific to this model and
requires maximizing the lower bound obtained in the E-step. Examining this

expression we can see that the M-step for all the parameters except the ijα ’s is only

trivially different from the HMM. However, we can readily write down the update

equations for the ijα ’s by noticing that they are mixture weights for N conditional

probability tables analogous to a mixture of Gaussians. The ijα update equations

are obtained by following the derivation of the M-step for a Gaussian mixture (i.e.,
by introducing a hidden state to represent the “active” mixture component and then
taking an expectation over its sufficient statistics):

1

1

(, , |)

(, |)

i i j
t t t

new t k l
ij i j

t t
t k l

P c j S k S l X

P S k S l X
α

−

−

= = =
=

= =

∑∑∑
∑∑∑

The “ i
tc j= ” event means that at time t chain i was influenced by chain j , and

the “ i
tS k= ” event means that chain i was in state k during time t .

3 .2 .2 The Observed Inf luence M o de l

Due to the difficulties involved in doing the inference required for E-step, we

decided to simplify the estimation problem by allowing the states i
tS to be observed

for each chain (see Figure 2). We decided to obtain our state sequences by fitting an
HMM to each chain’s observations and performing a Viterbi decoding. The chain
transition tables were then easily estimated (by frequency counts) directly from
these state sequences. Since our goal is to estimate the inter-chain influences (via

the ijα ’s) this “clamping” of the observation and chain transition parameters helps

combat the overfitting problems of the full model.

We now have an unusual DBN where the observed nodes are strongly
interconnected and the hidden states are not. This presents serious problems for
inference because marginalizing out the observed state nodes causes all the hidden
states to become fully connected across all time and all chains. Unless we apply an
approximation that can successfully decouple these nodes, a maximization
procedure such as EM will not be tractable. However, there is a far simpler way to

estimate the ijα values in our observed scenario. Let us first examine how the

likelihood function simplifies for the observed Influence Model:

 0 1(|{ }) () (|)i i j
ij ij t t

ji i t

P S P S P S Sα α −
 =

∑∏ ∏∏

Converting this expression to log likelihood and removing terms that are not

relevant to a maximization over ijα yields:

 *
1arg max log (|)

ij

i j
ij ij t t

i t j

P S S
α

α α −

=

∑∑ ∑

We can further simplify this expression by keeping terms relevant to chain i :

*
1arg max log (|)

ij

i j
ij ij t t

t j

P S S
α

α α −

=

∑ ∑

This per chain likelihood is concave in ijα , which can be easily shown as follows:

Let

0i

iN

α
α

α

 =

�

0
1

1

(|)

(|)

i
t t

i
t

i N
t t

P S S

B

P S S

−

−

 =

� .

 Then the per chain likelihood becomes: () log , i
i t

t

f Bα α= ∑ . This is concave

since for any 0 1w< ≤ and 0 1,α α :

0 1 0 1

0 1

0 1

0 1

((1)) log (1) ,

log (1) , ,

(1) log , log ,

(1) () ()

i
t

t

i i
t t

t

i i
t t

t

f w w w w B

w B w B

w B w B

w f wf

α α α α

α α

α α

α α

− + = − +

 = − +

≥ − +

= − +

∑

∑
∑

 (using Jensen)

Now taking the derivative w.r.t. ijα :

() 1 1

1

(|) (|)
.

(|) ,

i j i j
t t t t

i k i
t tij ik t t i t

k

P S S P S S

P S S Bα α α
− −

−

∂ = =
∂ ∑ ∑∑

Notice that the gradient and the per chain likelihood expression above are
inexpensive to compute with appropriate rearranging of the conditional probability

tables to form the i
tB vectors. This along with the facts that the per chain likelihood

is concave and the space of feasible ijα ’s is convex means that this optimization

problem is a textbook case for constrained gradient ascent with full 1-D search (see
p.29 of [6]). Furthermore, in all examples in this paper, 20 iterations were sufficient
to ensure convergence, which amounted to less than 10 seconds of CPU time.

3 .2 .3 Eva lua t ion o f the Observed Inf luence M o de l on Sy nthe t i c
Da ta

To evaluate the effectiveness of our learning algorithm we first show results on
synthetic data. The data was generated by an Influence Model with 3 chains in lock
step: one leader which was evolving randomly (i.e., flat transition tables) and 2
followers who meticulously followed the leader (i.e., an influence of 1 by chain 2
and a self-influence of 0). We sampled this model to obtain a training sequence of
50 timesteps for each chain. These state sequences were then used to train another

randomly initialized Influence Model. As described above, the 1(|)i j
t tP S S − were

estimated by counting and the ijα ’s by gradient ascent. The resulting influence

graph is shown along with a typical sample sequence in Figure 3. Note how the
“following” behavior is learned exactly by this model – chains 1 and 3 follow chain
2 perfectly.

1

2 3

Influence Model (LockStep Simulation)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12
Influence Model Sample Sequence (LockStep Simulation)

ch
ai

n
1

 c
ha

in
 2

ch

ai
n

3

time

x1(t)

x2(t)

x3(t)

x1(t+1)

x2(t+1)

x3(t+1)

s1(t)

s2(t)

s3(t)

s1(t+1)

s2(t+1)

s3(t+1)

Generating Model

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4
Sample Training Sequence

ch
ai

n
1

 c
ha

in
 2

ch

ai
n

3

time

Figure 3: The evaluation pipeline for testing the Influence Model on the lockstep
synthetic data: (a) the graph for the generating model at time t and t+1 (b) the
training sequence (c) the learned influences (α’s) – the thickness of the lines
corresponds to the magnitude of the influence. Note that the strong influence of
chain 2 on 1 and 3 was correctly learned. (d) Sample paths from the learned model.
Note how chains 1 and 3 (the followers) follow chain 2 perfectly.

We also evaluated the Generalized Coupled HMM (i.e. full state transition tables
instead of the mixtures of pairwise tables) on this data using EM, using the Junction
Tree Algorithm for inference. Again we sampled from the lock step model and
trained a randomly initialized model. A sample sequence from the resulting model is
shown in Figure 4. In this case, the learned model performed reasonably well, but
was unable to learn the “following” behavior perfectly due to the larger number of

parameters it had to estimate (1
1 1(| ,...,)i N

t t tP S S S− − vs. 1(|)i j
t tP S S −).

x1(t)

x2(t)

x3(t)

x1(t+1)

x2(t+1)

x3(t+1)

s1(t)

s2(t)

s3(t)

s1(t+1)

s2(t+1)

s3(t+1)

Training Model

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4
Sample Training Sequence (EM w/ Junction Tree Inference)

ch
ai

n
1

 c
ha

in
 2

ch

ai
n

3

time

x1(t)

x2(t)

x3(t)

x1(t+1)

x2(t+1)

x3(t+1)

s1(t)

s2(t)

s3(t)

s1(t+1)

s2(t+1)

s3(t+1)

Generating Model

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4
Final Model Sequence (EM w/ Junction Tree Inference)

ch
ai

n
1

 c
ha

in
 2

ch

ai
n

3

time

0 5 10 15 20 25 30 35 40 45 50
500

400

300

200

100

0

100

200

300

400
Likelihood vs. Iteration (EM w/ Junction Tree Inference

lo
g

lik
el

ih
oo

d

iteration

Figure 4: The evaluation pipeline for testing the Generalized Coupled HMM on the
lockstep synthetic data: (a) the graph for the generating model (b) the training
sequence (c) the graph for the learned model and the likelihood values for the EM
iterations (d) a sample path from the learned model. Note that this model was
unable to capture the lockstep behavior perfectly, as can be seen in the errors of
chain 1 in following chain 2.

4 Experiments and Results

After verifying the performance of our algorithm on synthetic data, we tested our
models on data of natural human interactions in the facilitator room. We recorded
two hours of data of five participants playing an interactive debating game. The
game, Opinions, comes with stack of cards that has different controversial debate
topics. We recorded ten games (debate sessions) for our experiment. In order to
ensure that we saw a debate session between all possible pairs of players, we listed
all pairs and chose pairs from the list without replacement. The first participant in
the list entry rolled a die to pick a side (proponent or opponent). Each debater spoke
for one minute after which the stage was open for discussion between all
participants. No restrictions were imposed on the participants’ interaction style
during the game. The features calculated automatically from the data were per
person motion energy (30 Hz), speech energy (30 Hz), and voicing state (60 Hz).
Also, the speaker turns (i.e., who was speaking when) were hand labeled for all the
games.

In the first experiment, we used the hand-labeled speaker turns only. Each player
had two states – speaking and silent. When multiple players were speaking at the
same time, all of them were considered to be in the speaking state. The full set of
features for the game was the binary state vector for all of the players, which was
afterwards non-uniformly resampled in order to remove consecutively repeating
states. Therefore, if all the players were in the same state for t timesteps, those t
identical observations were effectively replaced with one time step. This effectively
broke up the data such that there would be one feature vector per conversational
turn. If the features were not resampled in this way, the self-transitions would
overwhelm the effects of any inter-person influences.

We estimated the influence matrix α for the entire dataset (all ten games) and also
for each game separately. In this dataset, player Tammy was asked always to
respond/react to player Bob and thus we expect Bob to have a strong influence on
Tammy. We see this influence in the full game influence matrix shown in Figure 5.
Furthermore, Tammy and Anne were observed to be the dominating speakers in all
of the datasets. This appears in the learned graphs as the strong connections to the
other participants. Last, for each game we compared the learned influence graph

with the influence graph generated from a hand-labeled interaction matrix. This
latter graph was formed by creating a directed link from participant A to participant
B if participant B responded to participant A; the strength of the link is proportional
to the number of times B responded to A (normalized by all of A’s influencers).
Figure 6 shows the results for a subset of games from our dataset.

Full Game

Tammy

Bob

Anne Sam

John

Figure 5: Influence graph for the full game showing strong links for the dominating
speakers Tammy and Anne.

Tammy

Bob

Anne Sam

John

Debate between Sam and John

Tammy

Bob

Anne Sam

John

Debate between Sam and John

Tammy

Bob

Anne Sam

John

Debate between John and Anne

Tammy

Bob

Anne Sam

John

Debate between John and Anne

Figure 6: Results for two sub-games (a) debate between John and Anne -
interaction graph learned by our model (b) graph of hand-coded influence matrix
used as ground truth (c) debate between Sam and John – learned model (d) ground
truth.

Finally, we ran our algorithms using the motion energy, speech energy and voicing
state for each person to generate the influence graphs, now learning the states in an
unsupervised manner. Figure 7 shows one example of the influence structure
extracted, which shows a strong link between the proponent and the opponent, as
was observed in the audio-visual record for that game.

Tammy

Bob

Anne Sam

John

Debate between Tammy and Anne

Figure 7: Influence graph for one debate session learned using the automatically
generated features - motion energy, speech energy and voicing state. The model
learned the strong link between the two debaters.

5 Discussion and Future Work

Human interactions are quite complex and we cannot hope to capture all of their
subtleties with a simple graphical model. However, we have shown that the
Influence Model is capable of describing some of the phenomena we expect to see,
and also that the learning algorithms we have proposed are capable of reliably
estimating these parameters. Furthermore, we have applied our algorithms to real
data of human interactions and shown that we can recover some of the structure
observed in the data. While these first forays do not yet constitute a comprehensive
framework for analyzing human interactions, we believe they are an important step
towards characterizing the influences people have on each other during
conversations.

Currently, we are running further experiments using the automatically generated
features (as in Figure 7) to see how well they correlate with our measures of ground
truth. We are also considering a number of different methods for doing full learning
on the model, including variational methods and other approximate inference
techniques. We also plan to perform more detailed evaluations of the performance
of the Influence Model with respect to the generalized (N-chain) Coupled HMM.

Ackno w ledg ments

We used Kevin Murphy’s MATLAB Bayes Net Toolbox for performing EM with
the junction tree algorithm.

References

1. Asavathiratham, C., The Influence Model: A Tractable Representation for the
Dynamics of Networked Markov Chains. In Dept. of EECS, MIT. Cambridge,
2000.

2. Wells, G., Petty, R., "The Effects of Overt Head Movements on Persuasion."
Basic and Applied Social Psychology, 1980. 1(3): pp. 219-230.

3. Ghahramani Z, "Learning Dynamic Bayesian Networks." Adaptive Processing
of Sequences and Data Structures. International Summer School on Neural
Networks ‘E.R. Caianiello’. Tutorial Lectures. Springer Verlag, 1998.

4. Brand, M., N. Oliver, and A. Pentland. "Coupled hidden Markov models for
complex action recognition." In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition. 1997.

5. Saul, L. and M. Jordan, "Boltzmann Chains and Hidden Markov Models."
Advances in Neural Information Processing Systems, 1995. 7: pp. 435-42.

6. Bertsekas, D.P., Nonlinear Programming. Athena Scientific: Belmont, 1995.

