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Abstract— Place labeling is the process of giving semantic 

labels to locations, such as home, work, and school. For a 

particular person, these labels can be computed automatically 

based on features of that person’s visits to these locations. A 

previous system called Placer used the person’s demographic data 

and the timing of their visits to label places with a learned decision 

tree. We developed Placer++ as a more accurate labeler, 

augmenting Placer’s features of individual visits with (1) labeled 

visits from other people and (2) features about the sequence of the 

individual’s visits. In processing sequences, we adopt structural 

learning techniques to take into account the relationships between 

visits. Accuracy increased by 8.85 percentage points over the 

baseline of Placer. We describe and justify the features and 

present our experiments on government diary data. 
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I. INTRODUCTION 

As more of our digital life becomes mobile, it becomes more 
important to understand the places we go. One aspect of this 
understanding is place labeling, which gives semantic names to 
locations. We are interested in egocentric place labels for 
individuals, such as a person’s home, work, and school. Labels 
like these are useful for automatically generating 
comprehensible text, such as “Sally has just arrived at school.” 
They can also be used to annotate a diary of a person’s activities. 
Consolvo et al. [1] have shown that when people want to reveal 
their location, they prefer to use either a street address or a label 
like home or work. Labels are also useful for triggering 
automatic behaviors (e.g. only certain calls ring through at work) 
and inferring higher-level activities (e.g. watching television at 
home is more likely than at work). 

Place labeling usually begins with a sequence of time 
stamped location measurements, such as from GPS, WiFi, or 
cell towers. The first step in processing is to find places where 
the user spends time. This is fundamentally a process of 
clustering, and has been the subject of previous research [2-9]. 
We assume clustering is already complete, and we assume we 
can accurately detect visits to these places based on location 
measurements. In this paper we concentrate on the second main 
step, which is to attach labels to the clusters based on features 
such as the timing of the visit, nearby businesses, previous & 
next visits, and labels given by others. 

There are multiple research prototypes that allow users to 
manually give place names to the places they go, such as Reno 
[10], Connecto [11], and IMBuddy [12]. Google Now™, a 
commercial product, lets users manually label their home and 
work locations. We are interested in automatic labeling of 
places. It is possible to build heuristics to generate labels, such 
as Zhu et al. [13]. They created hand-crafted rules to compare 

against machine learning. As an example, one rule classified 
home as the place where a user spent most of their time between 
midnight and 6 a.m. Heuristics can fail, however, for users 
whose habits don’t fit our notions of where people normally 
spend their time, such as night workers. 

Another approach to place labeling is machine learning. This 
is a promising method, because it automatically accounts for the 
way people really behave. The primary limitation is the 
availability of training data. There was a surge of machine 
learning techniques aimed at place labeling in response to the 
Nokia Mobile Data Challenge (MDC) [14]. The MDC provided 
labeled visit sequences and cell phone logs for 114 people (80 
for training, 34 for testing) with an average of 282 days of 
observation for each one. The cell phone logs contained 
information about calls, text messages, cell towers, 
accelerometer samples, Bluetooth & WiFi observations, and 
other phone activity. The four teams that took on the labeling 
challenge all used machine learning to find a mapping from the 
phone features, including the time and duration of visits, to the 
10 different place labels  [13, 15-17]. Their labeling accuracies 
were between 65% and 75%. An earlier approach to machine 
learned place labeling was the work of Liao et al. [18]. Their 
features included the locations of nearby restaurants, grocery 
stores and bus stops as well as the timing of visits. Testing on 
four people, they used a conditional random field to exploit the 
fact that visits to places often occur in a consistent order, such 
as going home directly after work. Chen et al. [19] used a hidden 
Markov model to take advantage of this ordering. Using almost 
6000 users from Whrrl, a location-based social network, Ye et 
al. [20] used a support vector machine to label eight different 
types of places. Their features included check-in frequency and 
time of day. Microsoft’s Cortana® personal assistant uses a 
proprietary algorithm to automatically find a user’s home and 
work locations from location data. 

Researchers have also shown that place labels can be derived 
from labels left by others. For example, if one person designates 
a place as a restaurant, other people can use that label. Loci [21] 
included a user study that showed that participants in a location 
based service are willing to provide place labels for others to 
use. CenceMe [8] augmented a user’s place labels with labels 
left by the user’s friends. Getting Places [22] showed how to use 
collaborative filtering from many people to give useful place 
labels. In [23], Ames and Naaman examine the motivations for 
users to tag photos, finding that sharing tags is an important goal. 
Labeling places may benefit from a similar motivation. 

Previous approaches to place labeling thus fall into four 
categories: manual labeling, heuristics, machine learning, and 
others’ labels. The last two are the most promising, and we 
incorporate both into our new place-labeling technique called 



Placer++. Our technique features two main innovations. The 
first is that we use machine learning to examine the whole 
sequence of a person’s visits to improve labeling accuracy. For 
instance, one of our sequence features looks at the co-occurrence 
of place visits and exploits the fact that people who spend time 
at a place labeled “college” never spend significant time at a 
place labeled “childcare”. The other innovation is a machine 
learning approach to use place labels given by other people. This 
is possible for us since we use labeled data from almost 10,000 
people concentrated in a single metro area, giving a dense set of 
labels that can be exploited for labeling places of new people. 

 Placer++ builds on a previous technique called Placer [6], 
which we describe next. 

II. FROM PLACER TO PLACER++ 

Placer [6] is a place labeling technique based on machine 
learning. One of the two diary studies it used is the 2006 Puget 
Sound Regional Council (PSRC) Household Activity Survey 
[24]. PSRC participants were from the Puget Sound region in 
the U.S., which consists of four counties near Seattle, WA. 
Participants filled out a survey covering their visits over two 
consecutive days. The PSRC diary data includes 
latitude/longitude data for the visits. Placer showed that features 
derived from latitude/longitude (such as nearby businesses) 
significantly increased labeling accuracy. 

The PSRC diary study includes data from 86,764 trips taken 
by 9790 different people who gave labels to 18,888 distinct 
places. For each participant, PSRC gives their gender and age. 
The data also indicates which people are in the same household. 
For each visit to a place by each participant, PSRC gives the 
arrival date and time, the duration, and the location’s 
latitude/longitude. Each visit is also labeled with a primary 
activity from the list of 17 activities/places (Table 1), which the 
Placer paper shortened to 12 by combining similar place types 
(Figure 5). 

Placer used a feature vector of 69 scalar features to classify 
each visit. One subset of the features characterized the subject 
(i.e. age and gender) and the timing of the visit (e.g. day of week, 
arrival time, and duration). The other subset characterized 
nearby businesses. We will add to these features subsequently 
for Placer++. 

Placer used a forest of boosted decision trees [25] for 
classification. The trees are learned based on training data. After 
learning an initial decision tree, a second decision tree is 
constructed where more weight has been given to the mistaken 
training samples of the first tree. This continues up to a 
prespecified maximum number of trees, which was 100 for 
Placer. Each tree had a maximum branching factor of 20, at least 
10 instances per leaf, and a learning rate of 0.2. We used the 
same learning procedure for Placer++. In our reimplementation 
of Placer, the overall classification accuracy was 63.85%, which 
is the fraction of visits that were classified into the correct place 
label. The original Placer paper gave an accuracy of 74.0% on 
this dataset. The reduced accuracy of our reimplementation is 
due to three factors: 

1) Because the original business database for Placer was 

unavailable, we used a different database for our 

reimplementation. 

2) Our single evaluation on a train/test split of 80%/20% 

gave less training data than the 90%/10% 10-fold cross 

validation used for Placer. We used the 80%/20% split 

in this paper to match the split we used for testing 

Placer++. 

3) For Placer++, we were careful to disallow place visits 

from the same household to be split across training and 

testing, while Placer’s cross validation allowed this 

split, which can increase accuracy. 

Placer++ introduces a few hundred new classification 
features that Placer did not have. More importantly, Placer++ 
introduces the idea of inferring labels based on features of a 
whole sequence of visits rather than just features of a single visit 
itself. This requires a new algorithmic approach that was not 
possible in the Placer machine learning framework. The new 
approach is described in Section IV, but before that we justify 
the addition of new features by looking at the data itself in the 
next section. 

III. EVIDENCE FOR ADDITIONAL SIGNAL 

The original Placer used features about the demographics of 
the user, the timing of the visits, and nearby businesses to give a 
place label for each visit. There are other signals to exploit 
beyond the isolated visit. This section contains an examination 
of the PSRC data to show how people behave with respect to the 
places they go. We explain how we exploit these behaviors for 
Placer++ later in this paper. 

A. Cross Labels 

One advantage of using the PSRC data is that the labeled 
places cover a fairly small area, so we can expect to see instances 
of different people labeling the same place. It has been shown 
by Loci [21], CenceMe [8], and Getting Places [22] that 
exploiting labels given by other people can be effective. We can 
imagine a mobile phone application that shows a user their place 
label inferences and lets them confirm or correct the labels. In 
this way, a central database could build up a table of manually 
labeled places. These labels, which we call “cross labels,” could 
influence the inferred label of a new visitor. 

In our PSRC data, we have 18,888 distinct labeled places. Of 
these, 9074 (48.0%) have labels from more than one person. 
Ideally, all the labels at a given location would be the same. 
However, of the places with at least two visit labels, only 4065 
(21.5%) have identical labels from all their visitors. We can 
assess the “purity” of each label type by looking at how often 
places are given an unmixed set of labels. For this analysis, we 
looked at every location in the PSRC data set that had been 
labeled at least twice. Then for each label, we counted the 
number of distinct places where the label appears. The purity of 
the label is the ratio of distinct places that have only that label to 
the total number of places with that label. The results are shown 
in Figure 1. For example, of all the distinct places labeled as 
“Home – Other”, about 67% had only that label. The most pure 
places are “Home – Other”, “Eat Out”, and “Work”, but even 



“Work” is below 50%. This means that many places are given 
different labels, so using labels from other people is not entirely 
reliable. One reason for the multiple labels is the particular 
taxonomy of places used by PSRC. For instance, “Major 
Shopping” and “Everyday Shopping” could easily refer to the 
same place depending on the goals of the visitor. Another reason 
for this lack of purity is that different places mean different 
things to different people. For instance, a restaurant can be a 
place to eat or a place to work. 

We can understand more about mixed labels by looking at 
common combinations of labels. For each location with at least 
two labels, we computed the most common combinations of 2, 
3, 4, and 5 different labels, shown in Figure 2. The most common 
2-label place has labels of “Home – Other” and “Personal 
Business”. The “Personal Business” visits could be tasks like 
dropping off or picking up something. For places with four 
different labels, the most common combination was 
“accompany another person”, “personal business”, “major 
shopping”, and “everyday shopping”. A mall with several stores 
could easily accommodate all four labels. 

A simple algorithm for labeling a visit would be to give it the 
most frequent label given by others who have visited it before. 
Of the 86,764 visits in the PSRC data with a latitude/longitude, 
82.1% could be labeled this way. Of these, this 
algorithm would give the correct label to 36.3% of 
the visits. While this is not a high rate of accuracy 
by itself, it suggests that features involving cross 
label data could be helpful. 

B. Sequences 

We suspect that people maintain some 
regularity in their sequence of visits. For instance, 
a given person might usually go directly home 
after work. The Placer paper gave Markov 
probabilities giving the probability of the next 
place type given the current place type. This 
analysis showed that the next most likely place to 
go was always home, no matter where a person 
was currently, unless they were already home. We 
use this regularity as a feature for Placer++. 

We might also expect people’s visits often 
have a 24-hour period. If a person is at home at 3 
a.m. on one day, it’s likely they will be at home 24 

hours later. We can test this assumption with the PSRC data. 
Given a place at one time, we can compute the probabilities of 
being at any place 24 hours later. Specifically, we looked at the 
temporal midpoint of each visit in the PSRC data, along with its 
place label. For each such midpoint, we found the place label of 
the visit occurring 24 hours later, if it was available. (Sometimes 
the visit was missing, and sometimes we moved beyond the end 
of the survey period.) Table 1 shows the results. Given a place 
label in the left column, the corresponding row shows the 
probabilities of being at any other place label 24 hours later. The 
strongest 24-hour periodicity is for “attend school”, where there 
is a 91% chance of being at school 24 hours after previously 
being at school. “Home - Other”, work, and childcare are also 
strongly periodic. There is also some structure in the off-
diagonal area, where being home is likely 24 hours after most of 
the less periodic activities. 

C. Place Cooccurrences 

We might expect different lifestyles to be reflected in the 
places people go. Specifically, it may be that trips to one type of 

 
Figure 1: This shows the purity of place labels. For instance, 

of all the distinct places labeled “Home – Other”, about 67% 

had only that label and no others. 
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Figure 2: These are the most common combinations of labels 

for places with 2, 3, 4, or 5 different labels. 

 

 
Table 1: Given a place type, there is regularity in the place type 24 hours later. 

For each place type in the left column, this table shows the probabilities of visits 

to place types 24 hours later. 
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Home - Paid Work 0.38 0.46 0.07 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00

Home - Other 0.01 0.82 0.03 0.00 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00

Work 0.01 0.11 0.82 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Attend Childcare 0.00 0.06 0.00 0.73 0.04 0.00 0.00 0.04 0.00 0.00 0.00 0.02 0.03 0.01 0.05 0.01 0.00

Attend School 0.00 0.03 0.00 0.00 0.91 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00

Attend College 0.00 0.24 0.06 0.00 0.00 0.61 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00

Eat Out 0.01 0.42 0.20 0.00 0.02 0.01 0.11 0.08 0.03 0.01 0.01 0.04 0.04 0.02 0.01 0.01 0.00

Personal Business 0.01 0.46 0.12 0.00 0.01 0.01 0.02 0.24 0.03 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.00

Everyday Shopping 0.02 0.54 0.14 0.00 0.01 0.01 0.03 0.08 0.06 0.01 0.02 0.03 0.04 0.01 0.01 0.01 0.00

Major Shopping 0.01 0.49 0.14 0.00 0.00 0.00 0.03 0.13 0.04 0.02 0.01 0.03 0.04 0.00 0.03 0.01 0.00

Religious/Community 0.02 0.55 0.06 0.00 0.00 0.01 0.04 0.06 0.03 0.01 0.12 0.04 0.03 0.01 0.02 0.01 0.00

Social 0.01 0.52 0.06 0.00 0.01 0.01 0.02 0.05 0.03 0.01 0.02 0.19 0.04 0.01 0.03 0.01 0.00

Recreation - Participate 0.01 0.45 0.08 0.01 0.01 0.00 0.02 0.09 0.03 0.00 0.01 0.03 0.22 0.01 0.03 0.00 0.00

Recreation - Watch 0.01 0.52 0.09 0.01 0.02 0.00 0.02 0.09 0.03 0.00 0.00 0.05 0.05 0.05 0.03 0.02 0.00

Accompany Another Person 0.00 0.37 0.04 0.03 0.03 0.00 0.01 0.11 0.01 0.00 0.01 0.03 0.04 0.01 0.30 0.01 0.00

Pick-Up/Drop-Off Passsenger 0.01 0.44 0.11 0.00 0.01 0.00 0.01 0.06 0.02 0.00 0.01 0.02 0.02 0.02 0.02 0.23 0.00

Turn Around 0.03 0.50 0.13 0.00 0.02 0.00 0.02 0.05 0.01 0.00 0.02 0.03 0.03 0.01 0.02 0.01 0.08
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place affect the likelihood of going to other types of places. For 
instance, people who go to childcare likely don’t also go to 
college. We can quantify this by looking at conditional 
probabilities of the form 𝑝(place 2|place 1)  , which is the 
probability of visiting place type 2 given that the person has 
visited a place type 1. Table 2 gives estimates of these 
probabilities from the PSRC data. These were computed by 
looking at the set of places visited by each person in the study. 
Indeed, given a visit to “Attend Childcare”, the probability of 
also visiting “Attend College” is zero. (Note that “attend” here 
means more than just a pick-up or drop-off. While a childcare 
attendee may visit a college briefly, the PSRC data says they 
don’t spend enough time at college to qualify as a full visit.) We 
also see that the conditional probability of “Eat Out” is 
maximized by people who also did “Major Shopping”. In 
addition, people who “Work” never “Attend Childcare” and also 
rarely “Attend School” or “Attend College”. 

D. Travel Distance 

Another potential feature for finding place labels is the 
distance between places. We can take advantage of how far 
people typically travel between different types of places. As an 
example, Figure 3 shows the great circle distance people travel 
to different place types when starting from home, based on the 
PSRC data. From this plot, we see that people are willing to 

travel much farther from home to “Work” than to 
“Attend School”. “Major Shopping” generally 
requires a longer trip from home than “Everyday 
Shopping”.  

This section shows that features beyond the 
individual visit have the potential to increase 
classification accuracy. We explore the use of 
these new types of features in Placer++, which we 
describe in detail next. 

IV. PLACER++ 

Our new Placer++ algorithm has two stages of 
inference using the feature categories described 
above. The Placer algorithm, augmented by cross 
label features, makes up the first stage. There are 
two options for the second stage, both of which 
use features derived from the sequences of visits. 
Figure 4 summarizes the flow of features through 
our different combinations of algorithms. We use 

the same 12 place types as Placer, which are listed in Figure 5. 

 

A. Stage 1: Cross Label Features 

We showed in Section III.A that cross labels (labels left at a 
location by other people) are potentially useful for labelling 
places. In this first stage of Placer++, we use the same machine 
learning scheme and features as Placer, but we augment the 69 
Placer features with 76 cross label features. We label these 
features as CrossX, which indicates cross label feature X. The 
first four of these features are computed based on the majority 
place label left by others at the same location as the visit to be 
classified: 

Cross1 - Label Winner - most frequent place label at this location 

Cross2 - Winning Count - number of visits at this location with most 

frequent place label 

Cross3 - Winning Fraction - fraction of visits at this location with most 

frequent place label 

Cross4 - Average Duration Winner - average duration of visits at this 

location with most frequent place label 

 

While the above set of cross label features looks at the most 
frequent label at the visit’s location, the next set of cross label 
features looks at all 12 place labels at that location: 

Cross5-6 (2 features) - Colocated "Home" by Others - fraction of total 

visits and average visit duration of "Home" visits by others to this 

latitude/longitude, similarly for following "Colated X by Others" 

features 

Cross7-8 (2 features) - Colocated "Work" by Others 

Cross9-10 (2 features) - Colocated "School" by Others 

Cross11-12 (2 features) - Colocated "Restaurant or Bar" by Others 

Cross13-14 (2 features) - Colocated "Personal Business" by Others 

Cross15-16 (2 features) - Colocated "Store for Shopping" by Others 

Cross17-18 (2 features) - Colocated "Place of Worship" by Others 

Cross19-20 (2 features) - Colocated "Social" by Others 

Cross21-22 (2 features) - Colocated "Recreation" by Others 

Cross23-24 (2 features) - Colocated "Accompany Another Person" by 

Others 

Cross25-26 (2 features) - Colocated "Transportation" by Others 

Cross27-28 (2 features) - Colocated "Turn Around" by Others 

 

 
Table 2: Given a place type in the left column, this shows the probability of 

visiting other place types. As an example, given a visit to “Attend Childcare”, 

the probability of also visiting “Attend College” is zero. 
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Home - Paid Work 1.00 0.92 0.68 0.00 0.00 0.01 0.36 0.57 0.48 0.06 0.08 0.14 0.24 0.09 0.08 0.32 0.06

Home - Other 0.04 1.00 0.46 0.02 0.15 0.03 0.28 0.47 0.38 0.05 0.07 0.17 0.23 0.08 0.13 0.23 0.04

Work 0.06 0.99 1.00 0.00 0.01 0.03 0.30 0.41 0.39 0.04 0.05 0.13 0.18 0.07 0.05 0.24 0.04

Attend Childcare 0.00 1.00 0.00 1.00 0.23 0.00 0.18 0.50 0.09 0.02 0.01 0.17 0.30 0.08 0.48 0.22 0.01

Attend School 0.00 1.00 0.03 0.03 1.00 0.00 0.17 0.45 0.12 0.01 0.06 0.19 0.33 0.07 0.28 0.17 0.02

Attend College 0.02 0.99 0.45 0.00 0.01 1.00 0.25 0.37 0.37 0.06 0.05 0.17 0.17 0.04 0.07 0.20 0.03

Eat Out 0.05 1.00 0.50 0.01 0.09 0.02 1.00 0.63 0.52 0.08 0.08 0.24 0.29 0.12 0.14 0.31 0.05

Personal Business 0.05 0.98 0.40 0.02 0.14 0.02 0.37 1.00 0.48 0.07 0.09 0.18 0.27 0.09 0.13 0.27 0.04

Everyday Shopping 0.05 1.00 0.47 0.01 0.05 0.03 0.39 0.61 1.00 0.08 0.09 0.21 0.27 0.09 0.09 0.30 0.05

Major Shopping 0.05 1.00 0.39 0.01 0.03 0.03 0.45 0.64 0.58 1.00 0.08 0.24 0.27 0.09 0.14 0.32 0.06

Religious/Community 0.05 1.00 0.38 0.00 0.13 0.02 0.35 0.61 0.53 0.06 1.00 0.23 0.25 0.06 0.13 0.32 0.05

Social 0.03 0.98 0.36 0.02 0.17 0.03 0.39 0.52 0.47 0.07 0.09 1.00 0.28 0.10 0.16 0.29 0.06

Recreation - Participate 0.04 0.98 0.35 0.03 0.21 0.02 0.34 0.54 0.43 0.06 0.07 0.20 1.00 0.09 0.17 0.28 0.06

Recreation - Watch 0.05 0.99 0.43 0.02 0.14 0.01 0.43 0.56 0.44 0.06 0.06 0.23 0.29 1.00 0.18 0.46 0.06

Accompany Another Person 0.03 1.00 0.17 0.09 0.33 0.01 0.32 0.49 0.27 0.06 0.07 0.21 0.32 0.10 1.00 0.30 0.04

Pick-Up/Drop-Off Passsenger 0.06 1.00 0.49 0.02 0.11 0.02 0.38 0.57 0.49 0.07 0.10 0.22 0.29 0.15 0.17 1.00 0.06

Turn Around 0.07 0.99 0.44 0.01 0.09 0.02 0.40 0.54 0.54 0.08 0.09 0.27 0.37 0.12 0.14 0.36 1.00
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Figure 3: When the starting point is home, this is how far people 

travel to different types of places. The error bars show the 25th 

and 75th percentiles. 
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In reality, exact colocation likely would not occur, due to the 
inevitable noise in location sensors, so we could not expect to 
find previous location labels whose coordinates exactly matched 
with a new label. This could be solved by setting a small distance 
tolerance of 10-20 meters to look for collocated labels. In the 
PSRC data, exact colocation does occur, because participants 
gave their locations in terms of street addresses which were then 
geocoded to latitude/longitude coordinates. Giving the same 
street address yields the same coordinates, leading to exact 
matches. 

In Placer, one useful set of features gave counts of nearby 
business types and the distance to the nearest example of each 
type. We made a similar set of features for Placer++ using cross 
labels. These features give the count of nearby labels left by 
others and the distance to the nearest example of a label left by 
someone else. These nearby cross features from the 12 possible 
place labels are: 

Cross29-32 (4 features) - Nearby "Home" by Others - count of "Home" 

labels by others within 50, 100, and 200 meters and distance to 

nearest "Home" by another, similarly for following "Nearby X by 

Others" 

Cross33-36 (4 features) - Nearby "Work" by Others 

Cross37-40 (4 features) - Nearby "School" by Others 

Cross41-44 (4 features) - Nearby "Restaurant or Bar" by Others 

Cross45-48 (4 features) - Nearby "Personal Business" by Others 

Cross49-52 (4 features) - Nearby "Store for Shopping" by Others 

Cross53-56 (4 features) - Nearby "Place of Worship" by Others 

Cross57-60 (4 features) - Nearby "Social" by Others 

Cross61-64 (4 features) - Nearby "Recreation" by Others 

Cross65-68 (4 features) - Nearby "Accompany Another Person" by 

Others 

Cross69-72 (4 features) - Nearby "Transportation" by Others 

Cross73-76 (4 features) - Nearby "Turn Around" by Others 

 

There are a total of 145 scalar features for Stage 1. These are 
the 69 original Placer features and the 76 additional cross label 
features (Cross1 – Cross76). For each visit, we compute the 145-
element feature vector and submit it to our decision tree 
classifier. The classifier produces a discrete probability 
distribution over the 12 place types, giving a probability for each 
of the 12 place types. 

We will explain later how we trained and tested our 
classifier. Next, however, we explain how we exploited 
sequence features in Stage 2. 

B. Stage 2a: Reranking from Whole Sequence Features 

We showed previously in this paper that there are certain 
consistencies in peoples’ sequences of visits. For instance, there 
is often a 24-hour period in visits to home. Neither Placer nor 
Stage 1 of our classification process can take advantage of 
features related to a sequence of visits, because they classify 
each visit independently of the others based only on features of 
that visit. It is in Stage 2 that we start to use sequence features to 
further increase classification accuracy. The key difference 
between Stage 1 and Stage 2 is that Stage 2 can exploit features 
that depend on other visits in the sequence. This allows us to use 
features beyond just a visit, such as periodicity, cooccurrences, 
and driving distances. We do this by adopting a technique from 
natural language processing (NLP) that parses sentences. 

1) Candidate Sequences 
We start by describing a technique to generate likely 

candidate visit sequences from the results of Stage 1. Stage 2a 
will examine these candidates and pick the best one. The forest 
of boosted decision trees in Stage 1 gives a discrete distribution 
of classification probabilities for each visit. We say a sequence 
has 𝑉 visits, and there are 𝐿 possible visit labels. (For us, 𝐿 =
12 possible visit labels given in Figure 5.) More precisely, for a 
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Figure 4: This is how features flow through our various combinations of classification algorithms. The parallelograms represent 

feature data, and the rectangles represent processing. For comparison, we show the original Placer algorithm in the box in the lower 

right. 

 



given user, Stage 1 gives class probabilities 𝑝𝑣𝑙  for each visit 
1 ≤ 𝑣 ≤ 𝑉  and each class label 1 ≤ 𝑙 ≤ 𝐿  . If we stop with 
Stage 1, then the visit label we choose for visit 𝑘 of a sequence 

is 𝑙∗ = argmax
𝑙∈[1…𝐿]

(𝑝𝑣𝑙) . The log-likelihood of this Stage 1 

sequence is ∑ 𝑙𝑜𝑔(𝑝𝑣𝑙∗)𝑉
𝑣=1 . For Stage 2a, we use beam search 

to generate the top 50 candidate sequences for each user in 
descending order of log-likelihood according to the class 
probabilities from Stage 1. A reranking process, described next, 
is used to infer the best of these candidate sequences. 

2) Sequence Reranking 
A sequence of visits can be thought of as a sentence, where 

each word in the sentence corresponds to a visit. In NLP, one 
common task is to classify each word in a sentence into a part of 
speech, which is analogous to our classifying each visit into one 
of our 12 place types. This analogy led us to adopt a technique 
pioneered in NLP for parsing sentences into parts of speech. 
Collins and Koo [26] noticed that traditional NLP parse trees 
made it difficult to incorporate certain features, such as the 
feature that every sentence should contain a verb. Their solution 
takes a set of candidate parses and attempts to rank them such 
that the most accurate parse ranks first. 

We will adopt the notation of Collins and Koo to explain 
how we used their technique for reranking sequences of visits. 
To be precise, one of their sentences corresponds to a sequence 
of visits from one person, which we will simply call a sequence. 
There are 𝑛  sequences in a training set of sequences, each 
notated as 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑛. (We explain later how we split our data 
into training and testing.) 

For training, the process starts by subjecting each training 
sequence 𝑠𝑖 to our Stage 1 classification process. We compute 
the best 𝑛𝑖 = 50 candidate sequences for each training sequence 
based on log-likelihood as described above. These candidate 
sequences are called 𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛  and 1 ≤ 𝑗 ≤ 𝑛𝑖 . The log 

likelihood of each candidate sequence is 𝐿(𝑥𝑖𝑗). 

We define a set of 𝑚 + 1 sequence features ℎ𝑘(𝑥), 0 ≤ 𝑘 ≤
𝑚. In addition to the log likelihood feature 𝐿(𝑥),  the other 𝑚 
features are very flexible, being based on all or part of the 
sequence. We describe the specific features we used in the next 
subsection. A linear combination of the features gives a ranking 
function for a sequence 𝑥: 

𝐹(𝑥, �̅�) = 𝛼0𝐿(𝑥) + ∑ 𝛼𝑘ℎ𝑘(𝑥)

𝑚

𝑘=1

 ( 1 ) 

The parameter vector �̅� is learned from with a fast algorithm 
[26] for linear RankSVM [27] that attempts to give the highest 
ranking to sequences with the highest fraction of correct visits. 

For classifying visits in a new sequence, each visit is first 
passed through Stage 1, which gives a vector of classification 
probabilities to each visit. The classification probabilities are in 
turn used to compute the 50 most likely candidate sequences. 
The 𝑚 + 1 features for each of these sequences is given to the 
ranking function above, and we take the candidate sequence 
with the maximum ranking function value. It is important to note 
that the correct sequence might not appear in our top 50 
candidate sequences. However, the goal of the reranking stage 
is to find a better sequence compared to the Stage 1 results by 

making use of sequence features that we gather from the whole 
sequence. 

3) Whole Sequence Reranking Features 
These are the 194 features that we used for reranking. None 

of them could be computed based on individual visits, which 
makes them quite different from the features used for Stage 1. 
We call them “WholeSequence” features because they each 
apply to the sequence as a whole. The features are: 

WholeSequence1 - Log Likelihood - Sum of logs of classification 

probabilities from Stage 1 

WholeSequence2 - 24 Hours +/- - Fraction of time label in sequence is 

same as label +/- 24 hours, based on sampling each visit in 5-

minute increments 

WholeSequence3-14 (12 features) - Label Fractions - Fraction of total 

visits in sequence accounted for by each label 

WholeSequence15-26 (12 features) - Location Counts - Count of 

different locations for each label type in sequence 

WholeSequence27-170 (144 features) - Markov Probabilities - Given 

label A, how often does label B follow, A and B range over all 12 

possible label pairs 

WholeSequence171-182 (12 features) - Duration Fraction - Fraction 

of time spent with each label 

WholeSequence183-194 (12 features) - Label Occurrence - Whether 

or not each label type occurred in sequence, binary 

 
The output of Stage 2a is a sequence of visit labels, with one 

label for each visit of a user. An alternative to Stage 2a is Stage 
2b, which we describe next. 

C. Stage 2b: Reclassifying Visits from Local Sequences 

The forest of boosted decision trees we used in Stage 1 was 
a powerful classifier, and we wanted to exploit its power for 
sequences. The input to Stage 2b is the maximum likelihood 
sequence of visits from Stage 1, i.e. the top sequence of the 50 
generated for input to Stage 2a. (Recall that the flow of features 
through the various algorithm combinations is shown in Figure 
4.) Stage 2b uses per visit features, as in Stage 1, but the Stage 
2b features are based on the sequence of visits from the output 
of Stage 1. We computed per-visit features by splitting the input 
sequence back into individual visits, and we used features 
derived from the input sequence to reclassify each visit. Thus, 
each visit again had its own set of features, but these were 
derived from the whole input sequence. Although the Stage 2b 
features come from the sequence, most of them could not have 
been used as Stage 2a features. This is because Stage 2a features 
apply to the sequence as a unit. By splitting the sequence back 
into individual visits for Stage 2b, we can compute a separate set 
of features for each visit, yielding a potential boost in 
classification accuracy. As an example, one of our Stage 2b 
features gives the driving time to the next visit. While this is 
derived from the sequence, it applies only to the visit in question, 
not the whole sequence. 

The 31 features we used for classifying visits in this this 
stage follow below. 

LocalSequence1-4 (4 features) - Previous/Next Labels - Inferred labels 

at relative visits -2, -1, +1, and +2 

LocalSequence5-8 (4 features) - Previous/Next Durations - Durations 

at relatives visits -2, -1, +1, and +2 



LocalSequence9  - 24 Hours +/- - Inferred visit 24 hours previous (or 

24 hours ahead if previous unavailable) 

LocalSequence10-21 (12 features) - Label Occurrence - Whether or 

not each label type occurred in inferred sequence, binary 

LocalSequence22-23 (2 features) - Previous/Next Drive Time - Drive 

time from previous visit to this visit, and drive time to next visit, 

computed from commercial routing program 

LocalSequence24-25 (2 features) - Previous/Next Drive Distance - 

Drive distance from previous visit to this visit, and drive distance 

to next visit, computed from commercial routing program 

LocalSequence26-27 (2 features) - Previous/Next Great Circle 

Distance - Great circle distance from previous visit to this visit, 

and drive distance to next visit 

LocalSequence28 - Arrival Range - Timespan of range of arrival times 

to all instances of this label in sequence 

LocalSequence29 - Departure Range - Timespan of range of departure 

times from all instances of this label in sequence 

LocalSequence30 - Duration Minimum - Minimum duration of all 

instances of visits to this label in sequence 

LocalSequence31 - Duration Maximum - Maximum duration of all 

instances of visits to this label in sequence 

V. EXPERIMENTS 

We used the PSRC diary study data [24] explained 
previously and in [6] for our training and testing. We split the 
data into three parts: A, B, and C, with A containing data for 
40% of the study’s households, B with another 40% of the 
households, and C with the remaining 20%. With multiple 
people from some households contributing data, we thought it 
was important to not scramble households between the three 
sets. This could give an unrealistic advantage to the cross label 
features, with possibly one household member in the training set 
contributing a “home” label to a location for a peer household 
member in the testing set. 

We were faced with the problem of using our data efficiently 
and fairly across the three stages of processing. If we had much 
more data, we could split it such that there was no overlap in 
data between the three stages, generating a model from each 
stage that is used on fresh data in the next stage. In order to make 
more efficient use of our data, we devised a scheme that used 
the same data in all three stages, but that carefully avoided unfair 
leaks from the test data into the classification models. In general, 
we used data from subsets A and B for training, leaving the data 
in C for testing. The remainder of this section describes how we 
used the subsets for creating models and testing in the three 
stages. 

A. Stage 1: Cross Label Features 

Our first stage of visit classification is similar to that used in 
the original Placer algorithm. Each visit spawns a feature vector. 
Most elements of a visit’s feature vector come from either 
characteristics of the person (i.e. age and gender) or 
characteristics of the visit (i.e. timing and surrounding 
businesses). If this were the extent of the features, then 
generating the training and testing data would be 
straightforward. However, there are also cross label features. In 
an actual implementation, cross labels are place labels that have 
been left prior to the visit that is being classified, by either the 
user or other users. The machine learning model would have an 
unrealistic advantage if it could use a person’s own place labels 
to label their other places. It may even be considered unfair to 

use labels given by a family member to help compute labels. 
This is why we split our data into subsets A (40%), B (40%), 
and C (20%), with no persons or households split between any 
two or three subsets. 

We save the C data for testing and use A and B for training. 
To compute cross label features for A, we use labels from B, and 
vice-versa. By using labels from B as cross labels for A, we 
ensure that none of the features for any visit in A have leaked 
from other visits in A. The same holds true for features in B. We 
concatenate all these feature vectors from A and B and build an 
inference model in the form of a forest of decision trees as 
described previously. 

To test on data in C, we must first compute a feature vector 
for each visit in C. The cross label features for C come 
exclusively from visits in A and B. This ensures that features for 
visits in C are not affected by any other visits in C. We test the 
accuracy of our labeling by inferring a label for each visit in C 
from the model built from A and B, as above. 

In order to establish notation for the next stage, we will use 

𝐷𝑇1
(𝐴𝐵)

 as the name of the forest of decision trees computed in 

Stage 1. The subscript 1 stands for Stage 1, and the superscript 
AB indicates that the decision tree was trained on data from both 
subsets A and B. 

B. Stage 2a: Reranking from Whole Sequence Features 

In Stage 2a, we again test on data in subset C, which means 
we use A and B for training. The training data for this stage 
consists of a list of 50 candidate visit sequences for each user. 
These sequences come from the classification probabilities 
computed by decision trees from Stage 1. Specifically, for the 
data in A, we compute a Stage 1 forest of decision trees called 

𝐷𝑇1
(𝐴)

 from the visits in A, where the cross label features come 

from the data in B. Interchanging A and B, we compute another 

Stage 1 forest of decision trees called 𝐷𝑇1
(𝐵)

. As a reminder, each 

of these decision tree forests takes a feature vector describing a 
visit and gives a probability for each possible label of the visit. 
Given a sequence of visits by a user, we use these probabilities 
and a beam search to generate likely candidate sequences of 
visits by that user. To generate training data for Stage 2a, we 

apply 𝐷𝑇1
(𝐴)

 to visits in B to make 𝑛𝑖 = 50 candidate sequences 

for each user in B. We will call this set of sequences 𝑆𝐸𝑄(𝐵). 

Vice-versa, we apply 𝐷𝑇1
(𝐵)

 to visits in A to make candidate 

sequences for each user in A, resulting in sequences 𝑆𝐸𝑄(𝐴). All 
these candidate sequences are concatenated to make a training 

set 𝑆𝐸𝑄(𝐴) + 𝑆𝐸𝑄(𝐵). Using the reranking procedure described 
in previously, we use this training set to compute a weight vector 

called �̅�(𝐴𝐵)
. For testing, we generate 𝑆𝐸𝑄(𝐶) , which are 

candidate sequences from C using 𝐷𝑇1
(𝐴𝐵)

, and we rerank these 

with the ranking function in Equation ( 1 ) using �̅�(𝐴𝐵)
 as the 

weights. After reranking, the top-ranked sequence is the 
inference output of Stage 2a. This intertwining of data and 
models is intended to make efficient use of our data while still 
avoiding unrealistic cross talk between training and testing. 



C. Stage 2b: Reclassifying Visits from Local Sequences 

Stage 2b is an alternative to Stage 2a. It reclassifies each visit 
based on the inferred visit sequence from Stage 1. To be specific, 
from Stage 1, we assemble the most likely sequence for each 
user, which are the maximum probability label classification 
results from Stage 1. Once again we use data in A and B for 
training, and we cope with the cross labels in the same way as 
training for Stage 1. For each visit, we use all the features from 
Placer, the cross labels, and LocalSequence features. We build a 
decision tree from the training data in A and B, and we reclassify 
all the visits in C based on their preliminary classifications from 
Stage 1. For the decision trees, we use the same parameters as 
used in Placer and Stage 1. 

VI. EXPERIMENTAL RESULTS 

We tested our place labeling technique on the test data in 
subset C as described above. We first established a baseline by 
using the Placer algorithm [6], trained on A and B, and then 
tested on C. The Placer algorithm is the same as Stage 1 of the 
Placer++ algorithm, but omits the cross visit features. The 
overall accuracy for Placer was 63.85% with our particular set 
of test and training data. We used the same decision tree learning 
parameters as in the Placer paper. Because we used a single, 
predetermined set of learning parameters, we did not need a 
separate validation data set for experimenting with these 
parameters. 

Applying Stage 1 of the new algorithm gave an overall 
classification accuracy of 66.92%, which is an improvement of 
3.07 percentage points over the Placer baseline. This shows the 
improvement attributable to using labels from other users. These 
relative accuracy percentages are shown in Figure 5. 

Stage 2a uses reranking to find likely sequences from the 
probabilistic output of Stage 1. Tested on subset C, its accuracy 
was 69.76%, an improvement of 5.91 percentage points over the 
Placer baseline. 

Stage 2b performs a reclassification of each visit from Stage 
1 based on other visits in the likely sequences. Testing on C, it 
gave an improvement of 8.68 percentage points over the Placer 

baseline, with an overall accuracy of 72.53%. We see that Stage 
2b outperforms Stage 2a in terms of accuracy.  

We can also apply all three stages to our problem. Stage 2a 
produces a sequence of visit labels that can serve as the input to 
Stage 2b. When we do this, we get, barely, the best overall 
accuracy of all our algorithm combinations at 72.70%, an 
improvement of 8.85 percentage points over the Placer baseline. 
Table 3 shows the confusion matrix after applying all three 
stages. Exceeding 80% accuracy are Home, Work, School, and 
Pick-Up/Drop-Off Passenger. Below 30% are 
Religious/Community, Social, Accompany Another Person, and 
Turn Around. Accuracies and F-scores of the baseline and 3-
stage algorithm are shown in Figure 5. There is improvement for 
every label category except for “Accompany Another Person”.  

VII. SUMMARY AND CONCLUSIONS 

We have shown how to increase the accuracy of place 
labeling using two new types of features: cross labels and 
sequence features. We justified the use of these features by first 
analyzing statistics of daily visits. 

Cross labels are place labels left by others that can help infer 
the proper label for a new visitor to that place. As Figure 2 
shows, however, different people sometimes give different 
labels to the same place, so cross labels are not completely 
reliable. Cross labels were embodied in Stage 1 of our new 
algorithm, which achieved a classification accuracy of 66.92%, 
an improvement of 3.07 percentage points over the Placer 
baseline of 63.85%. 

Sequence features exploit regularities in the order and 
relative timing of visits to different place types, embodied in 
Stage 2a and Stage 2b of our algorithm. Using all three stages, 
we increased classification accuracy to 72.70% over the baseline 
accuracy of the original Placer algorithm, an increase of 8.85 
percentage points. 

We expect one way to increase accuracy further would be to 
use more training data. For cross visits, we mentioned above that 
only 48.0% of locations in the PSRC data had labels from more 
than one person, and only 21.5% of places had identical labels 
from at least two people. With denser labeling, cross labeling 
should work better. Sequence features would likely help more if 
the training and test sequences were longer. The PSRC diary 
surveys lasted only two days, which may not always be enough 
to detect regularities in the sequences of places people visit. This 

 
Figure 5: This shows the accuracies and F-scores of the 

baseline Placer algorithm and the 3-stage algorithm. We see 

improvement in all labels except “Accompany Another 

Person”. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Accuracy and F-Score

Baseline Accuracy Baseline F-Score All Stages Accuracy All Stages F-Score

 
Table 3: This is the confusion matrix for the 12 different place 

types using all three stages of our algorithm. 
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Home 0.94 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.94

Work 0.01 0.84 0.02 0.01 0.04 0.01 0.01 0.01 0.03 0.00 0.02 0.00 0.84

School 0.00 0.01 0.92 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.92

Restaurant or Bar 0.00 0.03 0.00 0.63 0.10 0.11 0.01 0.03 0.04 0.03 0.02 0.00 0.63

Personal Business 0.17 0.04 0.01 0.05 0.45 0.10 0.00 0.04 0.04 0.05 0.07 0.01 0.45

Store for Shopping 0.00 0.00 0.00 0.05 0.12 0.75 0.00 0.00 0.01 0.05 0.01 0.00 0.75

Religious/Community 0.00 0.14 0.01 0.03 0.09 0.02 0.29 0.15 0.21 0.01 0.05 0.00 0.29

Social 0.11 0.07 0.05 0.04 0.15 0.03 0.03 0.25 0.14 0.04 0.09 0.00 0.25

Recreation 0.02 0.05 0.03 0.04 0.09 0.02 0.01 0.07 0.56 0.05 0.05 0.01 0.56

Accompany Another Person 0.15 0.01 0.02 0.04 0.20 0.08 0.01 0.03 0.05 0.27 0.14 0.00 0.27

Pick-Up/Drop-Off Passsenger 0.01 0.03 0.00 0.01 0.06 0.01 0.00 0.02 0.02 0.03 0.80 0.00 0.80

Turn Around 0.01 0.00 0.00 0.10 0.10 0.04 0.00 0.01 0.05 0.04 0.56 0.11 0.11

Precision 0.89 0.85 0.87 0.64 0.47 0.72 0.48 0.32 0.58 0.38 0.70 0.23



is why we retained Stage 2a of our algorithm: despite its small 
boost in accuracy, it would likely help more for longer 
sequences. 

One interesting area for future research is to extend 
classification algorithms to label places rather than visits. Our 
algorithm is aimed at classifying each visit to a place into a 
certain type, but it is not designed to classify each place. As we 
showed in this paper, different people give different labels to the 
same place, so a global label for each place is not appropriate. 
In fact, when we look at all 47,060 unique person/place pairs in 
the PSRC dataset, we find that 7.39% of the time the same 
person gave a different label to the same place. For example, we 
found instances of the same person labeling a place both “Eat 
Out” and “Everyday Shopping”. This leads to other questions 
regarding the boundary between a place label and an activity. 
For understanding the context of the person, both are likely 
important, and one implies the other, but place and activity are 
still two different, albeit related concepts whose relationship and 
inference are ripe for more research. 
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