

Learning to Generalize for Complex Selection Tasks
Alan Ritter

University of Washington
Computer Science and Engineering

Box 352350, Seattle, WA 98195, USA
E-mail: aritter@cs.washington.edu

Sumit Basu

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

E-mail: sumitb@microsoft.com

ABSTRACT

Selection tasks are common in modern computer interfaces:
we are often required to select a set of files, emails, data
entries, and the like. File and data browsers have sorting
and block selection facilities to make these tasks easier, but
for complex selections there is little to aid the user without
writing complex search queries. We propose an interactive
machine learning solution to this problem called “smart
selection,” in which the user selects and deselects items as
inputs to a selection classifier which attempts at each step
to correctly generalize to the user’s target state.
Furthermore, we take advantage of our data on how users
perform selection tasks over many sessions, and use it to
train a label regressor that models their generalization
behavior: we call this process learning to generalize. We
then combine the user’s explicit labels as well the label
regressor outputs in the selection classifier to predict the
user’s desired selections. We show that the selection
classifier alone takes dramatically fewer mouse clicks than
the standard file browser, and when used in conjunction
with the label regressor, the predictions of the classifier are
significantly more accurate with respect to the target
selection state.

Author Keywords

Interactive selection, learning by example, programming by
demonstration, meta-learning, learning user models, file
browsers, learning to generalize.

ACM Classification Keywords

H.5.2. User Interfaces (Interaction Styles, Evaluation) I.2.6
Machine Learning.

INTRODUCTION

A variety of common tasks require users to select multiple
items from a list: picking out files to delete or copy in a file
browser, selecting emails to be moved to a folder, or
selecting particular cells, rows, or columns from a

spreadsheet. If there are a small number of items, this is a
fairly easy task. If there are many, the task may still be
quick if the items group together in alphabetical or other
attribute order, since many applications have facilities to
ease the selection of contiguous groups. However, if the
selection is more complex, e.g., the user wants all files that
contain “old” in the title, she generally has little recourse
but to individually select all of the files. In the case of file
selection in particular, there is the option of resorting to the
command line or a search interface. From there, one can
use regular expressions or complex search syntax to specify
an arbitrary list, but this level of complexity is beyond the
reach and/or patience of many typical users.

Figure 1. The smart selection scenario: the user selects or

deselects a new item and thus provides a label to the classifier,

which then classifies all items based on all labels thus far and

updates the selection window with its results.

The goal of this work has been to see whether and how it
might be possible to give users the power of complex
selection directly in the GUI. In our prototype and
experiments, we focus exclusively on the file selection task,
but our approach generalizes to any other multiple selection
scenario.

Given the specific goal of improving file selection, one
option would have been to provide an “advanced search”
dialog, which would allow the user to specify bounds and
ranges for various attributes of the data. This would be
quite onerous for the user, however, as she would have to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
IUI’09, February 8–11, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

mentally reform her intended selection into a set of rules
and conditions and then either enter it into a complex form
or type a query with complex syntax. Instead, we chose to
pursue an approach of automatic selection generalization or
smart selection, wherein the user selects and deselects items
as positive and negative examples. If the system is
effective at generalization, the user should be able to reach
her target selection after providing a small number of
examples. Furthermore, we would expect that such a
method would take fewer clicks than using conventionally
available mechanisms in the file browser (sorting, block
selection, etc.), especially for complex tasks. Figure 1
shows the workflow of the automatic generalization
process. Although it would be possible to highlight the
inferred selections in a different color, this would require
additional UI elements for deciding when to switch over to
the system’s predictions. Instead we chose to make as few
changes to the user’s familiar workflow as possible, i.e.,
items are either selected or not, and the user makes use of
these selections as they would today (deleting, moving,
etc.) without the need for additional buttons or keystrokes.
We recognize, however, that for everyday use it is likely
our method would be something the user would want to
turn on only for complex selection tasks or activate via a
special key (e.g., alt-click vs. control-click).

We are not, of course, the first to propose the use of
learning to help with selection generalization. There is
some excellent work on inferring multiple text selections by
Miller and Myers [10]: their system inferred regions of text
to select from a few fragments selected by the user. While

their results looked promising in terms of the number of
required examples, the system had limitations with respect
to its target function as its inference mechanism was limited
to learning a single conjunction of features.

For our system, we were interested both in maintaining the
standard selection UI and in handling arbitrarily complex
selections. The latter was particularly important to us since
item selection tasks (unlike text selection tasks) often
require selecting multiple groups with distinct
characteristics. As such, we wanted to first propose a
learning framework that could handle such selections. We
soon found that a mixture of individual classifiers was
effective at expressing an appropriate degree of complexity.
In our prototype system, we use limited depth decision trees
as component learners, and then used Adaboost (a form of
boosting) [7] to combine them into an overall selection

classifier. As we will later show, this classifier alone takes
significantly fewer clicks than standard file browsing
mechanisms for many selection tasks.

However, while this classifier has the expressive power to
handle arbitrary user selections, we were struck by the data-
poor nature of the scenario: for each selection task, a new
classifier was being trained using only the positive and
negative examples that the user had explicitly clicked on.
Surely, though, knowledge of how people tend to do
selection tasks could be helpful. In other words, any
classifier has its own notion of how best to generalize, but
specific populations, tasks, or individuals could have
typical patterns of behavior that we should be able to
leverage. For example, if the system automatically selects

Figure 2. Learning to generalize. For a given session, the selection classifier only has labels for that particular task. However, the

label regressor uses data from many sessions of users doing selection tasks in order to form a model of how to best generalize

selections. The selection classifier then combines the labels from the user with the predictions of the label regressor in order to come

up with the best prediction of the user’s desired selection.

some items, and the user does not deselect any of them and
instead selects a new example, it may well mean the user is
implicitly saying that the system selected appropriate items.
The selection classifier has no notion of such concepts: to
it, a label is just a label.

One could introduce heuristics such as the one described
above based on intuitions or observations of people’s
behavior, but heuristics always come with their inherent
risks. Fortunately, in the smart-selection domain, it is easy
to gather labeled training data from many users doing many
different selection tasks, since every selection task they
complete as they go about their daily business is effectively
a training session. Therefore, we sought a way to
incorporate this information via learning. We propose a
secondary mechanism, the label regressor, which is trained
on users’ previous interactions with the selection classifier,
to make probabilistic predictions about what items are
likely to be selected. We then feed the soft labels from this
mechanism in addition to the user’s explicit examples into
the selection classifier in hopes of improving performance.
This process of learning to generalize is shown in Figure 2.

In the remainder of this paper, we will describe the details
of our methods and results. We begin with a review of
relevant background literature and then explain the file
browser prototype we developed. We then describe the
selection classifier and the label regressor in detail, and
discuss the features we used for both as well as how we
integrate their results. We then present the user study we
ran to measure the effectiveness of our method and show an
analysis of the results. We close with a brief discussion and
thoughts about future directions.

RELATED WORK

There has been strong interest in recent years in aiding
users with complex tasks via interactive machine learning,
in which users interactively build classifiers by providing
labeled examples or ratings to a learning algorithm. Fails
and Olsen introduced this concept in [5], in which they
described a framework for this process and presented the
“Crayons” tool for finding image regions via interactively
building decision trees. In [6], Fogarty et al. presented the
CueFlik system, which helps users find images by learning
a custom cost function based on the user’s feedback on
which images are relevant. Kristjansson et al. [8] described
an interactive method for optimizing text extractors for
structured text (such as addresses) in free-form documents.
More specific to the file management domain, Bao and
Herlocker [1] presented a method to help users choose the
appropriate folder in a folder hierarchy more quickly.

Another body of related work is from the programming by
demonstration (PBD) community: as in their scenarios, our
system is trying to complete a task based on the examples
the user is presenting. Much of their focus, though, is
around learning sequences of actions (thus programming by
example); for instance, the work of Cypher [4] develops a
method for automatically creating programs to do repetitive

tasks based on examples. In our scenario, the action itself
(selection) is simple, but deciding what items to apply it to
is the challenge.

The most closely related work to ours is the LAPIS system
from Miller and Myers referred to in the previous section
[10]. This is a text-editing system which allows users to
select multiple text regions for simultaneous editing.
LAPIS introduced the concept of “selection guessing,” in
which users provided positive and negative examples by
adding or removing highlighted regions of text; the system
then used these to infer the user’s intended selection.
LAPIS automatically updates its selections after each
example and thus has a very similar workflow to our
system. However, their system required an option to turn
off automatic selection guessing so that the user could
manually complete selection tasks. This was due to its
hypothesis space being limited to rules consisting of simple
conjunctions, so the system was not capable of performing
arbitrarily complex selections. We will discuss later why
any system may want this option at times, but the potential
of learning complex selections was key to our goals.

Our paper builds on the motivation of this pioneering work,
but differs in that we are selecting discrete items instead of
highlighting arbitrary text fields. In fact, because file
selections tend to be more complex than text selections
(files containing X or Y larger than Z, etc.), we strived to
go beyond the simple conjunctions of the past work.
Furthermore, we introduce the concept of learning to

generalize in interactive machine learning: instead of
leaving our classifier to generalize as it sees fit or choosing
heuristics about appropriate generalizations, we attempt to
learn the way in which the user wants the system to
generalize. We do this by making use of more than just the
labels the user is giving us for a particular selection task:
we also use behavior data from many training instances
(from one or more users) to learn a model for what the user
is trying to do.

Our motivation of utilizing users’ previous selection tasks
to improve classifier performance on new tasks is similar to
that of Multi-Task Learning [13]. For example, the AutoDJ
system [12], automatically generated music playlists from
users’ positive and negative examples, which are provided
by interactively adding or removing songs. Additionally, it
uses Kernel Meta-Training to improve its recommendations
by training on pre-existing album playlists from one or
more users. Our work differs, however, in that we use a
secondary learning mechanism which is task-independent to
provide additional labeled data based on behavior data from
the user.

Finally, our learning method utilizes two separate sets of
features, one based on the items in the list and one based on
user behavior; therefore it bears similarity to the co-training
algorithm proposed by Blum and Mitchell [3]. Our method
differs from co-training, however, in that both learning
mechanisms are not trained on the same set of labeled data.

Instead, the label regressor utilizes task-independent
features and is trained on data from previous tasks, while
the selection classifier makes use of task-specific features,
and is trained using labeled examples provided by the user
(in addition to the outputs from the label regressor).

USER INTERFACE

In order to explore the space of smart selection, we
developed a prototype “smart file browser” (Figure 3),
which can automatically select files in response to the
user’s actions. When running in the smart selection
conditions (B and C in the experiments below), the browser
attempts to generalize the selection and automatically
selects those items that it predicts will be selected. The user
can then select more items or deselect incorrectly selected
items; each such selection will cause the browser to come
up with and select a new set based on these examples.

Figure 3. Smart file browser Prototype

We intentionally kept our prototype as similar as possible to
the standard Windows file browser with which our subjects
were already familiar. To that end, the browser provides
most of the features familiar from the standard browser
window: sorting by column, block selection (via shift-click,
i.e., holding down the shift key and clicking on two items),
and of course multiple selection (via control-click). When
running in the control condition (A in our experiments
below), these commands behave just as they would in the
standard browser.

In the smart selection conditions, users engage the selection
algorithm by control-clicking1 on an additional item when
at least one item is already selected; we require at least two
items as it prevents spurious generalizations based on a
single selection. While in this mode; after each example is
provided, the system re-trains the selection classifier and

1 In a deployed system we could well use another key, for
example Alt, in order to give users the choice as to when it
is appropriate to use smart selection.

updates its predictions on the items which have not been
explicitly selected or deselected, updating their state as
appropriate. If the user now clicks on an item while not
holding down control, all items are de-selected (as in the
standard browser), and the current auto-selection context
(labeled examples and behavior features) is reset.

Furthermore, as users interact with the browser, all of their
actions, in addition to the current sort order and selection
state of the files, are logged to a data file. This data can
later be used for training the label regressor as well as
analyzing various performance metrics.

METHOD

From a high level view, we approach smart selection as a
classification problem: the user provides us with explicit
positive and negative labels on items, each of which has a
multiplicity of features (name, extension, size, creation
date, etc.), and we train a classifier based on these features
and labels. If the user is unsatisfied with the result, she
supplies additional labels, and so the cycle continues until
she reaches the target selection state. This simplified
version of things is illustrated by Figure 1.

However, there is a subtlety: we can’t simply use any
classifier that is capable of separating the data based on the
labels. If the classifier has too much flexibility, for instance
if it only selects or unselects those items that the user
explicitly labels, it won’t generalize the user’s selections at
all. While not technically wrong, this would not be very
useful in the smart selection context. The goal, then, is to
satisfy the user’s labels while generalizing in the right way.
A natural choice for achieving this is to restrict the
complexity of the decision surface. This was the approach
of the LAPIS system we described earlier [10], which
restricts the set of learnable hypotheses to simple
conjunctions of features. However, such an approach is too
limited in the complexity of target selection states it can
correctly classify. We thus developed a classification
method with flexible complexity, which adds only enough
complexity to satisfy the user’s explicit labels. This works
by using simple component classifiers (limited depth
decision trees) that are combined via boosting, as we will
describe shortly.

While more capable of handling arbitrary selections, we
still had no reason to believe this method would generalize
in the right way. We realized that this, too, could be cast as
a learning problem. Although little labeled data is available
for any given selection task, users will generally perform
many selections in different directories over the course of
their daily activities. Further, it would be easy to obtain
labels for all of the items once these tasks are complete,
since users implicitly indicate when a given selection is
complete by applying some operation (copy, move, delete,
etc.) to the selected files. Because these historical examples
will come from different directories and/or target tasks,
though, we cannot utilize the same file-attribute features as
those used by the selection classifier. Instead, we extract a

separate set of task-independent features based on the user’s
behavior. We then combine these features and labels to
train a label regressor to predict the probability that a given
file will be selected in the target state. We can then feed the
outputs of this label regressor as soft labels to the selection
classifier so that it can do a better job of generalization.
This architecture is illustrated in Figure 2 above.

We now describe the details of the two components of our
system: the selection classifier and the label regressor.

The Selection Classifier

For the selection classifier, we use a simple component
classifier - a depth two decision tree - which is quite limited
in its complexity. We then create an ensemble of these
simple classifiers using the AdaBoost [7] algorithm; the
resulting classifier is capable of expressing very complex
decision surfaces.

During a given round of smart selection, i.e., when the user
has given us a new label and we need to retrain and
reclassify, we restart with an empty slate and continue
adding trees to the classifier combination until all the
explicit labels are correctly classified, with up to a
maximum of 10 boosting iterations. The cutoff at 10 is
somewhat arbitrary, and could easily be relaxed to a higher
number; however, we found that this was sufficient to
handle every target selection state we tried. Because we
only add as many component classifiers as necessary, we
found that this method was both resistant to overfitting the
small number of labeled examples, and also capable of
expressing complex hypotheses when there were sufficient
labels to support them.

An additional benefit to this approach is that it lends itself
naturally to both data and feature weighting. The data
weighting is important in the context of our later integration
of the label regressor: we will use the label regressor’s
scaled outputs to weight its own predicted labels (this
process is detailed in the section describing the label
regressor). Fortunately, data weighting is a natural
extension to decision trees and an inherent part of boosting.

The feature weighting is important as a means of leveraging
the connection between mouse position during selection
and the relative importance of various features. To see this,
we first need to examine the features we use for the
selection classifier. While any set of features could be
used, in our implementation, the following features are
generated from the set of explicitly labeled examples:

• The presence of any substrings of length 3 or
greater in the files’ names

• The value of the file extension

• The file creation date being greater or less
than/equal to each of the file creation dates of the
examples

• The file size being greater or less than/equal to
each of the file sizes of the examples

Each example thus generates several features: for example,
the filename “foobar.txt” generates the features {filename
contains “foo”, filename contains “oob”, filename contains
“oba”, etc.}.

To estimate the importance and generate a weight for each
feature, we measured the number of times the user clicked
in each of the file attribute columns when selecting or de-
selecting items. We found that users frequently click with
their mouse vertically placed on the item, but horizontally
placed on the column they are looking at: for example, if a
user is attempting to select all .zip files whose size is > 3
Megabytes, she is likely to click on that item in the size
column. Each feature is assigned a weight equal to the
fraction of times it was clicked out of the total.
Additionally, we imposed a weak uniform prior on the
feature weights by adding a count of � = 0.1 to each
feature. Rather than simply using this column-weighting
feature as a heuristic, though, we used cross-validation to
determine that in fact this is a very effective mechanism for
the selection classifier.

Other Techniques

We did try using various other learners before settling on
boosted decision trees. We enumerate them below, and
present the problems associated with each.

1. Logistic Regression: Although logistic regression
produces accurate probability estimates, and easily
allowed us to incorporate weighted training
examples, we found that it had trouble learning
more complex hypotheses. Additionally we could
not as easily incorporate weights for the attribute
column clicks in the file browser.

2. Candidate Elimination: This algorithm is similar
to the learning mechanism used in [10], in that it is
only capable of learning a single conjunction of
the attributes. Although we found that it worked
well in cases where the target selection could be
represented in this way, it was incapable of
learning more complex selections.

3. Single Decision Trees: In addition to using
boosted decision trees, we tried using a single
decision tree, however because so little labeled
data was available, it was difficult to determine
when to stop growing the tree to avoid overfitting.

Training Time

Previous work in interactive machine learning [5] has
avoided the use of boosted classifier combinations citing
slow training time. Although it is true that boosted decision
trees will take longer than training a single tree on the data,
in our case, training time was not a significant issue in most
cases. Because directories usually contain relatively few
files, both training and evaluation time are usually
negligible. In directories with hundreds of files, however,
our prototype implementation would sometimes take
several seconds to respond after the user provided an
example. Although users found this annoying, we feel it

would not be difficult to reduce training time in a more
careful implementation.

The Label Regressor

Again, the purpose of the label regressor is to pool data
from many selection session to learn how best to generalize
based on behavior features. Its outputs are then used to
generate soft-labeled data for the selection classifier, which
will be weighted based on the item’s confidence. As such,
it is not only important that it produce accurate predictions,
but that it produce accurate estimates of its confidence as
well.

We therefore chose Logistic Regression [2] as our method
for this stage, since it produces an estimate �� of the
posterior probability of the target being selected (i.e,
ranging from 0 to 1). These probability estimates are
converted to a confidence �� ∈
0,1� and a label � ∈ �0,1�
as follows:

�� = 2 × ���(0.5 − ��)

� = �1 if �� > 0.5
0 otherwise

%
For instance, if the label regressor predicts a value of 0.83
for a given item, its label is 1 or “selected” (since it is
greater than 0.5), and its confidence is 0.33 (|0.83-0.5|).

Since the label regressor is trained from many sessions, it
can’t use file features directly, as these vary from session to
session. Instead, it uses behavior features, which describe
the actions of the user in a session-independent way. We
describe the set of features we used below, but it is
important to note that this list is not exhaustive; nor are the
listed features of equal value. Because we train the label
regressor from data, we can hand it an overcomplete “bag
of features” that we or others have proposed; it can then
sort out for itself which features are actually useful and
weight them accordingly. The same applies to the selection
classifier as well.

That said, our label regressor features for item i were:

• The number of times the user has (de)selected an
item while & was (de)selected (4 features)

• Whether the last example provided by the user last
changed selection state in the same round as &.

• The proximity of & (in the UI) to the last example
provided by the user. Intuition: a user may click in
an area where she sees many incorrect examples.

• Whether & appears in between the last two labeled
examples in the UI. Intuition: if the user passes
over example & with the mouse, its selection state
may be correct.

• The distance (in the UI) between the last two
examples provided by the user. Intuition: if the
user moved a long way to find the next incorrectly
labeled example, it is likely that the current
selection is mostly correct.

Training the Label Regressor

In order to train the label regressor, we utilize log data from
completed selection tasks. We take the selection state of
each item (selected/de-selected) at the target state (i.e.,
when the task is complete) as its label. We then step
through each round in the selection process, extracting
these behavior features for the items which have not
explicitly been selected or de-selected thus far. These
features and labels are then used as training data.

Notice that if the user performs a selection task which takes
n rounds to complete examples in a directory containing '
files, we can express the number of training examples she
generates in the process as:

(' − &
)

�*+

The label regressor thus has the benefit of a substantial
number of labels from every selection session.

Figure 4. Precision vs. recall for the label regressor for varying

levels of confidence. The confidence is shown in boxes above

each data point, and represent the absolute distance of the

posterior estimate from 0.5.

Because we will depend on the accuracy of the label
regressor’s confidence, we investigated this empirically by
looking at the classifier accuracy with respect to its
confidence. If its confidence predictions are accurate, then
the classifier accuracy (i.e., precision) should increase with
its confidence, while of course the number of items on
which it is that confident (i.e., recall) will go down. This is
precisely what we see in Figure 4. Furthermore, note that
even at fairly low confidence levels (0.2) we have relatively
high precision (> 0.8).

Integrating the Selection Classifier and Label Regressor

When operating interactively, behavior features are
extracted at each round of the selection process, and the
probability that each item will be selected, ��, is estimated
by the label regressor; these probabilities can be interpreted
as a label and a confidence value as described above.

We now wish to incorporate these outputs into the selection
classifier. Since it was a requirement from the start that the
selection classifier could take in weighted data, we could
simply incorporate the labels from the label regressor and
use the confidences �� as weights for all unlabeled items
(with weights of 1.0 and the entered labels for the explicit
selections from the user). However, it would be naïve to
think that taking the raw confidence value would be the
optimal weights to use in the selection classifier’s boosted
decision trees. Perhaps this would be more appropriate if
the model explicitly took in posterior probabilities for each
item, which is in fact what our label regressor produces, but
in our setup that is not the case.

As a result, we decided to apply a scale factor , to the
confidence of the label regressor, which we can optimize
empirically such that it produces the highest overall

selection classifier accuracy. Of course, we could apply
other transformations as well, such as multiplying the value
by a parametrized nonlinearity, or only using label values
with the confidence above some threshold: the key is to
optimize any such parameters in terms of end-to-end
accuracy.

Figure 5. Selection classifier error on all pilot data

tasks/sessions vs. varying values of the - parameter; -

multiplies the label regressor confidence values to produce the

weights for the selection classifier.

In Figure 5, we show the error rate of the selection classifier
with respect to , averaged over all rounds of all of our pilot
data (this is a separate population from those in our final
user study). Based on this investigation, we set , to 0.2 for
our final user study.

 EXPERIMENTS

In order to evaluate our method, we conducted a user study
with 12 subjects (11 males, 1 female), each of whom were
compensated for their time with a $10 gift certificate. All
were Windows users and had experience using the standard
file browser to select multiple files. We asked participants

to complete 8 different selection tasks (described later in
this section) under 3 conditions:

• Condition A: standard file browser (control)

• Condition B: selection classifier alone (without
the label regressor)

• Condition C: selection classifier with the label
regressor

Both the order of the tasks and the conditions were
randomized, and at the end of conditions B and C users
were asked to provide comments and rate various aspects of
the system. At the end of the study, users were asked to
rank the three conditions in terms of which they would
prefer if it were the only option for everyday usage.

During conditions B and C, we asked participants not to
make any block selections

2 using the shift-key (note that
block selections were allowed for condition A). Although
this was not necessary for our framework, since we could
easily accept multiple labels per round, we wanted to see
how well the smart selection methods could perform when
only one item was selected at a time. This also helped
ensure that the test subjects couldn’t default to their typical
strategies and would thus be more likely to take advantage
of the smart selection predictions.

Bootstrap Stages

Before we could apply condition C, we first had to train the
label regressor on other users’ task selection data. We
obtained this data in a separate pilot study of 9 users, all
using condition C, on a different but similar set of tasks.
For the first 5 pilot study participants, the label regressor
was trained from one of the authors performing selection
tasks on a separate set of directories; for the last 4 users the
label regressor was trained from the data of the first 5 users.
For the final study, on 12 new subjects, the data from all 9
users was used for training.

Selection Tasks

The selection tasks and directories were designed to be a
diverse mix containing widely varying directory sizes. We
took care not to make any of the selection tasks too tedious
when using the standard file browser, so as not to make
participants overly uncomfortable during the study. Half of
the tasks (0, 2, 5, and 6) were easily solved using the
standard file browser via sorting and block selection. The
tasks in each condition were slightly different but
isomorphic so that the subjects couldn’t use their memory
of a previous task to help them with a different condition.
One such isomorphic set of the tasks was as follows:

• Task 0: Select all .py and .cs files. This was in a
large directory containing many .py files and a few
.cs files. This task was easily completed in the

2 We refer to any time the user selects a block of files which
are adjacent in the UI (via shift-clicking) as block selection.

standard file browser by sorting and then block-
selecting with the shift key.

• Task 1: Select all files whose name contains the

substring “OLD” or “BACKUP” in a medium

sized directory. This task was more difficult to
complete with the standard file browser, as there
was no way to sort the target selection into a
contiguous block.

• Task 2: Select all .pdf files whose size is greater

than 200K. This was in a large directory with
relatively few .pdf files. This task was not
possible to sort/block select, but was not too
difficult with the standard file browser since there
were only a few files to select.

• Task 3: Select all files whose name contains the

substrings “MARKF” or “JOEP” but not the

string “tmp.” This task required selecting a large
number of files in a large directory, and was
difficult to complete using the standard file
browser. Note that the string “tmp” was a
substring in the filename and not the extension,
which made block selection impossible.

• Task 4: Select all files containing the substring

“kathyp.” This task required selecting relatively
few files in a medium-sized directory, and was not
easily solved using the standard file browser.

• Task 5: Select all files containing the substring

JOEP whose size is larger than 3 Megabytes. This
task required the user to select relatively few
examples in a very large directory. Block
selection was possible if sorted in the right way
(not all users discovered this).

• Task 6: Select all .txt and .cab files in a medium-
sized directory. This task was relatively easy to
complete using the standard file browser by
sorting and block selecting.

• Task 7: Select all files containing the substring

“Copy.” This task required selecting slightly
fewer than half the files in a medium-sized
directory, and was not easily solved using the
standard file browser.

RESULTS

We describe our results both in terms of the numbers of
required examples and the accuracy of the selection
classifier; we will discuss why both measures are important.

Number of Required Examples

The average numbers of user-supplied examples
(selected/deselected items) required to complete each task
under each condition are shown in Figure 6. Note that for
condition A, one “example” might mean many labels, since
the subject can hold the shift key and block-select many
items via a single item selection.

Figure 6. Average number of examples (number of items

clicked by the users) for completing each task in each

condition.

As expected, the tasks that were easy to do with the
standard file browser (0, 2, 5, and 6) show minimal
improvement or more often a slight increase in selections
for conditions B and C - this is due primarily to the fact that
we didn’t allow users to use block selection for these
conditions. The harder tasks, though, (1,3,4, and 7) almost
uniformly show marked improvements for the smart
selection conditions. The mean time for each condition is
shown in Table 1.

Condit

ion

Mean number of
examples to

complete task

Median

A 11.4 9

B 8.09 7

C 9.47 8

Table 1. Number of examples for each condition averaged

across tasks. All differences are significant as illustrated in

Table 2.

We performed a two-way analysis of variance (ANOVA)
test with the number of examples as the dependent variable
and with condition and task as the two independent
variables; the results are displayed in Table 2 below. This
means both smart selection conditions (B and C) required
significantly fewer examples/selections to reach the target
state. Condition C (using the label regressor) did require
slightly more examples than B (selection classifier alone),
but had other benefits which will become clear in the
accuracy results below.

In summary, auto-selection generally requires fewer
explicit selections and de-selections than the standard file
browser in tasks where it is not possible to sort the files in
such a way that the targets appear in one or more
contiguous blocks. When such sorting is possible, users

can use block selection in condition A to complete the task
in a few clicks. Furthermore, we noticed that all of the
users in our study sorted first when block selection was
possible, regardless of the condition. Although they
weren’t allowed to block select in the B and C conditions,
they still preferred to sort the target selections into a block
before selecting them.

Comparison p-value

A vs B 1.338 × 1001

A vs C 3.196 × 1004

B vs C 2.102 × 100+

Table 2. Comparing number of examples required between

conditions by a 2-way ANOVA across tasks and conditions

Selection Classifier Accuracy

In addition to the total number of examples, another key
metric for our system is the accuracy of the selection
classifier. This is important since we want to generalize in
the right way as we described above – ideally, at every step,
the new items that the system selects and deselects should
be as close as possible to what the user intends to do. The
less that this is the case, the more likely it is that the user
will get confused and annoyed with the erroneous selections
being presented to them.

Figure 7. Average selection accuracy for each task under

smart selection conditions B (no label regressor, dark gray)

and C (using label regressor, light gray).

In Figure 7, we compare the accuracy of the selection
classifier in conditions B and C for each task, averaged over
all users. C is substantially more accurate in every case.
Overall, this represents an average increase in accuracy of
49% when using the label regressor (see Table 3), a result
that is significant at the 95% confidence level. This means
that using the label regressor reduces the relative error rate
by a full 60% (from 45% error to 18% error).

Condition
Average task

accuracy
Standard

Deviation

B 0.555 0.136

C 0.820 0.122

Table 3. Accuracy of the inferred selections in both auto-

selection conditions averaged across tasks. In a 2-way

ANOVA across condition and task, C is more accurate than B

with a p-value of 0.04681.

The reader may wonder at this point how such a large
improvement in accuracy doesn’t also result in a significant
reduction in the number of clicks. The reason is that when
using the label regressor, the selection classifier gets close
to the right answer much more quickly: however, getting
the selection 100% correct takes about the same number of
examples. In other words, while the label regressor won’t
get to the right answer more quickly, it will get there in
more of the right way. We show this on an example task
(task 4) in Figure 8, with the accuracies at each round
averaged over all users. Notice that in only four clicks, the
classifier using the label regressor (C) has the selection
more than 95% correct on average, while without it the
performance lags at less than 80%.

Figure 8. Average selection accuracy for each round in task 4

for condition B (black, round dots) and C (dark gray, square

dots), averaged over all subjects. Note that when using the

label regressor (condition C), the system gets closer to the

correct answer much more quickly, though both take about

the same number of examples to reach the target exactly.

From a user’s point of view, this poses a significant
advantage: the system is more quickly approaching the right
answer. This is particularly the case in a real deployment
where at any time the user could switch from smart
selection to standard selection (e.g., control-click vs. alt-
click) and quickly highlight the few remaining examples.

The comments from our users supported this notion: the
following are a few examples from the response section of
the study:

“The 2nd method (B) seemed a more "aggressive"

version of method 1 (C). However the UI

presentation i.e. the selection and deselection of

large numbers of files strained my eyes and

annoyed me.”

“Selecting more files than desired can seem

dangerous in some situations - especially when

selecting files to delete or modify.”

Overall 7 out of the 12 participants indicated that they
preferred condition C (i.e., using the label regressor) over
condition B; we expect if we allowed them to switch to
manual selection in the middle of the task even more would
have preferred condition C.

Personalization

In addition to benefiting from learning how users as a
whole prefer to generalize, we hypothesized that we might
get further gains from training on a particular user’s data in
order to capture their individual styles of generalization.
Indeed, during the user study, we observed that users
attempted a wide range of strategies to communicate their
indented selection. For example, when possible, several
users tried sorting, then selecting the top and bottom items
of blocks, whereas others clicked on incorrectly selected
items from top-to-bottom order.

Although we did not have users generate their own training
data during the study, we did a post-study analysis to
evaluate the potential benefits of personalization. We used
cross-validation to compare the accuracy of the selection
classifier used during the study with simulated accuracy
after training on the target user’s data (but excluding data
from the test task). Overall we saw a very modest (2%)
improvement in overall accuracy (significant with a p-value
of 0.068). Thus, while there is a small benefit from
personalization in this scenario, by far the most significant
gains were from learning generalization strategies from the
user population as a whole.

DISCUSSION

We have presented two primary contributions in this paper.
The first is a selection classifier that is flexible enough to
achieve complex selection targets in a small number of
examples; it is in fact significantly faster (in terms of
number of clicks) than the standard file browser on a
variety of tasks, even without block selection. The second
is a general method for learning to generalize, which
leverages many sessions of user tasks in order to learn a
model of how users prefer to generalize selections; we also
present a means to integrate the results from this learner
into the selection classifier. The result of this integration is
a substantial increase in the selection accuracy of the
classifier, which means the system is more likely to
generalize the user’s selections in the right way.

In future work, we hope to develop a deployable system
with this technology that will allow users to easily switch
between smart selection and standard selection; this will let

them more easily take advantage of the rapid convergence
towards the target state seen in Figure 8.

In closing, we would like to emphasize that the particular
task and the particular features we used in this work are
merely an illustration of our method: future applications
using this method could add arbitrary sets of features for
their selection tasks and let the classifiers select which ones
are worth emphasizing.

ACKNOWLEDGEMENTS

Many thanks to Krzysztof Gajos and Alice Zheng for
helpful references and insightful discussions.

REFERENCES

1. Bao, X., Herlocker, J. and T. Diettrich. “Fewer Clicks
and Less Frustration: Reducing the Cost of Reaching the
Right Folder.” Proc of IUI 2006.

2. Bishop, C. “Linear Models for Classification.” In
Pattern Recognition and Machine Learning. Springer,
2006.

3. Blum, A. Mitchell, T. “Combining Labeled and
Unlabeled Data With Co-Training.” In Proc. of COLT

1998.

4. Cypher, A. “Eager: Programming Repetitive Tasks by
Demonstration.” In A. Cypher, ed., Watch What I Do:

Programming by Demonstration, pp.205-218. MIT
Press, 1993.

5. Fails, J.A. and Olsen, D.R. Jr. “Interactive Machine
Learning.” In Proc. of IUI 2003.

6. Fogarty, J. Tan, D. Kapoor, A. and Winder, S. “CueFlik:
Interactive Concept Learning in Image Search.” In Proc.

of CHI 2008.

7. Freund, Y. and Schapire, R.E. “A Decision-Theoretic
Generalization of On-Line Learning and an Application
to Boosting.” Journal of Computer and System Sciences

1997.

8. Kristjansson, T. Culotta, A. Viola, P. McCallum, A.
“Interactive Information Extraction with Constrained
Conditional Random Fields.” In Proc. of AAAI 2004.

9. Maynes-Aminzade, D. Winograd, T. Igarashi, T.
“Eyepatch: Prototyping Camera-Based Interaction
Through Examples.” In Proc. of UIST 2007.

10. Miller, R.C. and Myers, B.A. “Multiple Selections in
Smart Text Editing.” In Proc. of IUI 2002.

11. Mitchell, T.M. “Version Spaces: A Candidate
Elimination Approach to Rule Learning.” In Proc. of

IJCAI 1977.

12. Platt, J.C. Burges, C.J.C. Swenson, S. Weare, C. Zheng,
A. “Learning a Gaussian Process Prior for
Automatically Generating Music Playlists.” In Proc. of

NIPS 2002.

13. Thrun, S. “Is Learning the n-th Thing Any Easier Than
Learning the First?” In Proc. of NIPS 1996.

