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ABSTRACT 

Selection tasks are common in modern computer interfaces: 
we are often required to select a set of files, emails, data 
entries, and the like.  File and data browsers have sorting 
and block selection facilities to make these tasks easier, but 
for complex selections there is little to aid the user without 
writing complex search queries. We propose an interactive 
machine learning solution to this problem called “smart 
selection,” in which the user selects and deselects items as 
inputs to a selection classifier which attempts at each step 
to correctly generalize to the user’s target state.  
Furthermore, we take advantage of our data on how users 
perform selection tasks over many sessions, and use it to 
train a label regressor that models their generalization 
behavior: we call this process learning to generalize.  We 
then combine the user’s explicit labels as well the label 
regressor outputs in the selection classifier to predict the 
user’s desired selections.  We show that the selection 
classifier alone takes dramatically fewer mouse clicks than 
the standard file browser, and when used in conjunction 
with the label regressor, the predictions of the classifier are 
significantly more accurate with respect to the target 
selection state.  
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INTRODUCTION 

A variety of common tasks require users to select multiple 
items from a list: picking out files to delete or copy in a file 
browser, selecting emails to be moved to a folder, or 
selecting particular cells, rows, or columns from a 

spreadsheet.   If there are a small number of items, this is a 
fairly easy task.  If there are many, the task may still be 
quick if the items group together in alphabetical or other 
attribute order, since many applications have facilities to 
ease the selection of contiguous groups.  However, if the 
selection is more complex, e.g., the user wants all files that 
contain “old” in the title, she generally has little recourse 
but to individually select all of the files. In the case of file 
selection in particular, there is the option of resorting to the 
command line or a search interface.  From there, one can 
use regular expressions or complex search syntax to specify 
an arbitrary list, but this level of complexity is beyond the 
reach and/or patience of many typical users. 

 

Figure 1. The smart selection scenario:  the user selects or 

deselects a new item and thus provides a label to the classifier, 

which then classifies all items based on all labels thus far and 

updates the selection window with its results.    

The goal of this work has been to see whether and how it 
might be possible to give users the power of complex 
selection directly in the GUI.  In our prototype and 
experiments, we focus exclusively on the file selection task, 
but our approach generalizes to any other multiple selection 
scenario. 

Given the specific goal of improving file selection, one 
option would have been to provide an “advanced search” 
dialog, which would allow the user to specify bounds and 
ranges for various attributes of the data.   This would be 
quite onerous for the user, however, as she would have to 
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mentally reform her intended selection into a set of rules 
and conditions and then either enter it into a complex form 
or type a query with complex syntax.  Instead, we chose to 
pursue an approach of automatic selection generalization or 
smart selection, wherein the user selects and deselects items 
as positive and negative examples.  If the system is 
effective at generalization, the user should be able to reach 
her target selection after providing a small number of 
examples.  Furthermore, we would expect that such a 
method would take fewer clicks than using conventionally 
available mechanisms in the file browser (sorting, block 
selection, etc.), especially for complex tasks.  Figure 1 
shows the workflow of the automatic generalization 
process. Although it would be possible to highlight the 
inferred selections in a different color, this would require 
additional UI elements for deciding when to switch over to 
the system’s predictions.  Instead we chose to make as few 
changes to the user’s familiar workflow as possible, i.e., 
items are either selected or not, and the user makes use of 
these selections as they would today (deleting, moving, 
etc.) without the need for additional buttons or keystrokes.   
We recognize, however, that for everyday use it is likely 
our method would be something the user would want to 
turn on only for complex selection tasks or activate via a 
special key (e.g., alt-click vs. control-click). 

We are not, of course, the first to propose the use of 
learning to help with selection generalization.  There is 
some excellent work on inferring multiple text selections by 
Miller and Myers [10]:  their system inferred regions of text 
to select from a few fragments selected by the user.  While 

their results looked promising in terms of the number of 
required examples, the system had limitations with respect 
to its target function as its inference mechanism was limited 
to learning a single conjunction of features.  

For our system, we were interested both in maintaining the 
standard selection UI and in handling arbitrarily complex 
selections.  The latter was particularly important to us since 
item selection tasks (unlike text selection tasks) often 
require selecting multiple groups with distinct 
characteristics.  As such, we wanted to first propose a 
learning framework that could handle such selections.  We 
soon found that a mixture of individual classifiers was 
effective at expressing an appropriate degree of complexity. 
In our prototype system, we use limited depth decision trees 
as component learners, and then used Adaboost (a form of 
boosting) [7] to combine them into an overall selection 

classifier.  As we will later show, this classifier alone takes 
significantly fewer clicks than standard file browsing 
mechanisms for many selection tasks. 

However, while this classifier has the expressive power to 
handle arbitrary user selections, we were struck by the data-
poor nature of the scenario: for each selection task, a new 
classifier was being trained using only the positive and 
negative examples that the user had explicitly clicked on. 
Surely, though, knowledge of how people tend to do 
selection tasks could be helpful.  In other words, any 
classifier has its own notion of how best to generalize, but 
specific populations, tasks, or individuals could have 
typical patterns of behavior that we should be able to 
leverage.  For example, if the system automatically selects 

Figure 2. Learning to generalize.  For a given session, the selection classifier only has labels for that particular task.  However, the 

label regressor uses data from many sessions of users doing selection tasks in order to form a model of how to best generalize 

selections.  The selection classifier then combines the labels from the user with the predictions of the label regressor in order to come 

up with the best prediction of the user’s desired selection. 



 

 

some items, and the user does not deselect any of them and 
instead selects a new example, it may well mean the user is 
implicitly saying that the system selected appropriate items.  
The selection classifier has no notion of such concepts: to 
it, a label is just a label. 

One could introduce heuristics such as the one described 
above based on intuitions or observations of people’s 
behavior, but heuristics always come with their inherent 
risks.  Fortunately, in the smart-selection domain, it is easy 
to gather labeled training data from many users doing many 
different selection tasks, since every selection task they 
complete as they go about their daily business is effectively 
a training session.  Therefore, we sought a way to 
incorporate this information via learning. We propose a 
secondary mechanism, the label regressor, which is trained 
on users’ previous interactions with the selection classifier, 
to make probabilistic predictions about what items are 
likely to be selected.  We then feed the soft labels from this 
mechanism in addition to the user’s explicit examples into 
the selection classifier in hopes of improving performance.  
This process of learning to generalize is shown in Figure 2. 

In the remainder of this paper, we will describe the details 
of our methods and results.  We begin with a review of 
relevant background literature and then explain the file 
browser prototype we developed.   We then describe the 
selection classifier and the label regressor in detail, and 
discuss the features we used for both as well as how we 
integrate their results.  We then present the user study we 
ran to measure the effectiveness of our method and show an 
analysis of the results.  We close with a brief discussion and 
thoughts about future directions. 

RELATED WORK 

There has been strong interest in recent years in aiding 
users with complex tasks via interactive machine learning, 
in which users interactively build classifiers by providing 
labeled examples or ratings to a learning algorithm.   Fails 
and Olsen introduced this concept in [5], in which they 
described a framework for this process and presented the 
“Crayons” tool for finding image regions via interactively 
building decision trees. In [6], Fogarty et al. presented the 
CueFlik system, which helps users find images by learning 
a custom cost function based on the user’s feedback on 
which images are relevant.  Kristjansson et al. [8] described 
an interactive method for optimizing text extractors for 
structured text (such as addresses) in free-form documents.  
More specific to the file management domain, Bao and 
Herlocker [1] presented a method to help users choose the 
appropriate folder in a folder hierarchy more quickly. 

Another body of related work is from the programming by 
demonstration (PBD) community: as in their scenarios, our 
system is trying to complete a task based on the examples 
the user is presenting.  Much of their focus, though, is 
around learning sequences of actions (thus programming by 
example); for instance, the work of Cypher [4] develops a 
method for automatically creating programs to do repetitive 

tasks based on examples. In our scenario, the action itself 
(selection) is simple, but deciding what items to apply it to 
is the challenge. 

The most closely related work to ours is the LAPIS system 
from Miller and Myers referred to in the previous section 
[10].  This is a text-editing system which allows users to 
select multiple text regions for simultaneous editing.  
LAPIS introduced the concept of “selection guessing,” in 
which users provided positive and negative examples by 
adding or removing highlighted regions of text; the system 
then used these to infer the user’s intended selection.  
LAPIS automatically updates its selections after each 
example and thus has a very similar workflow to our 
system.  However, their system required an option to turn 
off automatic selection guessing so that the user could 
manually complete selection tasks. This was due to its 
hypothesis space being limited to rules consisting of simple 
conjunctions, so the system was not capable of performing 
arbitrarily complex selections.  We will discuss later why 
any system may want this option at times, but the potential 
of learning complex selections was key to our goals. 

Our paper builds on the motivation of this pioneering work, 
but differs in that we are selecting discrete items instead of 
highlighting arbitrary text fields. In fact, because file 
selections tend to be more complex than text selections 
(files containing X or Y larger than Z, etc.), we strived to 
go beyond the simple conjunctions of the past work.   
Furthermore, we introduce the concept of learning to 

generalize in interactive machine learning: instead of 
leaving our classifier to generalize as it sees fit or choosing 
heuristics about appropriate generalizations, we attempt to 
learn the way in which the user wants the system to 
generalize.  We do this by making use of more than just the 
labels the user is giving us for a particular selection task: 
we also use behavior data from many training instances 
(from one or more users) to learn a model for what the user 
is trying to do.   

Our motivation of utilizing users’ previous selection tasks 
to improve classifier performance on new tasks is similar to 
that of Multi-Task Learning [13].  For example, the AutoDJ 
system [12], automatically generated music playlists from 
users’ positive and negative examples, which are provided 
by interactively adding or removing songs. Additionally, it 
uses Kernel Meta-Training to improve its recommendations 
by training on pre-existing album playlists from one or 
more users.  Our work differs, however, in that we use a 
secondary learning mechanism which is task-independent to 
provide additional labeled data based on behavior data from 
the user. 

Finally, our learning method utilizes two separate sets of 
features, one based on the items in the list and one based on 
user behavior; therefore it bears similarity to the co-training 
algorithm proposed by Blum and Mitchell [3].  Our method 
differs from co-training, however, in that both learning 
mechanisms are not trained on the same set of labeled data.  



 

 

Instead, the label regressor utilizes task-independent 
features and is trained on data from previous tasks, while 
the selection classifier makes use of task-specific features, 
and is trained using labeled examples provided by the user 
(in addition to the outputs from the label regressor).  

USER INTERFACE 

In order to explore the space of smart selection, we 
developed a prototype “smart file browser” (Figure 3), 
which can automatically select files in response to the 
user’s actions.  When running in the smart selection 
conditions (B and C in the experiments below), the browser 
attempts to generalize the selection and automatically 
selects those items that it predicts will be selected.  The user 
can then select more items or deselect incorrectly selected 
items; each such selection will cause the browser to come 
up with and select a new set based on these examples. 

 

 

Figure 3. Smart file browser Prototype 

We intentionally kept our prototype as similar as possible to 
the standard Windows file browser with which our subjects 
were already familiar.  To that end, the browser provides 
most of the features familiar from the standard browser 
window: sorting by column, block selection (via shift-click, 
i.e., holding down the shift key and clicking on two items), 
and of course multiple selection (via control-click).  When 
running in the control condition (A in our experiments 
below), these commands behave just as they would in the 
standard browser.  

In the smart selection conditions, users engage the selection 
algorithm by control-clicking1 on an additional item when 
at least one item is already selected; we require at least two 
items as it prevents spurious generalizations based on a 
single selection. While in this mode; after each example is 
provided, the system re-trains the selection classifier and 

                                                        

1 In a deployed system we could well use another key, for 
example Alt, in order to give users the choice as to when it 
is appropriate to use smart selection. 

updates its predictions on the items which have not been 
explicitly selected or deselected, updating their state as 
appropriate.  If the user now clicks on an item while not 
holding down control, all items are de-selected (as in the 
standard browser), and the current auto-selection context 
(labeled examples and behavior features) is reset. 

Furthermore, as users interact with the browser, all of their 
actions, in addition to the current sort order and selection 
state of the files, are logged to a data file.  This data can 
later be used for training the label regressor as well as 
analyzing various performance metrics. 

METHOD 

From a high level view, we approach smart selection as a 
classification problem:  the user provides us with explicit 
positive and negative labels on items, each of which has a 
multiplicity of features (name, extension, size, creation 
date, etc.), and we train a classifier based on these features 
and labels.  If the user is unsatisfied with the result, she 
supplies additional labels, and so the cycle continues until 
she reaches the target selection state.  This simplified 
version of things is illustrated by Figure 1. 

However, there is a subtlety: we can’t simply use any 
classifier that is capable of separating the data based on the 
labels.  If the classifier has too much flexibility, for instance 
if it only selects or unselects those items that the user 
explicitly labels, it won’t generalize the user’s selections at 
all.  While not technically wrong, this would not be very 
useful in the smart selection context.  The goal, then, is to 
satisfy the user’s labels while generalizing in the right way.  
A natural choice for achieving this is to restrict the 
complexity of the decision surface.  This was the approach 
of the LAPIS system we described earlier [10], which 
restricts the set of learnable hypotheses to simple 
conjunctions of features.  However, such an approach is too 
limited in the complexity of target selection states it can 
correctly classify. We thus developed a classification 
method with flexible complexity, which adds only enough 
complexity to satisfy the user’s explicit labels.  This works 
by using simple component classifiers (limited depth 
decision trees) that are combined via boosting, as we will 
describe shortly. 

While more capable of handling arbitrary selections, we 
still had no reason to believe this method would generalize 
in the right way.  We realized that this, too, could be cast as 
a learning problem.  Although little labeled data is available 
for any given selection task, users will generally perform 
many selections in different directories over the course of 
their daily activities.  Further, it would be easy to obtain 
labels for all of the items once these tasks are complete, 
since users implicitly indicate when a given selection is 
complete by applying some operation (copy, move, delete, 
etc.) to the selected files.  Because these historical examples 
will come from different directories and/or target tasks, 
though, we cannot utilize the same file-attribute features as 
those used by the selection classifier.  Instead, we extract a 



 

 

separate set of task-independent features based on the user’s 
behavior.  We then combine these features and labels to 
train a label regressor to predict the probability that a given 
file will be selected in the target state.  We can then feed the 
outputs of this label regressor as soft labels to the selection 
classifier so that it can do a better job of generalization.  
This architecture is illustrated in Figure 2 above.   

We now describe the details of the two components of our 
system: the selection classifier and the label regressor. 

The Selection Classifier 

For the selection classifier, we use a simple component 
classifier - a depth two decision tree - which is quite limited 
in its complexity.  We then create an ensemble of these 
simple classifiers using the AdaBoost [7] algorithm; the 
resulting classifier is capable of expressing very complex 
decision surfaces.   

During a given round of smart selection, i.e., when the user 
has given us a new label and we need to retrain and 
reclassify, we restart with an empty slate and continue 
adding trees to the classifier combination until all the 
explicit labels are correctly classified, with up to a 
maximum of 10 boosting iterations.  The cutoff at 10 is 
somewhat arbitrary, and could easily be relaxed to a higher 
number; however, we found that this was sufficient to 
handle every target selection state we tried. Because we 
only add as many component classifiers as necessary, we 
found that this method was both resistant to overfitting the 
small number of labeled examples, and also capable of 
expressing complex hypotheses when there were sufficient 
labels to support them.   

An additional benefit to this approach is that it lends itself 
naturally to both data and feature weighting.  The data 
weighting is important in the context of our later integration 
of the label regressor: we will use the label regressor’s 
scaled outputs to weight its own predicted labels (this 
process is detailed in the section describing the label 
regressor). Fortunately, data weighting is a natural 
extension to decision trees and an inherent part of boosting. 

The feature weighting is important as a means of leveraging 
the connection between mouse position during selection 
and the relative importance of various features.  To see this, 
we first need to examine the features we use for the 
selection classifier.  While any set of features could be 
used, in our implementation, the following features are 
generated from the set of explicitly labeled examples: 

• The presence of any substrings of length 3 or 
greater in the files’ names 

• The value of the file extension 

• The file creation date being greater or less 
than/equal to each of the file creation dates of the 
examples 

• The file size being greater or less than/equal to 
each of the file sizes of the examples 

Each example thus generates several features: for example, 
the filename “foobar.txt” generates the features {filename 
contains “foo”, filename contains “oob”, filename contains 
“oba”, etc.}. 

To estimate the importance and generate a weight for each 
feature, we measured the number of times the user clicked 
in each of the file attribute columns when selecting or de-
selecting items.  We found that users frequently click with 
their mouse vertically placed on the item, but horizontally 
placed on the column they are looking at: for example, if a 
user is attempting to select all .zip files whose size is > 3 
Megabytes, she is likely to click on that item in the size 
column.  Each feature is assigned a weight equal to the 
fraction of times it was clicked out of the total.  
Additionally, we imposed a weak uniform prior on the 
feature weights by adding a count of � = 0.1 to each 
feature.  Rather than simply using this column-weighting 
feature as a heuristic, though, we used cross-validation to 
determine that in fact this is a very effective mechanism for 
the selection classifier. 

Other Techniques 

We did try using various other learners before settling on 
boosted decision trees.  We enumerate them below, and 
present the problems associated with each. 

1. Logistic Regression: Although logistic regression 
produces accurate probability estimates, and easily 
allowed us to incorporate weighted training 
examples, we found that it had trouble learning 
more complex hypotheses.  Additionally we could 
not as easily incorporate weights for the attribute 
column clicks in the file browser. 

2. Candidate Elimination: This algorithm is similar 
to the learning mechanism used in [10], in that it is 
only capable of learning a single conjunction of 
the attributes.  Although we found that it worked 
well in cases where the target selection could be 
represented in this way, it was incapable of 
learning more complex selections.   

3. Single Decision Trees:  In addition to using 
boosted decision trees, we tried using a single 
decision tree, however because so little labeled 
data was available, it was difficult to determine 
when to stop growing the tree to avoid overfitting. 

Training Time 

Previous work in interactive machine learning [5] has 
avoided the use of boosted classifier combinations citing 
slow training time.  Although it is true that boosted decision 
trees will take longer than training a single tree on the data, 
in our case, training time was not a significant issue in most 
cases.  Because directories usually contain relatively few 
files, both training and evaluation time are usually 
negligible.  In directories with hundreds of files, however, 
our prototype implementation would sometimes take 
several seconds to respond after the user provided an 
example.  Although users found this annoying, we feel it 



 

 

would not be difficult to reduce training time in a more 
careful implementation. 

The Label Regressor 

Again, the purpose of the label regressor is to pool data 
from many selection session to learn how best to generalize 
based on behavior features.  Its outputs are then used to 
generate soft-labeled data for the selection classifier, which 
will be weighted based on the item’s confidence.  As such, 
it is not only important that it produce accurate predictions, 
but that it produce accurate estimates of its confidence as 
well. 

We therefore chose Logistic Regression [2] as our method 
for this stage, since it produces an estimate �� of the 
posterior probability of the target being selected (i.e, 
ranging from 0 to 1).  These probability estimates are 
converted to a confidence �� ∈ 
0,1�  and a label � ∈ �0,1� 
as follows: 

�� = 2 × ���(0.5 − ��) 

� = �1 if �� > 0.5 
0 otherwise

% 
For instance, if the label regressor predicts a value of 0.83 
for a given item, its label is 1 or “selected” (since it is 
greater than 0.5), and its confidence is 0.33 (|0.83-0.5|). 

Since the label regressor is trained from many sessions, it 
can’t use file features directly, as these vary from session to 
session.  Instead, it uses behavior features, which describe 
the actions of the user in a session-independent way.  We 
describe the set of features we used below, but it is 
important to note that this list is not exhaustive; nor are the 
listed features of equal value.  Because we train the label 
regressor from data, we can hand it an overcomplete  “bag 
of features” that we or others have proposed; it can then 
sort out for itself which features are actually useful and 
weight them accordingly.  The same applies to the selection 
classifier as well. 

That said, our label regressor features for item i were:  

• The number of times the user has (de)selected an 
item while & was (de)selected (4 features) 

• Whether the last example provided by the user last 
changed selection state in the same round as &. 

• The proximity of & (in the UI) to the last example 
provided by the user.  Intuition: a user may click in 
an area where she sees many incorrect examples. 

• Whether & appears in between the last two labeled 
examples in the UI.  Intuition: if the user passes 
over example & with the mouse, its selection state 
may be correct. 

• The distance (in the UI) between the last two 
examples provided by the user.  Intuition: if the 
user moved a long way to find the next incorrectly 
labeled example, it is likely that the current 
selection is mostly correct. 

Training the Label Regressor 

In order to train the label regressor, we utilize log data from 
completed selection tasks. We take the selection state of 
each item (selected/de-selected) at the target state (i.e., 
when the task is complete) as its label.  We then step 
through each round in the selection process, extracting 
these behavior features for the items which have not 
explicitly been selected or de-selected thus far.  These 
features and labels are then used as training data. 

Notice that if the user performs a selection task which takes 
n rounds to complete examples in a directory containing ' 
files, we can express the number of training examples she 
generates in the process as:  

( ' − &
)

�*+
 

The label regressor thus has the benefit of a substantial 
number of labels from every selection session. 

 

Figure 4. Precision vs. recall for the label regressor for varying 

levels of confidence.  The confidence is shown in boxes above 

each data point, and represent the absolute distance of the 

posterior estimate from 0.5. 

Because we will depend on the accuracy of the label 
regressor’s confidence, we investigated this empirically by 
looking at the classifier accuracy with respect to its 
confidence.  If its confidence predictions are accurate, then 
the classifier accuracy (i.e., precision) should increase with 
its confidence, while of course the number of items on 
which it is that confident (i.e., recall) will go down.  This is 
precisely what we see in Figure 4.  Furthermore, note that 
even at fairly low confidence levels (0.2) we have relatively 
high precision (> 0.8).   

Integrating the Selection Classifier and Label Regressor 

When operating interactively, behavior features are 
extracted at each round of the selection process, and the 
probability that each item will be selected, ��, is estimated 
by the label regressor; these probabilities can be interpreted 
as a label and a confidence value as described above.   



 

 

We now wish to incorporate these outputs into the selection 
classifier. Since it was a requirement from the start that the 
selection classifier could take in weighted data, we could 
simply incorporate the labels from the label regressor and 
use the confidences �� as weights for all unlabeled items 
(with weights of 1.0 and the entered labels for the explicit 
selections from the user).  However, it would be naïve to 
think that taking the raw confidence value would be the 
optimal weights to use in the selection classifier’s boosted 
decision trees.  Perhaps this would be more appropriate if 
the model explicitly took in posterior probabilities for each 
item, which is in fact what our label regressor produces, but 
in our setup that is not the case. 

As a result, we decided to apply a scale factor , to the 
confidence of the label regressor, which we can optimize 
empirically such that it produces the highest overall 

selection classifier accuracy. Of course, we could apply 
other transformations as well, such as multiplying the value 
by a parametrized nonlinearity, or only using label values 
with the confidence above some threshold: the key is to 
optimize any such parameters in terms of end-to-end 
accuracy.   

 

Figure 5. Selection classifier error on all pilot data 

tasks/sessions vs. varying values of the - parameter; - 

multiplies the label regressor confidence values to produce the 

weights for the selection classifier.   

In Figure 5, we show the error rate of the selection classifier 
with respect to , averaged over all rounds of all of our pilot 
data (this is a separate population from those in our final 
user study).  Based on this investigation, we set , to 0.2 for 
our final user study. 

 EXPERIMENTS 

In order to evaluate our method, we conducted a user study 
with 12 subjects (11 males, 1 female), each of whom were 
compensated for their time with a $10 gift certificate.  All 
were Windows users and had experience using the standard 
file browser to select multiple files. We asked participants 

to complete 8 different selection tasks (described later in 
this section) under 3 conditions: 

• Condition A:  standard file browser (control) 

• Condition B: selection classifier alone (without 
the label regressor) 

• Condition C: selection classifier with the label 
regressor 

Both the order of the tasks and the conditions were 
randomized, and at the end of conditions B and C users 
were asked to provide comments and rate various aspects of 
the system.  At the end of the study, users were asked to 
rank the three conditions in terms of which they would 
prefer if it were the only option for everyday usage. 

During conditions B and C, we asked participants not to 
make any block selections

2 using the shift-key (note that 
block selections were allowed for condition A).  Although 
this was not necessary for our framework, since we could 
easily accept multiple labels per round, we wanted to see 
how well the smart selection methods could perform when 
only one item was selected at a time.  This also helped 
ensure that the test subjects couldn’t default to their typical 
strategies and would thus be more likely to take advantage 
of the smart selection predictions. 

Bootstrap Stages 

Before we could apply condition C, we first had to train the 
label regressor on other users’ task selection data. We 
obtained this data in a separate pilot study of 9 users, all 
using condition C, on a different but similar set of tasks.  
For the first 5 pilot study participants, the label regressor 
was trained from one of the authors performing selection 
tasks on a separate set of directories; for the last 4 users the 
label regressor was trained from the data of the first 5 users.  
For the final study, on 12 new subjects, the data from all 9 
users was used for training. 

Selection Tasks 

The selection tasks and directories were designed to be a 
diverse mix containing widely varying directory sizes.  We 
took care not to make any of the selection tasks too tedious 
when using the standard file browser, so as not to make 
participants overly uncomfortable during the study.  Half of 
the tasks (0, 2, 5, and 6) were easily solved using the 
standard file browser via sorting and block selection.  The 
tasks in each condition were slightly different but 
isomorphic so that the subjects couldn’t use their memory 
of a previous task to help them with a different condition. 
One such isomorphic set of the tasks was as follows: 

• Task 0: Select all .py and .cs files. This was in a 
large directory containing many .py files and a few 
.cs files.  This task was easily completed in the 

                                                        

2 We refer to any time the user selects a block of files which 
are adjacent in the UI (via shift-clicking) as block selection.  



 

 

standard file browser by sorting and then block-
selecting with the shift key. 

• Task 1: Select all files whose name contains the 

substring “OLD” or “BACKUP” in a medium 

sized directory.  This task was more difficult to 
complete with the standard file browser, as there 
was no way to sort the target selection into a 
contiguous block. 

• Task 2: Select all .pdf files whose size is greater 

than 200K.  This was in a large directory with 
relatively few .pdf files.  This task was not 
possible to sort/block select, but was not too 
difficult with the standard file browser since there 
were only a few files to select. 

• Task 3: Select all files whose name contains the 

substrings “MARKF” or “JOEP” but not the 

string “tmp.” This task required selecting a large 
number of files in a large directory, and was 
difficult to complete using the standard file 
browser.  Note that the string “tmp” was a 
substring in the filename and not the extension, 
which made block selection impossible. 

• Task 4: Select all files containing the substring 

“kathyp.”  This task required selecting relatively 
few files in a medium-sized directory, and was not 
easily solved using the standard file browser. 

• Task 5: Select all files containing the substring 

JOEP whose size is larger than 3 Megabytes.  This 
task required the user to select relatively few 
examples in a very large directory.  Block 
selection was possible if sorted in the right way 
(not all users discovered this). 

• Task 6: Select all .txt and .cab files in a medium-
sized directory.  This task was relatively easy to 
complete using the standard file browser by 
sorting and block selecting. 

• Task 7: Select all files containing the substring 

“Copy.”  This task required selecting slightly 
fewer than half the files in a medium-sized 
directory, and was not easily solved using the 
standard file browser. 

RESULTS 

We describe our results both in terms of the numbers of 
required examples and the accuracy of the selection 
classifier; we will discuss why both measures are important. 

Number of Required Examples 

The average numbers of user-supplied examples 
(selected/deselected items) required to complete each task 
under each condition are shown in Figure 6.  Note that for 
condition A, one “example” might mean many labels, since 
the subject can hold the shift key and block-select many 
items via a single item selection.  

 

Figure 6. Average number of examples (number of items 

clicked by the users) for completing each task in each 

condition. 

As expected, the tasks that were easy to do with the 
standard file browser (0, 2, 5, and 6) show minimal 
improvement or more often a slight increase in selections 
for conditions B and C - this is due primarily to the fact that 
we didn’t allow users to use block selection for these 
conditions.  The harder tasks, though, (1,3,4, and 7) almost 
uniformly show marked improvements for the smart 
selection conditions.  The mean time for each condition is 
shown in Table 1. 

Condit

ion 

Mean number of 
examples to 

complete task 

Median 

A 11.4 9 

B 8.09 7 

C 9.47 8 

Table 1. Number of examples for each condition averaged 

across tasks.  All differences are significant as illustrated in 

Table 2. 

We performed a two-way analysis of variance (ANOVA) 
test with the number of examples as the dependent variable 
and with condition and task as the two independent 
variables; the results are displayed in Table 2 below.  This 
means both smart selection conditions (B and C) required 
significantly fewer examples/selections to reach the target 
state.  Condition C (using the label regressor) did require 
slightly more examples than B (selection classifier alone), 
but had other benefits which will become clear in the 
accuracy results below. 

In summary, auto-selection generally requires fewer 
explicit selections and de-selections than the standard file 
browser in tasks where it is not possible to sort the files in 
such a way that the targets appear in one or more 
contiguous blocks.   When such sorting is possible, users 



 

 

can use block selection in condition A to complete the task 
in a few clicks.  Furthermore, we noticed that all of the 
users in our study sorted first when block selection was 
possible, regardless of the condition.  Although they 
weren’t allowed to block select in the B and C conditions, 
they still preferred to sort the target selections into a block 
before selecting them. 

Comparison p-value 

A vs B 1.338 × 1001 

A vs C 3.196 × 1004 

B vs C 2.102 × 100+ 

Table 2. Comparing number of examples required between 

conditions by a 2-way ANOVA across tasks and conditions 

Selection Classifier Accuracy 

In addition to the total number of examples, another key 
metric for our system is the accuracy of the selection 
classifier.  This is important since we want to generalize in 
the right way as we described above – ideally, at every step, 
the new items that the system selects and deselects should 
be as close as possible to what the user intends to do.  The 
less that this is the case, the more likely it is that the user 
will get confused and annoyed with the erroneous selections 
being presented to them.   

 

Figure 7. Average selection accuracy for each task under 

smart selection conditions B (no label regressor, dark gray) 

and C (using label regressor, light gray).   

In Figure 7, we compare the accuracy of the selection 
classifier in conditions B and C for each task, averaged over 
all users.  C is substantially more accurate in every case.  
Overall, this represents an average increase in accuracy of 
49% when using the label regressor (see Table 3), a result 
that is significant at the 95% confidence level.  This means 
that using the label regressor reduces the relative error rate 
by a full 60% (from 45% error to 18% error). 

 

 

 

Condition 
Average task 

accuracy 
Standard 

Deviation 

B 0.555 0.136 

C 0.820 0.122 

Table 3. Accuracy of the inferred selections in both auto-

selection conditions averaged across tasks.  In a 2-way 

ANOVA across condition and task, C is more accurate than B 

with a p-value of 0.04681. 

The reader may wonder at this point how such a large 
improvement in accuracy doesn’t also result in a significant 
reduction in the number of clicks.  The reason is that when 
using the label regressor, the selection classifier gets close 
to the right answer much more quickly: however, getting 
the selection 100% correct takes about the same number of 
examples. In other words, while the label regressor won’t 
get to the right answer more quickly, it will get there in 
more of the right way.  We show this on an example task 
(task 4) in Figure 8, with the accuracies at each round 
averaged over all users.   Notice that in only four clicks, the 
classifier using the label regressor (C) has the selection 
more than 95% correct on average, while without it the 
performance lags at less than 80%. 

 

Figure 8.  Average selection accuracy for each round in task 4 

for condition B (black, round dots) and C (dark gray, square 

dots), averaged over all subjects.  Note that when using the 

label regressor (condition C), the system gets closer to the 

correct answer much more quickly, though both take about 

the same number of examples to reach the target exactly. 

From a user’s point of view, this poses a significant 
advantage: the system is more quickly approaching the right 
answer. This is particularly the case in a real deployment 
where at any time the user could switch from smart 
selection to standard selection (e.g., control-click vs. alt-
click) and quickly highlight the few remaining examples.  

The comments from our users supported this notion: the 
following are a few examples from the response section of 
the study: 



 

 

“The 2nd method (B) seemed a more "aggressive" 

version of method 1 (C). However the UI 

presentation i.e. the selection and deselection of 

large numbers of files strained my eyes and 

annoyed me.” 

“Selecting more files than desired can seem 

dangerous in some situations - especially when 

selecting files to delete or modify.” 

Overall 7 out of the 12 participants indicated that they 
preferred condition C (i.e., using the label regressor) over 
condition B; we expect if we allowed them to switch to 
manual selection in the middle of the task even more would 
have preferred condition C.   

Personalization 

In addition to benefiting from learning how users as a 
whole prefer to generalize, we hypothesized that we might 
get further gains from training on a particular user’s data in 
order to capture their individual styles of generalization.  
Indeed, during the user study, we observed that users 
attempted a wide range of strategies to communicate their 
indented selection.  For example, when possible, several 
users tried sorting, then selecting the top and bottom items 
of blocks, whereas others clicked on incorrectly selected 
items from top-to-bottom order.  

Although we did not have users generate their own training 
data during the study, we did a post-study analysis to 
evaluate the potential benefits of personalization.  We used 
cross-validation to compare the accuracy of the selection 
classifier used during the study with simulated accuracy 
after training on the target user’s data (but excluding data 
from the test task).  Overall we saw a very modest (2%) 
improvement in overall accuracy (significant with a p-value 
of 0.068).  Thus, while there is a small benefit from 
personalization in this scenario, by far the most significant 
gains were from learning generalization strategies from the 
user population as a whole. 

DISCUSSION  

We have presented two primary contributions in this paper.  
The first is a selection classifier that is flexible enough to 
achieve complex selection targets in a small number of 
examples; it is in fact significantly faster (in terms of 
number of clicks) than the standard file browser on a 
variety of tasks, even without block selection.  The second 
is a general method for learning to generalize, which 
leverages many sessions of user tasks in order to learn a 
model of how users prefer to generalize selections; we also 
present a means to integrate the results from this learner 
into the selection classifier.  The result of this integration is 
a substantial increase in the selection accuracy of the 
classifier, which means the system is more likely to 
generalize the user’s selections in the right way. 

In future work, we hope to develop a deployable system 
with this technology that will allow users to easily switch 
between smart selection and standard selection; this will let 

them more easily take advantage of the rapid convergence 
towards the target state seen in Figure 8.   

In closing, we would like to emphasize that the particular 
task and the particular features we used in this work are 
merely an illustration of our method: future applications 
using this method could add arbitrary sets of features for 
their selection tasks and let the classifiers select which ones 
are worth emphasizing.  
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