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(a) A standard “flat” node-link di-
agram of a graph with 23 directed
edges.

(b) Since B and D have exactly the same
sets of neighbors they can be grouped
leaving 18 edges using a simple Neighbor
Matching.

(c) A Modular Decomposition allows internal structure within
modules and nesting. Nine edges remain.

(d) A Power-Graph Decomposition further relaxes the definition
of a module to allow edges to cross module boundaries, allowing
the same graph to be drawn with only 7 edges.

Fig. 1. Different edge-compression techniques applied to the same small graph.

Abstract— We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected
to “modules”—or groups of nodes—such that the new edges imply aggregate connectivity. We only consider techniques that offer a
lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a
simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows
them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have
the same goal—to compress the set of edges that need to be rendered to fully convey connectivity—but each successive relaxation
of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize,
requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants.
For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the
parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we
are motivated by—and discuss in particular—the application to software dependency analysis.

Index Terms—Directed graphs, networks, modular decomposition, power graph analysis.

1 INTRODUCTION

Tremendous work has been focused on the visualization of graphs, i.e.
data structures composed of nodes connected by edges. This work
has yielded techniques allowing the display of a large number of el-
ements. However, the usefulness of these representations is doubt-
ful when the graphs are so dense with edge curves as to be unread-
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able. This problem is made even worse when the directionality of
the edges is important. Understanding the direction of dependencies
in software-engineering diagrams or the direction of flow in biologi-
cal reaction networks is essential to those applications and countless
others. In such applications, to answer questions about directed con-
nectivity each individual edge path must be traceable and its direction
obvious.

We encountered this specific problem when developing a software
dependency visualization feature for the Microsoft Visual Studio In-
tegrated Development Environment. The tool’s default behavior is to
produce a diagram of the dependencies between the top-level compo-
nents in a given piece of software using a node-link representation.
The idea is to produce a relatively small overview of the system from
whence the user can perform a top-down visual exploration into the
full dependency graph associated with each component. However, for
any but the most trivial systems, this top-level diagram may already be
so dense with dependency links as to be difficult to read.

For example, Fig. 2(a) is the top-level graph produced by the tool
for IronPython, an open-source .NET based implementation of the
Python language. Part of the problem here is that the “Externals” node



(a) The top-level component graph produced by the Visual Studio code-dependency analysis tool for the IronPython code base with 39 edges.

(b) We remove the links from every element to the “Externals” node and replace
them with a single link from the group of all nodes. The same information is
presented but 12 links have been removed and one aggregate link added.

(c) A full modular decomposition of the same
graph leaves only six aggregate links without any
loss of connectivity information for an 85% com-
pression rate.

Fig. 2. Edge compression techniques applied to the graph of dependencies between libraries in the IronPython [4] codebase. The representation
in (c) starts to look like the kind of “poster” that makers of complex software frameworks sometimes produce to convey the high-level architecture of
the platform, e.g. [13]. However, such poster views are usually conceptual and abstract. This representation is a precise depiction of the underlying
code dependencies and can be generated automatically.

has a link from every other node in the graph. This means that every
component in the system references a library external to the loaded
code-base. Unfortunately, this is a common situation in software en-
gineering since most code depends on other platforms. We cannot re-
move the “Externals” node since in this interactive system it provides
a useful UI affordance: users can expand the node to see exactly which
external libraries are referenced. We could instead adopt the conven-
tion of placing a box around nodes that are internal to the IronPython
source-code. Then, one thick arrow from the box to the “Externals”
node, as in Fig. 2(b), implies that every node inside the box has a
link to the “Externals” node. This first transformation is fairly obvi-
ous, however, it turns out that by repeatedly applying the same type
of grouping we can go significantly further to reduce the clutter, as in
Fig. 2(c).

The only caveats to such edge-compression techniques are that the
convention of links being “rolled-up” between groups needs to be
learned and that people may have some difficulty in mentally “un-
rolling” in order to perform useful analysis. We argue in this paper
that the benefits provided by edge-compression techniques outweigh
these caveats.
Contributions. We examined three types of edge-compression
techniques called Matching Neighbors, Modular Decomposition and
Power Graph Analysis, extending the latter to handle directed graphs.
We experimentally tested whether people with little graph expertise
can learn to read such representations depending on the type and de-
gree of edge compression. To our knowledge, we report the first em-
pirical studies involving human participants on the readability of these
techniques. Our results reveal their potential and immediate appli-
cation to the visualizations of directed graphs in a variety of domains.
Our first study, comparing flat directed graphs with graphs compressed
using matching neighbors or modular decomposition, is presented in

§4.
We then move beyond the simple techniques above to a generaliza-

tion of edge compression as an optimization problem that we believe is
NP-hard. This allows us to test different goal functions controlling the
degree of compression. A prior technique Power Graph Analysis [23]
attempted only to remove as many edges as possible. We hypothesize
that graphs with such maximal compression may prove too difficult
to read and that other objectives should be considered. However, a
readability study using a heuristic compression may be significantly
compromised by the limitations of the heuristic. We introduce a novel
methodology involving the use of Constraint Programming to gener-
ate a corpus of optimal solutions to small compression problems with
a range of objectives. To summarize, the contributions of this method-
ology are: a constraint optimization model, §5.1; the corpus of graphs
and their optimal compressed solutions ready for other researchers to
use, §6; the first empirical comparison of the power graph heuristic to
the optimal, §7; and the results of our own controlled experiment on
readability, §8.

2 BACKGROUND

People have sought to provide simpler views of large and complex
graphs by automatic grouping for some time. Most commonly this
is done with techniques that elide information to provide a more ab-
stract or high-level view. For example, Gansner et al. [12] use a spa-
tial clustering based on an initial layout of a large graph to provide
an extremely abridged overview of the full graph’s structure. Abello
et al. [5] compute a hierarchical clustering based on the graph struc-
ture that users are then able to navigate interactively. Note that both
of these techniques remove both nodes and edges to produce their
abridged views. A past evaluation of such a lossy graph compression
technique is provided by Archambault et al. [6]. Their study evalu-



ates interactive navigation of clustered graphs. In this paper we focus
on techniques that allow the precise structure of the entire graph to be
inferred by the reader without the need for interaction.

To the best of our knowledge, the first work that used a grouping
over nodes to allow implicit edges to be removed is the Phrase Nets
text visualization system by van Ham et al. [24]. Before displaying
the Phrase Nets they would find sets of nodes with identical neighbor
sets. In the final drawing such nodes were grouped together in the
diagram and the edges entering or leaving this group were understood
to imply individual edges to each node in the group. Note that since
these groups of nodes had to have identical neighbor sets there could
not be any internal structure within the group (apart from cliques with
common external neighbors which is an easily detectable special case).
As we shall see in Section 3, this significantly limits the degree of edge
compression that can be achieved in practice.

This simple edge compression technique has probably been rein-
vented many times. For example, Dinkla et al. [9] used a similar
technique for grouping nodes with identical neighbor sets to produce
compacted matrix representations of biological graphs.

The edge compression technique used in Fig. 2(c) is called a Mod-
ular Decomposition. A modular decomposition identifies groups or
modules of nodes that have identical external connections. This defi-
nition of a module places no restrictions on the connectivity structure
within the module. Therefore, modules may have internal edges and
the decomposition can be applied recursively to obtain nested mod-
ules. The modular decomposition of a given graph is unique and it can
be found in time linear in the number of nodes and edges [17].

To our knowledge, modular decomposition has not previously been
used in graph visualization to avoid drawing the full set of edges.
However, it has been used to assist with layout. Papadopoulos and
Voglis [21] used Modular Decomposition as a means of obtaining lay-
out for undirected graphs that considers the module structure. They
used a force-directed technique to keep nodes in the same module
physically close together. However, their final rendering was a typical
node-link drawing with all edges present. An earlier layout method
that employed similar ideas for drawing directed graphs was by Mc-
Creary et al. [18]. They looked for an alternative to the most com-
monly used hierarchical graph drawing technique using a so-called
Clan decomposition. Similar to [21], they used a decomposition to
achieve a more structured layout, but they still drew the full set of
edges.

Modular Decomposition should not be confused with maximal
modularity clustering [20]. The latter can be seen as another lossy
compression technique. It attempts to group a graph into communi-
ties/groups/clusters/modules with minimal links between them com-
pared to a random graph with similar degree distribution. Modularity
maximization is NP-hard [8] and the optimal partitioning is not neces-
sarily unique.

Power graphs were recently introduced by Royer et al. [23] for the
simplification of dense undirected biological graphs. We describe in
the next section how they can be thought of as a relaxation of the
constraint in modular decompositions that the aggregate edges do not
cross module boundaries. This relaxation allows for potentially much
greater compression of edges. We investigate in this paper—for the
first time—whether this comes at the expense of more difficult inter-
pretation. Also, their heuristic was designed purely to minimize the
number of edges in the decomposed drawing. In this paper we inves-
tigate the effect of optimizing other criteria.

To our knowledge none of the above techniques have been evaluated
with controlled studies.

3 DEFINITIONS AND TECHNIQUES

We consider three different edge compression techniques: matching
neighbors as per [24, 9]; modular decomposition and Power Graph
Analysis. In all cases we apply these techniques to a graph G = (V,E)
with node set V and directed edges E. A node v ∈ V has incoming
neighbors N−(v) = {u | ∃(u,v)∈ E} and outgoing neighbors N+(v) =
{w | ∃(v,w) ∈ E}.

Fig. 3. The simplest
Matching Neighbors com-
pression allows for leaves
of “star graphs” (a) to
be collapsed into a mod-
ule (b). A simple ex-
tended matching allows
for cliques as in (c) to also
be grouped (d). In (d) the
edges in the clique mod-
ule are removed and im-
plied by a self-loop: an
arrow from the module to
itself.

3.1 Matching Neighbors.
The simplest definition for a module that provides a useful edge com-
pression is that all nodes in a module must have identical neighbor
sets. That is, two nodes u and v are grouped if N+(u) = N+(v) and
N−(u) = N−(v). This allows for grouping of the leaves of stars (e.g.
Fig. 3(a-b)) or for k-partite components into k modules.

Further compression is possible by relaxing the definition further to
allow cliques with identical external neighbors to also be grouped into
modules [24, 9], as in Fig. 3(c-d). That is, in addition to the above
module definition they also allow two nodes u and v to be grouped if
u∈N+(v),v∈N+(u),N+(u)\{v}= N+(v)\{u} and the same is true
for the incoming neighbor sets of u and v.

Simple matching in this way is trivially computed in linear time by
hashing. Fig. 1(b) gives a non-trivial example of matching neighbors.
For a given graph, the neighbor matching is unique.

3.2 Modular Decomposition.
The rules described above for matching neighbors do not allow for
internal structure within modules: the nodes inside each module are
either not connected to any other nodes in the module, or they are
connected to every other node in the module. Modular decomposi-
tion relaxes this definition. Thus, a set of nodes M ⊂ V is a mod-
ule in a modular decomposition, if for every pair of nodes u,v ∈ M,
N+(u) \M = N+(v) \M and N−(u) \M = N−(v) \M. This defini-
tion allows for internal structure within modules, and therefore the
possibility that the decomposition can be applied recursively to ob-
tain nested modules. Examples of modular decomposition are given
in Figures 1(c) and 2(c). Note that matching neighbor sets are sub-
sumed by modules, so Figures 3(b) and (d) also happen to be modular
decompositions.

The first polynomial-time algorithm for modular decomposition is
due to James et al. [16]. Methods that require linear time in the number
of nodes and edges exist for directed graphs [17] but they are subtle
and difficult to implement. The figures in this paper were generated
with an O

(
|V |2

)
method due to Ehrenfeucht et al. [11].

3.3 Power Graph Analysis.
Note that in all of the above definitions for modules, edges in the
decomposition and hence the drawing, never cross module bound-
aries. Fig. 1 shows that greater edge compression can be achieved
if the definition of a module is relaxed to allow edges to cross module
boundaries. However, now there are many possible choices for how
to decompose the graph in order to compress edges. Royer et al. [23]
very briefly described a simple greedy heuristic for performing this so
called power graph analysis for undirected graphs.

They begin by computing a similarity coefficient for all pairs of
nodes based on their neighbor sets. Then they apply a hierarchical
clustering of the nodes based on this similarity. Every cluster in the
resulting hierarchy is considered as a candidate module.

The second part of the heuristic involves calculating, for each can-
didate module, the number of edges that could be removed were the
module to be created. In a greedy fashion, they then create the module
that allows the most edges to be removed and repeat until no further
improvement is possible.

We consider Power Graph Analysis in more detail in §5.



Fig. 4. Experimental results: accuracy, time, time split by dataset difficulty and user ratings.

4 CONTROLLED EXPERIMENT 1
To assess the readability of diagrams produced by edge compression
techniques compared to flat node-link diagrams, we performed a con-
trolled experiment involving 15 human subjects. To evaluate the learn-
ability of these techniques, we recruited participants with extremely
low (or nonexistent) knowledge in graph theory. None of these par-
ticipants were programmers and none used graph diagrams in their
daily activities. We performed a within-subject experimental design:
3 Techniques×3 Difficulties×6 Repeats.

4.1 Techniques
In this initial experiment, we compared flat node-link diagrams (our
control condition) to the matching neighbors and modular decom-
position techniques described earlier. We did not include the power
graph technique in this study to keep it to a reasonable time and limit
our participants’ fatigue. We conjectured that power graphs would
require the most training and possibly feature concepts that a naı̈ve
audience may not successfully grasp. Therefore, we decided to first
evaluate the simplest of our edge-compression techniques.

Layout of the graphs used in the study was accomplished by
constrained-force directed layout [10]. We also made some manual
fine adjustments to resolve obvious layout issues and maximize read-
ability. It is important that all edges are at least visible and distinguish-
able from other edges along their entire span and that they do not cross
node or module boundaries where it is not necessary to do so. The only
edge routing methods that we know of that are capable of doing this
are orthogonal routing, such as [25] and the “ordered bundling” edge
routing method proposed by Pupyrev et al. [22]. Since orthogonal
routing introduces right-angled bends which may make them difficult
to follow, we use the technique of Pupyrev et al. for all the examples in
this paper and for the renderings generated for the study. The DGML
graphs used (viewable in Visual Studio 2012 Pro) and the images gen-
erated for the study are available from our online repository [3].

4.2 Difficulties
We generated synthetic graphs to ensure equivalent graph structures.
In particular we wanted diagrams where we could control the number
of nodes and the number of modules when the various techniques were
applied. To achieve this we created the desired number of nodes and
from this node set we randomly selected subsets of limited size to be
modules. We then randomly picked pairs of modules to be linked by
creating edges for the Cartesian product of their members. We applied
this process recursively until the desired density or nesting level was
achieved. The maximum module size and the probability of linking
modules also controlled the density. The properties of each graph used
are shown in Table 1. The graph Easy3 is shown in Fig. 1.

4.3 Task
We hypothesized that, since our representation was replacing a set of
links by a different shape, a connectivity task in which participants
have to count or follow links would be most affected. Thus, we se-
lected a shortest path task, in which participants had to count the
smallest number of links to go from a node labeled “Start” to a node
labeled “End”. Path length varied up to 4 links. In some cases no path
existed.

Node Link Matching Neighbors Modular Decomposition
Graph |V | |E| m |E| m |E| nl
Easy1 7 16 1 12 2 9 1
Easy2 7 19 1 14 2 11 0
Easy3 7 23 1 18 3 9 1
Medium1 10 22 2 13 4 6 0
Medium2 10 40 3 21 5 8 1
Medium3 10 34 2 12 3 7 0
Difficult1 15 44 4 29 5 15 2
Difficult2 15 42 4 34 5 17 1
Difficult3 15 66 2 55 6 12 2

Table 1. Graphs used in study 1 and their properties for each technique,
where: |V |= number of nodes, |E|= number of visible edges, m = num-
ber of modules, nl = nesting level.

4.4 Participants and apparatus
We recruited 15 participants (7 males and 8 females). The age of our
participants ranged between 24 and 39 years (mean 31.4). The par-
ticipant pool excluded programmers and participants with graph the-
ory background. We also screened for participants with normal or
corrected-to-normal vision, none being color-blind. The experimenter
ran 1.5 hour sessions with two participants at a time. Each partici-
pant completed the experiment on an individual PC, using a 19-inch
monitor with a resolution of 1280 by 1024.

4.5 Procedure
Training. Since our participants were not familiar with graph theory
concepts, we decided to train them before each technique and consider
the training successful when they could answer correctly each of the 12
training trials. The experimenter first instructed them on how to read
the type of diagram using a printed version and illustrating the diagram
“rules” with examples of the shortest-path task. Training both partic-
ipants at the same time was beneficial as it fostered discussion and
encouraged them to ask many questions. After this general training
the experimenter demonstrated the experimental interface and asked
participants to answer the 12 training trials individually, pausing after
each trial. These trials were designed to cover all principles of read-
ability and included task instances considered most error-prone. Over-
all training for the three techniques lasted up to 20 minutes. The ex-
perimenter noted that the modular decomposition technique, if taught
first, led to a longer training. The most challenging concept to acquire
with this technique concerned the different levels of nesting.
Experiment. We counterbalanced the order of visualization tech-
niques across participants. We fixed the order of the datasets from
low to high difficulties. For the repetitions within the same diffi-
culty, we created isomorphic questions by either selecting different
sets of sources and destinations or using a graph with similar proper-
ties. Graphs and tasks were repeated across techniques with scrambled
labels. The visual representations obtained were also strikingly differ-
ent as the different number of edges and the groupings led to very
different layout and edge routing configurations.

The experiment software displayed the task as well as multiple
choice answers and recorded accuracy and time taken for each answer.
The software first displayed the question without any visualization.
Once participants read the text and were ready to answer the question,



they clicked a button to view the corresponding visual. Participants
pressed space bar once they found the answer. At this point, the visual
was removed and the timer stopped. Participants entered their answer
and reached the next question. They were instructed to rest if needed
between questions and to answer questions as accurately and as fast as
they could. To keep the study at a reasonable length, we limited each
question to a maximum of 60 seconds. Finally, after the experiment,
we collected user preferences and comments using a printed question-
naire. The study lasted approximately 60 minutes including training
and post-experimental questionnaire.

4.6 Hypotheses
We formed the following hypotheses:
(H1) Since link clutter is a key factor affecting the readability of node-
link diagrams, we hypothesized that modular decomposition would
perform best across all difficulties, followed by matching neighbors,
followed by node-link diagrams.
(H2) Modular decomposition will yield more accurate and faster re-
sults than the other two techniques for difficult datasets since these
benefit most from the removal of links.
(H3) Node-link diagrams will yield more accurate results than the
other two techniques in easy datasets since they are familiar to a wide
audience. However, they will not yield faster results than the other two
techniques for correct trials since they require following many more
links than in the other two representations.
(H4) Since node-link diagrams are cluttered and modular decompo-
sition requires learning, we hypothesized that the matching neighbors
technique will be preferred by participants.

4.7 Results
We excluded one participant from our analysis since his mean accu-
racy (59%) was lower by more than three standard deviations com-
pared to the mean accuracy of the remaining 14 participants (88%).
However, this participant did not fail the training and his mean accu-
racy was much lower with node-link diagrams (39%) than with the
edge compression techniques (about 60%).
Accuracy. Since accuracy does not follow a normal distribution, we
used Friedman’s non-parametric test. Friedman’s did not reveal any
overall significant difference between techniques in terms of accu-
racy. Participants were about 85% to 90% accurate with all techniques
(Fig. 4). When splitting results by difficulty, we were surprised that
Friedman’s test did not reveal any significant difference between tech-
niques either in difficult (H2) or easy (H3) datasets.
Completion time. We analyzed the completion time for correct tri-
als with a Mixed Linear Model (MLM) capable of handling missing
values. We excluded about 12% incorrect trials. Since the distribu-
tion was skewed, we used the logarithm of the completion time as is
common practice. MLM revealed a significant effect of Technique
(F2,26 = 65.10, p < .0001) and Difficulty (F2,26 = 33.32, p < .0001).
Pairwise comparisons revealed that modular decomposition is 17%
faster than matching neighbors (p < .0001), 36% faster than node-
link (p < .0001) and matching neighbors is 23% faster than node-link
across all difficulties (Fig. 4). These results confirm our hypothe-
sis (H1): for correct trials, modular decomposition performs fastest,
followed by matching neighbors, followed by our node-link control
condition. When splitting results by difficulty, one can observe the
same trend in all difficulties (Fig. 4). Pairwise comparisons revealed
that node-link is significantly slower than the two other techniques in
all three difficulties (p < .001). However, pairwise comparisons re-
vealed that modular decomposition significantly outperforms match-
ing neighbors for only the medium difficulty (p < .0001).
User Preferences. A questionnaire gathered user preferences using
5-point Likert scales. Since these results do not follow a normal dis-
tribution, we analyzed user preferences ratings using Friedman’s non-
parametric test. Friedman’s test reveals significant difference for all
questions (Fig. 4). As expected (H4), modular decomposition was
found to be significantly harder to learn than the other two techniques
(p < .05) and, despite their faster completion time, participants re-
ported being less confident about their answers with this technique

(p < .01). Node-link was also reported to be significantly more clut-
tered than the other two techniques (p < .01). Overall, the user rank-
ing of the techniques revealed a significant preference of the match-
ing neighbors technique over the modular decomposition technique
(p < .01).

4.8 Discussion
We had hypothesized that while modular decomposition would yield
more accurate results for difficult (denser) graphs, the technique might
prove less effective than node-link diagrams for easy (sparser) ones.
Surprisingly, our experimental results did not show any significant dif-
ferences between techniques in terms of accuracy for either easy or dif-
ficult datasets. However, our results on completion time indicate that
edge compression techniques provide significant advantages over
standard node-link representations. In particular, modular decom-
position outperforms the other two techniques, increasing the speed of
answer by 36% on average compared to the control condition. These
results clearly demonstrate the power of edge-compression techniques
and suggest a clear benefit of these techniques for the representation
of directed graphs.

Despite these potential benefits we had strong beliefs that the edge
compression techniques (especially the modular decomposition ex-
hibiting multiple levels of nesting) would prove difficult to learn by a
naı̈ve audience. While the difficulty of learning these techniques was
reflected in the user ratings and overall ranking preference, we were
extremely surprised that all of our participants with low expertise in
graph theory could successfully learn to decode these techniques
in a short amount of time (15 to 20 minutes of training overall).

5 MORE SOPHISTICATED DECOMPOSITIONS

Thus, we see that for dense directed graphs people are able to use-
fully interpret aggregate edges. Furthermore, we see that the greater
edge reduction provided by modular decomposition provides signif-
icant performance advantages over exact-neighbor matching or flat
node-link diagrams. A natural question to ask is whether the pattern
continues for power graphs, despite the additional complexity of edges
crossing module boundaries. In order to answer this question we need
to know how to compute the power-graph decomposition.

Computing power-graph decompositions is significantly harder
than computing the graph’s modular decomposition. In fact we con-
jecture that it is NP-hard since it appears to rely in the worst case on
evaluating an exponential number of possible module choices. Unlike
the modular decomposition the best power-graph decomposition is not
unique. Furthermore, it is not clear what exactly we want to optimize.
The obvious quantity to minimize is the number of edges in the power
graph, however—as we see in Fig. 5—minimizing edges alone may
lead to diagrams in which modules are highly nested and edges cross
many module boundaries. We might also want to trade-off the number
of modules.

As described in §3, Royer et al. [23] give a greedy heuristic for com-
puting a power-graph decomposition which minimizes the number of
edges. However, we do not know how effective this heuristic is or
even if this is the correct feature to minimize. In order to answer these
questions we used a methodology that to the best of our knowledge
has not previously been used in visualization research. Our approach
was to use a high-level modelling language to declaratively specify the
properties we want in a good layout, including a precisely defined ob-
jective function, and then use Constraint Programming (CP) to find a
provably optimal solution. The use of a high-level modelling language
allowed us to quickly experiment with different aesthetic choices and
the use of a provably optimal solving technique meant that differences
in layout were a result of the aesthetic criteria not of vagaries of the
solving heuristic.

Note that we are not (yet) advocating these optimal techniques as a
practical solution for generating power graphs, especially for interac-
tive systems. Finding the optimum takes too long and we are limited to
relatively small graphs. However, it is very useful as a way to explore
the parameter space for the goal function. Particularly in combination
with controlled studies to evaluate the different optimal solutions, we



believe this is a powerful methodology that allows us to separate al-
gorithm engineering from discovering the true requirements for useful
visualizations. Once those requirements are understood, our intention
is to design practical heuristics that give output that is closer to optimal
than that of current heuristics.

5.1 Computing the Optimal Power-Graph Decomposition
In this section we describe the high-level model we used to compute
the optimal power-graph decomposition and how we implemented it
in MiniZinc [19]. MiniZinc is a relatively new language designed
to allow high-level solver independent modelling of constrained op-
timization problems. Like other mathematical modelling languages, a
MiniZinc model contains input parameters whose value is given in an
input file, decision variables whose values are computed by an under-
lying constraint solver, high-level constraints and an objective function
to be minimized or maximized.

The input to our problem is the number of vertices nv and a Boolean
array edge where edge[u,v] iff there is an edge from vertex u to v. The
main decision variables in the problem are the number of modules anm
and the vertices in each module. We model this in our MiniZinc model
by an array of Boolean decision variables where module[v,m] will be
set to true iff vertex v is in module m. A MiniZinc model does not
specify how to compute the value of the decision variables, rather the
model places constraints on the values the variables can take and it is
the job of the underlying constraint solver to compute the values.

We require that the modules form a hierarchy: one way of stating
this is that for all modules m and n, m ⊆ n∨n ⊆ m∨m∩n = /0. Note
that the hierarchy requirement means that we can restrict anm ≤ nv.
The MiniZinc code to ensure the modules form a hierarchy is simply:

constraint forall(m in modules,n in modules)(mcontains[m,n]=
forall(v in vertices)(module[v,n] -> module[v,m]));

constraint forall(m in modules, n in modules where m != n)
(mcontains[m,n] \/ mcontains[n,m] \/
forall(v in vertices)(not module[v,n] \/ not module[v,m]));

Note that the above constraints make use of the Boolean array
mcontains[m,n] which is constrained to hold if module m contains
module n.

For any fixed choice of modules there is a unique best choice of
edges in the power graph. To simplify the representation of power
graph edges in the model we add a singleton “trivial” module {v} for
each vertex v:

constraint forall (v in vertices)(module[v,v] /\
forall(u in vertices where u != v)(not module[u,v]));

This means that the edges in the power graph are all pairs of mod-
ules (m,n).

We first compute for each pair of nodes m and n if there is a possible
edge between them. There is a possible edge between m and n iff: (1)
for all u ∈ m and for all v ∈ n, (u,v) ∈ E, and (2) m = n or m∩n = /0.
The first condition ensures the edge is semantically correct while the
second condition disallows edges between ancestors or descendants in
the hierarchy.

We now compute the actual edges in the power graph. This is any
possible edge (m,n) which is not dominated by some other possible
edge (m′,n′) where (m′,n′) dominates (m,n) if m ⊆ m′ and n ⊆ n′.
The intuition is that we choose the edges as high up in the module
hierarchy as possible.

The MiniZinc constraints that encode this computation are as
follows. They make use of the arrays of Boolean decision vari-
ables: pmvedge[m,v] iff ∃ a possible edge from module m to ver-
tex v; pvmedge[m,v] iff ∃ a possible edge from vertex v to mod-
ule m; ppgedge[m,n] iff ∃ a possible edge from module m to n; and
apgedge[m,n] iff ∃ an actual edge from module m to n:

constraint forall(m in modules, v in vertices)(pmvedge[m,v]=
forall(u in vertices)(module[u,m]->edge[u,v]));

constraint forall(v in vertices, m in modules)(pvmedge[v,m]=
forall(u in vertices)(module[u,m]->edge[v,u]));

constraint forall(m,n in modules)(ppgedge[m,n] =
(forall(v in vertices)

(module[v,n] -> pmvedge[m,v]) /\
(m=n \/ forall(v in vertices)
(not module[v,n] \/ not module[v,m])) ));

constraint forall(m,n in modules)(
apgedge[m,n] = (
ppgedge[m,n] /\ m <= anm /\ n <= anm /\
forall(p in nv+1..nm)(
(mcontains[p,m] -> not ppgedge[p,n]) /\
(mcontains[p,n] -> not ppgedge[m,p])) ));

The final piece of the puzzle is the objective function which we wish
to minimize. This is specified in our MiniZinc model by

solve minimize numbermodules + edgeweight*numberedges +
crossingweight*numbercrossings;

This states that the objective function is the weighted linear sum of
the number of modules, number of power graph edges, and the num-
ber of edge/module boundary crossings. The weights are input param-
eters: by changing these in the input file it is simple to explore the
layout tradeoff between these features. It is also simple to add other
features that we wish to explore to the objective function.

We must also add constraints to ensure that the decision vari-
ables numberedges, numbermodules and numbercrossings are cor-
rectly computed. The following MiniZinc assignment statements do
this for edges and modules:

numbermodules=anm-nv;
numberedges=sum(m,n in modules)(bool2int(apgedge[m,n]));

The number of edge crossings is a little trickier: to help we compute
the array of integer decision variables, mcrossings[m,n], which gives
the number of module boundaries that must be crossed to get from
module m to module n. This is simply the number of modules p that
contain either m or n but not both.

constraint forall(m,n in modules)(
mcrossings[m,n] = sum(p in modules)(
bool2int(mcontains[p,m] xor mcontains[p,n])));

numbercrossings=sum(m,n in modules)(
bool2int(apgedge[m,n]) * mcrossings[m,n]);

Running Time As one might expect this model is quite slow even
with the cpx solver (which is one of the fastest solvers supporting
MiniZinc). We improved efficiency by adding a number of redundant
constraints and constraints to remove symmetric solutions. While the
model is still too slow for real-world layout it can compute optimal
power-graph decompositions for graphs with 10-15 nodes, allowing us
to determine a ground truth corpus for evaluating heuristic techniques
and also to generate layouts for exploring the tradeoffs between differ-
ent layout features.

Interestingly, the running time is not necessarily strongly tied to the
number of nodes or edges, rather it is related to the number of modules
in the optimal solution. Instances with only a couple of modules in
the optimal solution are generally solvable in several minutes on a
standard 2013 PC1 while, for example, Difficult3 Non-Modular with 7
modules took over 8 hours. Note also, that often the optimal solution
is found relatively quickly (e.g. in the first half of the total running
time) but significantly more time is required to prove optimality.

By contrast the heuristic described in §3.3 is O(|V |2 log |E|) with
efficient set comparison techniques and runs in under a second on all
of our test graphs. The decomposition of a graph with |V | = 140 and
|E|= 406 shown in Fig. 9 took 39 seconds on the same hardware. An
optimal compression of such a large graph is not practical with current
technology.

6 COMPRESSED GRAPH CORPUS

To evaluate the amount of compression gained by the optimal decom-
positions over the power-graph heuristic we prepared a corpus of 28
dense graphs.

We prepared eight graphs for our second study, based on the
medium and difficult graphs used in the first study. The idea of reusing

1Intel Ivy Bridge Core i7, up to 2.6GHz



(a) Optimal crossing-weight=2000 (b) Optimal crossing-weight=500 (c) Optimal crossing-weight=1

(d) Heuristic crossing-weight=2000 (e) Heuristic crossing-weight=500 (f) Heuristic crossing-weight=1

Fig. 5. A small but dense scale-free graph and the results of optimal and heuristic power-graph decomposition for various crossing-penalties. In all
cases the edge-weight was kept fixed at 1000.

graphs is to provide continuity between studies. Two of them (Difficult
Modular) are unmodified from the first study, and so permit a modular
decomposition. The rest have been made more dense—and so more in-
teresting for power graph analysis—by randomly adding edges until a
modular decomposition is no longer possible. They have 10 (Medium
Non-Modular) or 15 (Difficult Non-Modular) nodes and between 24
and 70 edges.

In addition we generated a set of twenty random scale-free graphs.
These were generated following the model of Bollobás et al. [7] which
has been shown to construct organic looking graphs with similar struc-
ture to those found in biological systems and complex evolving arti-
facts like the web. We modified the model to eliminate self-loops and
multiple edges by simply discarding any such edges. Also, we limited
the size of the generated graph to n nodes by stopping the algorithm
immediately before the (n+1)th node would be added.

The Bollobás et al. model has five parameters. At each discrete
time step, the graph grows in one of three ways: (a) a new node with a
single outgoing edge is added, (b) a new edge between existing nodes
is added, or (c) a new node with a single incoming edge is added. The
parameters α , β and γ are the respective probabilities of each possibil-
ity. When choosing a destination for the edge in (a) or (b), the choice
is weighted towards nodes that have a high in-degree, and when choos-
ing an origin for the edge in (b) or (c), the choice is weighted towards
nodes that have a high out-degree. The weighting is influenced by pa-
rameters δin and δout, where higher values of the parameters give less
weight to the existing in- and out-degrees.

To generate our corpus of graphs, we used a node limit of 10. After
some experimentation we found that the parameters α = γ = 1

42 , β =
40
42 , and δin = δout = 1 generated graphs with a good distribution of
edge densities, between 26 and 60 edges.

Fig. 6. The optimal/heuristic cost ratio broken down by number of mod-
ules in the optimal solution.

7 EFFECTIVENESS OF COMPRESSION

We then ran our MiniZinc solver on each of these 28 graphs, with three
different settings for the crossing-weight parameter in the objective
function, to find a total of 84 graph decompositions that are optimal
with respect to the given goal function. This graph corpus and their
optimal decompositions are available online [3] and constitute a first
benchmark useful for further evaluations by the research community.

The crossing weights used were 2000, 500 and 1 while the edge
weight was kept fixed at 1000. We obtained 84 more decompositions
using the greedy power-graph heuristic to obtain approximate solu-
tions, also varying the crossing-weight used to decide when to create
a module in the heuristic’s cost function. An example set of results for
one graph is given in Fig. 5. We found that with crossing weight of
2000 the optimal solution was exactly the modular decomposition on
our two modular graphs. On the denser modular graph the heuristic
failed to find one of the modules.

It is interesting to compare the cost as computed by the objective
function for the optimal versus approximate solutions. In Fig. 6 we
compare the ratio of optimal cost to heuristic cost against the num-
ber of modules in the optimal solution. The heuristic does well with
very few modules but deteriorates as this number increases. A ratio of
0.7 means a difference of dozens of edges or crossings depending on



the objective function. We see in Fig. 5 that this makes a significant
difference.

8 CONTROLLED EXPERIMENT 2
Our first experiment revealed that participants could successfully learn
a complex edge-compression technique involving several levels of
nesting and significantly increase their performances for shortest path
tasks. Yet, as described in §5 we can go further by allowing edges to
cross module boundaries. Our next study investigates how different
degrees of compression affect readability.

This second controlled experiment involved 14 human subjects,
again with extremely low or no knowledge in graph theory. None of
these participants were involved in the first study and none used graph
diagrams in their daily activities. We used a within-subject experimen-
tal design: 3 Edge compression levels×3 Difficulties×6 Repeats.

8.1 Degree of edge crossing
We believe that the number of edges crossing module boundaries is the
factor that most impacts the readability of power graphs. Therefore,
we selected three conditions with low, medium and high numbers
of cross-boundary edges. These correspond to the optimal solutions
obtained with crossingweight = 2000,500,1 respectively, used in the
objective function of our power graph model as described in §7.

8.2 Difficulties and Task
We chose graphs intended to provide three difficulty levels: Difficult
Modular were the unmodified difficult graphs from Study 1; Medium
Non-Modular and Difficult Non-Modular were modified from Study
1 as described in §6 so that they no longer afford a modular decom-
position. That is, it is no longer possible to compress these latter
graphs without creating crossings between edges and module bound-
aries. Medium Non-Modular graphs look similar to Fig. 5. We se-
lected the same shortest path task as in study 1.

8.3 Participants and apparatus
We recruited 14 participants (7 males and 7 females). The age of our
participants ranged between 20 and 38 years (mean 29.4). The par-
ticipant pool excluded participants of the first study, programmers and
participants with graph theory background. We also screened for par-
ticipants with normal or corrected-to-normal vision, none being color-
blind. The experimenter ran 1.5 hour sessions with two participants at
a time using the same apparatus as experiment 1.

Layout was as described in the first study although the visuals be-
came more polished, following recommendations for directed edge
representations from Holten et al. [14]. Again all materials are avail-
able [3].

8.4 Procedure
Training. Since our participants used the same technique (with differ-
ent levels of crossings), we only trained them at the beginning of the
experiment. The experimenter followed the same training protocol as
in the first study. Overall training for the technique lasted 15 minutes
on average. The experimenter noted that the most challenging con-
cepts to acquire were the different levels of nesting and edges crossing
boundaries.
Experiment. We counterbalanced the order of the degree of crossing
across participants. We fixed the order of the datasets from low to high
difficulties. For the repetitions within the same difficulty, we created
isomorphic questions by either selecting different sets of sources and
destinations or using a graph with similar properties. Each level of
compression displayed the same exact graphs and tasks. Similar to
the first study, the visual representations obtained had very different
layouts and edge routing configurations and we randomized labels in
all diagrams to avoid memorization.

We used the same experimental software as in the first study. After
the experiment, the experimenter briefly interviewed participants on
what they found most difficult or confusing in these diagrams. The
study lasted approximately 60 minutes including training and post-
experimental interview.

Fig. 7. Experimental results: accuracy, time and time split by dataset
difficulty.

8.5 Hypotheses
We hypothesized (H5) that a medium degree of cross-boundary
edges—as a compromise between compression and complexity—
would give best performance. We further hypothesized (H6) that the
highest degree of cross-boundary edges would prove too complex to
read for a naive audience, thus yielding less accurate and slower re-
sults.

8.6 Results
Accuracy. Since the accuracy does not follow a normal distribu-
tion, we used Friedman’s non-parametric test. Friedman’s test re-
veals an overall significant difference in accuracy between techniques
(p < .0001). Pairwise comparisons using the Wilcoxon’s test showed
that the high level of cross-boundary edges leads to more errors than
the other two conditions (p < .0001), verifying (H6). Participants
were only 66% accurate in this condition contrasting with the 84% and
85% mean accuracies for the low and medium crossing levels (Fig. 7).
When splitting results by difficulty, Friedman’s and Wilcoxon’s tests
reveal the same trend for Difficult Modular (p < .0001) and Medium
Non-Modular (p < .0001) graphs: a high degree of crossings yields
more errors than the other two conditions. However, there is no signif-
icant difference between crossing degree for the most difficult case.
Completion time. We analyzed the completion time for correct tri-
als with a Mixed Linear Model (MLM) capable of handling miss-
ing values. We excluded 22% incorrect trials. Since the distribution
was skewed, we used the logarithm of the completion time as is com-
mon practice. MLM revealed a significant effect of degree of crossing
(F2,26 = 5.77, p < .01) and Difficulty (F2,26 = 3.61, p < .05). Pairwise
comparisons revealed that overall, the medium degree of crossing out-
performs the high one (p < .0001) (Fig. 7).

When splitting by difficulty, one can observe different trends for
each type of dataset (Fig. 7). It is interesting to note that in the mod-
ular datasets, a low degree of crossing equates to the modular decom-
position technique. Our results indicate that participants can handle
a moderate number of edges crossing module boundaries (H5) as low
and medium level do not yield significantly different times but both
prove significantly faster than the high degree of crossing (p < .05).
For the non-modular datasets, the medium degree of crossing leads to
faster completion time than the other two techniques for the medium
graphs (p < .01) but there is no significant difference for the difficult
graphs. These results may imply that as the graph gets denser (and thus
requires more time for finding a shortest path between two nodes), the
degree of crossing does not have a noticeable impact on the completion
time anymore.
User comments. After the timed trials, the experimenter collected
comments about the difficult or confusing aspects of these diagrams.
The experimenter did not prompt participants with particular aspects
but rather collected spontaneous reactions of the participants. We cat-
egorized the difficult aspects described by our participants into two
major areas: cross-boundary edges and nesting. Nine out of 14 par-
ticipants commented that the cross-boundary edges (especially from a
node inside a module to a different module) were the most difficult as-
pect of these diagrams. Five participants explicitly said that these were
the most likely cause of their errors. Four of our 14 participants identi-
fied nesting as causing them problems; three of these did not mention



Fig. 8. A fiendishly tricky task used in training for the second study. The
shortest paths are 4 steps: e.g. Start→D→G→I→End.

(a) Flat graph with 140 nodes and 406 links.

(b) A compressed version (using the heuristic described in §3.3) has 17 modules,
reducing the visible edge count to 208. Obviously, at this scale individual edges
are difficult to follow, yet the groupings are also interesting since they show the
members that are accessed together.

Fig. 9. A mapping of the reference graph for five classes (blue nodes)
and their members from the Json.NET library [2].

the cross-boundary edges at all. Finally, one participant commented
that, at first, the most confusing aspect of these diagrams was the af-
fordance of the visual grouping into modules. He explained that such
grouping naturally conveyed to him that nodes within a module are di-
rectly connected (clique). While training helped, he struggled against
this instinctive decoding of the diagram throughout the trials.

9 DISCUSSION

Our first study revealed that edge compression through modules does
significantly improve response times in path following tasks once the
reader has understood the concept of inferred edges. While this con-
cept is not immediately intuited by most novices, 10–15 minutes of
training seems adequate to make most of them proficient. Our sec-
ond study showed that allowing some cross-module edges (and hence
allowing compression of graphs that do not permit a modular decom-
position) is still readable though compression methods should apply a
penalty to cross-edges. Our medium crossing condition (edgeweight =
1000, crossingweight = 500) seems to offer the best compromise in
most graphs.

To qualify, however, our results regarding cross-edges did vary in
different graphs. To demonstrate why certain graphs and path follow-
ing tasks can be particularly hard we give a final small example. Fig. 8

is a task used in training that requires both following cross-module
edges and unrolling nested modules.

Scope and Limitations. This paper focuses on directed graphs instead
of general undirected graphs for several reasons:
- There are many applications that interest us where the directionality
of edges is very important.
- As already mentioned, the problem of edge density is potentially
much greater for directed graphs.
- The Power Graph Analysis technique has not previously been con-
sidered for directed graphs.
- Greater care must be taken with the visual representation to ensure
edge direction is clearly readable.

We limit the evaluations in this paper to graphs with relatively few
nodes, again for multiple reasons:
- In our trial runs for the first study we began by considering larger
graphs (up to 30 nodes), however the participants were overwhelmed
and the flat graphs were completely unreadable. Even at 13 nodes,
Fig. 2(a) is becoming overwhelming.
- There is no doubt that practical applications require analysis of large
graphs, yet small graph visualization is still applicable for detailed ex-
amination of a neighborhood or viewing at a high level of abstraction.
For example, the graph in Fig. 2 is only the top-level semantic group-
ing of a graph with hundreds of thousands of nodes.
- For smaller graphs it is possible to determine optimal decompositions
which affords precise evaluation as described above.
- Our feeling after completing the studies, is that the difficulty in per-
forming path following tasks has less to do with the number of nodes
but everything to do with the complexity of path in terms of whether
it crosses module boundaries or requires the reader to mentally unroll
nested modules, §8.

Still, scalability to larger instances is essential future work. In Fig. 9
we show heuristic compression of a graph with 140 nodes and 406
edges to demonstrate that—even though individual edges are no longer
easily traceable without interaction—compression still results in a sig-
nificantly less cluttered visualization and there is utility in simply ob-
taining layout that respects the modules. In this software dependency
graph, the modules themselves are also meaningful in that they group
class members that are accessed together. Further refinement of the
algorithmics, visual design and interaction to such larger examples is
interesting, but beyond the scope of this paper.

Future Work. There are many directions for future work. We are
developing a Visual Studio extension for producing “Poster Views” of
code dependencies as in Fig. 2(c). This extension and the source code
for all the techniques described are available [1]. We make our corpus
of test graphs and optimal power-graph solutions available in the same
repository as detailed in [3]. These optimal solutions represent hun-
dreds of hours of processing time and should be a valuable resource
for both those interested in performing experiments on different rep-
resentations and algorithms engineers interested in developing more
optimal heuristics. For those interested in experimenting with differ-
ent goal functions or different input graphs our MiniZinc model is also
available.

We find this methodology of using constraint programming to
declaratively model and optimally solve small instances of difficult
graph visualization problems compelling, as it avoids the shortcom-
ings of heuristics in the exploration of the design space. We hope to
investigate this approach further in different areas such as layout.

Regarding power graphs generally, there is much work to be done:
as demonstrated in §7 we need more optimal heuristics; we need stable
techniques for dynamic graphs; we need to extend to graphs with mul-
tiple edge types and attributed edges. Another popular technique for
removing clutter in dense graphs is edge bundling, e.g. [15]. However,
usually groups of edges are bundled based on spatial locality. When
the edges in such a bundling run concurrently this is effectively a lossy
compression as exact connectivity is no longer discernible. An obvi-
ous alternative which would not result in this ambiguity is to bundle
edges based on the decompositions described in this paper.
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