
Synthesizing Switching Logic for
Safety and Dwell-Time Requirements

Susmit Jha
UC Berkeley

jha@cs.berkeley.edu

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Ashish Tiwari
SRI International

tiwari@csl.sri.com

Abstract—Cyber-physical systems (CPS) can be usefully
modeled as hybrid automata combining the physical dynam-
ics within modes with discrete switching behavior between
modes. CPS designs must satisfy safety and performance
requirements. While the dynamics within each mode is usually
defined by the physical plant, the tricky design problem often
involves getting the switching logic right. In this paper, we
present a new approach to assist designers by synthesizing
the switching logic, given a partial system model, using a
combination of fixpoint computation, numerical simulation,
and machine learning. Our technique begins with an over-
approximation of the guards on transitions between modes.
In successive iterations, the over-approximations are refined
by eliminating points that will cause the system to reach
unsafe states, and such refinement is performed using nu-
merical simulation and machine learning. In addition to
safety requirements, we synthesize models to satisfy dwell-time
constraints, which impose upper and/or lower bounds on the
amount of time spent within a mode. We demonstrate using
case studies that our technique quickly generates intuitive
system models and that dwell-time constraints can help to
tune the performance of a design.

I. I NTRODUCTION

As cyber-physical systems (CPS) are increasingly de-
ployed in transportation, health-care, and other societal-
scale applications, there is a pressing need for automated
tool support to ensure dependability while enabling design-
ers to meet shortening time-to-market constraints. Model-
based design tools enable designers to work at a high level
of abstraction, but there is still a need to assist the designer
in creatingcorrect andefficientsystems.

A holy grail for the design of cyber-physical systems
is to automatically synthesize models from safety and
performance specifications. In its most general form, auto-
mated synthesis is very difficult to achieve, in part because
synthesis often involves human insight and intuition, and in
part because of system complexity – the tight integration
of complex continuous dynamics with discrete switching
behavior can be tricky to get correct. Nevertheless, in
some contexts, it may be possible for automated tools to
complete partial designs generated by a human designer,
thus enabling the designer to efficiently explore the space of
design choices whilst ensuring that the synthesized system
remains safe.

In this paper, we consider a special class of synthesis
problems, namely synthesis of mode switching logic for

multi-modal dynamical systems (MDS). An MDS is a
physical system (plant) that can operate in different modes.
The dynamics of the plant in each mode is known. How-
ever, to achieve safe and efficient operation, it is often
necessary to switch between the different operating modes.
Designing correct switching logic can be tricky and tedious.
We consider the problem of automatically synthesizing
switching logic, given the intra-mode dynamics, so as to
preserve safety in MDS. The human designer can guide the
synthesis process by providing initial approximations of the
switching guards and a library of expressions (components)
using which the guards can be synthesized.

Our synthesis approach performs reasoning within each
mode and reasoning across modes in two different ways.
Within each mode, reasoning is based entirely on using
numerical simulations. While this can lead to potential
unsoundness, it allows us to handle complex and nonlinear
dynamics that are difficult to reason about in any other
way. Across modes, reasoning is performed usingfixpoint
computation techniques. Similar to abstract interpretation,
computation of the fixpoint is performed over an “abstract
domain,” which is specified by the user in the form of
a component library for the switching guards. Each step
of the fixpoint computation involves the use ofmachine
learningto learn improved approximations of the switching
guards based on the results of numerical simulations.

The key contribution of our paper is anew approach
for synthesizing safe switching logic based on integrat-
ing numerical simulation, machine learning, and fixpoint
iterations. In addition to safety, our approach also extends
to handling dwell-time requirements, which impose upper
and/or lower bounds on the amount of time spent within
a mode. While numerical simulations have been used to
perform formal verification (e.g., [7], [5], [4]), to our
knowledge our approach is the first to use simulations to
perform synthesis with safety guarantees. We demonstrate
using case studies (Sec. III and VI) that our technique
generates intuitive system models and that dwell-time con-
straints can help to tune the performance of a design.

II. PROBLEM DEFINITION

In this section, we describe the problem of synthesizing
switching logic for a multi-modal continuous dynamical

system. We present two versions of the problem. In the first
version, we ask for a switching logic that only preserves
safety. In the second version, we also require that the
synthesized system satisfy some dwell-time requirements
in each mode. We begin with some definitions.

A continuous dynamical system(CDS) is a tuple〈X, f〉
whereX is a finite set of|X | = n real-valued variables
that define the state spaceRn of the continuous dynamical
system, andf : Rn 7→ Rn is a vector field that specifies
the continuous dynamics asdxdt = f(x). The vector field
f is assumed to be locally Lipschitz at all points, which
guarantees the existence and uniqueness of solutions to the
ordinary differential equations.

Often, a system has multiple modes and in each mode, its
dynamics is different. Such a multi-modal system behaves
as a different continuous dynamical system in each mode.

Definition 1 (Multi-modal CDS (MDS)):An MDS is a
tuple 〈X, I, f1, f2, . . . , fk〉 where

• 〈X, fi〉 is a continuous dynamical system (representing
the i-th mode)

• I ⊆ Rn is the set of initial states

We will useM = {1, 2, . . . , k} as the set of indices of
the modes. Atrajectory for MDS is a continuous function
τ(t) : [0,∞) 7→ Rn if there is an increasing sequence
t0 := 0 < t1 < t2 . . . such that

• τ(0) ∈ I,
• for each interval[ti, ti+1), there is some modej ∈ M

such thatdτ
dt (t) = fj(τ(t)) for all ti ≤ t < ti+1, and

• j = 1 when ti = 0 (that is, we start in Mode1.).

A multi-modal system can nondeterministically switch
between its modes. The goal is to control the switching
between different modes to achieve safe operation.

Definition 2 (Switching logic (S)): A switching logicS
for an MDS 〈X, I, (fi)i∈M 〉 is a tuple 〈(gij)i6=j;i,j∈M 〉,
containing guardsgij ⊆ Rn.

A multi-modal system MDS can be combined with a
switching logicS to create a hybrid systemHS := (MDS, S)
in the following natural way: the hybrid systemHS has
k modes with dynamics given bydX

dt = fi in mode i,
and with gij being the guard on the discrete transition
from mode i to mode j. The initial states ofHS are I
in Mode 1, where I is the set of initial states of the
MDS. The discrete transitions inHS have identity reset
maps, that is, the continuous variables do not change values
during discrete jumps. The state invariantInv i for a mode
i ∈ I is the (topological) closure of the complement of
the union of all guards on outgoing transitions; in other
wordsInv i := Closure(Rn −

⋃

j∈I gij). Note that we are
assuming here that a discrete transition is taken as soon as
it is enabled.1 This completes the definition of the hybrid
system. The semantics of hybrid systems that defines the
set of reachable statesof hybrid systems is standard [1].

1Assume that the mode dynamics are not tangential to the stateinvariant
at any point.

A safety property is a setφS ⊆ Rn of states. We will
overloadφS to also denote the predicateφS(X). A statex

is said to besafeif and only if x ∈ φS (or equivalently, if
φS(x) is true). A hybrid systemHS is safe with respect to
φS if and only if all the reachable states inHS are safe.

Coming up with the correct guards for the mode switches
such that all reachable states are safe is challenging and
our proposed technique aims at automating this task. While
controller synthesis has been widely studied, what differen-
tiates our work is that we provide the designer an option to
provide some initial partial design. Specifically, we assume
that the designer can provide an over-approximations for
the guards. In the extreme case, if transition from modei
to modej is disallowed, then the designer can setgij = ∅,
and if the designer knows nothing about the possibility
of a transition from modei to modej, then she can set
gij = Rn. The designer can specify partial information by
picking an intermediate set as the initial guard.

If S := 〈(gij)i,j∈M 〉 and S′ := 〈(g′ij)i,j∈M 〉 are two
switching logics, then we use the notationS′ ⊆ S to denote
that g′ij ⊆ gij for all i, j ∈M .

We provide two variants of the problem definition.
Definition 3 (Switching logic synthesis problem v1):

Given a multi-modal continuous dynamical system (MDS),
a switching logicS, and the safety specificationφS , the
switching logic synthesis problem seeks to synthesize a
new switching logicS′ such that
(1) S′ ⊆ S and
(2) the hybrid systemHS := (MDS, S′) is safe with respect
to φS .

Consider the case when the designer provides no in-
formation and sets all guards toRn. In this case, it is
trivial to synthesize a safe hybrid system by just setting
all switching guards to beφS . The reader can check that
this is a solution for the switching logic synthesis problem
defined above. This solution is, however, undesirable since
the resulting hybrid system has onlyzeno behaviors, i.e.,
an infinite number of transitions can be made in finite time
(as we are assuming that a transition is taken as soon as it
is enabled).

The second problem definition below gives the designer
a way to explicitly rule out solutions that have zeno
behavious. Specifically, the user can specify (both lower
and upper) bounds on the amount of time every trajectory
should spend in a mode.

Definition 4 (Switching logic synthesis problem v2):
Given a multi-modal continuous dynamical system
(MDS), a switching logicS, a sequence〈te1, . . . , tek〉
of non-negative minimum-dwell time requirements, a
sequence〈tx1, . . . , txk〉 of non-negative maximum-dwell
time requirements, and a safety specificationφS , the
switching logic synthesis problem seeks to synthesize a
new switching logicS′ such that
(1) S′ ⊆ S,
(2) the hybrid systemHS := (MDS, S′) is safe with respect

2

to φS , and
(3) whenever any trajectory ofHS enters modei, it stays
in modei for atleasttei and atmosttxi time units.
The designer can now force the synthesis of only nonzeno
systems by settingtei to a strict positive number for
selected modes. Note that if the designer setstei to zero
andtxi to ∞ for all modes, then the second problem is the
same as the first problem.

Notation

Our paper makes use of the formal definitions of tempo-
ral formulas and the evaluation of a temporal formula in a
given dynamical system as given below.

Consider the weak untilW and the strong untilU
temporal logic operators. Recall that we do not distinguish
between a set of states and a predicate on states. Astate
formula is a predicate on states or a Boolean combination
of predicates. Ifφ, φ′ are sets of states, thenφWφ′ and
φUφ′ are temporal formulas.

A state formula is evaluated over a state. The formulaφ
evaluates to true on a statex if x ∈ φ. A temporal formula
is evaluated over a given trajectoryτ . The formulaφUφ′

evaluates to true on trajectoryτ if

∃t0 : τ(t0) ∈ φ′ ∧ (∀0 ≤ t < t0 : τ(t) ∈ φ) (1)

Informally, the temporal formulaφUφ′ is true if φ′ be-
comes true eventually and until it becomes true,φ is true.
The weak until operator,W, is a weaker notion and does
not require thatφ′ necessarily becomes true. Ifφ, φ′ are
sets of states, then the temporal formulaφWφ′ evaluates
to true over a given trajectoryτ if

(∃t0 : τ(t0) ∈ φ′ ∧ (∀0 ≤ t < t0 : τ(t) ∈ φ)) ∨

(∀t ≥ 0 : τ(t) ∈ φ) (2)

For uniformity, a state formula can be evaluated on a
trajectory as follows: a state formulaφ evaluates to true
on a trajectoryτ if τ(0) ∈ φ. We can combine state and
temporal formulas using Boolean connectives and evaluate
them over trajectories using the natural interpretation ofthe
Boolean connectives. IfΦ is a state or temporal formula,
then we write

Modei, I |= Φ

to denote that the formulaΦ evaluates to true onall
trajectories of the CDS in modei that start from a state
in I.

III. OVERVIEW

In this section, we present an overview of our approach
using a thermostat controller [9] as an example. The 4-
mode thermostat controller is presented in Figure 1. The
room temperature is represented byx and the temperature
of the heater is represented byT . The initial conditionI is
given byT = 20◦C andx = 19◦C. The safety requirement
φS is that the room temperature lies between18◦C and

OFF (F)

ON (N)COOLING (C)

HEATING (H)

gCF

gFH

gNC

gHN

ẋ = −0.002(x − 16)

Ṫ = 0

ẋ = −0.002(x − T)

Ṫ = 0.1

ẋ = −0.002(x − T)

Ṫ = 0

ẋ = −0.002(x − T)

Ṫ = −0.1

Fig. 1. Thermostat

20◦C, that is,φS is 18 ≤ x ≤ 20. (We omit the units in
the sequel, for brevity.)

In the OFF mode, the temperature falls at a rate propor-
tional to the difference between the room temperaturex
and the temperature outside the room which is assumed to
be constant at16. In the HEATING mode, the heater heats
up from 20 to 22 and in the COOLING mode, the heater
cools down from22 to 20. In the ON mode, the heater is
at a constant temperature of22. In the HEATING, ON and
COOLING mode, the temperature of the room changes in
proportion to the difference between the room temperature
and the heater temperature. We need to synthesize the four
guards:gFH , gHN , gNC andgCF .

The guards must respect the safety property on the room
temperaturex as well as the specification on the heater
temperatureT in HEATING and COOLING mode. So,
from the given specifications, we know that

gF H ⊆ 18 ≤ x ≤ 20 ∧ T = 20

gHN ⊆ 18 ≤ x ≤ 20 ∧ T = 22

gNC ⊆ 18 ≤ x ≤ 20 ∧ T = 22

gCF ⊆ 18 ≤ x ≤ 20 ∧ T = 20 (3)

In order that the MDS remains safe, we need to ensure
that all states reachable within each mode are safe. Consider
the OFF mode. We need to ensure that all traces starting
from some point in the initial conditionI or gCF do not
reach an unsafe state before reaching some state ingFH .
Reaching some state ingFH enables a transition out of the
OFF mode. In other words, the first two temporal properties
in Equation 4 must be satisfied by all traces in the OFF
mode. Similarly, for HEATING mode, all traces starting
from some state inx ∈ gFH must not reach an unsafe
state before reaching an exit state ingHN , as indicated by
the third property below. For the other two modes, similar
temporal properties on the traces need to be enforced.
Overall, the following temporal assertions can be written
for the four guards.

F, I |= φS W gF H

F, gCF |= φS W gF H

H,gF H |= φS W gHN

N, gHN |= φS W gNC

C, gNC |= φS W gCF (4)

Switching Logic Synthesis Problem v1:We can synthesize a
safe switching logic by computing the fixpoint of the above
5 assertions in Equation 4. We initialize using the equations

3

in Equation 3 obtained from the safety and other user
provided specifications which put an upper bound on the
guards. We then perform agreatest fixpoint computation:
in each iteration, we remove states from the guards which
would lead to some unsafe state in a mode. Fixpoint
computation leads to the following guards which ensure
that all states reachable are safe. We compute only till the
second place of decimal.

gF H : 18.00 ≤ x ≤ 19.90 ∧ T = 20

gHN : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gNC : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gCF : 18.00 ≤ x ≤ 20.00 ∧ T = 20

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 2.
The room temperature gradually rises from its initial value
of 19 and then stays between19.90 and20.

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
em

pe
ra

tu
re

(c
el

si
us

)

Room temperature

Heater temperature

Fig. 2. Behavior of Synthesized Thermostat

Switching Logic Synthesis Problem v2:Though the sys-
tem synthesized above satisfies the safety specification,
it has the undesirable behavior of switching frequently.
It keeps the room temperature in the narrow interval of
19.90 ≤ x ≤ 20, even though the safety condition only
required it to be in18 ≤ x ≤ 20. Ideally, designers are
interested not only in safe systems but in systems with
good performance. The dwell time specification provides a
mechanism to the designer to guide our synthesis technique
to solutions with good performance.

Minimum dwell-time of 100 seconds in OFF mode (case
A): We add an extra constraint in the specification of our
synthesis problem that the system must spend atleast 100
seconds in the OFF mode. This would lead to less frequent
switching as well as minimize energy consumption since
heater remains off in the OFF mode.

Let us add a timer variablet with dynamics ṫ = 1
in every mode. Assume thatt is reset to0 during every
discrete transition. To enforce the minimum dwell-time, the
following constraint must also be satisfied in addition to the
fixpoint constraints in Equation 4.

F, I |= φS W (gF H ∧ t ≥ 100)

F, gCF |= φS W (gF H ∧ t ≥ 100) (5)

The guards obtained by computing the fixpoint of equa-

tions in (4) and (5) are as follows.

gF H : 18.00 ≤ x ≤ 19.90 ∧ T = 20 ∧ t ≥ 100

gHN : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gNC : 18.35 ≤ x ≤ 19.95 ∧ T = 22

gCF : 18.45 ≤ x ≤ 20.00 ∧ T = 20

Sincet was a timer variable we had introduced, we next
eliminate it fromgFH . We do so by removing states from
gFH which are reachable from any state ingCF in less than
100 seconds. These set of states are18.01 < x ≤ 20∧T =
20. Hence, the final guards that respect the safety property
as well as enforce a minimum dwell-time of 100 seconds
in OFF mode are as follows.

gF H : 18.00 ≤ x ≤ 18.01 ∧ T = 20

gHN : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gNC : 18.00 ≤ x ≤ 19.95 ∧ T = 22

gCF : 18.00 ≤ x ≤ 20.00 ∧ T = 20

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 3.
We observe that the number of switches has gone down
from 21 to 5 and the room temperature now stays between
18.01 and18.45.

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
em

pe
ra

tu
re

(c
el

si
us

)

Room temperature

Heater temperature

Fig. 3. Behavior of Synthesized Thermostat with Dwell Time Specifica-
tion: Minimum dwell time of 100s in OFF mode.

Minimum dwell-time of 300 seconds in both OFF and
ON mode (case B):We observe that the design synthesized
with minimum dwell-time of 100 seconds in OFF mode has
relatively less switching but still, we would like to reduce
its switching frequency. Also, the room temperature can
safely lie between18 and20 but in the above synthesized
system, it is restricted to a narrow interval of18.01 and
18.45. So, we increase the minimum dwell-time in OFF
mode to300 seconds. We also enforce a minimum dwell-
time of 300 seconds in ON mode to ensure room heats up
to a higher temperature within the safe interval.

We now get the following fixpoint equations.

F, I |= φS W gF H ∧ (t ≥ 300)

F, gCF |= φS W gF H ∧ (t ≥ 300)

H,gF H |= φS W gHN

N, gHN |= φS W gNC ∧ (t ≥ 300)

C, gNC |= φS W gCF

4

Fixpoint computation yields the following guards.

gF H : 18.00 ≤ x ≤ 18.14 ∧ T = 20 ∧ t ≥ 300

gHN : 18.00 ≤ x ≤ 18.26 ∧ T = 22

gNC : 19.60 ≤ x ≤ 19.95 ∧ T = 22 ∧ t ≥ 300

gCF : 19.65 ≤ x ≤ 20.00 ∧ T = 20

We restrictgNC andgFH in the same way as (Case A) by
computing the set of states reachable fromgHN andgCF
in less than300 seconds respectively. The final synthesized
guards are as follows.

gF H : 18.00 ≤ x ≤ 18.01 ∧ T = 20

gHN : 18.00 ≤ x ≤ 18.26 ∧ T = 22

gNC : 19.94 ≤ x ≤ 19.95 ∧ T = 22

gCF : 19.65 ≤ x ≤ 20.00 ∧ T = 20

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 4.
We observe that the number of switches has gone down to1
and the room temperature is still within the safe interval of
18 and20. This example shows how our synthesis approach

0 200 400 600 800 1000
18

19

20

21

22

23

Time(sec)

T
em

pe
ra

tu
re

(c
el

si
us

)

Room temperature

Heater temperature

Fig. 4. Behavior of Synthesized Thermostat with Dwell Time Specifica-
tion: Minimum dwell time of 300s in OFF and ON modes.

can be used to synthesize not only safe systems but also
systems with desired performance. Dwell-time properties
can be used by the user to explore designs with better
performance.

IV. F IXPOINT ALGORITHM

We are now ready to describe the procedure for solving
the switching logic synthesis problem in Definition 3.

Assume that we are given an MDSMDS, a safety property
φS , and an over-approximation of the guardsS.

MDS := 〈X, I, f1, . . . , fk〉, φS ⊆ Rn, S := 〈(gij)i,j∈M 〉

We wish to solve the problem in Def. 3 for these inputs.
Let us say we find guardsg′ij ’s such that they have the

following property: for every modei, if a trajectory enters
mode i (via any of the incoming transitions with guard
g′ji), then it remains safeuntil one of the exit guardsgik

becomes true. This property can be written formally using
the weak untiloperator.

Mode1, I |= φSW(
∨

k∈M

g′1k)

Modei,
∨

j∈M

g′ji |= φSW(
∨

k∈M

g′ik) for i = 1..k (6)

SWITCHSYN1(MDS, φS, S):
1 // Input MDS := 〈X, I, f1, . . . , fk〉,
2 // Input φS ⊆ Rn,
3 // Input S := 〈(gij)i,j∈M 〉,
4 // Output synthesis successful/failed
5 for all i, j ∈M do g′ij := gij ∩ φS

6 repeat {
7 for all i ∈M do {
8 bad := {x | Modei, {x} |= ¬(

∨

k g
′
ik)U¬φS}

9 for all j ∈M do g′ji := g′ji − bad

10 if (i == 1 and I ∩ bad 6= ∅)
11 return "synthesis failed"
12 }
13 } until (g′ij’s do not change)
14 if (I ⇒ φS)
15 return "synthesis successful"
16 else return "synthesis failed"

Fig. 5. Procedure for solving the switching logic synthesisproblem v1.

If the guards in the switching logicS′ satisfy the
collection of assertions in Equation 6, then the resulting
hybrid system is safe. The converse is also true.

Lemma 1:Given anMDS := 〈X, I, f1, . . . , fk〉, and a
safety propertyφS , if S′ = 〈(g′ij)i,j∈M 〉 is a switching
logic that satisfies all assertions in Equation 6, then the
hybrid systemHS := (MDS, S′) is safe with respect toφS .

Conversely, if there exists a switching logicS′ such that
the hybrid systemHS := (MDS, S′) is safe with respect to
φS , then there is a switching logicS′′ ⊆ S′ that satisfies
the assertions in Equation 6.

Proof: The first part follows directly from the defi-
nition of the semantics of the temporal operators and our
assumption that discrete transitions are taken as soon as
they are enabled.

For the converse part, the desiredS′′ := 〈(g′′ij)i,j∈M 〉 is
obtained by intersecting the setReach of reachable states
of HS with S′; that is,g′′ij := g′ij ∩ Reach. The reader can
verify thatS′′ will satisfy the assertions in Equation 6.

At a semantic level, we can solve the problem in Def-
inition 3 by computing the fixpoint of the assertions in
Equation 6. This procedure is presented in Figure 5. The
fixpoint iterations start by picking the most liberal guards
possible (which is the intersection of the safety property
and the user-specified bounds). In each successive step, the
guards are made smaller by removing certain “bad” states.
Specifically, we remove fromg′ji any state that reaches an
unsafe state following the dynamics of Modei, before it
reaches any exit guard. Thus, in each iteration, we reason
locally about only one mode at a time. We stop when we
reach a fixpoint.

We state the soundness and completenss of the fixpoint
algorithm for solving the switching logic synthesis problem.

Lemma 2: If Procedure SWITCHSYN1 terminates with
“synthesis successful” andg′ij are the discovered guards,

5

then these guards satisfy all the assertions in Equation 6.
Proof: If ProcedureSWITCHSYN1 returns “synthesis

successful”, then the condition in Step 10 must be false, that
is, I ∩ bad = ∅. So, from the definition ofbad , there does
not existx ∈ I such thatMode1, {x} |= ¬(

∨

k g
′
1k)U¬φS .

For all statesx ∈ I,

Mode1, {x} |= φSW(
∨

k∈M

g′1k)

that is,
Mode1, I |= φSW(

∨

k∈M

g′1k)

Also, if ProcedureSWITCHSYN1 returns “synthesis suc-
cessful”, the termination condition forrepeat loop at
Step 13 must be true. So, for alli ∈M theg′ji = g′ji−bad

for all j ∈ M , that is g′ji ∩ bad is empty. So, for all
i ∈ M , there does not exist anyx ∈ g′ji for any j such
that Modei, {x} |= ¬(

∨

k g
′
ik)U¬φS . So, for all i ∈ M ,

for any statex in
∨

j∈M g′ji,

Mode i, {x} |= φSW(
∨

k∈M

g′ik)

that is,
Modei,

∨

j∈M

g′ji |= φSW(
∨

k∈M

g′ik)

Thus, the discovered guardsg′ij satisfy all the assertions
in Equation 6.

Theorem 1 (Soundness of ProcedureSWITCHSYN1):
If Procedure SWITCHSYN1 terminates with “synthesis
successful” andg′ij are the discovered guards, then the
hybrid systemHS := (MDS, 〈(g′ij)i,j∈M 〉) is safe forφS .

Proof: Using Lemma 1 and Lemma 2, we conclude
that the hybrid systemHS := (MDS, S′) is safe with respect
to φS .

Even when it terminates with success, note that the
ProcedureSWITCHSYN1 does not guarantee that the syn-
thesized hybrid systemHS has nonzeno behaviors. In a
post-processing step, one can perform sufficient checks to
guarantee the absence of zeno behaviors.

We can also show that our procedure is complete.
Theorem 2 (Completeness of ProcedureSWITCHSYN1):

If Procedure SWITCHSYN1 terminates with “synthesis
failed”, then there is noS′ ⊆ S such that the hybrid
systemHS := (MDS, S′) is safe.

Proof: Assume that the claim is false and there is a
switching logicS′ ⊆ S such thatHS := (MDS, S′) is safe.
By Lemma 1, there is a switching logicS′′ := Reach ∩S′

that satisfies Equation 6. Recall thatReach is the set of
reachable states ofHS. Let S′

i, i = 0, 1, . . ., be the inter-
mediate switching logics computed by ProcedureSWITCH-
SYN1. Clearly,S′

0 ⊇ S′
1 ⊇ S′

2 ⊇ · · · andS′
0 := S ∩ φS .

SinceReach ⊆ φS by assumption, we can easily verify
that S′′ ⊆ S′

0. We will inductively show thatS′′ ⊆ S′
i for

all i.

SupposeS′′ ⊆ S′
N . Suppose we go fromS′

N to S′
N+1

by deleting the setbad from g′ji. We need to show that
S′′ ⊆ S′

N+1. Let S′
N := 〈(g′Nij)i,j∈M 〉 and let S′′ :=

〈(g′′ij)i,j∈M 〉.

x ∈ bad

⇒ Mode i, {x} |= ¬(
_

k

g
′

Nik)U¬φS

⇒ Mode i, {x} |= ¬(
_

k

g
′′

ik)U¬φS, ∵ g′′

ik ⊆ g′

Nik

⇒ Mode i, {x} |= ¬(φSW

_

k

g
′′

ik)

⇒ Mode i, {x} 6|= φSW

_

k

g
′′

ik

⇒ x 6∈ g
′′

ji, ∵ S′′ satisfies Equation 6

x 6∈ I if i == 1, ∵ S′′ satisfies Equation 6

This shows thatS′′ ⊆ S′
N+1 and ProcedureSWITCHSYN1

cannot return at Line 11. SinceHS is assumed to be safe,
I ⇒ φS and hence ProcedureSWITCHSYN1 cannot return
at Line 16. Hence, ProcedureSWITCHSYN1 can only return
“synthesis successful” contradicting our assumption.

A. Switching Logic Synthesis V2

We now consider the switching logic synthesis problem
in Definition 4. Recall that apart from the bounds on
the guards, the user can provide minimum and maximum
dwell time requirements for each mode. The goal is to
synthesize a switching logic where the guards satisfy the
specified bounds and the trajectories of the resulting hybrid
system satisfy the minimum and maximum dwell time
requirements.

ProcedureSWITCHSYN2 for solving the problem in Def-
inition 4 is outlined in Figure 6. ProcedureSWITCHSYN2
runs in three phases. In the first step, the new problem
is transformed to the old problem. In the second step,
ProcedureSWITCHSYN1 is used to solve the generated
problem. In the third step, the result is transformed back to
get a result of the given problem.

Suppose that we are given

MDS := 〈X, I, f1, . . . , fk〉, φS ⊆ Rn, S := 〈(gij)i,j∈M 〉,
Te := {te1, . . . , tek}, Tx := {tx1, . . . , txk}

In the first step, the problem in Definition 4 is reduced
to the previous problem. This reduction is achieved by
introducing a new state variablet such that
(1) the dynamics oft is given by ṫ = 1 in each mode
(2) the variablet is reset to0 in each discrete transition
These two steps are performed by the func-
tion Add timer t. Now, the dwell time requirements can
be specified as bounds on the variablet. Specifically, the
over-approximationS of the guards can be updated as
follows:

gij := gij ∧ (tei ≤ t ≤ txi)

6

In the second step, a call to ProcedureSWITCHSYN1
is made, but with the updatedS. Recall that Proce-
dureSWITCHSYN1 essentially performs an iterative fixpoint
computation to solve Equation 6. Equation 6 assumes that
discrete transitions do not reset any continuous variables.
Since we now have discrete transitions that resett to 0,
we need a slightly modified ProcedureSWITCHSYN1 that
solves the modified equations below:

Mode1, R(I) |= φSW

∨

k∈M

g′1k

Modei,
∨

j∈M

R(g′ji) |= φSW

∨

k∈M

g′ik for i = 1..k (7)

whereR(S) is the set of states obtained by resetting thet-
component of every state in the setS to 0. If φ is a formula
denoting the setS, thenR(φ) is ∃s(φ[s/t] ∧ t = 0) (the
notationφ[s/t] means replacet by s in φ). Informally,R(φ)
can be computed by first removing facts aboutt from φ and
then adding the new factt = 0 to it.

The guards synthesized by ProcedureSWITCHSYN1 will
use the new state variablet. However t was not part of
our original problem specification. In the third step, the
variable t is eliminated from the guards synthesized by
ProcedureSWITCHSYN1. SupposeS′ := 〈(g′ij)i,j∈M 〉 is the
switching logic synthesized by ProcedureSWITCHSYN1. We
first project out thet-component fromS′ to get our first
guess for the desiredS. Then, for every modei, and for
each entry guard, sayg′ji, and for each exit guardg′ik,
we compute pairs of states(x,x′) such thatx ∈ gji,
x
′ ∈ gik, there is a trajectory in modei that starts from

state〈x, t = 0〉 and reaches〈x′, t′〉 in time t′, and〈x′, t′〉
is not in g′ik. A behavior where modei in entered in state
x and exited inx′ was disallowed inS′, but it is allowed
in S (sinceS ignorest). Hence, we need to either remove
x from gji, or removex′ from gik. ProcedureSWITCHSYN2
procedure non-deterministically makes this choice.

Removal of states from the guards can potentially cause
the modified switching logic to become unsafe. Hence, in
the final step, we need to verify that the updated guards
still satisfy Equation 6. This is performed by the function
Verify. The function Verify can be implemented by
calling ProcedureSWITCHSYN1 and checking its return
value.

We can now state the soundness and completenss of
ProcedureSWITCHSYN2 for solving the switching logic
synthesis problem in Def. 4.

Theorem 3 (Soundness of ProcedureSWITCHSYN2):
If Procedure SWITCHSYN2 terminates with “synthesis
successful” andg′ij are the discovered guards, then the
hybrid systemHS := (MDS, 〈(g′ij)i,j∈M 〉) is safe forφS

and it satisfies the dwell time requirements specified by
Te andTx.

Proof: The final Verify check guarantees thatHS is
safe with respect toφS . The over-approximation defined in
Step 6 of ProcedureSWITCHSYN2 ensures that the switching

SWITCHSYN2(MDS, φS, S, Te, Tx):
1 // Input MDS, φS , S: As in Figure 5
2 // Input Te := 〈te1, . . . , tek〉
3 // Input Tx := 〈tx1, . . . , txk〉
4 // Output synth. successful/failed
5 MDSe := Add_timer_t(MDS)
6 Se := 〈(gij ∧ (tei ≤ t ≤ txi))i,j∈M 〉
7 // Call SWITCHSYN1 with the updated S
8 res := SWITCHSYN1(MDSe, φS , S

e)
9 if res == "synthesis failed"

10 return "synthesis failed"
11 else let S′ be the synthesized guards
12 // post processing step
13 for all i, j ∈M do
14 gij := {x | 〈x, t〉 ∈ g′ij}
15 for all i, j, k ∈M do {
16 bad:= {〈x,x′〉 | x ∈ gji ∧ x

′ ∈ gik ∧ 〈x′, t′〉 6∈ g′ik
17 ∧Mi, {〈x, t = 0〉} |= trueU{〈x′, t′〉}}
18 Guess B1, B2 s.t. B1 ×B2 ⊇ bad

19 gji := gji −B1; gik := gik −B2

20 }
21 if (Verify(MDS, φS , 〈(gij)i,j∈M 〉))
22 return "synthesis successful"
23 else return "synthesis failed"

Fig. 6. Procedure for solving the switching logic synthesisproblem v2.

logic S′ synthesized by ProcedureSWITCHSYN1 on Line 8
satisfies the dwell time requirements. From Theorem 1, the
guards also satisfy the following.

Mi,
∨

j∈M

g′ji |= φSW(
∨

k∈M

g′ik)

From Step 16, it follows that

Mi,
∨

j∈M

g′ji |= (¬
∨

k∈M

g′ik)W(t ≥ tei)

So, the guardsg′ij ’s synthesized by ProcedureSWITCHSYN2
satisfy the following assertions

Mi,
∨

j∈M

g′ji |= (φS ∧ ¬
∨

k∈M

g′ik)W(t ≥ tei)

for all i ∈M (8)

So, the synthesized guards define a switching logic that
satisfies the requirements in Problem Definition 4.
We can also state and prove completeness of Proce-
dure SWITCHSYN2.

Theorem 4 (Completeness of ProcedureSWITCHSYN2):
If, for every possible guess on Line 18, the
Procedure SWITCHSYN2 terminates with “synthesis
failed”, then there is noS′ ⊆ S such that the hybrid
systemHS := (MDS, S′) is safe and it satisfies the dwell
time requirements.

Proof: The completeness of the algorithm follows
from the non-deterministic guesses in Step 18. The Pro-
cedure SWITCHSYN2 first transforms the problem to an

7

extendedMDS and uses ProcedureSWITCHSYN1 to com-
pute the guards (Step 8). By Theorem 2, we know that
ProcedureSWITCHSYN1 is complete. So, if there is a
switching logic that produces aMDS which is safe and
satisfies dwell-time properties, then guards computed in
Step 8 will contain this switching logic. Hence, the only
place where completeness might be compromised is in the
post-processing step. However, we make non-deterministic
guesses for removing states from the guards computed by
ProcedureSWITCHSYN1 and hence, if a solution exists, we
can always guess the correct sets to be substracted from the
computed guards in Step 18 such that we obtain the desired
solution. This gives us the desired completeness result.

ProcedureSWITCHSYN2 is nondeterministic and involves
making the correct guesses in the postprocessing stage. We
can get a deterministic version of the procedure by making
arbitrary guesses at each point. This deterministic version
will be sound: whenever the procedure outputs “synthesis
successful”, the synthesis problem in Definition 4 indeed
has a positive answer. However, it will not be complete:
even when there is a positive answer for the synthesis
problem, the deterministic variant can fail to find the
appropriate guards because it can make the wrong choices.
Some form of backtracking appears to be required. In
practice, our implementation’s heuristically-guided choices
have always obtained a positive answer.

V. L EARNING GUARDS FROM SIMULATIONS

A key step in the implementation of AlgorithmsSWITCH-
SYN1 andSWITCHSYN2 is the computation of thebad state
sets. In general, since the mode dynamics can be non-linear
and quite complex, exactly computing thebad sets through
analytical means is computationally infeasible. However,it
is easier to perform numerical simulation of even complex,
non-linear dynamics from individual points. In particular,
in many cases, numerical simulation can be used to check
whether a pointx is a member ofbad . Given such a
membership check, our approach uses machine learning to
compute an over-approximation ofbad . While such over-
approximation can result in a loss of completeness, it is
guaranteed to generate safe switching logic.

A. Machine Learning

Our procedure assumes the availability of a machine
learning algorithmL that can learn any target set from a
concept classC. L uses an oracle that can label pointsx

as being in the target concept (i.e.,x ∈ bad) or not in it
(i.e. x 6∈ bad).
L is parameterized byC, a point we sometimes make

explicit by writing LC rather thanL.
Formally, given the following three inputs: (i) an over-

approximationc ∈ C of the setbad ; (ii) a simulation oracle
that can label a pointx as x ∈ bad or x 6∈ bad ; and
(iii) (optionally) a sample of examplesP ⊆ bad (if they
exist), LC must generate as output a setoutL ∈ C with

the following properties: ifbad ∈ C, then outL = bad ;
otherwise,outL ⊇ bad .

For simplicity, we describe below howL can be im-
plemented whenbad is an interval constraint on a single
variable. It is possible to extend this method to conjunctions
of interval constraints on multiple variables. An exploration
of extensions to more complicated sets is left to future
work.

B. Simulation Oracles

We assume the availability of the following two kinds of
simulation-based oracles:

• Oracle SOA: This is an oracle that, given a statex,
the dynamics of a modeMode i, and state setsφ1 and
φ2, returns a Boolean answer indicating whether the
following property holds:

Mode i, {x} |= (φ1Uφ2)

Note that definition ofSOA is motivated by the need to
computebad in Line 8 of ProcedureSWITCHSYN1.

• Oracle SOB: This is an oracle that, given a state pair
〈x,x′〉, the dynamics of a modeModei, extended-state
setψ, and state setsφ1 andφ2, returns a Boolean answer
indicating whether the following property holds:

x ∈ φ1 ∧ x
′ ∈ φ2 ∧ 〈x′, t′〉 6∈ ψ

∧ Mode i, {〈x, 0〉} |= (trueU〈x′, t′〉)

The definition of SOB is motivated by the need to
computebad in Line 17 of ProcedureSWITCHSYN2.

Implementing these oracles involves performing a simula-
tion from statex according to the (deterministic) dynamics
in Mode i, checking whether the condition on the RHS of
the U operator has become true, and if not, checking that
the LHS condition remains true. We assume the presence
of a numerical simulator that can, for the mode dynamics
of interest, select an appropriate discretization of time so
as to check the above formulas with theU operator.

C. Learning Interval Constraints

We now describe how one can implementL for learning
an interval constraint over a single variablex ∈ X . This
form of constraint suffices for learning guards for all ex-
amples we consider in this paper. We give conditions under
which the algorithm presented here satisfies the conditions
required ofL as stated above in Sec. V-A.

An interval constraint is of the formx ∈ [li, ui] where
li, ui ∈ Q. This constraint can also be expressed using
inequalities asli ≤ x ≤ ui.

Thus,C is the set of all constraints of the formx ∈ [li, ui]
for any li, ui ∈ Q and for anyx ∈ X . The initial over-
approximationc and the setoutL generated byL are both
representable as an interval constraint.

Algorithm LC begins by checking the end-points of
c = [l, u] for membership inbad . If both l and u are in
bad , it simply outputsoutL = c. Otherwise, it selects the

8

minimum and maximum elementsxmin and xmax in the
set of examplesP ∈ bad . (If P is not provided as input,L
will randomly sample elements ofoutL until an example
P ∈ bad is found).
We assume that the interval[l, u] can be suitably discretized
so that the extreme points ofbad are members of this dis-
cretized set of points. Since guards are implemented using
finite-precision software, this assumption is not restrictive.
L then performs binary search in the ranges[l, xmin] and
[xmax, u] until it finds two examplesxl ∈ [l, xmin] and
xu ∈ [xmax, u] such thatxl, xu ∈ bad where xl is the
smallest such point andxu is the largest. It then outputs
outL = [xl, xu].

It is easy to see that ifbad ∈ C, thenoutL = bad .
However, if bad 6∈ C, thenbad must be a disjoint union

of intervals. Under the condition thatP contains one point
from each interval in this union, we obtainoutL ⊃ bad .

Alternatively, suppose that the dynamics within each
mode i is such that each state variable evolves monoton-
ically with time – i.e., its value within that mode either
increases with time or it decreases, but not both. In this
case,bad cannot be a disjoint union of intervals, and so
outL = bad . All examples discussed in this paper have
this monotonicity property.

D. Discussion

We make some remarks on the above procedure.
First, note that restrictingoutL to be an interval con-

straint does not require the final guards to also be of
this form, since the designer is free to specify astarting
switching logic using arbitrary expression syntax. The
restriction only means that the set of pointsremovedfrom
the guards at each iteration of the fixpoint computation
must be representable as an interval constraint to avoid
losing completeness by removing too many points. As we
demonstrate in our experimental results, we are able to
synthesize interesting and non-trivial switching logic in
spite of this restriction to the guard syntax.

Next, we observe that to employ the binary search
procedure, we need to discretize the domains of variables
in X . In general, such discretization is induced by a cor-
responding discretization of time chosen by the numerical
simulator. Since controllers are in any case implemented
using finite-precision computer arithmetic, we believe this
finitization of intervals is not a restriction in practice.

Finally, we note that it is possible to extend the above
procedure to learn aconjunction of interval constraints,
viz., where C is the set of all n-dimensional boxes in
Rn. The extension is to perform binary search along each
dimension independently to identify diagonally-opposite
corners of the n-dimensional box. These points suffice to
precisely define the box, since each face of the box is
incident on one of these points. In the case thatbad is not
of this form, an over-approximation is obtained by applying
the procedure in Sec. V-C to eachx ∈ X separately and
taking the disjunction of the generated intervals.

Iter. lF H , uF H lHN , uHN lNC , uNC lCF , uCF

0 18.00, 20.00 18.00, 20.00 18.00, 20.00 18.00, 20.00

1 18.00, 19.95 18.00, 20.00 18.00, 19.95 18.00, 20.00

2 18.00, 19.95 18.00, 19.95 18.00, 19.95 18.00, 20.00

3 18.00, 19.90 18.00, 19.95 18.00, 19.95 18.00, 20.00

4 18.00, 19.90 18.00, 19.95 18.00, 19.95 18.00, 20.00

TABLE I
STEPS OFFIXPOINT COMPUTATION FORTHERMOSTAT V1

E. Examples

We illustrate this with an example from our experiments.
For the thermostat example in Figure 1, the room temper-
aturex varies monotonically in the heating mode. We also
start with an over-approximation for the guard from off to
heating modegFH that gFH ⊆ 18 ≤ x ≤ 20 ∧ T = 20.
We query the simulation oracleSOA at x = 18.00 and
x = 20.00. SOA returns ‘yes’ forx = 18 indicating that
the evolution fromx = 18 is safe, but it returns ‘no’
for x = 20. We can then perform a binary search for
the revised end point of the interval.SOA also returns
‘no’ for x = 19.96 and ‘yes’ for x = 19.95, then we
know (e.g., by monotonicity) that it will return ‘no’ for all
x ∈ [19.96, 20]. So, we revise the over-approximation of
the guard togFH ⊆ 18 ≤ x ≤ 19.95 ∧ T = 20 at the end
of the first iteration.

VI. EXPERIMENTS

We have implemented our technique using a Matlab-
based numerical simulator. Here we present three case stud-
ies to illustrate how our technique can be used in practice to
synthesize switching logic for multi-modal continuous dy-
namical systems. For theThermostat Controllerdescribed
earlier in Section III, we give only the intermediate steps
of our approach. For two other case studies, we describe
synthesis problems and present its solution obtained by our
technique.

A. Thermostat Controller

This example is described in Section III with the results
we obtained. Here, we only briefly explain how the final
guards were obtained.

Table I shows the intermediate steps of the fixpoint
computation, indicating how guards shrink in each iteration
of the algorithm. In the first iteration, the reduction ofuFH

anduNC to 19.95 occurs as the system must spend some
time in the HEATING mode asT goes from20 to 22,
and during that periodx cannot increase beyond20. Thus,
a simulation fromx = 19.96 for example, would reach
an unsafe state. The subsequent iterations propagate the
restrictions on the exit guards of modes (e.g.,uNC for ON)
to apply to the entry guards to those modes (e.g.,uHN).

Similarly, for the synthesis problems with dwell-time
constraints, we show intermediate steps of the fixpoint
computation in Tables II and III. Consider Table II. One can
observe the impact of the min-dwell-time constraint in the

9

Iter. lF H , uF H lHN , uHN lNC , uNC lCF , uCF

0 18.00, 20.00 18.00, 20.00 18.00, 20.00 18.00, 20.00

1 18.00, 19.95 18.00, 20.00 18.35, 19.95 18.45, 20.00

2 18.00, 19.95 18.00, 19.95 18.35, 19.95 18.45, 20.00

3 18.00, 19.90 18.00, 19.95 18.35, 19.95 18.45, 20.00

4 18.00, 19.90 18.00, 19.95 18.35, 19.95 18.45, 20.00

TABLE II
STEPS OFFIXPOINT COMPUTATION FORTHERMOSTAT V2 CASE A

Iter. lF H , uF H lHN , uHN lNC , uNC lCF , uCF

0 18.00, 20.00 18.00, 20.00 18.00, 20.00 18.00, 20.00

1 18.00, 19.95 18.00, 18.35 19.60, 19.95 19.65, 20.00

2 18.00, 18.14 18.00, 18.26 19.60, 19.95 19.65, 20.00

3 18.00, 18.14 18.00, 18.26 19.60, 19.95 19.65, 20.00

TABLE III
STEPS OFFIXPOINT COMPUTATION FORTHERMOSTAT V2 CASE B

value oflNC andlCF in iteration 1, where the need to spend
at least100 sec. in the OFF mode causes the controller to
switch to COOLING or OFF only when the temperature
is higher than18.35. Similarly, for the last problem (see
Table III), imposing the min-dwell-time constraint on the
ON mode causes the lower boundlNC to be higher.

For the problem Thermostat v2 Case B, we can addition-
ally restrictgNC andgFH using the post-processing step in
the algorithm described in Figure 6. The final synthesized
guards are then as follows.

gF H : 18.00 ≤ y ≤ 18.01 ∧ T = 20

gHN : 18.00 ≤ y ≤ 18.26 ∧ T = 22

gNC : 19.94 ≤ y ≤ 19.95 ∧ T = 22

gCF : 19.65 ≤ y ≤ 20.00 ∧ T = 20

B. Traffic Collision and Avoidance System

Mode S

Mode R

Mode N

Mode L

Mode N Mode N

Mode S

Mode N

Mode L
Mode R

Fig. 7. Simplified Traffic Collision and Avoidance System

Consider a simplified version of the Traffic Collision
and Avoidance System (TCAS) [14], which seeks to ensure
that two planes flying in opposite directions do not collide
and maintain a specified safe distance (200 meters in our
example). It operates by guiding the planes through a
turn-left/fly-straight/turn-right maneuver as shown in the
Figure 7. The three recovery maneuvers are indicated
by corresponding mode names. We need to synthesize
switching logic between the modes such that the planes
are always atleast200 meters apart at all times.

The dynamics of the four modes of TCAS are given
in Figure 7. We limit the movement of the plane in

gLSgRN

Mode N (normal) Mode L (left)

Mode S (straight)Mode R (right)

Ḃx = −100
Ȧy = 0
Ȧx = 100

Ḃy = 0

Ȧx = 50
Ȧy = −50
Ḃx = −50
Ḃy = 50

gSR

gNL
Ȧx = 50
Ȧy = 50
Ḃx = −50
Ḃy = −50

Ȧx = 100
Ȧy = 0
Ḃx = −100
Ḃy = 0

Fig. 8. Simplified Traffic Collision and Avoidance System

2 dimensions (X − Y) to simplify the example. Let
(Ȧx, Ȧy), and (Ḃx, Ḃy) denote the(X,Y) velocities of
the two planesA andB. Let d(A,B) denote the Euclidean
distance between the two planes, that is,d(A,B) =
√

(Ax −Bx)2 + (Ay −By)2. Hence we have the follow-
ing safety property:d(A,B) ≥ 200. In addition to this
safety property, we also require that the planes at the end of
the maneuver must regain their original orientation, that is,
along the X-axis. So,Ay = 0 andBy = 0 when returning
to the normal mode at the end of the maneuver. Further, we
would like to switch away from the straight mode only after
the planes have crossed each other, that is,Ax−Bx > 0. We
initialize the guards as given in Equation 9 using the safety
property and the other specifications mentioned above.

g
0

NL : d(A,B) ≥ 200

g
0

LS : d(A,B) ≥ 200

g
0

SR : d(A, B) ≥ 200 ∧ Ax − Bx > 0

g
0

RN : d(A,B) ≥ 200 ∧ Ay = 0 ∧ By = 0 (9)

Consider two cases for the synthesis problem - one with
just the minimum dwell-time constraint and the second with
both the minimum and the maximum dwell-time constraint.
This example illustrates how designers can use maximum
dwell-time constraints to synthesize systems with desired
behavior and not just safe behavior.

Case A: Only a minimum dwell-time requirement of1
second in the straight mode is provided, ensuring that the
planes spend some time in the straight mode before turning
again. The final guards synthesized by computing fixpoint
are as follows.

gNL : g
0

NL ∧ Bx − Ax ≥ 283

gLS : g
0

LS ∧ Ay − By ≥ 200

gSR : g
0

SR ∧ Ax − Bx ≥ 117

gRN : g
0

RN ∧ (Ax − Bx ≥ 0 ∨ Bx − Ax ≥ 283) (10)

The behavior of the system synthesized above is illustrated
in Figure 9. The initial state isAx = 0, Ay = 0, Bx =
600, By = 0. X and Y denote the distance between
the planes inX and Y co-ordinates andD denotes the
distance between the planes. The minimum value ofD
is 200m. The synthesized system is safe and satisfies the
minimum dwell-time requirement but it has the undesirable
behavior of switching from normal mode to maneuver
modes immediately at the initial state. The planes could
have delayed their entry into the maneuver mode.

10

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

Time(sec)

D
is

ta
nc

e(
m

)

X

Y

D

Fig. 9. Sample Behavior of Synthesized TCAS

Case B: In this case, we also provide a maximum dwell-
time requirement of1.1 second in the straight mode. This
ensures that the planes fly towards each other till it is
necessary to switch to maneuver modes. By specifying the
maximum dwell-time requirement on the straight mode, we
effectively limit the time spend in maneuver and hence,
force the system to stay in the normal mode for a longer
time. The final guards synthesized by computing the fix-
point are as follows.

gNL : g
0

NL ∧ 303 ≥ Bx − Ax ≥ 283

gLS : g
0

LS ∧ Ay − By ≥ 200 ∧ Bx − Ax ≤ 103

gSR : g
0

SR ∧ Ax − Bx ≥ 117

gRN : g
0

RN ∧ (Ax − Bx ≥ 0 ∨ Bx − Ax ≥ 283) (11)

We again plot the behavior of the synthesized system with
the same initial state as Case A in Figure 10. The time
spent in maneuver is now limited and we stay in normal
mode till the planes are303 meters far from each other and
then switch to the collision avoidance maneuver.

0 1 2 3 4 5 6 7 8
0

200

400

600

800

Time(sec)

D
is

ta
nc

e(
m

)

X

Y

D

Fig. 10. Sample Behavior of Synthesized TCAS with Max Dwell-time

C. Automatic Transmission

Our final example is a 3-gearautomated transmission
system [9]. The transmission system is illustrated in Fig-
ure 11; notice thatthe mode dynamics are non-linear. u
andd denote the throttle in accelerating and deaccelerating
mode. The transmission efficiencyη is ηi when the system
is in modei.

ηi = 0.99e−(ω−ai)
2/64 + 0.01

wherea1 = 10, a2 = 20, a3 = 30 andω is the speed. The
distance covered is denoted byθ. The acceleration in mode
i is given by the product of the throttle and transmission
efficiency. For simplicity, we fixu = 1 andd = −1. From

an initial state ofθ = 0, ω = 0, the system must reach
θ = θmax = 1700 with ω = 0. The synthesis problem is to
find the guards between the modes such that the efficiency
η is high for speeds greater than some threshold, that is,
ω ≥ 5 ⇒ η ≥ 0.5. Also,ω must be less than an upper limit
of 60. So, the safety propertyφS to be enforced would be

(ω ≥ 5 ⇒ η ≥ 0.5) ∧ (0 ≤ ω ≤ 60)

Neutral(N)

ω̇ = 0
θ̇ = 0

θ̇ = ω θ̇ = ω θ̇ = ω

G1U G2U G3U

gN1U

g1ND

g12U
g23U

G1D G2D G3D

θ̇ = ω θ̇ = ω

ω̇ = η2(ω)d

ω̇ = η1(ω)u ω̇ = η2(ω)u ω̇ = η3(ω)u

g22U g33U

g32Dg21D

ω̇ = η3(ω)d

g11U

g11D

g22D g33D

θ̇ = ω

ω̇ = η(ω)d

Fig. 11. Automatic Transmission System

Since the speed must reduce to0 on reachingθmax, the
guardg1ND is initialized toφS∧θ = θmax∧ω = 0. All the
other guards are initialized toφS . The final set of guards
obtained after fixpoint computation are as follows.

gN1U , g11U : 0 ≤ ω ≤ 16.70

g12U , g22U : 13.29 ≤ ω ≤ 26.70

g23U , g33U : 23.29 ≤ ω ≤ 36.70 , g33D : 23.29 ≤ ω ≤ 36.70

g32D, g22D : 13.29 ≤ ω ≤ 26.70

g21D, g11D : 0 ≤ ω ≤ 16.70 , ; g1ND : θ = θmax ∧ ω = 0 (12)

We now impose a minimum dwell-time of5 seconds on
all the six gear modes. The guards obtained by computing
the fixpoint are as follows.

gN1U : ω = 0 , g11U : ω = 0

g1ND : θ = θmax ∧ ω = 0 , g12U : 13.29 ≤ ω ≤ 23.42

g11D : 1.31 ≤ ω ≤ 16.70 , g23U : 26.70 ≤ ω ≤ 33.42

g22D : ω = 26.70 , g33D : ω = 36.70

g32D : 16.58 ≤ ω ≤ 26.70 , g33U : 23.29 ≤ ω ≤ 33.42

g21D : 1.31 ≤ ω ≤ 16.70 , g22U : 13.29 ≤ ω = 23.42 (13)

The plot of the behavior of the transmission system when
it is made to switch from Neutral mode through the six gear
modes and back to the Neutral mode is shown in Figure 12.
The efficiencyη is always greater than0.5 when the speed
is higher than5 and we spend atleast5 seconds in the six
gear modes. Starting fromθ = 0, ω = 0, the synthesized
system reachesθ = θmax with ω = 0.

D. Train Gate Controller

The example is a four mode train-gate controller system
illustrated in Figure 13. The purpose of the train gate
controller is to close the gate when the train approaches
and to open the gate when the train has passed.

The system has two variables{d, a} where d is the
distance of the train from the gate anda is the angle of the

11

0 20 40 60 80 100
0

0.5

1

E
ffi

ci
en

cy

Time

0 20 40 60 80 100
0

20

40

S
pe

ed

Efficiency η
Speed ω

G1U G2U G3U G3D G2D G1D

Fig. 12. Transmission efficiency and speed with changing gears

Mode O (open) Mode D (closing)

Mode C (closed)Mode U (opening)

ȧ = 0

gOD

gDC

gCU

gUO

ḋ = 40 ḋ = 40

ḋ = 40ḋ = 40

ȧ = 0

ȧ = −15

ȧ = 15

Fig. 13. Train Gate Control System

gate. The distanced is negative when the train is approach-
ing the train and is positive when the train has passed. The
speed of the train is constant,ḋ = 40 m/s. The gate closes
or opens at a constant rate ofȧ = 15 degrees/sec. The
controller has four modes - open (O), closing (D), closed
(C) and opening (U), that is,M = {O,D,C,U}. The
continuous dynamical system in each mode are described
by a set of ordinary differential equations as illustrated in
Figure 13.

Starting from an open gate mode, the controller will
eventually start closing the gate when the train approaches
and eventually train would be closed. The gate would start
opening after the train has passed and would reach the open
mode. The gate closes at0 degree and the gate opens to
90 degrees. So, closing mode takesa from 90 degrees to
0 degree and the opening mode takesa from 0 degree to
90 degrees. The mode switch from mode C happens only
when the train has atleast reached the gate, that is,d ≥ 0.

In order for the above system to be safe, we would like
to enforce the following safety propertyφS

−50 < d < 50 ⇐⇒ a = 0

that is, when the train is within50 metres from the gate, the
gate remains closed. We need to synthesize the switching
logic S such that the above property is ensured in all
reachable states.

Case A:We initialize the guards using the safety property
and other constraints on mode switches mentioned above.

gOD : φS , gDC : φS ∧ (a = 0)

gCU : φS ∧ d ≥ 0 , gUO : φS ∧ (a = 90) (14)

Solving the fixpoint equations yields the following

guards.

gOD : d ≤ −290 , gDC : d ≤ −50 ∧ (a = 0)

gCU : d ≥ 50 , gUO : (d ≥ 50 ∨ d ≤ −290) ∧ (a = 90) (15)

The behavior of the system is shown in Figure 14.

0 10 20 30 40
−1000

0

1000

Time

0 10 20 30 40
−100

0

100

Distance

Angle

Fig. 14. Sample Behavior of Synthesized Gate Controller

Case B:We consider a max-dwell time of5 seconds in
the close modeC. The

gOD : φS , gDC : φS ∧ (a = 0)

gCU : φS ∧ t ≤ 5 ∧ d ≥ 0 , gUO : φS ∧ (a = 90) (16)

where t denotes the time spent in the closed modeC.
The guards synthesized using fixpoint computation are as
follows. The behavior of the system is shown in Figure 15.

gOD : (d ≤ −290 ∧ d ≥ −390)

gDC : (d ≤ −50 ∧ d ≥ −150)∧ (a = 0)

gCU : d ≥ 50

gUO : (d ≥ 50 ∨ d ≤ −290) ∧ (a = 90) (17)

0 10 20 30 40
−1000

0

1000

Time

0 10 20 30 40
−100

0

100
Distance
Angle

Fig. 15. Sample Behavior of Synthesized Gate Controller with Max-dwell
Time

E. Performance

We summarize the number of iterations needed to reach
the fixed point and total runtime in Table below. The total
runtime includes the time to obtain simulation traces from
different initial states, time to label these traces as goodor
bad and the time to synthesize the new guards cumulative
over all the iterations.

12

Example # of Iterations Runtime
(seconds)

Thermostat Controller
v1 5 21.6

v2 Case A 6 26.2
v2 Case B 6 25.7

TCAS
Case A 4 55.3
Case B 5 59.1

Automatic Transmission 6 83.6
Train Gate Controller

Case A 3 22.5
Case B 4 28.3

VII. R ELATED WORK

Past work on synthesis of switching logic can be broadly
classified into two categories depending on the goals of syn-
thesis. The first category finds controllers that meet some
liveness specifications, such as synthesizing a trajectoryto
drive a hybrid system from an initial state to a desired final
state [8], [10]. The second category finds controllers that
meet some safety specification [2]. Our work combines both
safety specifications with min-dwell requirements (which
is a form of liveness specification) to enable synthesis of
systems that meet some performance related properties.

Past techniques for synthesis of switching logic involve
computing the set of controlled reachable states either in
the style of solving a game [2], [18] or some abstraction
based reasoning [13], [3], [16]. They all perform some
kind of iterative fixpoint computation and are limited in
the kind of continuous dynamics they can handle. The
novelty of our work lies in presenting a new technique
based on combining local simulation inside a mode with
fix-point computation across modes. Our simulation-based
approach to reason about the continuous dynamics inside
each mode makes our approach more generally applicable.
Simulations have been used to perform verification [7],
[5], [4], but we use simulations to perform synthesis.
Recently, [17] proposed a constraint-based technique for
synthesizing switching logic that involves generating and
solving an ∃∀ constraint (as opposed to performing a
fixpoint computation). However, the size of the constraint
increases as the number of modes increase. In our approach,
reasoning is performed on one mode at a time and hence
it scales better than [17].

Dwell time is a well-known concept in hybrid sys-
tems [6], [11], [12], where it has been used for verification.
We use dwell time as a requirement for synthesis. The user
can use it to guarantee synthesis of nonzeno and desirable
systems.

Our problem formulation has the high-level philosophy
of “completing a partially-specified design” also explored
in other domains, such as software synthesis by sketch-
ing [15]. To our knowledge, however, the approach we take,
combining verification, learning, and simulation, is distinct
and novel.

VIII. C ONCLUSION

We presented a new approach for synthesizing safe
hybrid systems that uses numerical simulations and fixpoint
computation. The user can guide synthesis by specifying
dwell time requirements and the form of the guards. Ex-
tension of the approach to synthesize optimal designs and
with richer guards is left for future work.

ACKNOWLEDGMENTS

The UC Berkeley authors were supported in part by
NSF grants CNS-0644436 and CNS-0627734, and by an
Alfred P. Sloan Research Fellowship. The fourth author
was supported in part by NSF grants CNS-0720721 and
CSR-0917398 and NASA grant NNX08AB95A.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems.Theoretical Computer Science, 138(1):3–
34, February 1995.

[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective
synthesis of switching controllers for linear systems. InProceedings
of the IEEE, volume 88, pages 1011–1025, 2000.

[3] J. Cury, B. Krogh, and T. Niinomi. Synthesis of supervisory
controllers for hybrid systems based on approximating automata.
In IEEE Transactions on Automatic Control, pages 564–568, 1998.

[4] A. Donze and O. Maler. Systematic simulation using sensitivity
analysis. InHSCC, volume 4416 ofLNCS, pages 174–189, 2007.

[5] A. Girard and G. J. Pappas. Verification by simulation. InHSCC,
volume 3927 ofLNCS, pages 272–286, 2006.

[6] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis
of nonlinear hybrid systems.IEEE Trans. on Automatic Control,
43:540–554, 1998.

[7] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg. On systematic
simulation of open continuous systems. InHSCC, volume 2623 of
LNCS. Springer, 2003.

[8] T. J. Koo, G. J. Pappas, and S. Sastry. Mode switching synthesis
for reachability specifications. InHSCC, pages 333–346, 2001.

[9] J. Lygeros. Lecture notes on hybrid systems. 2004.
[10] P. Manon and C. Valentin-Roubinet. Controller synthesis for hybrid

systems with linear vector fields. InIEEE International Symposium
on Intelligent Control, pages 17–22, 1999.

[11] S. Mitra, D. Liberzon, and N. Lynch. Verifying average dwell time
of hybrid systems.ACM Trans. Embedded Comput. Syst., 8(1), 2008.

[12] C. Mitrohin, A. Podelski, and S. Wagner. Dwell time refinement,
2009. Personal communication.

[13] T. Moor and J. Raisch. Discrete control of switched linear systems.
In European Control Conference, 1999.

[14] G. J. Pappas, C. Tomlin, and S. Sastry. Conflict resolution for multi-
agent hybrid systems. InIEEE Control and Decision Conference,
pages 1184–1189, 1996.

[15] A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and V. A.
Saraswat. Combinatorial sketching for finite programs. InASPLOS,
pages 404–415, 2006.

[16] P. Tabuada. Controller synthesis for bisimulation equivalence.
Systems and Control Letters, 57(6):443–452, 2008.

[17] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing switching logic
using constraint solving. InVMCAI, pages 305–319, 2009.

[18] C. J. Tomlin, J. Lygeros, and S. S. Sastry. A game theoretic approach
to controller design for hybrid systems. InProceedings of the IEEE,
volume 88, pages 949–970, 2000.

13

