
Teaching and Learning Programming and Software

Engineering via Interactive Gaming

Nikolai Tillmann

Microsoft Research

One Microsoft Way

Redmond, WA, USA

nikolait@microsoft.com

Jonathan de Halleux

Microsoft Research

One Microsoft Way

Redmond, WA, USA

jhalleux@microsoft.com

Tao Xie

Computer Science Dept.

NC State University

Raleigh, NC, USA

xie@csc.ncsu.edu

Sumit Gulwani

Microsoft Research

One Microsoft Way

Redmond, WA, USA

sumitg@microsoft.com

Judith Bishop

Microsoft Research

One Microsoft Way

Redmond, WA, USA

jbishop@microsoft.com

Abstract—Massive Open Online Courses (MOOCs) have re-
cently gained high popularity among various universities and
even in global societies. A critical factor for their success in
teaching and learning effectiveness is assignment grading. Tradi-
tional ways of assignment grading are not scalable and do not give
timely or interactive feedback to students. To address these issues,
we present an interactive-gaming-based teaching and learning
platform called Pex4Fun. Pex4Fun is a browser-based teaching
and learning environment targeting teachers and students for
introductory to advanced programming or software engineering
courses. At the core of the platform is an automated grading
engine based on symbolic execution. In Pex4Fun, teachers can
create virtual classrooms, customize existing courses, and publish
new learning material including learning games. Pex4Fun was
released to the public in June 2010 and since then the number
of attempts made by users to solve games has reached over one
million. Our work on Pex4Fun illustrates that a sophisticated
software engineering technique – automated test generation – can
be successfully used to underpin automatic grading in an online
programming system that can scale to hundreds of thousands of
users.

I. INTRODUCTION

Massive Open Online Courses (MOOCs) [8], [16] have

recently gained high popularity among various universities

and even in global societies. In these MOOCs, students come

from a variety of geographical locations (typically globally)

and may range in the thousands to hundreds of thousands.

These MOOCs distribute the course materials such as recorded

lectures, reading materials, and assignments via the Internet.

Recently emerging companies such as Coursera [1], Udac-

ity [5], and EdX [3] have been started to offer MOOCs in

partnership with university professors individually or with

universities officially.

For large courses at universities and especially for MOOCs,

assignment grading is typically a critical factor for their suc-

cess in teaching and learning effectiveness. Traditional ways

of assignment grading by the teacher or teaching assistants

are not scalable in such settings any more. In MOOCs, there

are two main feasible ways of grading: automated grading and

peer grading. Note that automated grading is typically feasible

only for certain kinds of assignments such as programming-

related exercises.

Automated grading relies on running a test suite (including

a set of test cases) prepared by the teacher against each student

solution. The grade for a student solution can be determined

based on how high percentage of test cases from the test suite

fail on the student solution. For example, the Coursera MOOC

on “Software Engineering for SaaS” [2] taught by Fox and

Patterson [8] adopted an auto-grader based on a test suite

prepared by the teacher. However, the grading effectiveness

heavily depends on the quality of the prepared test suite,

which might not be of sufficient quality. A poor test suite

could allow an incorrect student solution to pass all or most

prepared test cases in the test suite and gain a full or high

score. In reality, given the feedback information on the failing

test cases, students could “over-fit” their solution to simply

pass the failing test cases instead of striving for a correct

solution.

Peer grading (by peer students) has been adopted as a

grading mechanism at MOOCs (such as Coursera) for assign-

ments such as essay writing. However, in general, the accuracy

achieved by peer grading may not be satisfactory [9]. In the

context of MOOCs, “resistance to peer grading”, “concerns

about privacy”, “turning in blank assignments to get access to

view the work of others”, “the need for assessment to be part

of a conversation” have been identified as issues with peer

grading [14].

To address these issues in both MOOCs and large university

courses, in this paper, we present an interactive-gaming-

based teaching and learning platform called Pex4Fun (denot-

ing Pex for Fun) for .NET programming languages such as

C#, Visual Basic, and F#. Pex4Fun is publicly available at

http://www.pexforfun.com/ and is a browser-based teaching

and learning environment with target users such as teachers

and students for introductory to advanced programming or

software engineering topics. It works on any web-enabled

device, even a smartphone. It comes with an auto-completing

code editor, providing a user with instant feedback similar to

the code editor in an integrated development environment such

as Microsoft Visual Studio. Pex4Fun is a cloud application

with the data in the cloud, enabling a user to use it anywhere

where an Internet connection is available.

The key idea behind Pex4Fun is that there is a sample

solution “under the hood” and the student learner is being

encouraged to work towards this solution by iteratively sup-

plying code. So close is this process to gaming, that Pex4Fun is

viewed by users as a game, with a byproduct of learning. Thus,

new learners of programming can play games in Pex4Fun to

master basic programming concepts. More advanced learners

of software engineering can play games to master others skills

such as skills of program understanding, induction, debugging,

problem solving, testing, and specification writing. Teachers

can create virtual classrooms in the form of courses by

customizing existing learning materials and games or creating

new materials and games. Teachers can also enjoy the benefits

of automated grading of exercises assigned to students, making

the platform applicable in the context of large courses at

universities and MOOCs.

The core type of programming games is coding duel where

the student has to solve a particular programming problem.

Behind the scenes on the server in the cloud, the Pex4Fun web-

site uses a technique called dynamic symbolic execution [10],

[18] implemented by the automated test-generation tool called

Pex [24], in order to determine the progress of the student

and to compute customized feedback. In a coding duel, the

student player is given a player implementation, being an

empty or faulty implementation of a method (sample solution),

with optional comments to give the player hints in order to

reduce the difficulty level of gaming. (Note that in a regular

classroom setting such as in a MOOC or university course, the

behavioral requirements for revising the player implementation

would be specified in the comments.) Then the player is asked

to modify the player implementation to make its behavior (in

terms of the method inputs and results) to be the same as

the secret sample-solution implementation, which is supplied

by the game creator but is not visible to the player. During

the game-playing process, the player has the opportunity to

request the gaming platform to provide feedback as to the

method input(s) that cause the player implementation and the

secret implementation to have the same or different method

results. The gaming platform leverages Pex to provide such

feedback. It is in the nature of Pex to provide a small number

of inputs/results that are representative for the correct and

incorrect aspects of the student’s player implementation. As

a result, the student is not overwhelmed by details and yet

receives relevant feedback to proceed.

The game type of coding duels within Pex4Fun is flexible

enough to allow game creators to create various games to

target a range of skills such as programming, program under-

standing, induction, debugging, problem solving, testing, and

specification writing, with different difficulty levels of gaming.

In addition, Pex4Fun is an open platform: any one around

the world can create coding duels for others to play besides

playing existing coding duels themselves. The platform also

provides various features to engage students in a social learn-

ing environment such as ranking of players and coding duels

(http://www.pexforfun.com/Community.aspx) and online live

feeds (http://www.pexforfun.com/Livefeed.aspx).

Pex4Fun was adopted as a major platform for assignments

in a graduate software engineering course. A coding-duel

contest was held at a major software engineering conference

(ICSE 2011) for engaging conference attendees to solve cod-

ing duels in a dynamic social contest. Pex4Fun has been gain-

ing high popularity in the community: since it was released

to the public in June 2010, the number of clicks of the “Ask

Pex!” button (indicating the attempts made by users to solve

games at Pex4Fun) has reached over one million (1,135,931)

as of March 3, 2013. Pex4Fun has provided a number of open

virtual courses (similar to MOOCs in spirit) including learning

materials along with games used to reinforce students’ learning

(http://www.pexforfun.com/Page.aspx#learn/courses).

Our work on Pex4Fun illustrates that a sophisticated soft-

ware engineering technique – automated test generation –

can be successfully used to underpin automatic grading in

an online programming system that can scale to hundreds

of thousands of users. It makes a real contribution to the

known problem of assignment grading, as well as providing

a programming-oriented gaming experience outside of the

classroom.

The rest of the paper is organized as follows. Section II

presents related work. Section III presents the background

information. Section IV presents the concept of coding duels,

the major type of games within Pex4Fun. Section V discusses

the design goals and principles for coding duels. Section VI

presents Pex4Fun’s teaching support. Section VII presents

example coding-duel exercises in a course. Sections VIII

and IX discuss initial experiences on adopting Pex4Fun in

a course and an open contest of coding duels, respectively.

Section X concludes with future work.

II. RELATED WORK

Jackson and Usher [12] developed ASSYST to assist a

tutor to assess student solutions along with student tests for

their solutions (written in the Ada programming language).

ASSYST relies on test cases provided by the tutor to assess

the correctness and efficiency of the student solutions. It

also provides static analysis to assess the efficiency, style,

and complexity of the student solutions, and provides code-

coverage measurement to assess the adequacy of the stu-

dent tests. Zeller [28] developed Praktomat to assess stu-

dent solutions based on test cases provided by the teacher.

Praktomat also provides features for allowing students to

read, review, and assess each other’s solutions in the style

of peer grading. Edwards and Perez-Quinones [7] developed

Web-CAT (http://web-cat.sourceforge.net/) to assess student

solutions and student tests for their solutions (written in Java).

Web-CAT also relies on test cases provided by the teacher

to assess student solutions. Web-CAT shares similar design

goals of Praktomat or ASSYST and further provides advanced

features to support test-driven development. Unlike ASSYST

or Web-CAT, Pex4Fun currently does not focus on assessing

student tests but focuses on assessing student solutions. There,

tests generated by Pex (underlying Pex4Fun) are not a fixed

set, unlike the tests used by ASSYST, Praktomat, or Web-

CAT: Pex generates different tests depending on the program

behavior of a student’s submitted player implementation, ac-

complishing the goal of personalized or customized feedback

for each student.

Fig. 1. The workflow of creating and playing a coding duel

Spacco et al. [21] developed Marmoset (http://marmoset.

cs.umd.edu/), an automated snapshot, submission, and testing

system. The system captures snapshots of students’ program-

ming projects to a centralized code repository whenever the

students save their source files. Such a collected fine-grained

revision history offers teachers a unique perspective into the

development process for students. Similar to this aspect, our

proposed platform also captures snapshots of students’ revi-

sions of the player implementation whenever the students click

the “Ask Pex!” button to request feedback from Pex. Similarly,

teachers can investigate the duel-solving processes by students.

When using Marmoset, students can also explicitly submit

projects to the Marmoset system to request Marmoset to run

these submissions against a suite of unit tests prepared by the

teachers to evaluate the functional correctness of a submission.

In contrast, when using Pex4Fun, the teachers are not required

to prepare a suite of tests for evaluating functional correctness

of a player implementation against the secret implementation.

Instead, Pex is used to serve this evaluation purpose. In

addition, tests generated by Pex are not a fixed set, unlike

the tests used by Marmoset.

III. BACKGROUND

We next present the underlying technology (dynamic sym-

bolic execution) and supporting tool (Pex) for the Pex4Fun

platform. Dynamic symbolic execution (DSE) [10], [18] is a

variation of symbolic execution [6], [15] and leverages runtime

information from concrete executions. DSE is often conducted

in iterations to systematically increase code coverage such as

block or branch coverage. In each iteration, DSE executes

the program under test with a test input, which can be a

default or randomly generated input in the first iteration or an

input generated in one of the previous iterations. During the

execution of the program under test, DSE performs symbolic

execution in parallel to collecting symbolic constraints on

program inputs obtained from predicates in branch statements

along the execution. The conjunction of all symbolic con-

straints along an executed path is called the path condition.

Then DSE flips a branching node in the executed path to

construct a new path that shares the prefix to the node with

the executed path, but then deviates and takes a different

branch. DSE relies on a constraint solver to (1) check whether

such a flipped path is feasible; if so, (2) compute a satisfying

assignment — such assignment forms a new test input whose

execution will follow the flipped path.

Based on dynamic symbolic execution, Pex [24] is an

automatic white-box test-generation tool for .NET, which has

been integrated into Microsoft Visual Studio as an add-in.

Besides being adopted in industry, Pex has been used in

classroom teaching at different universities, as well as various

tutorials both within Microsoft (such as internal training of

Microsoft developers) and outside Microsoft (such as tutorials

at .NET user groups) [27].

A key methodology that Pex supports is parameterized unit

testing [25]–[27], which extends the current industry practices

based on closed, traditional unit tests (i.e., unit test methods

without input parameters). In parameterized unit testing, unit

test methods are generalized by allowing parameters to form

parameterized unit tests. This generalization serves two main

purposes. First, parameterized unit tests are specifications of

the behavior of the methods under test. They include exem-

plary arguments to the methods under test, and the ranges of

such arguments. Second, parameterized unit tests describe a set

of traditional unit tests that can be obtained by instantiating the

methods of the parameterized unit tests with given argument-

value sets. An automatic test-generation tool such as Pex can

be used to generate argument-value sets for parameterized unit

tests.

IV. CODING DUELS

Coding duels are the major type of games within the

Pex4Fun platform for learning various concepts and skills in

programming or software engineering. Figure 1 shows the

workflow of creating and playing an example coding duel.

Figure 2 shows a screen snapshot of the user interface of the

Pex4Fun website, which shows the example coding duel being

solved by a player.

In a coding duel, a player’s task is to implement the Puzzle

method (shown on the top-right side of Figure 1 and in

Figure 2) to have exactly the same behavior as another secret

Puzzle method, which is never shown to the player (shown on

the top-left side of Figure 1), based on feedback in the form of

some selected values where the player’s current version of the

Puzzle method behaves differently as well as some selected

values where it behaves the same way (shown near the right-

bottom of Figure 1 and near the bottom of Figure 2).

The Puzzle method for the example coding duel in Fig-

ures 1 and 2 is public static int Puzzle(int x). The

feedback given to the player on some selected input values is

displayed as a table near the bottom of the screen (in Figure 2).

A table row beginning with a check mark in a green circle

indicates that the corresponding test is a passing test. Formally,

the return values of the secret implementation and player

implementation (i.e., the Puzzle method implementation) are

Fig. 2. The user interface of the Pex4Fun website

the same for the same test input (i.e., the Puzzle method

argument value). A table row started with a red circle with a

cross indicates that the corresponding test is a failing test:

the return values of the secret implementation and player

implementation are different for the same test input. In the

table, the second column “x” indicates the test input. The third

and fourth columns “your result” and “secret implementation

result” indicate the return values of the player implementation

and secret implementation, respectively. The last two columns

“Output/Exception” and “Error Message” give more details for

the failing tests.

To start with a simple coding duel, a player can do the fol-

lowing steps. Click an example coding duel from the Pex4Fun

website; then the player can see a player implementation

that does not do much. Click “Ask Pex!” to see how the

player implementation differs from the secret implementation.

Compare the player implementation’s result to the secret

implementation’s result. Analyze the differences and change

the code to match the secret implementation’s results for all

input values or as many input values as the player can. Click

“Ask Pex!” again. Repeat this process until the player wins the

coding duel (i.e., no failing tests being reported in the table

by Pex) or cannot make any progress.

When a player has won the duel, the player can try other

coding duels. if the player signs in to Pex4Fun with a Mi-

crosoft account (such as Outlook or Hotmail), Pex4Fun has a

richer experience, in terms of tracking the player’s progress.

It can record how many attempts the player has made on a

specific coding duel, how many coding duels the player tried

to win, eventually won, and which ones the player created

himself/herself. Pex4Fun also remembers the last program text

that the player wrote for any particular coding duel.

Behind the scenes, coding duels leverage the tech-

nique of DSE described in Section III. Given a method

Player.Puzzle(x) from a player (initially being a player

implementation specified by the game creator) and a method

Secret.Puzzle(x) from the game creator (being the se-

cret implementation), Pex explores the following synthesized

method Driver1 with DSE [22] by treating such method as a

1For some return types of Puzzle such as int[], the comparator ==
would be replaced with the corresponding deep equality comparator for the
return type.

parameterized unit test [25]–[27] (also shown on the bottom-

left side of Figure 1):

public static void Driver(int x) {

if (Secret.Puzzle(x) != Player.Puzzle(x))

throw New Exception("Mismatch"); }

Note that DSE would attempt to generate tests to cover all

feasible branches (in fact all feasible paths) including the

exception-throwing branch in the synthesized method if this

branch is feasible to cover; covering this branch indicates

behavior mismatches between the player implementation and

the secret implementation. In particular, with DSE, Pex gen-

erates a test suite that is customized to both Puzzle methods.

Each time the player submits a new implementation version of

the Player.Puzzle(x) method by clicking “Ask Pex!”, Pex

generates a new test suite, showing any behavior mismatches

to the secret implementation, or, if there are no mismatches,

indicating that the player wins the coding duel.

V. DESIGN GOALS AND PRINCIPLES

During our iterative process of evolving and improving the

design of the concept of coding-duel games, we derived design

principles for coding duels. We started by observing user

behaviors on earlier versions of coding-duel games. From that,

two major goals emerged: engage players (e.g., blend in “fun”)

and enable better teaching and learning.

Based on our experiences, we derived five main design

principles related to the goal of engaging players.

• The games need to be interactive and the interactions

need to be iterative and involve multiple rounds. The

players’ interactions with the games (e.g., modifying the

player implementation) should not be just one round of

interaction.

• The feedback of the games given to the players should be

adaptive. When a player makes a move (e.g., modifying

the player implementation) in one iteration of interac-

tions, the feedback given should be adaptive with respect

to previous moves, rather than always giving the same

feedback.

• The feedback given to the players should be personalized.

This design principle is closely related to the previous one

on being adaptive. Basically, different players very likely

make different modifications on the player implementa-

tion. Our feedback should be based on the modifications

made by the current player.

• The games should have a clear winning criterion. There

should be no ambiguity for a player in terms of un-

derstanding and assessing the winning criterion. Criteria

such as “having a good code structure” would be too

vague.

• There should be no or few opportunities for the players to

cheat the games. The design of the games and supporting

platform should allow no or few cases where the players

do not satisfy the winning criterion but manage to win

the game anyway.

With respect to the second goal of enabling better teaching

and learning, we make the design of the concept of coding

duels to help train different skills of the players, including but

not limited to the following ones:

Induction skills. The displayed list of selected argument

values (which exhibit different behaviors or same behaviors of

the two implementations) are just sample argument values, i.e.,

they are not exhaustive argument values that exhibit different

or same behaviors. Before figuring out how to change a player

implementation to get closer to the secret implementation, the

player needs to generalize from the observed sample values

and the behaviors exposed by them.

Problem-solving or debugging skills. Solving a coding

duel requires the player to conduct iterations of trials and

errors. Based on the observed sample argument values and

behaviors, the player needs to decompose the problem: group-

ing sample arguments that may exhibit the same category

of different behaviors, e.g., due to lacking a branch with

the conditional of if (x > 0). Next the player needs to

come up with a hypothesized missing or corrected piece of

code that will make failing tests pass and passing tests still

pass. Then the player needs to conduct an experiment to

validate the hypothesis by clicking “Ask Pex!”. Solving a non-

trivial coding duel can involve exercising a range of different

problem-solving skills.

Program-understanding and programming skills. If the

initial player implementation is not that “dumb” and includes

non-trivial code, the player needs to understand first what the

player implementation is meant to do. It is obvious that the

player needs to have good programming skills to solve a non-

trivial coding duel.

Testing skills. Currently, Pex4Fun does not provide user

interfaces to explicitly request the player to specify or control

test-input values. These are always generated by Pex for

the player implementation and secret implementation, respec-

tively. However, the player has the capability of “controlling”

what additional test-input values are displayed in the input-

output table by adding additional branches to the beginning of

the player implementation. For example, if the player adds if

(x == 10) throw New Exception();, Pex would gener-

ate a row with the test-input value x as 10 (due to the nature

of Pex in generating a new test-input value for covering a not-

yet-covered branch). In this way, the player’s testing skills get

trained. In fact, as presented in Section VII-B, coding-duel

exercises can be carefully designed to train students’ testing

skills on writing parameterized unit testing [25]–[27].

Specification-writing skills. Pex4Fun already includes

a number of coding duels that serve to test and train

specification-writing skills. In such a coding duel, the secret

implementation includes code contracts [4], such as method

preconditions and postconditions. Then the player is given

a player implementation with the same implementation as

the secret implementation except without the (full) written

code contracts. The player is asked to write the missing

code contracts based on feedback. In this way, the player’s

specification-writing skills get trained. Furthermore, as pre-

sented in Section VII-A, coding-duel game exercises can be

carefully designed to train students’ skills on writing formal

specifications based on the given natural-language require-

ments.

VI. TEACHING WITH CODING DUELS

Duel construction. Any teacher or user can create and

submit new coding duels, which other players can try to win.

There are five simple steps for the user to follow.

• Step 1: sign in, so that Pex4Fun can maintain coding

duels for the user.

• Step 2: write a secret implementation starting from a

puzzle template where the user can write the secret

implementation as a Puzzle method that takes inputs

and produces an output.

• Step 3: create the coding duel by clicking a button “Turn

This Puzzle Into A Coding Duel” (appearing after the

user clicks “Ask Pex!”).

• Step 4: edit the player implementation (i.e., program text

visible to players) by clicking the coding duel Permalink

URL, which opens the coding duel, and by filling in a

slightly more useful outline of the implementation (with

optional comments) that players will eventually complete.

• Step 5: publish the coding duel after the user finishes

editing the visible Puzzle method text by clicking the

“Publish” button.

A Puzzle method can be turned into a coding duel only

if it fulfills certain requirements. In particular, it must have a

non-void return type, so that the behavior of the secret im-

plementation and the player implementation can be compared

using their return values. The Puzzle method must have at

least one parameter, so that Pex can generate argument values

for it.

The game creator has great flexibility to control the diffi-

culty of solving a coding duel by varying (1) the complexity of

the secret implementation; (2) the similarity level of the player

implementation (visible to players) to the secret implementa-

tion; (3) the strength of the hints given in code comments

in the player implementation. These advantages in creating

coding duels make Pex4Fun an attractive open platform for the

community to contribute coding-duel games, besides the list of

built-in coding duels created by us. Note that a teacher does

not have to provide any test cases, as Pex can dynamically

compute specialized tests that represent different and same

behaviors between the secret implementation and a student’s

player implementation.

Virtual classroom. A teacher can integrate Pex4Fun in

various ways: (1) use built-in coding duels and request the

students to submit to the teacher their attempts to these coding

duels; doing so allows to leverage the built-in collection of

coding duels and the gaming experience; (2) reuse existing

courses; and (3) create new course materials.

A course in Pex4Fun consist of pages, which contain text

and code written by an author. Pages are written in a simple,

text-based markup language. A teacher can combine existing

pages into a course. The pages might have been written by the

teacher or by any other author. The teacher invites students to

the course by sharing a registration link with them. A course

can have multiple teachers.

Any user can become a student by registering for a course

through the registration link. The student can then work

through the pages that are part of the course. To pass the

course, the student completes exercises in the form of coding

duels. A student can unregister from a course at any time. A

student can give read access to a teacher. The teacher is then

able to monitor the progress of the student on every coding

duel, including inspecting the playing history of the student

on the coding duel. Such feature is valuable for the teacher to

“replay” and “diagnose” the student’s thinking process.

Social dynamics. To better engage users, we have devel-

oped a number of features related to social dynamics, making

games in Pex4Fun a type of social games. For example,

Pex4Fun allows a player to learn what coding duels other

people were already able to win (or not). For a given coding

duel opened by a player, the description-text box above the

working area shows some statistic such as “Can you write

code that matches a secret implementation? Other people have

already won this Duel 477 times!”.

The platform also allows ranking of players and coding

duels. A player can click the “Community” link on the

Pex4Fun main page to see how the player’s coding-duel skills

compare to other people. In the community area, there are

high score lists, as well as coding duels that other people have

published.

After winning a coding duel, a player can rate it as “Fun”,

“Boring”, or “Fishy”. All ratings are shared with the commu-

nity. Players earn points for rating duels, and can go back and

rate them later as well.

VII. EXAMPLE CODING-DUEL EXERCISES IN SOFTWARE

ENGINEERING COURSE

In this section, we present two groups of coding-duel exer-

cises created for a graduate course on software engineering.

The first group of exercises is for the topic of requirements,

particularly on formalizing natural-language requirements to

machine-checkable formal specifications. The second group

of exercises is for the topic of testing, particular on writing

parameterized unit tests [25]–[27]. The course page including

the described exercises in this section can be accessed at

http://pexforfun.com/gradsofteng. To access the course page,

one needs to log in to Pex4Fun by clicking the “Sign In” on

the top-right corner of the Pex4Fun website, and entering her

Microsoft account (e.g., an Outlook or Hotmail account).

A. Requirements Exercises

We have designed requirements exercises to (1) train stu-

dents to formalize natural-language requirements for machine-

checkable formal specifications, and (2) allow students to

learn the importance on avoiding writing ambiguous low-

quality natural-language requirements. Before conducting the

designed exercises, the students attended lectures given by

the teacher on the topics of code contracts [4] and require-

ments engineering. In addition, the students were asked to

go through learning materials on code contracts (which are

already provided at the Pex4Fun website) but such task is

optional. The students were given one week to finish the

requirements exercises.

We have designed six coding-duel exercises including three

in the low-difficulty level, one in the medium-difficulty level,

and two in the high-difficulty level. In each exercise, the

students are asked “Can you translate the natural-language

requirement above the method blow to be in code contracts?”

The coding-duel exercise in the medium level (the initial

player implementation) is shown in Figure 3 and its solution

(the secret implementation) is shown in Figure 4. We extracted

the natural-language requirements (used in the exercises) from

real-world evaluation subjects (API documents) used in related

previous work [17]. For each of the three exercises in the

low-difficulty level, only one code contract is needed and

it is straightforward to translate the requirement to the code

contract. For the exercise in the medium-difficulty level, four

code contracts are needed and it is not difficult to translate the

requirement to the code contracts, as shown in Figures 3 and

4. For the two exercises in the high-difficulty level, five and

nine code contracts are needed, respectively. For each of the

two high-difficulty exercises, two code contracts require the

use of non-trivial regular-expression matching:

Regex.IsMatch(name.Substring(0,1),@"[a-z]")

Regex.IsMatch(name,@"^[a-z0-9]*$")

These two method invocations reflect the requirement sen-

tence “This name also needs to be a valid identifier, which is

no longer than 32 characters, starting with a letter (a-z) and

consisting of only small letters (a-z), numbers (0-9) and/or

underscores.”

For one of the high-difficulty exercises, we intentionally

included one requirement sentence that cannot be expressed

as a code contract: “param:name:Name of this new object

type. This name needs to be unique among all object types

and associations defined for this application.” This sentence is

from a real-world API document. In our solution (secret im-

plementation), we have no line of code contract corresponding

to this requirement sentence. Having the students go through

this exercise allows them to realize that not all real-world

requirements can be formalized. Indeed, there were a few

students double-checking with the teacher on whether it was

fine not to formalize this requirement sentence (although they

already won the coding duel).

The comments in the player implementation inform the

students completely exactly what they need to accomplish in

terms of the secret-implementation functionality. The students

do not have to “guess” based on the feedback given by

Pex4Fun. Such design style is in contrast to many coding duels

in Pex4Fun, where “guessing” is heavily involved and no or

few hints are given to players. The testing exercises presented

next incorporate some level of “guessing”.

B. Testing Exercises

We have designed testing exercises to (1) train students on

writing parameterized unit tests [25]–[27], (2) allow students

//param:pref_id:(0-201) Numeric identifier of this preference.

//param:value:(max. 127 characters) Value of the preference to set.

// Set it to "0" or "" to remove this preference.

//Can you write preconditions in code contracts for the above natural-language requirements?

public static int Puzzle(int pref_id, string value)

{

return pref_id;

}

Fig. 3. An example requirements exercise in the medium-difficulty level

public static int Puzzle(int pref_id, string value)

{

Contract.Requires(pref_id >=0);

Contract.Requires(pref_id <=201);

Contract.Requires(value != null);

Contract.Requires(value.Length <=127);

return pref_id;

}

Fig. 4. The solution to the example requirements exercise in the medium level shown in Figure 3

to realize the importance on writing high-quality test oracles

in the form of parameterized unit tests, and (3) appreciate

how an automatic test-generation tool can be leveraged to

generate high-quality test data. Before conducting the designed

exercises, the students attended a lecture given by the teacher

on the topics of basic software testing and parameterized unit

testing. In addition, the students were asked to go through

learning materials on parameterized unit testing (which are

already provided at the Pex4Fun website) but such task is

optional. The students were given one week to finish the

testing exercises.

We designed three coding-duel exercises, all in the same

difficulty level. In particular, in each exercise, the students

are asked “For each coding duel, you need to complete the

given incomplete parameterized unit test to match the secret

parameterized unit test for testing the UBIntStack class

that implements a bounded stack that holds unique integer

elements.” In the lecture on parameterized unit testing, the

teacher used this UBIntStack class as an illustrative example

to engage the students to do in-lecture exercises for writing

traditional unit tests (i.e., those without parameters) and how

to generalize such traditional unit tests to parameterized unit

tests [23].

One of the three coding-duel exercises is shown in Figure 5

and its solution (the secret implementation) is shown in

Figure 6. In particular, in the player implementation given to

the students, we already include test-scenario setup (including

some assumptions) and test oracles (i.e., assertions), and the

students are asked to fill in the middle part of the parameter-

ized unit test, which is the Puzzle method itself. As shown

in Figure 6, the middle part includes additional test-scenario

setup (including some assumptions) and the method under test

(i.e., the Push method).

For the testing exercises, the comments in the player im-

plementation inform the students partially what exactly they

need to accomplish in terms of the secret-implementation

functionality. Thus the students need to do some “guessing”

based on the feedback given by Pex4Fun. For example, the

comments in the player implementation do not inform the

students which method of UBIntStack is the method under

test (it is Push) or what additional test-scenario setup is

needed. In the example exercise in Figure 5, additional test-

scenario setup includes the elem being pushed is not in the

stack already and the stack is not full. The students need

to “guess” such information based on the feedback given by

Pex4Fun.

VIII. CLASSROOM EXPERIENCES

Pex4Fun was adopted as a major platform for assignments

in a graduate software engineering course (with more than

50 enrolled graduate students). The Pex4Fun course page

is at http://pexforfun.com/gradsofteng. The course content

is organized by different phases in software development

life cycle: requirements, design, implementation, testing, and

maintenance, etc. Various exercises are designed in the form

of coding duels. We next illustrate the classroom experiences

through the two example sets of exercises described in Sec-

tion VII.

Overall class performance. For each course at Pex4Fun,

the teachers of the course can view the status of the students

in terms of solving the coding-duel exercises included in the

course (in the form of coding duels being embedded in a

course page included in the course). The status page is similar

to the one shown in Figure 7. Each row in the status table

corresponds to the status of a student. The table cells in the

columns show the number of attempts tried by each student,

with a green table cell indicating that the corresponding coding

duel was solved by the student, a red table cell indicating that

the corresponding coding duel was not solved by the student

yet, and a blank table cell indicating that the corresponding

coding duel was not yet attempted by the student. We next

illustrate some summaries of the class performance.

For the six requirements exercises, all students successfully

solved all the six exercises except four students (who never

attempted any of the six exercises, likely due to late enrollment

or misunderstanding of the assignment requirements) and two

students (who could not solve the last two exercises or the

public static string Puzzle(int[] elems, int capacity, int elem)

{

if (capacity <= 0) return "Assumption Violation!";

if (elems == null) return "Assumption Violation!";

if (elems.Length > (capacity + 1)) return "Assumption Violation!";

UBIntStack s= new UBIntStack(capacity);

for (int i = 0; i < elems.Length; i++)

s.Push(elems[i]);

int origSize = s.GetNumberOfElements();

//Please fill in below test scenario on the s stack

//including necessary assumptions (no additional assertions needed)

//The lines below include assertions to assert the program behavior

PexAssert.IsTrue(s.GetNumberOfElements() == origSize + 1);

PexAssert.IsTrue(s.Top() == elem);

PexAssert.IsTrue(s.IsMember(elem));

PexAssert.IsTrue(!s.IsEmpty());

return "s.GetNumberOfElements():" + s.GetNumberOfElements().ToString() + "; "

+ "s.Top():" + s.Top().ToString() + "; "

+ "s.IsMember(elem):" + s.IsMember(elem).ToString() + "; "

+ "s.IsEmpty():" + s.IsEmpty() + "; ";

}

Fig. 5. An example testing exercise for testing a bounded integer stack

public static int Puzzle(int pref_id, string value)

{

....

//Please fill in below test scenario on the s stack

//including necessary assumptions (no additional assertions needed)

if (s.IsMember(elem)) return "Assumption Violation!";

if (s.GetNumberOfElements() >= s.MaxSize()) return "Assumption Violation!";

s.Push(elem);

....

}

Fig. 6. The solution to the example testing exercise shown in Figure 5 for testing a bounded integer stack

last exercise, respectively). The smallest numbers of attempts

to successfully solve the six exercises are 1, 1, 1, 1, 2, 2,

respectively. The largest numbers of attempts to successfully

solve the six exercises are 15, 7, 32, 72, 67, 33, respectively.

For the three testing exercises, all students successfully

solved all the three exercises except one student (who could

not solve any of the three exercises). The smallest numbers of

attempts to successfully solve the three exercises are 3, 1, 1,

respectively. The largest numbers of attempts to successfully

solve the three exercises are 122, 40, 36, respectively.

Grading. The grading scheme is simple2: the teacher gave a

student full credit for successfully solving an exercise and zero

credit otherwise, no partial credit being given. The number of

attempts used to successfully solve an exercise was not taken

into account for grading. When the deadline for an assignment

was reached, the teacher gathered the online status of the

students in solving the assigned exercises and translated the

percentage of exercises being successfully solved by a student

into the assignment grade for the student. The grading was

very efficient and is expected to scale to much larger classes

at universities and MOOCs. Other grading criteria are possible.

2Note that other grading schema could be adopted. For example, extra
credits can be given to those students who can successfully solve the exercise
within top N in the student ranking based on the number of used attempts.

Exercise-solving process. The exercise-solving status of a

student (similar to the one shown in Figure 7) additionally

includes in-depth details of the student’s exercise-solving

process. When clicking the number of attempts made by the

student, the teacher can inspect the list of historical versions

of player implementations submitted by the student over time.

The benefits of inspecting such historical versions by the

teacher have been substantial in two main aspects. First,

the teacher can get a quick understanding of how students

are doing way before the deadline. For example, for the

testing exercises, on the second day of the one-week exercise-

performing period, the teacher found that several students

(who already started working on the exercises) attempted for

a large number of times to tackle the exercises by filling in

very sophisticated code logic but failed. The teacher sent out

an email to the whole class to give them additional hints on

avoiding going for this unfruitful direction. Second, the teacher

can get deep insights on the thinking and problem-solving

process of a student by inspecting such historical versions.

Such deep insights can be used by the teacher to provide

customized guidance to those students who faced difficulties

on specific exercise topics. For example, by inspecting the

historical versions of sampled students who could not suc-

cessfully solve the last two requirements exercises and the

three testing exercises, the teacher realized that some of these

students had difficulties in formulating relatively complex

regular expressions and some of these students had difficulties

to understand the assumption concept in parameterized unit

testing.

Summary. The classroom experiences with using Pex4Fun

were very encouraging. As discussed earlier, from the per-

spective of the teacher, the benefits of leveraging Pex4Fun

in classroom teaching could be substantial: reducing grading

efforts, exposing students’ learning process (beyond their final

exercise solutions) along the way, etc. Although we have not

yet conducted a formal study in assessing students’ learning

effectiveness, based on informal interactions with students,

we found that such in-time iterative feedback provided by

Pex4Fun allowed students to have guidance along the way.

Even when assignment requirements were clearly given just

like other traditional exercises, such guidance allowed students

to improve their working solutions (if not correct) and the

students had more confidence in the correctness of their

final solutions (judged by Pex4Fun). For the exercises with

“guessing” elements such as the testing exercises, the exercise-

solving process of the students had the fun aspect, allowing

students to search for both the requirements and the solutions

in the problem/solution space. In future work, we plan to

conduct some formal evaluation on students’ learning when

conducting Pex4Fun exercises.

IX. OPEN-CONTEST EXPERIENCES

Holding a contest of solving coding duels in either a

public setting or a classroom setting can serve the purpose

of engaging students to solve coding duels in a dynamic

social context within a specific period of time. In May 2011,

Microsoft Research hosted a contest on solving coding duels

(http://research.microsoft.com/ICSE2011Contest) at 2011 In-

ternational Conference on Software Engineering (ICSE 2011).

During the main ICSE program, conference attendees could

register a nickname at Pex4Fun and complete as many coding

duels as possible within the ICSE 2011 main conference

period. Whoever solved the most coding duels by the end of

the period won the contest.

The ICSE 2011 coding-duel contest received 7,000 Pex4Fun

attempts, 450 duels completed, and 28 participants (though

likely more, since some did not actually enter the official ICSE

2011 course to play the coding duels designed for the contest).

Through initial investigation of the registered participants,

we suspect that these 28 participants were mostly graduate

students. Among the 28 participants, 4 participants completed

all 30 duels, with many more completing all except for the

pesky duel #13. Figure 7 shows the status table of the ICSE

2011 coding-duel contest3. The first column of the table shows

the nicknames of the participants. Columns 2-31 correspond

to the 30 coding duels designed for the contest, with the same

color coding as described in Section VIII.

3The status table in Figure 7 includes 29 entries because one new participant
registered the ICSE 2011 course and attempted exercises there after the ICSE
2011 period.

Fig. 7. The status table of the ICSE 2011 coding-duel contest

From the table, we could observe that only 4 participants

successfully solved duel #13, with the number of attempts as

37, 161, 226, and 386, respectively. This duel #13 is the most

difficult one among the 30 duels. The second most difficult

duel is duel #10, which only 6 participants successfully solved,

with the number of attempts as 4, 8, 14, 17, 112, and 147,

respectively. Overall, difficult duels tend to have more varieties

on the numbers of attempts made to solve the duels than easy

duels (e.g., duels #0-#3). It might be that different participants

who solved a difficult duel may have prior knowledge on the

domain of the duel such as a particular mathematical problem.

To some extent, the solving process is a searching process in

the space of all possible implementations. A participant’s prior

knowledge in the search space helps speed up the searching

process. In future work, we plan to conduct detailed manual

analysis of solving histories of participants to investigate how

and why participants succeeded or failed to solve a duel. We

expect that such analysis results would provide insights on

how to more effectively design coding duels with respect to

different learning or problem-solving styles besides different

skills.

X. CONCLUSION

In typical large courses at universities and especially

MOOCs, assignment grading is a critical factor for their

success in teaching and learning effectiveness. Traditional

ways of assignment grading are not scalable and would

typically not give in-time or interactive feedback to students

to engage them in completing the assignments. To address

these issues, in this paper, we have presented an interactive-

gaming-based teaching and learning platform called Pex4Fun

for programming languages such as C#, Visual Basic, and

F#. It is a browser-based teaching and learning environment

with target users as teachers and students for introductory to

advanced programming or software engineering topics. The

platform also provides various features to engage students in

a social learning environment. Teachers can enjoy the benefits

of automated grading of exercises assigned to students, making

the platform applicable in the context of large courses at

universities and MOOCs.

Pex4Fun was adopted as a major platform for assignments

in a graduate software engineering course, and a coding-

duel contest was held at ICSE 2011 for engaging conference

attendees to solve coding duels in a dynamic social contest.

Pex4Fun has been gaining high popularity in the community:

since it was released to the public in June 2010, the number of

clicks of the “Ask Pex!” button (indicating the attempts made

by users to solve games at Pex4Fun) has reached over one

million (1,135,931) as of March 3, 2013.

In future work, we plan to study Pex4Fun’s effect on

engaging players across different genders, ages, skills, etc.

We also plan to conduct detailed manual analysis of recorded

logs of students’ duel-solving process to identify the students’

problem-solving and learning styles. We expect that insights

gained in this analysis can help better design the teaching and

learning materials including the design of specific coding duels

for maximizing the learning outcomes.

We plan to explore the direction of adapting previous work

on program synthesis [11] to automatically synthesize coding

duels given generic specifications of the secret implemen-

tation and player implementation in a coding duel to be

developed (e.g., the complexity level of the implementations,

and the extent of behavioral differences between the two

implementations, the types of syntactic differences between

the two implementations). Such automatic synthesis of coding

duels for a programming concept can be valuable because

a student may need different coding duels (with different

secret implementations) for the same programming concept to

reinforce the student’s learning of the programming concept.

Manually providing such a long list of coding duels may not

be feasible.

We plan to explore intelligent-tutoring support [13], [19],

[20] in the Pex4Fun platform. The current platform provides

hints and assistance to the students only in the form of failing

and passing tests. When a student cannot make progress in

solving a coding duel, the current platform does not give

additional “hand holding”. We plan to incorporate intelligent-

tutoring support by mining a large number of other students’

solving logs for the same coding duel and analyzing statically

and dynamically the differences between the secret and player

implementations.

Acknowledgment. Tao Xie’s work is supported in part by NSF

grants CCF-0845272, CCF-0915400, CNS-0958235, CNS-

1160603, an NSA Science of Security Lablet grant, a NIST

grant, a Microsoft Research Software Engineering Innovation

Foundation Award, and NSF of China No. 61228203.

REFERENCES

[1] Coursera. https://www.coursera.org/.

[2] Coursera MOOC on Software Engineering for SaaS. https://www.
coursera.org/course/saas.

[3] EdX. https://www.edx.org/.

[4] Microsoft Research Code Contracts. http://research.microsoft.com/
projects/contracts.

[5] Udacity. http://www.udacity.com/.
[6] L. A. Clarke. A system to generate test data and symbolically execute

programs. IEEE Trans. Softw. Eng., 2(3):215–222, 1976.
[7] S. H. Edwards and M. A. Perez-Quinones. Web-CAT: automatically

grading programming assignments. In Proc. Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE),
pages 328–328, 2008.

[8] A. Fox and D. Patterson. Crossing the software education chasm.
Communications of the ACM, 55(5):44–49, May 2012.

[9] S. Freeman and C. Parks. How accurate is peer grading. CBE– Life
Sciences Education, 9:482–488, 2010.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 213–223, 2005.

[11] S. Gulwani. Dimensions in program synthesis. In Proc. International

ACM SIGPLAN Conference on Principles and Practice of Declarative

Programming (PPDP), pages 13–24, 2010.
[12] D. Jackson and M. Usher. Grading student programs using ASSYST.

In Proc. SIGCSE Technical Symposium on Computer Science Education

(SIGCSE), pages 335–339, 1997.
[13] W. Jin and A. Corbett. Effectiveness of cognitive apprenticeship learning

(CAL) and cognitive tutors (CT) for problem solving using fundamental
programming concepts. In Proc. SIGCSE Technical Symposium on

Computer Science Education (SIGCSE), pages 305–310, 2011.
[14] K. Jordan. HCI – interesting issues with peer grading,

2012. http://moocmoocher.wordpress.com/2012/07/18/
hci-interesting-issues-with-peer-grading/.

[15] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[16] K. Masters. A brief guide to understanding MOOCs. The Internet

Journal of Medical Education, 1, 2011.
[17] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.

Inferring method specifications from natural language API descriptions.
In Proc. International Conference on Software Engineering (ICSE),
pages 815–825, 2012.

[18] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In Proc. joint meeting of the European Software Engineering

Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 263–272, 2005.

[19] S. C. Shaffer. Ludwig: an online programming tutoring and assessment
system. SIGCSE Bull., 37:56–60, June 2005.

[20] L.-K. Soh. Incorporating an intelligent tutoring system into CS1.
SIGCSE Bull., 38:486–490, March 2006.

[21] J. Spacco, D. Hovemeyer, W. Pugh, J. Hollingsworth, N. Padua-Perez,
and F. Emad. Experiences with Marmoset: Designing and using an
advanced submission and testing system for programming courses. In
Proc. Annual Conference on Innovation and Technology in Computer

Science Education (ITiCSE), pages 13–17, 2006.
[22] K. Taneja and T. Xie. DiffGen: Automated regression unit-test gen-

eration. In Proc. IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 407–410, 2008.
[23] S. Thummalapenta, M. Marri, T. Xie, N. Tillmann, and J. de Halleux.

Retrofitting unit tests for parameterized unit testing. In Proc. Interna-

tional Conference on Fundamental Approaches to Software Engineering

(FASE), pages 294–309, 2011.
[24] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.

In Proc. International Conference on Tests and Proofs (TAP), pages
134–153, 2008.

[25] N. Tillmann and W. Schulte. Parameterized unit tests. In Proc.

joint meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE), pages 253–262, 2005.
[26] N. Tillmann and W. Schulte. Unit tests reloaded: Parameterized unit

testing with symbolic execution. IEEE Softw., 23(4):38–47, 2006.
[27] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte. Teaching and training

developer-testing techniques and tool support. In Proc. Annual ACM

Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (SPLASH), Educators’ and Trainers’ Symposium,
pages 175–182, 2010.

[28] A. Zeller. Making students read and review code. In Proc. Annual Con-
ference on Innovation and Technology in Computer Science Education

(ITiCSE), pages 89–92, 2000.

