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Abstract
Past approaches for solving MDPs have several
weaknesses: 1) Decision-theoretic computation
over the state space can yield optimal results but
scales poorly. 2) Value-function approximation
typically requires human-specified basis functions
and has not been shown successful on nominal
(“discrete”) domains such as those in the ICAPS
planning competitions. 3) Replanning by apply-
ing a classical planner to a determinized domain
model can generate approximate policies for very
large problems but has trouble handling probabilis-
tic subtlety [Little and Thiebaux, 2007].
This paper presents RETRASE, a novel MDP
solver, which combines decision theory, function
approximation and classical planning in a new way.
RETRASE uses classical planning to create ba-
sis functions for value-function approximation and
applies expected-utility analysis to this compact
space. Our algorithm is memory-efficient and fast
(due to its compact, approximate representation),
returns high-quality solutions (due to the decision-
theoretic framework) and does not require addi-
tional knowledge from domain engineers (since
we apply classical planning to automatically con-
struct the basis functions). Experiments demon-
strate that RETRASE outperforms winners from
the past three probabilistic-planning competitions
on many hard problems.

1 INTRODUCTION
Markov Decision Processes (MDPs) are a popular framework
for formulating probabilistic planning problems, applicable
to a variety of interesting domains ranging from military-
operations planning to controlling a Mars rover [Aberdeen
et al., 2004; Mausam et al., 2005]. One of the most popu-
lar families of algorithms for solving MDPs that yields high-
quality solutions is based on dynamic programming: value it-
eration (VI), RTDP, and related approaches [Bellman, 1957;
Barto et al., 1995]. Unfortunately, all of these decision-
theoretic algorithms suffer from the same critical drawback
— they represent the value function extensionally, i.e., as a

table, thus requiring memory (and time) exponential in the
number of domain features. Since this extensional repre-
sentation grows too rapidly, these approaches do not scale
to handle real-world problems. Indeed, VI and RTDP typi-
cally exhaust memory, when applied to large problems from
the ICAPS international probabilistic planning competition
(IPPC).

Two broad approaches have been proposed for avoiding
creation of a state/value table. One method involves domain
determinization and uses a classical planner as a subroutine
in computing a policy. Since determinization planners, e.g.,
FFReplan [Yoon et al., 2007], tend to disregard the proba-
bilistic nature of actions, they often have trouble with prob-
abilistically interesting [Little and Thiebaux, 2007] domains,
in which short plans have a low probability mass.

The other method, dimensionality reduction, maps the state
space to a parameter space of lower dimension. Typically, the
mapping is done by constructing a small set of basis func-
tions, learning weights for them, and combining the weighted
basis function values into the values of states. Researchers
have successfully applied dimensionality reduction to do-
mains after manually defining a domain-specific mapping. It
is relatively easy to find such a mapping in domains with or-
dinal (e.g., numeric) state variables, especially when the nu-
meric features correlate strongly with the value of the state,
e.g., gridworlds, “SysAdmin” and “FreeCraft” [Guestrin et
al., 2003a; 2003b; Gordon, 1995]. In contrast, dimensional-
ity reduction is difficult to use in nominal (e.g., “discrete” or
“logical”) domains, such as those used in the IPPC. Besides
not having metric quantities, there is often no valid distance
function between states (indeed, the distance between states
is usually asymmetric and violates the triangle equality). It
is extremely hard for a human to devise basis functions or a
reduction mapping, let alone write an automatic procedure to
come up with basis functions in nominal domains.

To our knowledge, there has been little work on mating
decision theory, determinization, and dimensionality reduc-
tion. This paper bridges the gap — proposing a fusion of
these ideas that removes the drawbacks of each. Our algo-
rithm RETRASE, which stands for Regressing Trajectories
for Approximate State Evaluation, learns a compact value
function approximation successful in a range of nominal do-
mains. It obtains a set of basis functions automatically by
planning in a determinized version of the domain at hand,



learns the weights for these basis functions by the decision-
theoretic means, and aggregates them to compute state val-
ues. The set of basis functions is normally much smaller than
the set of reachable states, thus giving our planner a large re-
duction in memory requirements as well as in the number of
parameters to be learned.

We demonstrate the practicality of our framework by com-
paring it to the top IPPC-04, 06 and 08 performers and other
state-of-the-art planners, on challenging problems from these
competitions. RETRASE demonstrates orders of magnitude
better scalability than the best optimal planners, and fre-
quently finds significantly better policies than the state-of-
the-art approximate solvers.

2 BACKGROUND
In this paper, we restrict ourselves to goal-oriented factored
MDPs1, defined as tuples of the form: 〈S,A, T , C,G, s0〉,
where
• S is a finite set of states,
• A is a finite set of actions,
• T is a transition function S ×A×S → [0, 1] that gives

the probability of moving from si to sj by executing a,
• C is a map S ×A → R+ that specifies action costs,
• s0 is the start state,
• G is a set of (absorbing) goal states.
Factored MDPs that model planning problems represent

states as conjunctions of logical variables, and each action
has a precondition, also expressed as a variable conjunction.
An action is applicable in a state if and only if the action’s pre-
condition subsumes the state. Solving an MDP means finding
a policy π : S → A that specifies the actions the agent should
take to eventually reach a goal. We are interested in comput-
ing an optimal or near-optimal policy, i.e., one that incurs the
minimum expected total action cost to reach a goal, which is
an absorbing state. The expected cost of reaching a goal from
a state s under policy π is described by the value function

V π(s) = C(s, π(s)) +
∑
s′∈S
T (s, π(s), s′)V π(s′) (1)

An optimal function satisfies the following conditions,
called Bellman equations:

V ∗(s) = 0 if s ∈ G, otherwise (2)

V ∗(s) = min
a∈A

[C(s, a) +
∑
s′∈S
T (s, a, s′)V ∗(s′)]

Given V ∗(s), an optimal policy may be computed as fol-
lows:

π∗(s) = argmina∈A[C(s, a) +
∑
s′∈S
T (s, a, s′)V ∗(s′)] (3)

1This formulation is strictly more general than infinite-horizon
MDPs with discounted rewards [Bertsekas and J.Tsitsiklis, 1996]

Equations 2 and 3 suggest a dynamic programming-based
way of finding an optimal policy, first described by Bellman
[1957]. It initializes state values using a heuristic and itera-
tively updates them using equations 2 in a Bellman backup
until the values converge (or change by only a small amount
between successive iterations). The policy is read off the
value function via equation 3.

2.1 Real-Time Dynamic Programming
This algorithm, called value iteration (VI), has given rise

to many improvements. One of them, called “Real-Time Dy-
namic Programming” (RTDP) [Barto et al., 1995], initializes
the value function using a heuristic and tries to reach the goal
multiple times by using the policy derived from the current
value function. During each so-called ‘trial,’ it updates the
value function over the states in the path using Bellman back-
ups. A popular variant, LRTDP, adds a terminating condi-
tion to RTDP by labeling those states whose values have con-
verged as ‘solved’ [Bonet and Geffner, 2003]. LRTDP also
requires the heuristic to be admissible.

Note that to compute the policy, both VI and RTDP have
to store values for many states, the number of which is
exponential in the number of domain features. RTDP saves
space by storing values only for states which are reachable
from s0; however, this savings only enables RTDP to solve
modestly larger problems.

2.2 Determinization of Probabilistic Domains
Recently, there has been significant progress, e.g., FFRe-

plan [Yoon et al., 2007] and FFHop [Yoon et al., 2008],
in applying fast deterministic planners to quickly construct
(suboptimal) MDP policies. One idea stemming from this
work is determinization — converting a probabilistic plan-
ning domain, D, into classical, deterministic form, Dd,
by treating uncertain outcomes of a probabilistic action as
independently-controllable, deterministic actions with the
same preconditions. Existence of a deterministic plan guar-
antees that there is a sequence of actions that, when applied
from s, has a non-zero probability of reaching the goal.

3 ReTrASE
On a high level, RETRASE explores the state space in the
same manner as RTDP, but, instead of performing Bellman
backups on states themselves, backups are performed over
properties of the visited states. For each property, modified
RTDP learns a weight that reflects the quality of the plans
enabled by that property. A state’s value may then be
computed by aggregating the weights of all its properties.
Conceptually, there are three kinds of states at runtime:
ones that have been deemed dead ends, ones for which
some properties are known, and ones not yet assigned to
the other two categories. When RETRASE encounters a
state s of the third type, it applies a classical planner (e.g.,
FF [Hoffman and Nebel, 2001]) to a determinized version
of the domain starting from s. If no classical plan exists,
then every probabilistic policy from s has zero probability
of reaching the goal, and s is marked as a dead end. If
FF finds a plan, however, RETRASE regresses the goal



(define (domain GremlinWorld)
(:types tool)
(:predicates (has ?t - tool)

(gremlin-alive)
(plane-broken))

(:constants Wrench - tool
Screwdriver - tool
Hammer - tool)

(:action pick-up
:parameters (?t - tool)
:precondition (and (not (has ?t)))
:effect (and (has ?t)))

(:action tweak
:parameters ()
:precondition (and (has Screwdriver)

(has Wrench))
:effect (and (plane-broken)))

(:action smack
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(probabilistic 0.9
(and (not (gremlin-alive))))))

)

Figure 1: Example domain

conjunction through the plan to generate a logical formula
which is a property holding in s. Learning in the property
space supports information transfer between similar states
(e.g., all states that share a given property) even before some
of these states are visited. Our approach is efficient because
fast classical planners can quickly derive these properties and
because the number of properties is typically far smaller than
the number of reachable states.

3.1 Definitions
We define the all-outcomes determinization Dd of do-
main D to produce, for every action a with m probabilis-
tic outcomes o1, . . . , om, a set of m deterministic actions
a(o1), . . . , a(om), each having the same precondition as a
and the corresponding outcome. From this point on, we
will refer to Dd as the deterministic version or simply de-
terminization of D.

Further, we define a trajectory to be a sequence t =
s, a1(oj1), . . . , an(ojn) where s is the trajectory’s starting
state, and each action ak(ojk) represents the jk-th outcome of
the probabilistic action ak. We say that t is a goal trajectory
if s modified by t’s action sequence is a goal state. Further,
we define a state property to be a conjunction of literals2. We
say that a state s possesses property p if p holds in s. With

2Our algorithm can easily extend to properties specified using
general logical formulas.

(:action pick-up-0
:parameters (?t - tool)
:precondition (and (not (has ?t)))
:effect (and (has ?t)))

(:action tweak-0
:parameters ()
:precondition (and (has Screwdriver)

(has Wrench))
:effect (and (plane-broken)))

(:action smack-0
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)))

(:action smack-1
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(not (gremlin-alive))))

Figure 2: All-outcomes determinization of the example do-
main

each property p, we associate a unique basis function that has
value 1 in s iff s possesses p.

We say that a property p (and the corresponding basis
function bp) enables a set of trajectories T to the goal if the
goal can be reached from any state possessing p by following
any of the trajectories in T 3. A dead-end is a state with no
trajectory to the goal. An implicit dead-end is a state that has
no trajectory to the goal but has at least one applicable action.
An explicit dead-end is a state with no applicable actions.

3.2 Example
We illustrate the above concepts with an example domain

from Figure 1. The domain involves a gremlin that wants to
sabotage an airplane and stay alive in the process.

To achieve the task, the gremlin has several tools that
it can pick up. The gremlin can either tweak the airplane
with a screwdriver and a wrench or smack it with the ham-
mer. However, smacking will with high probability (0.9)
lead to accidental detonation of airplanes fuel, which de-
stroys the airplane but also kills the gremlin. For simplic-
ity, all actions have a unit cost. The domain has five literals,
gremlin-alive, plane-broken, has(Hammer), has(Wrench),
and has(Screwdriver), which we abbreviate as G, P , H , W ,
and S respectively.

Figure 2 shows the actions resulting from an all-outcomes
determinization of GremlinWorld. All deterministic actions
remain unmodified but the probabilistic smack action gets
split into two. Taking s = (G,¬P,¬H,¬W,¬S), the
sequence t = s, pick-up-0(Screwdriver), pick-up-0(Wrench),

3assuming that the desired outcome is obtained for each action
on the trajectory.



tweak-0() is a goal trajectory. An example property is
p = G ∧ ¬H ∧ ¬W . Since p specifies truth values for three
of five literals it is possessed by four states, e.g., the initial
one. The basis function associated with p has value 1 in
all four of these states. Property p enables the singleton set
T = {t} of goal trajectories. In GremlinWorld, any state
in which the gremlin is dead (i.e., which involves ¬G) is a
dead end. In particular, state (¬G,P,¬H,¬W,¬S) is an
implicit dead end, since the preconditions of the pick-up
action instantiations don’t preclude execution in this state.
However, the goal is unreachable from it, since the gremlin
is dead and cannot be resurrected. Our example domain has
no explicit dead ends.

3.3 Algorithm Intuition
Consider a trajectory tg = s, a1(oj1), . . . , an(ojn) that

ends in a goal state. This is an indication that the sequence
of probabilistic actions a1, . . . , an is potentially causally im-
portant, since their outcomes oj1 , . . . , ojn have positive prob-
ability. To discover the causal properties p1, . . . , pn that allow
the successful execution of a1, . . . , an, we simply regress se-
quence t from the goal conjunction. We can now claim that
action sequence ak, . . . , an executed starting from any state
possessing property pk will lead us to the goal with positive
probability, though the magnitude of the probability is yet un-
known. Note that t essentially chooses specific outcomes per
action and thus the execution of a1, . . . , an may not always
reach the goal. Nevertheless, every properties that enable any
positive-probability trajectory to the goal may be important
for our purposes because they act as a basis for further plan-
ning. In essence, this step can be thought of as unearthing
the relevant causal structure necessary for the planning task
at hand.

Referring to GremlinWorld domain, trajectory
tg = s, pick-up-0(Hammer), smack-0(), where
s = (G,¬P,¬H,¬W,¬S), indicates the importance of
the action sequence pick-up(Hammer), smack(). Regress-
ing t involves “rolling back” tg’s actions in reverse order
starting from the goal, yielding properties G ∧ H and
G ∧ ¬H . Note that we can start executing the sequence
pick-up(Hammer), smack() in any state that possesses
G ∧ ¬H and hope to reach the goal with 10% probability.

To obtain goal trajectories all we need is to find plans that
reach the goal in the deterministic version of the domain (by
using a classical planner). Every such plan corresponds to a
positive-probability trajectory in the original domain.

We can now define a new probabilistic planning problem
over a state space consisting of these properties. In practice,
the space of properties is much smaller than the original state
space, since only the relevant causal structure is retained4,
giving us large reductions in space requirements. Solving this
new problem amounts to learning the weights for the prop-
erties. The weights will be a quantitative measure of each
property’s importance. There are many imaginable ways to
learn them; in this paper, we explore one of such methods —
a modified version of RTDP.

4We may approximate this further by putting a bound on the
number of properties we are willing to handle in this step.

Algorithm 1 ReTrASE
1: Input: probabilistic domain D, problem P =
〈init. state s0, goal G〉, trial length L

2: declare global map M from basis functions to weights
3: declare global set DE of dead ends
4: compute global determinization Dd of D
5: // Do modified RTDP over the basis functions
6: for all i = 1 :∞ do
7: declare state s← s0
8: declare numSteps← 0
9: while numSteps < L do

10: declare action a′ ← arg mina{ExpActCost(a, s)}
11: ModifiedBellmanBackup(a′, s)
12: s←execute action a’ in s
13: numSteps← numSteps+ 1
14: end while
15: end for
16:
17: function ExpActCost(action a, state s)
18: declare array So ← successors of s under a
19: declare array Po ← probs of successors of s under a
20: return cost(a) +

∑
i Po[i]V alue(So[i])

21:
22: function Value(state s)
23: if s ∈ DE then
24: return a large penalty // e.g., 1000000
25: else if some member f ′ of M holds in s then
26: return minbasis functions f that hold in s{M [f ]}
27: else
28: GetBasisFuncsForS(s)
29: return V alue(s)
30: end if
31:
32: function GetBasisFuncsForS(state s)
33: declare problem p′ ← 〈init. state s, goal G〉
34: declare plan pl← DeterministicPlanner(Dd, p

′)
35: if pl == none then
36: insert s into DE
37: else
38: declare basis function f ← goal G
39: declare cost← 0
40: for all i = length(pl) through 1 do
41: declare action a← pl[i]
42: cost← cost+ cost(a)
43: f ← (f ∪ precond(a))− effect(a)
44: insert 〈f, cost〉 into M if f isn’t in M yet
45: end for
46: end if
47:
48: function ModifiedBellmanBackup(action a, state s)
49: for all basis functions f in s that enable a do
50: M [f ]← ExpActCost(a, s)
51: end for



The weights reflect the fact that the properties differ in the
total expected cost of trajectories they enable as well as in
the total probability of these trajectories. This happens partly
because each trajectory considers only one outcome for each
of its actions. The sequence of outcomes the given trajectory
considers may be quite unlikely. In fact, getting some action
outcomes that the trajectory doesn’t consider may prevent the
agent from ever getting to the goal. Thus, it may be much
“easier” to reach the goal in the presence of some properties
than others. Now, given that each state generally has several
properties, what is the connection between the state’s value
and the their weights? In general, the relationship is quite
complex: under the optimal policy, trajectories enabled by
several properties may be possible. Therefore, the exact value
of a state is a summation of weights over a subset of the state’s
properties. However, determining this subset is at least as
hard as solving the MDP exactly. Instead, we approximate
the state value by the minimum weight of all properties that
the state possesses. This amounts to saying that the “better”
a state’s “best” property is, the “better” is the state itself.

Thus, deriving useful state properties and their weights
gives us an approximation to the optimal value function.

3.4 Algorithm’s Operation
RETRASE, whose pseudo code is presented in Algorithm

1, starts by computing the determinization Dd of the domain.
We use Dd to rapidly compute the state properties. The algo-
rithm explores the state space by running RTDP trials, mem-
orizing all the dead ends and state properties it learns along
the way. Whenever during state evaluation (line 20) RE-
TRASEfinds a state that is neither a known dead-end nor has
any property that holds in it,it uses a deterministic planner
(line 34) to find a goal trajectory from this state in Dd. In
our case, the role of a deterministic planner is performed by
FF [Hoffman and Nebel, 2001]. To extract properties from a
plan in Dd, we simply regress backwards through it (subrou-
tine GetBasisFuncsForS(.)). Regression yields not only the
basis functions but also an approximate cost of reaching the
goal in Dd from any state with the given basis function via
the given plan. We use this value to initialize the correspond-
ing basis function’s weight. If the deterministic planner can
prove the non-existence of a plan or simply cannot find a plan
within some time (we used a timeout of 30 seconds) the state
in question is deemed to be a dead end (line 36).

For each state s visited by the modified RTDP, the Modi-
fiedBellmanBackup(.) routine updates the weight of each
basis function that enables the execution of the currently
optimal action a′ (line 48).

3.5 Theoretical Properties
A natural question about RETRASE is that of conver-

gence. To answer it, we proved the following negative result:
Theorem 1 There exist problems on which RETRASE does
not converge.

For the lack of space, we do not present the proof here but
we outline the idea. By failing to converge we mean that, on
some problems, RETRASE will indefinitely oscillate over a

set of several policies with different expected costs. More-
over, the cost of the best policy in this set can be arbitrarily
large compared to the optimal policy. The proof of the above
result amounts to constructing such a problem.

The result is, in fact, even more general in the following
sense. The set of basis functions RETRASE operates on at
any point during its runtime is highly dependent on which
states it has visited up to that point. There are problems that
have subsets of basis functions that would drive RETRASE to
oscillate indefinitely as described above. Should RETRASE
discover strictly this subset of basis functions at some point
during runtime, it will diverge. Therefore, on a given prob-
lem RETRASE may converge to a policy in one run and fail
to converge at all in the next. The problem we devised for
the theorem proof has the property that in any run (for any or-
der of state space exploration) RETRASE will necessarily di-
verge on it. The classes of problems on which RETRASE di-
verges are hard to characterize generally. Predicting whether
RETRASE may diverge on a particular problem requires a
fairly involved analysis.

We stress, however, that the lack of theoretical guarantees
is not indicative of a planner’s practical success or failure.
Indeed, several IPPC winners, including FFReplan, have a
weak theoretical profile. The experimental results show that
RETRASE too performs quite outstandingly on many of the
planning community’s benchmark problems.

4 EXPERIMENTAL RESULTS
Our goal in this section is to demonstrate two important
properties of RETRASE – (1) scalability and (2) quality of
solutions in complex, probabilistically interesting domains.
We start by showing that RETRASE easily scales to prob-
lems on which the state-of-the-art optimal planners run out
of memory. Then, we illustrate RETRASE’s ability to com-
pute better policies for hard problems than state-of-the-art
approximate planners.

4.1 Implementation Details
RETRASE is implemented in C++ and uses miniGPT
[Bonet and Geffner, 2005] as the base RTDP code. Our
implementation is still in the prototype stage and does not
yet fully support some of the PPDDL language features used
to describe IPPC problems (e.g. universal quantification,
disjunctive goals, rewards, etc.) We anticipate the support for
them in the near future.

4.2 Experiment Setup
We report results on six problem sets — Triangle Tire World
(TTW) from IPPC-06 and -08, Drive from IPPC-06, Explod-
ing Blocks World (EBW) from IPPC-06 and -08, and Ele-
vators from IPPC-06. In addition, we ran RETRASE on a
few problems from IPPC-04. For implementation reasons
we were unable to test on the remaining domains from these
competitions. However, we emphasize that most of the six
domains we evaluate on are probabilistically interesting and
hard. Even the performance of the best IPPC participants on



most of them leaves a lot of room for improvement, which
attests to their informativeness as testbeds for our planner.

To provide a basis for comparison, for the above do-
mains we also present the results of the best IPPC partici-
pants. Namely, we give the results of the IPPC winner on
that domain, of the overall winner of that IPPC, and ours.
For the memory consumption experiment, we run two VI-
family planners, LRTDP with the inadmissible FF heuristic
(LRTDPFF ), and LRTDPopt – LRTDP with Atom-Min-1-
Forward|Min-Min heuristic [Bonet and Geffner, 2005]. Both
are among the best-known and top-performing planners of
their type.

We ran RETRASE on the test problems under the restric-
tions resembling those of IPPC. Namely, for each problem,
RETRASE had a maximum of 40 minutes for training, as did
all the planners whose results we present here. RETRASE
then had 30 attempts to solve each problem. In IPPC, the
winner is decided by the success rate — the percentage of 30
trials in which a particular planner managed to solve the given
problem. Accordingly, on the relevant graphs we present both
RETRASE’s success rate and that of its competitors. The
runs were performed on a 2.8 GHz Intel Xeon processor with
2GB of RAM.

While analyzing the results, it is important to be aware
that our RETRASE implementation is not optimized. Con-
sequently, RETRASE’s efficiency is likely even better than
indicated by the experiments.

4.3 Comparing Scalability
We begin by showcasing the memory savings of RE-

TRASE over LRTDPopt and LRTDPFF on the example of
Triangle Tire World domain. Figure 3 demonstrates the sav-
ings of RETRASE to increase dramatically with problem
size. In fact, neither LRTDP flavor is able to solve past prob-
lem 8 as both run out of memory, whereas RETRASE handles
all ten problems without any trouble. Scalability comparisons
for other domains we tested on yield generally similar results
so we don’t present them here for the lack of space.
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Figure 3: Memory usage on logarithmic scale: RETRASE is dra-
matically more efficient than both LRTDPopt and LRTDPFF .

Other popular approximate algorithms (aside from
LRTDPFF ) don’t suffer from the scalability issues as much
as LRTDP. Thus, it is more meaningful to compare RE-
TRASE against them on the quality of solutions produced.
As we show, RETRASE’s scalability allows it to successfully
compete on IPPC problems with any participant.
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Figure 4: RETRASE is at par with the competitors on Drive.
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Figure 5: RETRASE achieves perfect success rate on Triangle Tire
World-08.

4.4 Comparing Solution Quality: Success Rate

Continuing with the Triangle Tire World domain, we
compare the success rates of RETRASE, RFF [Teichteil-
Koenigsbuch et al., 2008] — the overall winner of IPPC-
08, and HMDPP [Keyder and Geffner, 2008] — the win-
ner on this particular domain. We note that Triangle Tire
World, perhaps, the most famous probabilistically interesting
domain, was designed largely to confound solvers that rely
on domain determinization [Little and Thiebaux, 2007], e.g.
FFReplan; therefore, performance on it is particularly impor-
tant for evaluating a new planner. Indeed, as Figure 5 shows,
on this domain RETRASE ties with HMDPP by achieving
the maximum possible success rate, 100%, on all ten prob-
lems and outperforms the competition winner, which cannot
solve problem 10 at all and achieves only 83%-success rate
on problem 9.

On the IPPC-06 Drive domain, RETRASE also fares well
(Figure 4). Its average success rate is just ahead of the unof-
ficial domain winner (FFReplan) and of the IPPC-06 winner
(FPG), but the differences among all three are insignificant.

For the Exploding Blocks World domain on the IPPC-06
version (Figure 6), RETRASE dominates every other planner
by a wide margin on almost every problem. Its edge is espe-
cially noticeable on the hardest problems, 11 through 15. On
the most recent EBW problem set, from IPPC-08 (Figure 7),
RETRASE performs very well too. Even though its advan-
tage is not as apparent as in IPPC-06, it is nonetheless ahead
of its competition in terms of the average success rate.

The Elevators and Triangle Tire World-06 domains are
easier than the ones presented above. Surprisingly, on many
of Elevators problems RETRASE did not converge within
the allocated 40 minutes and was outperformed by several
planners. We suspect this is due to a bad luck RETRASE has
with basis functions in this domain. However, on TTW-06
RETRASE was the winner on every problem.
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Figure 6: RETRASE dominates on Exploding Blocks World-06.
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Figure 7: RETRASE outmatches all competitors on Exploding
Blocks World-08, although by a narrow margin.

4.5 Comparing Solution Quality: Expected Cost
On problems where RETRASE achieves the maximum

success rate it is interesting to ask how close the expected
trajectory cost that its policy yields is to the optimal. The
only way we could find out the expected cost of an optimal
policy for a problem is by running an optimal planner on
it. Unfortunately, the optimal planner we used, LRTDPopt,
scales enough to solve only relatively small problems. On
such problems we found RETRASE to produce trajectories
of expected cost within 5% of the optimal.

4.6 Comparison with FFHop
FFReplan has been a very powerful planner and a win-

ner of at least one IPPC. However, recent benchmarks defeat
it by exploiting its near-complete disregard for probabilities
when computing a policy. Researchers have proposed a pow-
erful improvement to FFReplan, FFHop [Yoon et al., 2008],
and demonstrated its capabilities on problems from IPPC-04.
Unfortunately, due to the current lack of support for some
of PPDDL language features we were not able to run RE-
TRASE on most IPPC-04 domains. Table 1 compares the
success rates of the two planners on the IPPC-04 problems
we did test. Even though RETRASE performs better on these
problems, the small size of the experimental base makes the
comparison of RETRASE and FF-Hop inconclusive.

Problem name FFHop RETRASE
exploding-block 93.33% 100%
g-tire-problem 60% 70%

Table 1: Success rates on some IPPC-04 problems.

While we do not test on all IPPC-domains our current ex-
perimental evaluation clearly demonstrate RETRASE’s scal-
ability improvements over the VI-family planners and its at-

par or better performance on many competition problems
compared to state-of-the-art systems.

5 RELATED WORK
Besides basis function approximation (discussed in Section
1) other flavors of dimensionality reduction include alge-
braic and binary decision diagram (ADD/BDD), and prin-
ciple component analysis (PCA) based methods. SPUDD,
Symbolic LAO*, and Symbolic RTDP are optimal algo-
rithms that exploit ADDs and BDDs for a compact represen-
tation and efficient backups in an MDP [Hoey et al., 1999;
Feng and Hansen, 2002]. In practice these optimal algorithms
do not scale to large problems. APRICODD, an approxima-
tion scheme developed over SPUDD [St-Aubin et al., 2000],
showed promise, but it is not clear whether it is competitive
with today’s top methods since it hasn’t been applied to the
competition domains.

Some researchers have applied non-linear techniques like
exponential-PCA and NCA for dimensionality reduction
[Roy and Gordon, 2003; Keller et al., 2006]. These methods
assume the original state space to be continuous and hence
are not applicable to typical planning benchmarks.

Most basis function based techniques are not applied in
nominal domains, however, a notable exception is FPG [Buf-
fet and Aberdeen, 2006]. It performs policy search and repre-
sents the policy compactly with a neural network. Our exper-
iments demonstrate that RETRASE outperforms FPG consis-
tently on several domains.

RETRASE is a further development of the system de-
scribed in [Kolobov et al., 2008]. The critical difference,
however, is that in this previous work the algorithm tried to
find several deterministic plans from each state. Looking for
just one, as RETRASE does now, turns out to greatly increase
scalability, with almost no sacrifices in solution quality. Our
algorithm is also related in spirit to the probabilistic planners
that use determinized domains for probabilistic planning. The
most popular of these is FFReplan, [Yoon et al., 2007], the
competition winner in IPC-04. Similar planners include Tem-
pastic [Younes and Simmons, 2004], precautionary planning
[Foss et al., 2007], and FFHop [Yoon et al., 2008].

The idea of using determinization followed by regression
has parallels to some research on relational MDPs, which
uses first-order regression on optimal plans in small problem
instances to construct a policy for large problems in a given
domain [Gretton and Thiebaux, 2004; Sanner and Boutilier,
2006]. However, our function aggregation and weight learn-
ing methods are completely different from theirs.

6 CONCLUSION
Many popular decision-theoretic algorithms for solving
MDPs over nominal domains (e.g. those used in IPPC) tab-
ulate the value function and consequently suffer from high
memory requirements. To resolve the issue, a number of ap-
proaches have been proposed, including replanning in a de-
terminized domain and dimensionality reduction. Both have
shown promise, but in nominal domains determinization has
trouble with probabilistic subtleties, while dimensionality re-



duction relies on humans to specify the necessary basis func-
tions. This paper makes the following contributions:

• We define a set of domain-specific state properties, each
enabling a trajectory from a state to the goal. We com-
pute these properties in a domain-independent way by
regressing through a set of plans in the determinized ver-
sion of the domain.

• We show how combining the weights of the state prop-
erties helps approximate the state value. We modify the
RTDP algorithm to learn the property weights.

• We empirically demonstrate that RETRASE scales dras-
tically better than optimal planners and outmatches
state-of-the-art planners on hard problems from several
IPPC competitions.

In the future, RETRASE would benefit from the added
support of more PPDDL language features like rewards,
existential-, and universal quantification. Our initial exper-
imental results suggest that RETRASE may perform very
well at the next IPPC.
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