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Abstract

Real-world scenes contain many interacting phenomena
that lead to complex images which are difficult to interpret
automatically. Part of this difficulty is due to the dichotomy
of useful representations for these phenomena. Some effects
are best described in the spatial domain, while others are
more naturally expressed in frequency. In order to resolve
this dichotomy, we present the combined spacelfrequency
representation which, for each point in an image, shows
the spatial frequencies at that point. This representation is
useful for developing theories about many important vision
phenomena, leading to deeper understanding and better al-
gorithms. In this paper, we show how the representation can
be used for the shape from texture problem and to analyze
aliasing simply and naturally. The spacelfrequency repre-
sentation should be a key aid in untangling the complex
interaction of phenomena in images, allowing automatic
understanding of real-world scenes.

1 Introduction

Vision can provide a uniquely rich source of information
for robots operating in unstructured environments. This is
evident from the variety of methods used to analyze images
— each exploiting one kind of phenomena, e.g. shading,
texture, stereo, defocus. However, this very richness greatly
complicates the task of interpreting images of real-world
scenes, because the exploited effect is often disturbed by
other phenomena. For instance, in segmenting 2D textures,
3D shape effects can confound an algorithm that tries to
find regions of uniform texture.

We attribute this problem partly to the dichotomy of
representations used in computer vision. Effects like per-
spective projection, shading phenomena, and overall shape
are best described in geometric (spatial) terms. The fre-
quency domain (or some close variant) serves best for tex-
ture, sampling, and many optical effects. Combinations of
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Figure 1: Textured cylinder and cube with spectrogram of
center scan-line

effects from different preferred representations usually lead
to complicated, unreliable algorithms.

In order to solve this problem, we present the com-
bined space/frequency representation which ideally shows
the spatial frequencies present at each point in a signal. The
space/frequency representation of a 1D signai is a 2D func-
tion of space and frequency. Each point in the signal has
associated with it a 1D frequency profile. For a 2D signal,
the representation is a 4D function of two spatial variables
and two frequency variables. In a discrete image, it is as if
every pixel has associated with it a 2D Fourier transform. In
this paper we limit ourselves to the analysis of 1D signals,
mostly for the simplicity of displaying the corresponding
2D space/frequency representation. The concepts and al-
gorithms can be easily generalized to images, however.

An example of the space/frequency representation of a
signal is shown in Figure 1. The box in the lower half of
the image shows the space/frequency representation (the
spectrogram) of the image’s center scan-line. Because the
underlying patterns on the two objects are periodic, there are
dark frequency peaks in the spectrogram where the objects
occur. The large, "U"-shaped frequency peak on the left
shows that the frequency of the texture pattern projected
from the cylinder appears higher near the edges than in
the middle, as one would expect. At the extreme edges of
the cylinder, the projected frequency is so high it cannot
be adequately reproduced in the image. This is shown
in the spectrogram as the frequency peak bumping into
the Nyquist frequency at the top. On the left side of the
cube, we see a slowly decreasing fundamental frequency
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Figure 2: Computing the spectrogram

and overtones which are likewise decreasing. This decrease
continues to the corner of the cube, where the fundamental
and harmonics begin to increase as the side recedes into the
distance. This is a sample of the kind of analysis possible
with the spectrogram.

There are many meth-
ods of calculating the space/frequency representation, none
of which achieve the ideal. We have chosen the spectro-
gram as our method, because of its simplicity and proven
utility. It was first used for computer vision by Bajcsy and
Lieberman(1], which is perhaps the earliest use of explicit
space/frequency concepts in the field. Other methods of
calculating the representation include the Wigner Distribu-
tion (used in computer vision by Jau and Chin[6] and by
Reed and Wechsler[8]) and localized, bandpass filters, such
as Gabor functions (used by Heeger{5] and by Bovik, Clark
and Geisler[2]).

The spectrogram of a signal is a series of small-support,
Fourier transforms of the signal, each centered around a
different point of the signal. For a one-dimensional signal
f (%), the spectrogram is Sf(x,u), where u is frequency in
cycles/unit distance. S¢(x. u) is an estimate of the power of
frequency u at the point x. The continuous spectrogram of
the one-dimensional functionf (x) is given by

0o 2
Sf(x-u)=‘ / wila - x)f (@) P™da .

where w;(x) is a window function with support length .
The process by which a spectrogram is calculated is
shown in Figure 2. To calculate one vertical slice of the
spectrogram for a given value of x, say x,, the signal is first
multipliedby a window offset by xo. This product is Fourier
transformed; the magnitude is calculated from the complex
values of the Fourier transform; and the non-negative half
of the magnitudes serve as Sy (X, ), which is one column
of the spectrogram. This process is repeated for every x.
‘We consider only the non-negative half of the magnitudes
since the Fourier transform of a real signal (the only kind
we have) is symmetric in magnitude. The discrete version
is computed using the discrete Fourier transform (DFT),
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which is discrete in both space and frequency.

The window function controls how the rest of the signal
contributes to the spectrogram at the point x. There are
ongoing questions about the best shape and size of the
window wy(x). Many window shapes are considered by
Harris in [4). He illustrates the compromises involved in
the selection, and concludes by recommending the 4-sample
Blackman-Harris window. We use the minimum, 4-sample
Blackman-Harris window, which for a discrete set of n

points is given by
27
walk) = ao—arcos < k) +
n-—1

2
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for k = 01.....n — 1 and (@.ay.@2.43) =
(0.35875.0.48829.0.14128.0.01168).

The window size I (or in the discrete case n) affects how
much of the signal is included in the Fourier transform
at each point. In practice, we have found n = 63 to be
satisfactory on discrete signals of length 512 (one image
scan-line).

2 Three-Dimensional Shape and the Spectrogram

Texture is an important indication of 3D shape, and the
connection has been studied extensively in computer vi-
sion. The projected, local spatial frequencies on a textured
surface change with the surface’s depth and orientation, as
shown in Figure 1. This is the phenomenon that makes
shape from texture possible, and it is the reason that the
spectrogram is a natural choice for this kind of analysis. In
the following discussion, we describe how to quantitatively
extract shape information from the spectrograms of flat,
textured surfaces by calculating the effect of depth and ori-
entation on the spatial frequencies of the projected texture
pattem.

2.1 Mathematical Formulation

The coordinate system and other quantities are defined as
in Figure 3. The pinhole of a pinhole camera is placed
at the origin of the right-handed (x3p.¥3p . zap) coordinate
system, looking along the —z3p axis. Objects are projected
ontothe image whose axes are (x,y). The pinhole-to-sensor
distance is d, meaning that point (x3p.y3p. z3p) will be pro-
jected onto the image plane at the point (x.y) = (5_33% . %;L:’)
under perspective. In general, there is a surface in front of
the camera with a superimposed intensity pattern given by
g(s.1r), where (s.f) are coordinates of a coordinate system
on the surface. We will ignore the ysp and y coordinates, in
effect confining our attention to the xap-z3p plane (a0 =0)
and a 1D image plane in x.

In the case of our 1D analysis of flat, textured surfaces,
the camera sees a line givenby xspsin 6 + zapcosf = —p.
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Figure 3: Geometry of 1D image formation through pinhole

Points on this line are parameterized by s, where s = 0
occurs at the intersection of the line and its perpendicular
to the origin. Given an s along the line, the coordinates in

the scene are
(x3p.z3p) = (—psinf@ +scos 6, —pcos 6 — ssin 6)
which projects to the image plane at
_ —psin 6 + scos
pcos @ +ssinf

Solving for s, we have have the position along the line for
a given x on the image plane:

—dpsinf — xpcos 1
xsinf —dcos 6 ®
Suppose that the line has superimposed on it a periodic
reflectance pattern given by g(s) = cos(27u,s), such that the
frequency of the pattern along the line is ;. If the pattern is
projected onto the image plane, we can write the equation
of the projected pattern by replacing the s in g(s) with the
equivalent value of s given in terms of x in Equation 1. Thus,
the projected pattem on the image plane will be given by

sx) =

dsin 6 + x cos 0
COS[2TTM]S(X)] = COSs —ZTFu[f)m .
The instantaneous frequency, u(x), of cos[2 7u,;s(x)] is de-
fined in the signal processing literature to be the derivative
of the argument with respect to x, which is

wpd
(xsin 6 — dcos 0)? @
in cycles/unit distance. The peak frequency in the spec-
trogram of the projected cosine will occur at approximately
this frequency. In a computer vision application, the known
quantities in Equation 2 are d (the pinhole-to-sensor dis-
tance), x (the pixel position), and u(x) (the instantaneous

u(x) =
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Figure 4: Two slanted plates with sinusoidal and square
wave gratings

frequency from the spectrogram). The unknowns are u;
(the frequency of the pattern along the line), and p and 6
(the parameters of the line). Since u; and p occur as a prod-
uct in Equation 2, they cannot be distinguished from each
other. This is a manifestation of a familiar effect: a small
object (high frequency) at a small distance is indistinguish-
able from a large object (low frequency) at a large distance.
Thus, we treat the product u;p as a single unknown. With
6 as the other unknown, we can solve Equation 2 for ¢ and
up if we have two or more sets of (x,u(x)). The result
is a space/frequency formulation of the shape-from-texture
paradigm.

2.2 Extracting Shape from the Spectrogram

To demonstrate the use of Equation 2, we will determine
parameters of the two plates in Figure 4 based on the spec-
trogram of the center row. This image was artificially gen-
erated with a sinusoidal pattern on the left plate and a square
wave pattern on the right plate.

We simplify the spectrogram to u(x), the dominant fre-
quency, determined by finding the maximum value in each
column of the spectrogram. Thus, we ignore the pattern’s
overtones. For a spectrogram window size n, there are 23
non-negative frequency values for each pointin a 1D signal.
Since we use n = 63, there are only 32 different possible fre-
quency values, which is too coarse a sampling for the shape
analysis we propose. Thus, we compute a "subpixel” fre-
quency value at each point by fitting a quadratic to the peak
frequency value and its two vertical neighbors, and then
find the maximum of the quadratic. This is done for each
column in the spectrogram. Simulations have shown this
technique consistently underestimates the actual frequency
slightly, and we are currently investigating the reason.




Figure 5: Two slanted plates with Brodatz textures

Each pair of (x.u(x)) values from the subpixel spectro-
gram estimates can be used to calculate a value of (40, ).
In order to reduce the effects of the wavering in the instan-
taneous frequencies, we calculate each (u;p.0) using five
pairs of (., u(x))’s placed symmetrically around the point of

interest. We then segment the regions by histograming the .

(up. #)’s, manually picking the peaks, and classifying each
(u,p. 6) pair by finding which peak it is closest to.

With the regions segmented, we calculate the best fit
(up. €) from Equation 2 based on the region’s {x.u(x})’s
using a gradient descent, minimization routine. The results
are shown in Table 1. We know the actual values of the
parameters from the graphics routine used to generate the
images. In this example the errors are quite small.

We performed the same analysis for the textured plates in
Figure 5. These plates are geometrically the same as those
in Figure 4, but with Brodatz {3] textures mapped on using
a computer graphics program. The spectrogram is messier
due to irregularities in the texture. The performance figures
in Table 1 are based on a manual (perfect) segmentation
of the center scan-line. Although the angle estimates for
Figure 5 show more error than for Figure 4, the results are
still good, with the greatest error being only about 1°.

23 Other Shapes

This method could be extended to other shapes in two dif-
ferent ways. Above we presented a method in which the
instantaneous frequencies are fit to a known class of shapes
(lines) in order to derive the parameters of the shape. The
parameters were those which best fit Equation 2, which
describes the instantaneous frequencies on a line. Other
equations could be derived which relate instantaneous fre-
quencies to any parameterized shape. Given some @ pri-
ori knowledge of the shapes in the scene, the spectrogram
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peaks (as well as overtones) could be used to instantiate
the shapes’ parameters. Altematively, a program could
calculate local surface normals by using the instantaneous
frequencies from a small neighborhood along with an equa-
tion which relates frequency and surface normal.

Although this method and results are meant to be only
illustrative, they show the power of the method for analyz-
ing the effects of 3D shape in images. The spectrogram is a
simple, natural method of quantifying the relationship be-
tween texture and shape, and it requires no feature detection
except for finding frequency peaks.

3 Aliasing and the Spectrogram

Aliasing occurs when a signal is sampled at a rate less than
twice its maximum frequency, causing lower-frequency ar-
tifacts to appear in the sampled signal. This phenomenon
can often be seen on television in images of periodic pat-
terns like striped clothes, automobile grills, or tall build-
ings. In two dimensional imaging, these artifacts are called
moire patterns, and they can lead to insidious problems in
machine vision. The patterns cannot be detected in single
images without detailed a priori knowledge of the scene. In
these situations there is no hope of recovering the true sig-
nal. However, the spectrogram serves as an elegant method
of analyzing such behavior.

This is illustrated in Figure 6, which shows a plate with
a sinusoidal intensity pattern rotated to the right. Begin-
ning at the left of the plate, the spectrogram shows that
the instantaneous frequency is rising as the plate recedes
into the distance. At a little less than halfway across the
spectrogram, the peak frequency has risen to the top of the
spectrogram, which corresponds to the Nyquist frequency
(half the spatial sampling frequency). Although the actual
frequency on the image plane continues to rise, it appears
to decrease after the Nyquist rate has been exceeded. In
this region of the image, moire pattemns begin to appear
as lower-frequency variations caused by the beating of the
signal frequency against the sampling frequency. There
is another "bounce” on the spectrogram after the apparent
peak frequency has fallen to zero. This bouncing would
continue if the plate were longer. If the signal had over-
tone frequencies, these will bounce also, although not at the
same places as the fundamental or other overtones.

In an ideal space/frequency representation, there would
be no Nyquist limitation, and the spectrogram in Figure 6
would rise without bound. We show in [7] that the actual
spectrogram is a folded version of the ideal spectrogram,
as shown in Figure 7. The folds occur at integer multiples
of the Nyquist frequency. We also present in [7] an algo-
rithm for unfolding the spectrogram based on two images
of the same scene taken at slightly different zoom settings
of the lens. Thus, the space/frequency representation is an
effective means of analyzing local aliasing, something that
is impossible with either a pure spatial or pure frequency




From Figure 4 From Figure 5
Periodic Pattern Brodatz Textures
semi-automatic segmentation manual segmentation
Left Plate Right Plate Left Plate Right Plate
wp 4 wp (4 uip 4 wp 4
actual 177.25 | 50.00° | 40.00 | —60.00° | 152.1 | 50.00° | 47.0. | —60.00°
calculated | 172.92 | 49.75° | 39.31 | —59.72° | 141.37 | 50.82° | 48.27 | —58.85°
error 24% | —025° | -24% | 0.28° -71% | 0.82° | 2.7% 1.15°
Table 1: Actual and calculated line parameters
image P::::s . Doire patterms I‘ﬁ"m"“ﬁ:“i versatile abilities of the representation. In addition to the
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Figure 7: Folding the ideal spectrogram to show aliasing,
un = Nyquist frequency

representation of the signal.

4 Conclusion

This paper demonstrates the utility of the space/frequency
representation for computer vision by showing how the rep-
resentation can be used for doing shape from texture and an-
alyzing local aliasing. The procedures shown here involve
straight-forward applications of geometry and frequency
concepts. That these concepts can be applied simultane-
ously demonstrates the utility of the representation.

The attractiveness of the space/frequency representation
lies in the variety of phenomena that it can be used to an-
alyze. We demonstrate these in [7], where we show the

analysis of shape and aliasing shown in this paper, the rep-
resentation can be used for segmentation, characterizing the
effects of lens parameters, and signal matching. We believe
that the power of the space/frequency representation will
make it possible to develop far more comprehensive meth-
ods for low-level vision than the current heuristic techniques
allow.
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