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Abstract

This paper presents a novel algorithm which uses skeleton-based polycube generation to construct feature-preserving T-meshes.
From the skeleton of the input model, we first construct initial cubes in the interior. By projecting corners of interior cubes onto
the surface and generating a new layer of boundary cubes, we split the entire interior domain into different cubic regions. With the
splitting result, we perform octree subdivision to obtain T-spline control mesh or T-mesh. Surface features are classified into three
groups: open curves, closed curves and singularity features. For features without introducing new singularities like open or closed
curves, we preserve them by aligning to the parametric lines during subdivision, performing volumetric parameterization from frame
field, or modifying the skeleton. For features introducing new singularities, we design templates to handle them. With a valid T-mesh,
we calculate rational trivariate T-splines and extract Bézier elements for isogeometric analysis.
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1. Introduction

Isogeometric analysis is a novel analytical method which
has attracted a lot of attention recently [1, 2], with its advantage
of accuracy and robustness studied in detail [3, 4]. NURBS
models were first used in various isogeometric analysis [2, 5, 4],
and then T-splines [6] were incorporated for its local refinement
property [7, 2]. Based on these pioneering research, an isogeo-
metric design-through-analysis methodology [8] was proposed,
with the purpose of integrating the whole process from design-
ing of models to the analysis results. However, automatically
and robustly constructing trivariate T-spline models is still a
challenging problem.

Only a few approaches have been designed for volumetric
spline construction. Parametric mapping plays an important role
in this research area, such as trivariate B-spline fitting using har-
monic functions [9], parametric mapping of tetrahedral meshes
[10], and Periodic Global Parameterization [11]. Polycubes
and parametric mapping were used together to generate solid
T-spline models [12, 13], and Boolean operations were further
introduced to manipulate polycubes [14]. A generalized poly-
cube method using T shape templates was introduced to handle
high-genus models and extraordinary nodes for T-spline con-
struction [15]. The generalized polycubes were further extended
in [16] to generate volumetric splines from surface meshes, with
no singularity and controllable number of ill-points. However,
in these polycube-based methods, the generated solid T-splines
follow the directions of the initial polycubes and certain detailed
features cannot be preserved in the final result.
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Since T-mesh can be recognized as a special type of hexahe-
dral (hex) mesh which allows T-junctions, we may apply some
promising hex meshing algorithms to solid T-spline construction.
CubeCover [17] used 3D frame fields to perform volumetric
parameterization and all-hex mesh generation. This research
was extended in [18], which brought forward a method to gen-
erate a singularity-restricted frame field for all-hex meshing. A
boundary aligned cross-field was also studied in [19], which uses
spherical harmonics to represent the 3D field. The field was then
improved with singularity correction for hex mesh extraction
[20]. However, performing volumetric parameterization from
frame field is not robust, especially for complex geometry. And
the frame field may yield very dense hex meshes with singularity
restrictions and corrections. Harmonic volumetric mapping was
employed in hex meshing with better boundary feature capture
[21]. Common base-domains [22] were designed for volumet-
ric parameterization of models with homeomorphic topology.
Polycubes were also used to construct hex meshes [23]. A con-
strained discrete optimization technique was developed in [24]
for better mesh segmentation and volumetric parameterization
using polycubes. In [25], hex remeshing was performed based
on polycube construction and optimization. L1 based polycubes
for complex geometries were proposed for hex meshing with
better quality [26]. Octree-based methods were developed to
generate adaptive hex dual-meshes [27, 28], and were improved
to preserve sharp features [29, 30]. However, they yield many
singular points on the surface.

To robustly build T-meshes following the geometry topology
and preserve detailed features, in this paper we develop a new al-
gorithm to use the skeleton as a guide for polycube construction.
In the generated polycubes, each cube has at most one patch on
the boundary, which provides the necessary condition to generate
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good-quality elements. The singularity graph of the constructed
T-mesh follows the cube edges in the interior. Instead of sin-
gular edges, there are only a few singular points on the surface.
With this property, we can control the singularity distribution on
the constructed solid T-spline. For surface features, we classify
them into three groups: open curves, closed curves and singular
features, and design different schemes to preserve them.

The main contribution of this paper lies in a new skeleton-
based polycube construction method, and different approaches
to preserve surface features. Compared to other methods, our
algorithm has the following three unique properties: (1) the
constructed T-splines follow the topology of the input model,
and all singular edges lie on the polycube edges in the interior;
(2) open and closed curve features are preserved with different
methods, and Boolean operations are introduced to simplify the
T-mesh construction; and (3) three templates are developed to
introduce and preserve certain singular points on the surface.

The remainder of this paper is organized as follows. The
main steps of the algorithm are overviewed in Section 2. Section
3 discusses how to generate polycubes and split the domain.
Different approaches of feature preservation are described in
Section 4. The results are shown in Section 5. Section 6 draws
conclusions and points out the future work.

2. Algorithm Overview

The overview of our algorithm is shown in Fig. 1. We use
polycubes to split the domain and perform parametric mapping
to construct the T-mesh. With the skeleton generated from a
mean curvature flow algorithm [31], we split the skeleton into
different branches. Each branch yields one interior cube and sev-
eral boundary cubes. These cubes split the domain into different
cubic regions. From the input model, we classify the surface
features into three groups and preserve them with different ap-
proaches.

Figure 1: Overview of feature preservation in skeleton-based polycube construc-
tion and volumetric parameterization.

Polycube Construction. We use the generalized cube def-
inition here. For a generalized cube, it is one boxed region
enclosed by six surface patches. There are two kinds of cubes
here, interior cube and boundary cube. We first construct interior
cubes directly from the skeleton branches, and then project their
corners onto the surface to generate new boundary cubes. Inte-
rior and boundary cubes are combined together to split the whole
model into different cubic regions. Since for the boundary cubes,
there are at most one face on the surface, all the singularity edges
from the cubes stay in the interior.

Feature Preservation. The input surface features are classi-
fied into three groups: open curve, closed curve and singularity
feature. Here, the open curve is required to satisfy the condi-
tion that it can be mapped onto one certain parametric line. We
use parametric mapping and volumetric parameterization from
frame field to preserve such features. The closed curve is re-
quired to topologically enclose a disc area and each closed curve
can be mapped onto a unit square. To preserve such features,
the skeleton is modified to add or remove branches. The singu-
lar feature is a singular point on the surface. It can be a sharp
corner, saddle point of a function, or point with discontinuous
curvatures. We develop three templates to insert new singularity
points on the surface. With the modified polycube containing
surface features, we construct T-meshes by octree subdivision
and projection [12, 14].

Solid T-spline Construction. From the T-mesh, we build
rational solid T-splines [32]. The basis function of rational solid
T-splines has the property of partition of unity by definition,
which makes it suitable for analysis. Different templates are
developed to deal with the singular nodes in the T-mesh, to make
it valid for gap-free solid T-spline calculation. From the valid
T-mesh, we extract the local knot vectors [6, 33] and construct
solid T-splines. The Oslo knot insertion algorithm [34, 33] is
used to calculate the transformation matrix from rational T-spline
basis functions to Bézer basis functions. This matrix is then used
to extract Bézier elements from T-splines, which can be directly
used for isogeometric analysis.

3. Skeleton-based Polycube Construction

Skeletons are simplified 1D representation of 3D objects,
which can reflect the geometry and topology. They contain
geometrical information for volumetric parameterization and
can be used to assist our polycube construction.

3.1. Skeleton Generation and Splitting

There are different algorithms developed to extract skeletons
from surface meshes, such as mesh contraction [35], mean curva-
ture flow [31], and the generalized sweeping method [36]. In this
paper, we use the algorithm given in [31]. With the skeleton, we
first split it into different branches. For each branch, we define a
B-spline curve and calculate the tangent direction at each point.
We decide if it needs further splitting by calculating the angle
change of the tangent directions at each point compared to the
starting point: θ = acos(~t0 ·~ti). A predefined threshold θ0 = 30 ◦

is used here. Some user interactions may be involved to simplify
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(a)
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Figure 2: Polycube generation for Bunny model. (a) Skeleton splitting results;
(b) generating interior cubes by shifting the skeleton branches; and (c) updated
interior cubes by iteratively enlarging the cross-sections and smoothing.

the skeleton in this step, such as cleaning up small branches,
combining nearby bifurcations to trifurcations, or making the
local branching region coplanar. Fig. 2(a) shows the extracted
skeleton and splitting result of the Bunny model.

3.2. Interior Cube Construction

To construct a generalized cube from one skeleton branch,
we need to generate its 6 bounding patches. These patches can be
either planar or curved surfaces. We first shift the branches about
itself 8 times to generate 20 curves, as shown in Fig. 3(a). For
each point on the skeleton, we generate one plane perpendicular
to the skeleton, and then calculate 8 equally-spaced direction
vectors on this plane to perform the shifting. Sometimes this
method may produce interior cubes with improper orientations,
which can be adjusted interactively to yield good parameteriza-
tion results. The black curve is the original branch, the 8 blue
curves are generated from shifting, and the 8 green curves and 4
red curves are generated by connecting the starting/ending points
of the shifted curves. These curves are defined as quadratic B-
spline curves. With four B-spline curves, we define one Coons
patch [37]. So for a skeleton, we generate 6 patches from the 20
curves. With these 6 patches, we define a cubic domain.

Deal with Branches. To join cubes from different branches
together at the bifurcation or trifurcation, we split the cube
patches to half planes and combine them together. The detailed
algorithm was present in [4, 38]. During this process, singu-
larities will be introduced to the polycubes along the shared
edges of the half planes. Fig. 3(b) and (c) show how to combine
the cubes at the bifurcation and trifurcation situations. Instead

(a) (b) (c)

Figure 3: Construction of interior cubes. (a) Generate an interior cube by shifting
the skeleton; (b) use half planes to deal with bifurcation; and (c) trifurcation.

of Coons patches, the half planes at the intersection region are
defined as planar patches, and points on the plane are calculated
from a linear interpolation of the corner points. Fig. 2(b) shows
the generated interior cubes of the Bunny model.

After all the interior cubes are connected properly, we iter-
atively enlarge each cross-section of the cubes to adapt to the
input model. For each node, we project it onto the surface along
the radial direction from the cross-section center. Smoothing is
performed to reduce the distortion from enlargement [27]. The
enlarged and smoothed interior cubes of the Bunny model are
shown in Fig. 2(c).

3.3. Boundary Cube Construction
With the interior cubes constructed, we can generate the

boundary cubes to split the whole model. The boundary cubes
are generated by projecting the patches of the interior cubes onto
the surface. The detailed steps are explained as follows with one
patch of a sphere model in Fig. 4 as an example.

1. Project corners onto the surface. For one corner ci of the
interior cube, if shared by one cube, the projection direction
is defined as

−→
d = −(−→u +−→v +−→w) (Fig. 4(b)), where −→u ,−→v ,−→w

are the unit direction vectors along the edges at ci. If shared
by two cubes, the direction is

−→
d = −(2−→u +−→v1 +−→v2 + 2−→w)

(Fig. 4 (c)). For bifurcation or trifurcation, the projection
direction is perpendicular to the plane defined by the skeleton
branches at that intersection point.

2. Generate curves. Suppose the corresponding point of ci
on the surface is c′i , see Fig. 4(a). The curve connecting ci
and c′i is named a connecting curve (blue curves). For one
curve of the interior cube (black curves), we can find out
one projected curve on the surface (red curves) by finding
the geodesic shortest path between the projected corners.
After projecting 4 corners of the interior patch, we define 4
connecting curves and 4 projected curves. Intersections are
not allowed between any pair of boundary curves except at
the endpoints. So when finding the path, vertices lying on
the path between two projected corners will not be revisited.
If the projected corners are far away from each other, or the
geometry changes severely, we can project the middle or
quarter points of the interior curves onto the surface, and
use them to help find the path. However, if the projected
corners are crowded or the valence of the projected corners
is low, we may locally subdivide the input mesh to ensure
there is no intersection among the paths. This projection
curve searching step is crucial to our surface decomposition.
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(a) (b) (c)

Figure 4: Construct boundary cubes from an interior cube. (a) Sphere model
with one patch of the interior cube projected onto the surface; (b) projection
direction of an interior cube corner; and (c) the projection direction if a corner is
shared by two cubes.

Our method works well in general, but some improved sur-
face splitting methods like the greedy strategy [39] can help
generate better results for very complicated models.

3. Build patches. We define a connecting Coons patch with
an interior curve, its corresponding boundary curve and two
connecting curves (light green patches in Fig. 4(a)). Four
connecting patches will be generated after the projection
of an interior patch. The four boundary curves define one
boundary patch (yellow patch in Fig. 4(a)). For the boundary
patch, instead of using Coons patch, we directly use the
surface region surrounded by these four curves.

4. Generate boundary cubes. With each interior patch, its
corresponding boundary patch and four connecting patches,
we define the enclosed domain as a boundary cube.

For an interior cube, depending on whether the bounding
patches are shared by other cubes, it can generate at most 6 new
boundary cubes. For one boundary cube, it shares one interior
patch with the interior cube from which it is derived, and has
only one bounding patch on the surface. We can calculate a
series of points on the Coons patches by giving m×n pairs of
parametric values, and use them for parametric mapping and
octree subdivision. The connecting patches may be distorted if
the surface is bumpy or has a lot of features. We can optimize
the control points of interior and boundary curves. To perform
optimization, we should first unify the number of control nodes
on the two opposite sides of one patch, then generate one coarse
hex mesh. With this hex mesh, we optimize the control points by
moving them toward the direction which can produce the maxi-
mum scaled Jacobian [12]. Fig. 5(a) shows the four connecting
patches generated and optimized from one interior cube of the
Bunny model.

With the interior and boundary cubes, we can split the model
into different sub-domains. This domain splitting result follows
the skeleton of the input model and thus the generated T-mesh
follows the topology of the input. If we want to change the
orientation or the number of cubes, we can simply modify the
skeleton at the beginning. In addition, the location of the pro-
jected cube corners on the surface can be optimized to help
generate better parameterization results [40].

3.4. Singularity of Polycubes

An interior cube edge is a singular edge if it is not shared by
4 cubes. All the control nodes lying on these singular edges are

(a) (b)

Figure 5: Four connecting patches of Bunny model after optimization (blue and
green patches); and (b) its singular graph (red dots represent singular points on
the surface).

singular nodes. The singular graph of the T-mesh is the graph
which connects all the singular nodes. This graph satisfies the
constraint that the singular graph of a hex mesh should not start
or end in the interior of the volume [41, 17]. After polycube
construction, the singular graph is fixed. We can predict the
positions of singular points generated from octree subdivision.
Fig. 5(b) shows the singular graph of the Bunny model.

4. Feature Preservation

Surface features, such as smooth curves, sharp curves, and
singular points, play an important role in representing the sur-
face details. In our algorithm, feature preservation is carried
out during T-mesh construction. For each cube, we project it
onto a unit cube in the parametric domain and perform octree
subdivision to generate the T-mesh. This T-mesh contains all the
information from the input. The detailed projection and subdi-
vision algorithm was present in [12, 13]. The main difference
between our T-mesh generation method and previous research
on skeleton-based volumetric composition and structured grid
generation [42] is that our T-mesh allows T-junctions, and there
is no singular edge lying on the surface. We classify surface
features into three different groups: open curves, closed curves
and singularity points. They are dealt with different approaches.

4.1. Open Curves

In this section, two methods are developed to preserve open
curves: parametric mapping and volumetric parameterization
from frame field. We require that the open curves preserved
here can be mapped onto parametric lines. For curves with
self-intersection or spiral shape, we have no way to map them
onto any parametric line in our algorithm, so we cannot preserve
them.

Parametric Mapping. For an open curve feature, we align
it to a certain parametric line during parametric mapping. By
doing this the generated T-mesh contains a sequence of nodes
to follow this curve. If one feature line crosses two different
boundary cubes, we would constrain that the shared point on
the boundary of these two cubes should be mapped to the same
parametric value. Then there would be no discontinuity in the
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Figure 6: Feature alignment during parametric mapping.

resulting subdivision between the two cubes. The detailed steps
are as follows (Fig. 6):

1. For a feature curve s, we first find out the patch p containing
it in the cube C and map patch p to a unit square p′ in the
parametric domain. The feature curve s will be mapped to
curve s′ on p′;

2. Calculate the average angle θ̄ between the tangent direction
at each point and the u axis. If θ̄ < π/4, we align p′ to the v
direction. Otherwise we align it to the u direction;

3. Set the coordinate at the aligned direction to be the same
value for all the points lying on p, calculate the parametric
coordinate at the other direction by a chord length parame-
terization, and then perform surface mapping again to get
results with aligned features.

For an open curve within one surface patch, if the tangent
directions at the two end points vary a lot (e.g., they form an
angle greater than 60 ◦), or the curve intersects with two adjacent
boundaries of one patch, we may need to map half of the curve
to the parametric u direction and the other half to the v direction.
The turning point is C0-continuous along the curve.

It is convenient to perform the alignment during parametric
mapping. However, it is difficult to propagate this feature infor-
mation into the interior of the T-mesh. This is because nodes
on the surface are calculated from mapping and projection, but
nodes in the interior are from a linear interpolation [12]. So the
deeper into the interior, the less influence the feature information
has. As a consequence, it may yield distorted T-mesh elements
even with smoothing performed. To resolve this issue, in the fol-
lowing we use parameterization from 3D frame field to preserve
these open curve features.

Frame Field. A volume parameterization of geometry V
from frame field can be recognized as an atlas of maps f : V→
R3, p 7→ (u,v,w)T . f is a piecewise linear field in each input
tetrahedral mesh element. The integer grids in R3 would induce
a hex tessellation of the geometry. The volume parametrization
from the field [17] is performed by:

min
∑

t

vol ·Dt, (1)

where

Dt = ‖c∇ f (u)−Ut‖
2 + ‖c∇ f (v)−Vt‖

2 + ‖c∇ f (w)−Wt‖
2, (2)

vol is the volume of a tetrahedron, c is the length scale of param-
eterization, and {Ut,Uv,Uw} are the initialized frame field.

For a detected feature curve lying in cube C, we use the six
patches of the cube to generate a high quality uniform tetrahe-
dral mesh using TetGen [43] and apply a frame field to it. We

(a) (b)

(c) (d)

Figure 7: Feature alignment for the Bunny model. (a) T-mesh without feature
alignment; (b) Bézier elements without feature alignment; (c) T-mesh with
feature alignment; and (d) Bézier elements with feature alignment.

initialize the frame field cube by cube. For each cube, we first ini-
tialize the cross field on the bounding patches with one direction
following the patch normal, and then propagate it to the interior.
Field optimization is also performed after the propagation. The
permutation matrix [17] between any pair of neighboring tetra-
hedral elements is set to be the identity matrix if they are in the
same cube. The permutation matrix among different cubes is
set properly to ensure that the shared cube edges are singular
edges. During frame field initialization, the feature line infor-
mation is used to guide the field. Then we perform volumetric
parameterization to get an all-hex mesh. This mesh will be used
as the initial T-mesh, combined with other cubes for subdivision
to generate the T-mesh for the whole model. For one cube, if
subdivided by n times without T-junctions, there will be 2n + 1
control points at one parametric direction. To make the parame-
terization result compatible with the subdivision of neighboring
cubes, we adjust the length scale c and modify the isoparametric
line spacing to perform remeshing.

Fig. 7 shows the Bunny model without and with feature
alignment. An open curve is preserved on the back of the Bunny.
Fig. 8 shows the result of a sphere model with an open curve
feature aligned from direct mapping and frame field parameter-
ization. Compared to direct mapping, the frame field parame-
terization method has the following advantages: (i) the change
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(a) (b)

(c) (d)

Figure 8: Feature alignment of a sphere model. (a, b) Bézier representation of
solid T-spline from mapping and its interior elements; and (c, d) result from
frame field parameterization and its interior.

of the element size is gradual, and the influence of the feature
line to its surrounding elements is smoother; and (ii) the feature
information can propagate further into the interior. As shown in
Fig. 8(d), the feature curve even influences the subdivision of
the interior cube.

4.2. Skeleton Modification and Boolean Operations

The domain splitting and polycube construction result de-
pend on the skeleton. By modifying the skeleton, we can change
the ways of domain splitting and the design of polycube. Since
the patches of interior cubes are projected onto the surface to gen-
erate boundary cubes, we can generate one boundary cube with
the enclosed region by the closed curve as its boundary patch.
To build this boundary cube for the closed curve and preserve
such a feature, we should add one new branch to the skeleton.

To add a new branch, we find out the center point of the
enclosed surface region and connect it to the skeleton. With this
branch, a new bifurcation is introduced to the skeleton. After
building a new interior cube from the new branch, its four corners
away from the bifurcation are projected back onto the closed
curve on the surface. These four projected corners split the close
curve into four consecutive ones. The region enclosed by the
closed curve is defined as a boundary patch and a boundary cube
is built. With the modified polycube, we can preserve the closed
curves during the following subdivision.

Fig. 9 shows a torus model with skeleton modification. The
original skeleton of the torus model is one circle. We modify
it by adding one or two new branches. The results show that
by modifying the skeleton, we can not only change the domain
splitting, but also change the number of singular points on the
surface. When one new branch is added, six new singular points
are introduced on the surface, two from the bifurcation part and
four from the corners of the new branch. Fig. 9(e-f) shows the

(a) (b) (c)

(d) (e) (f)

Figure 9: Skeleton modification of a torus model. The skeleton is shown in (a),
(b) and (c), where (a) shows the original skeleton, (b) shows the skeleton with
one new branch inserted to form bifurcation and (c) shows the skeleton with two
new branches inserted to form trifurcation; the corresponding T-spline models
with Bézier representation are shown in (d), (e) and (f) respectively.

(a) (b) (c) (d)

Figure 10: Skeleton modification for a closed curve on a torus model. (a)
Original model; (b) preserving one feature region by adding one new branch; (c)
removing all the elements generated from the new branch; and (d) extruding the
feature curve region.

constructed T-spline models. Fig. 10(b) shows the torus model
with one closed curve feature preserved on the surface. The
closed curve feature will impact both the elements inside the
enclosed region, and those from the neighboring cubes.

Boolean Operations. By combining feature alignment and
skeleton modification together, we can perform different kinds
of Boolean operations on the generated model, like union and
subtraction. Fig. 10(c) shows the modified torus model with all
the elements in the feature curve region removed. Fig. 10(d)
shows the new torus model with the closed curve region extruded
from the surface. With Boolean operations, we can simplify the
modeling process with proper skeleton modification.

4.3. Singularity Modification
After generating the interior and boundary cubes, the topol-

ogy of the singular graph is fixed. If there are other singular
points on the surface to be preserved, we may have to regenerate
our polycube. As indicated in Section 4.2, modifying the skele-
ton can change the number of the singular nodes on the surface,
but this modification also changes the structure of the polycubes.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 11: Designing three templates by mirroring, combining and simplifying
the primitives. (a-c) Template 1; (d-g) Template 2; and (h-k) Template 3.

To preserve surface singularities without changing the poly-
cube, we design some templates which follow the property of
singularity distribution in hex meshes. As indicated in [17], the
singular graph should not start or end in the interior of the hex
meshes. So the designed template should provide a singular edge
path connecting the desired surface singularity to the existing
singular graph in the interior. We develop three templates to
insert surface singularities. These templates can be applied to
boundary cubes or elements containing the desired singularity.
The cube or element will be split into smaller elements and new
singularities are introduced on the surface and in the interior.
The templates are designed with the following two constraints:
(a) the introduced face singularities should only lie on the bound-
ary patch of the polycube, or the boundary face of the element;
and (b) the four edges of the face containing the face singularity
should not be singular edges. These two constraints ensure that
the templates will only change the interior region of the cube
or element without influencing its neighbors. We design three
templates, each of which changes the surface singularity of the
polycube differently.

Template 1 is derived from a 2-refinement splitting primi-
tive of unstructured hex meshes [30]. It introduces three singular
nodes on three different faces, see Fig. 11(a). We combine four
of them together and perform simplification whenever possible.
The initial primitive is first extended by combining it with its
mirror image corresponding to one face containing face singu-
larity. The face singularity is therefore wrapped into the interior.
Simplification is performed by merging elements together, see
Fig. 11(b). The simplified mesh is combined with its mirror
image again with further simplification to get the final template,
as shown in Fig. 11(c).

This template introduces four new singular points on the
surface of the initial cube. During mapping we align the singular
points in this template with the desired singular points on the sur-
face. This template may change the property of the original four
corners on the surface. If these corners are regular points, they
will become irregular after applying the template. Otherwise
they will switch from singular to regular.

Template 2 uses two of the 13 meshable primitives intro-
duced in [44, 41]. Fig. 11(d) shows two of the solid primitives
combined together and their splitting pattern. The splitting pat-
tern of these two primitives guarantees that there is no gap when
matching them together. The built cube from the combination
has three singular points on three different faces. We use the
same merging-simplifying technique to wrap undesired face sin-
gular points into the interior. The final template is shown in
Fig. 11(g). This template will insert four new collinear singular-
ity points on the surface. The four corners of the original cube
are changed in the same way as Template 1.

Template 3 is different from Template 2 in choosing me-
shable primitives, see Fig. 11(h). As shown in Fig. 11(k), this
template will insert eight new singularity points on the surface.
Four of them are collinear and the other four form one sur-
rounding circle. The original four corners of the cube are not
influenced by this template.

We have applied all the three templates to a sphere model
to demonstrate how they change the singularity points on the
surface and the singular graph in the interior. Fig. 12 shows the
singular graph (blue curves) of the T-mesh with singular points
(red point) on the surface, and solid T-spline results. Template
1 does not change the total number of singular points on the
surface, but shrink the region enclosed by the four singular
nodes. Template 2 erases the original four singular nodes of the
boundary cube, and introduces four new collinear singular points.
Template 3 does not influence the original four singular points,
with four collinear singular points and the other four forming
one circular region. All the singular points on the surface are
connected to the singular graph in the interior.

For a singular point in T-mesh, it decreases the continuity of
T-spline from C2 to C0 within its two ring neighborhood. Which
template should be chosen to preserve certain surface singularity
depends on the size of the two-ring neighborhood influenced
by the singular point, and whether the singular information is
allowed to propagate outward. The singularity points we insert
on the surface are either valence 3 or valence 5. Our templates
cannot handle higher-valence singularities.

5. Results and Discussion

We have tested our algorithm on different models based on
one machine with an Intel X3470 CPU and 16GB memory. The
statistics is given in Tab. 1. We can observe that the generated
elements are of good quality. All the models were scaled to make
the maximum edge length of the bounding box equal to 1.0. We
then calculated the Hausdorff distance between our generated
surface and the input boundary. From Tab. 1, we can observe
that our resulting parameterization has good surface accuracy.
Closed and open curve features were tested in Figs. 13 and 14.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: New singularity insertion of a sphere model, where (a-d) show the singular graph of the T-mesh, and (e-h) show the T-spline with Bézier element
representation. The original sphere model is in (a), while Template 1 is applied to (b), Template 2 is applied to (c), and Template 3 is applied to (d).

Model T-mesh nodes Irregular nodes Bézier elements Scaled Jacobian Hausdorff Time (s) Preserved feature
(surface, interior) (min, ave, max) Distance

Bunny 12,503 (14, 95) 16,622 (0.20, 0.68, 1.00) 2.57e-2 73.8 –
Bunny with feature 12,758 (14, 96) 17,013 (0.20, 0.62, 1.00) 2.30e-2 74.5 open curve

Amphora 24,894 (8, 319) 26,686 (0.12, 0.65, 1.00) 1.23e-2 182.3 –
Amphora with feature 34,543 (12, 419) 40,145 (0.12, 0.65, 1.00) 8.7e-3 253.7 closed curve

Kitten 20,281 (28, 279) 24,502 (0.15, 0.71, 1.00) 1.49e-2 115.3 open curve, singularity
Rod 21,536 (18, 391) 11,898 (0.35, 0.79, 1.00) 6.5e-3 106.7 open curve, closed curve

Hanger 19,897 (16, 571) 6,564 (0.30, 0.72, 1.00) 5.1e-3 75.6 open curve

Table 1: Statistics of all the tested models

We also modified the singularities on the surface of the Kitten
model to preserve certain singularities. Boolean operations and
sharp feature preservation were tested in Figs. 15 and 16.

For the Amphora model in Fig.13, with the built polycube,
we capture the feature information around the bottom neck re-
gion and the two handles. On the body of the Amphora, we have
a closed feature curve preserved in the solid T-spline by adding
one new branch in the interior. Compared to the result without
feature preservation, the closed curve has brought a slight distor-
tion to its neighboring elements. For the Kitten model in Fig. 14,
we have preserved detailed feature information, comparing to
the result in [13], which uses a harmonic field to split the domain
and build polycubes. For the mouth region, we preserved the
feature lines of the mouth by aligning it to parametric lines. For
the left eye, we used Template 3 and for the right eye we used
Template 2. The singularity information in the left eye region are
constrained in the area, while in the right eye region it is propa-
gated outward. For the Rod model in Fig. 15, we used Boolean
operations during the T-mesh construction. We only used the
skeleton of the torus region and the middle cylindrical region
to build the polycube. With the initial subdivision result, we

performed extrusion and subtracted one small cylindrical region
from it. All the points on the extruded surface were projected
back to the input surface to get the final T-mesh. Sharp features
were also preserved. We treated these sharp features as open
curves, aligned them to certain parametric lines, and duplicated
them in the T-mesh [14]. For the circular closed curve at the
torus region, we split it into multiple open curves because it
spans multiple cubes, and then aligned each open curve to the
parametric line. For the Hanger model in Fig. 16, since the
components connecting the two hollow cylinders are thin, con-
structing interior and boundary cubes for them will lead to very
thin elements. Therefore we only use the skeletons to generate
the two hollow cylinders and preserve the intersection curves
between the cylinders and the connecting components, as shown
in Fig. 16(b). Then we found the extrusion paths for the corners
of the intersection curves, and generated a group of elements to
union the two cylinders together. The surfaces generated from
extrusion were projected back to the input boundary. In this way,
the sharp feature information of the model was preserved.

Limitation. The main drawback of our work is that we
have to perform pre-processing with the skeleton to make it

8



(a) (b) (c) (d) (e)

(f) (g) (h) (i)
Figure 13: Amphora model. (a) The input boundary triangle mesh; (b) skeleton splitting result; (c) singular graph; (d) the constructed solid T-spline and T-mesh; (e)
the extracted solid Bézier elements; and (f) some Bézier elements are removed to show the cross-section. A designed dolphin shape closed curve is preserved with (g)
showing the singular graph after skeleton modification; (h) shows solid T-spline and T-mesh; and (i) shows Bézier elements.

valid for our polycube construction. In addition, we cannot
perform volumetric parameterization from frame field for the
whole domain due to limitations of singularity restricted field
and flip-over issues as discussed in [18]. For complex CAD
models, since we are enclosing all the singularities into the
interior, the resulting T-mesh quality may not be good in some
situations compared to volumetric polycube parameterization
methods which allow boundary singular edges.

6. Conclusion and Future Work

In conclusion, we have developed a new algorithm to build
feature-preserving T-meshes using skeleton-based polycube gen-
eration. Surface features are classified into open curves, closed
curves and singular features. Parametric mapping, volumetric
parameterization from frame field, skeleton modification and sin-
gularity modification are the corresponding methods to preserve
them. The constructed solid T-spline follows the topology of the
input model and detailed features are preserved. In the future,
we are planning to extend the parameterization from frame field

method to the whole model with designed singularities. Sur-
face conformal solid T-spline construction from CAD models is
another direction we are targeting at.
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