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Abstract
We describe an abstract interpretation based framework for proving
relationships between sizes of memory partitions. Instances of this
framework can prove traditional properties such as memory safety
and program termination but can also establish upper bounds on us-
age of dynamically allocated memory. Our framework also stands
out in its ability to prove properties of programs manipulating both
heap and arrays which is considered a difficult task.

Technically, we define an abstract domain that is parameterized
by an abstract domain for tracking memory partitions (sets of mem-
ory locations) and by a numerical abstract domain for tracking rela-
tionships between cardinalities of the partitions. We describe algo-
rithms to construct the transfer functions for the abstract domain in
terms of the corresponding transfer functions of the parameterized
abstract domains.

A prototype of the framework was implemented and used to
prove interesting properties of realistic programs, including pro-
grams that could not have been automatically analyzed before.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms Reliability, Verification

Keywords Combining Analyses, Set Analysis, Numerical Analy-
sis, Shape Analysis, Termination, Space Bounds, Memory Safety

1. Introduction
The theme of this paper is to automatically establish invariants re-
garding sizes of memory partitions. Such invariants are crucial in
order to bound the size of dynamically allocated data (e.g., in em-
bedded systems). They are also necessary in order to infer the shape
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of the data in programs that manipulate both arrays and dynam-
ically allocated data structures, which is common in many imple-
mentations of abstract data types such as hashing, skiplists, BTrees,
and string implementations. Moreover, proving such invariants in
these programs is required for proving their memory safety.

We describe new algorithms for establishing such invariants by
combining two kinds of abstractions: (a) Abstractions that parti-
tion the memory into (not necessarily) disjoint parts and (b) Nu-
merical abstractions that can track relationships between numeric
variables. Our algorithms are parameterized by both abstractions
which allows to leverage existing shape abstractions (e.g., [32, 29,
12, 24]) and existing numerical abstractions (e.g., Polyhedra [8],
Octagons [25], Intervals [6]). We call such an analysis a set cardi-
nality analysis.

We first formalize the notion of a set abstract domain that
provides abstractions to partition the memory into (not necessarily
disjoint) parts called base-sets. We describe the interface that a
set domain should export in order for it to be combinable with
a numerical domain (Section 3). A key component of such an
interface is the Witness operator that relates a given base-set with
other base-sets that occur in a given set-domain element. (This
relationship is transformed into a numerical relationship over the
cardinalities of the base-sets by the combination framework, and
is the only window to communicate any information about the
meaning of a base-set to the numerical domain, which otherwise
views base-sets as uninterpreted and simply uses a fresh variable
to denote the cardinality of each base-set). We show that several
popular heap/shape analysis domains can be easily made to support
such an interface (Section 3.3) – this is one of the contributions of
the paper.

We then define the notion of a set cardinality abstract domain
that is parameterized by a set domain and a numerical domain (Sec-
tion 4). An element of the set cardinality domain is a pair composed
of a set-domain element and a numerical element. The interesting
part here is our formalization of the pre-order between the elements
in this domain, which defines the level of reasoning built into our
set cardinality domain. The pre-order is defined constructively in
terms of the partial orders of the individual domains. Hence, given
a decision procedure for the set domain and a decision procedure
for the numerical domain, our pre-order construction shows how
to convert them into a decision procedure for the set cardinality do-
main. Such a modular construction of the decision procedure for the
set cardinality domain is an independent contribution of the paper,
and fits in the stream of work on decision procedures for reasoning
about sets and their cardinalities [20]. Though we do not prove any
completeness results here, the modular construction allows the use
of existing set and numerical domains and is demonstrated to be
precise enough in practice.

We then describe algorithms for the transfer functions for the
set cardinality domain. This is a key technical contribution of the



paper. Each of the transfer functions for the set cardinality domain
is described modularly in terms of the corresponding transfer func-
tions of the constituent set domain and the numerical domain. We
also prove the soundness and completeness of these transfer func-
tions with respect to the pre-order. The basic idea behind the trans-
fer functions is to first apply the corresponding transfer function
over the set-domain elements of the inputs to obtain the set-domain
element of the output. Then, we use the Witness operator exported
by the set domain to relate the base-sets in the outputs to the base-
sets in the inputs and strengthen the numerical elements in the in-
puts with this information. We then apply the transfer functions
over the numerical elements to obtain the final result. The exact de-
tails depend on the specific transfer function and are important to
establish soundness and completeness of the transfer functions.

We start by describing interesting applications of our frame-
work, namely termination analysis, memory bounds analysis, and
memory safety and functional correctness (Section 2). Our frame-
work enables verification of desirable properties of real-world ex-
amples, which to our knowledge, have not been analyzed before.
We present experimental results illustrating the feasibility of our
approach (Section 6.1). We also present a case-study regarding how
the choice of the constituent set domain and the constituent nu-
merical domain affects the precision of the set cardinality domain
(Section 6).

2. Applications
Our work has several applications that are mentioned below, and
we present experimental results for each of these applications in
Section 6.1.

Proving Memory Safety as well as Data-structure Invariants.
Often some numeric program variables are related to size of data-
structures, and are used to iterate over data-structures. Our anal-
ysis can automatically track these relationships between program
variables and size of data-structures. These relationships are im-
portant to prove memory safety. A common pattern in C where
these relationships arise is when lists are converted into arrays and
are then iterated over in the same loop that iterates over the cor-
responding array without having a null-dereference check. These
relationships are also important to prove data-structure invariants.
This happens frequently in object-oriented code wherein base class
libraries maintain length of data-structures like queues or lists. In
Section 2.1, we present a procedure from Microsoft product code
that illustrates the importance of tracking relationships between
numeric variables and sizes of data-structures for proving both
memory safety and data-structure invariants. We do not know of
any existing technique that can automatically verify the correctness
of assertions in this code.

Bounding Memory Allocation. This involves bounding the sizes
of the partitions corresponding to the allocation statements in the
program. This is especially important in embedded systems, where
we would like to prove statically that the amount of memory that
the system is shipped with is sufficient to execute desired appli-
cations. We present examples of bounding memory allocation in
terms of sizes of input data-structures for deep copy routines over
a variety of data-structures in Section 6.

Proving Termination. The oldest trick for proving termination of
loops has been that of finding a ranking function [33]. A ranking
function for a loop is a function whose value decreases in each it-
eration and is bounded below by some finite quantity. There has
recently been a lot of work on discovering fancy forms of numeri-
cal ranking functions (lexicographic polyranking functions [4], dis-
junctively well-founded linear ranking functions [28]). However,
for several programs based on iteration over data-structures, the

ranking function is actually related to the cardinality of some par-
tition of the data-structure. Our technique can find such ranking
functions and can in fact even prove a bound on the loop iterations
by instrumenting a counter variable in the loop and discovering in-
variants that relate the counter variable and sizes of partitions. We
illustrate this by means of the BubbleSort example in Section 2.2.
We do not know of any existing technique that can prove even ter-
mination of this example automatically.

2.1 String Buffer Example
This example illustrates the use of our analysis for proving memory
safety as well as establishing data-structure invariants.

Consider the string buffer data-structure StringBuffer de-
scribed in Figure 1(a), as taken from Microsoft product code. A
string buffer is implemented as a list of chunks (in reverse order,
so that appends are fast). A chunk consists of a character array
content whose total size is size and its len field denotes the
total number of valid characters in the array. This program contains
the following features that make the task of analysis/verification
challenging: (i) The usage of dynamic memory and pointers with
destructive pointer mutations and (ii) The usage of arrays and arith-
metic. These features are common in C. Moreover, Java ADT im-
plementations, such as hash-maps, raise similar challenges.

The Remove method over string buffer (Figure 1(b)) takes as
input a non-negative start index startIndex and a positive integer
count and deletes count characters starting from startIndex.
The first loop (Lines 3-4) counts the total length of characters in-
side string buffer and stores it into the variable n. The second loop
(Lines 8-9) finds the first chunk endChunk from which characters
are to be removed, while the third for loop (Lines 11-12) finds the
last chunk startChunk from which characters are to be removed.
Both these loops have a memory safety assertion at lines 9 and 12
respectively. The loop condition for each of these loops indicates
that m is positive; it does not explicitly indicate that y 6= null.
However, the assertions hold because there is a relationship be-
tween m and y, namely that the total number of characters in the
string buffer before y is equal to m. Hence, if m > 0, it implies
that y 6= null. The framework presented in this paper can be
used to automatically discover such relationships between numer-
ical program variables and sizes of appropriate partitions of data-
structures. For this purpose, we require a set domain whose base-
set constructor can represent the set of all characters in a chunk
x and the chunks before it (referred to as R1(x) in Figure 1(c)).
When coupled with a relational numerical domain that can repre-
sent linear inequalities between numerical variables, our combina-
tion framework yields a set cardinality analysis that can discover
the required invariants (shown in Figure 1(c)).

The next loop (Lines 21-23) slides down an appropriate number
of characters in endChunk. The last loop (Lines 25-26) counts the
total number of characters in the string buffer and stores it in the
variable n′. Line 27 then asserts that n′ (whose value is the total
number of characters in the string buffer at the end of the Remove
method) is less than n (whose value is the total number of charac-
ters in the string buffer at the beginning of the Remove method) by
an amount equal to count. The assertion holds because lines 14-20
remove count characters from the string buffer by destructively up-
dating the data-structure and adjusting the value of then len field of
appropriate chunks. The approach presented in this paper can auto-
matically discover such relationships that relate the sizes of various
partitions of data-structures. These relationships along with the re-
quired invariants at other program points are shown in Figure 1(c).

Figure 1(d) describes the effect of the Remove method over an
example string buffer x. The filled part (both dark filled part and
lightly filled part) of each chunk represents the original characters
in the string buffer x. The solid filled part represents the characters



Remove(StringBuffer ∗ x, int startIndex, int count) {
1 Assume(startIndex ≥ 0 ∧ count > 0);
2 n := 0;
3 for (y := x; y 6= null; y := y → previous)
4 n := n + (y → len);
5 if (n < startIndex + count) return;
6 endIndex := startIndex + count;
7 y := x; m := n− (y → len);
8 for (; m > endIndex; m := m− (y → len))
9 Assert(y 6= null); y := y → previous;

10 endChunk := y; endChunkOff := m;
11 for (; m > startIndex; m := m− (y → len))
12 Assert(y 6= null); y := y → previous;
13 startChunk := y; startChunkOff := m;
14 if (startChunk 6= endChunk)
15 endChunk→ previous := startChunk;
16 startChunk→ len := startIndex− startChunkOff;
17 tmp := endIndex− endChunkOff;
18 else
19 tmp := endIndex− startChunkOff;
20 endChunk→ len := (endChunk→ len)− tmp;
21 for (i := 0; i < endChunk→ len; i := i + 1)
22 i′ := i + tmp;
23 endChunk→ content[i] := endChunk→ content[i′];
24 n′ := 0;
25 for (y := x; y 6= null; y := y → previous)
26 n′ := n′ + (y → len);
27 Assert(n′ = n− count);
28 }

(b) Method to remove count elements from string buffer x
starting at location startIndex

typedef struct {
int len; int size;
char* content;
StringBuffer ∗ previous;

} ∗ StringBuffer;

(a) String Buffer data-structure

π Interesting Invariants at program point π
4 n = |R1(x)| − |R1(y)|
5 n = |R1(x)|
9 m = |R1(y)| − (y → len) ∧m > 0
12 m = |R1(y)| − (y → len) ∧m > 0
16 startChunkOff = |R1(startChunk)| −

(startChunk→ len)
endChunkOff = |R1(endChunk)| − (endChunk→ len)
|R1(x)| = n− (endChunkOff− startChunkOff−

(startChunk→ len))
20 (startChunk→ len) = startIndex− startChunkOff

|R1(x)| = n− (endChunkOff− startChunkOff−
(startChunk→ len))

21 |R1(x)| = n− count
26 n′ = |R1(x)| − |R1(y)|
27 n′ = |R1(x)|

(c) Interesting invariants at various program points in the
Remove method that are necessary to prove the given assertions.
The invariants given hold right before π is executed.

startIndexendIndex

startChunkendChunk

startChunkOffsetendChunkOffset

x

startChunk

x

endChunk
After Remove

Before Remove

(d) An example of a string buffer x before and after the remove method.

Figure 1. Remove method of StringBuffer data-structure (adapted slightly from Microsoft product code). The method has 2 memory
safety assertions and one assertion that relates the sizes of the string buffer at the entry and exit.

to be removed. The solid filled part is identified by the second loop
(Lines 8-9) and the third loop (Lines 11-12).

2.2 BubbleSort Example
This example illustrates the use of our analysis for proving termina-
tion as well as computing a bound on the number of loop iterations.

Consider the BubbleSort procedure shown in Figure 2 that sorts
an input array A of length n. Ignore lines 2 and 4 that update a
counter variable c. The algorithm works by repeatedly iterating
through the array to be sorted, comparing two items at a time
and swapping them if they are in the wrong order (Line 8). The
iteration through the array (Loop in lines 6-11) is repeated until
no swaps are needed (indicated by the change boolean variable),
which indicates that the array is sorted.

Notice that establishing a bound on the number of iterations of
the outer while-loop of this procedure is non-trivial; it is not imme-
diately clear why the outer while loop even terminates. However,
note that in each iteration of the while loop, at least one new el-
ement “bubbles” up to its correct position in the array (i.e., it is
less or equal to all of its successors). Hence, the outer while loop
terminates in at most n steps. The set cardinality analysis that we
introduce in this paper can automatically establish this fact by com-
puting a relationship between an instrumented loop counter c (to
count the number of loop iterations of the outer while loop) and the
number of elements that have been put in the correct position. In
particular, the set cardinality analysis computes the invariant that c
is less than or equal to the size of the set of the array indices that
hold elements at their correct position (provided the set cardinality



BubbleSort(int* A, int n)
1 change := true;
2 c := 0;
3 while (change) {
4 c := c + 1;
5 change := false;
6 for(j := 0; j < n− 1; j := j + 1) {
7 if (A[j] > A[j + 1]) {
8 Swap(A[j], A[j + 1]);
9 change := true;

10 }
11 }
12 }
13

Figure 2. Bubblesort Routine.

analysis is constructed from a set analysis whose base-set construc-
tor can represent such a set).

3. Set Domain
In this section, we formalize the notion of a set abstract domain.
In particular, we describe the interface that a set domain should
support in order for it to be combinable with a numerical domain
in our combination framework.

A set domain P consists of set-domain elements that are related
by some partial order�P. A set-domain element P of a set domain
should expose some bounded collection of (interpreted) base-sets,
referred to as BaseSets(P ). Examples for base-sets are R1(z),
where z is a program variable, as used in Section 2.1. The numeri-
cal domain tracks relationships of the cardinalities of the base-sets
in BaseSets(P ).

A set domain exports all the standard operations needed to per-
form abstract interpretation (namely Join, Widen, Eliminate,
PostPredicate, as defined in Section 5). Besides these opera-
tions, a set domain also needs to support the following operations
in order for it to be combinable with a numerical abstract domain to
enable tracking of numerical properties over cardinalities of base-
sets.

3.1 Witness Operator
The set domain P exports an operation WitnessP that takes as
input a collection S of base-sets and a set-domain element P .
Intuitively, Witness(S, P ) returns the interpretation of base-sets
in S in terms of the base-sets that occur in P using the information
from P . This is needed because base-sets are interpreted. Thus,
even if the base-sets in S are semantically identical to some base-
sets in BaseSets(P ) (a common case in our setting), there is
no way to infer this equality without the help of the set domain.
Without Witness, the numerical domain cannot infer anything
about cardinalities of base-sets in S (even when it has information
about cardinalities of base-sets that occur in P ).

The result of Witness(S, P ) is in the form of normalized set-
inclusion relationships. A normalized set-inclusion relationship
(implied by P ) between a collection T of base-sets is a relation-
ship of the form [

i∈I

pi ⊆
[
j∈J

p′j

where pi, p
′
j ∈ T (for all i ∈ I, j ∈ J) and P implies that

pi’s are all mutually disjoint (i.e., under any concretization of P ,
the interpretations of pi’s are mutually disjoint). Furthermore, I is
maximal and J is minimal. In practice, most of the relationships we
get are of the form p =

S
pi where the pi’s are mutually disjoint.

EXAMPLE 1. Consider a simple set domain whose base sets are
of the form qnk where n is a positive integer and k is a natural.
We define x ∈ qnk iff (x mod n) ≡ k. Let BaseSets(P ) =
{q30, q20} and S = {q60, q63, q40}. We have

Witness(S, P ) = { q60 ∪ q63 ⊆ q30, q30 ⊆ q60 ∪ q63,
q60 ⊆ q20, q40 ⊆ q20 }

Note that although q60 ∪ q40 ⊆ q20, this relation is not part of the
witness since q60 and q40 are not disjoint.

The advantage of normalized set-inclusion relationships is that
they can be easily translated into numerical relationship over car-
dinalities of base-sets, which is something that a numerical domain
can understand. They will thus be used to relate the cardinalities
of the base-sets before and after an abstract operation (see the P2N
operation in Section 4).

The soundness of the combination framework only requires
that the base-sets of the left side of a normalized set-inclusion
relationship pi be all mutually disjoint in P . The soundness does
not require I to be maximal or J to be minimal, and neither does
it require the Witness operator to return all such relationships.
However, a more precise collection of such relationships leads to
a more precise combined domain.

3.2 Generate Operator
The set domain also has an interface GenerateP to generate in-
formation about the cardinality of any base-set in relation to any
constant. The function GenerateP takes a set-domain element P ,
and returns a collection of inequalities of the form |p| ≤ c or
|p| ≥ c (where p ∈ BaseSets(P ) and c is some non-negative
integer constant) that are implied by P . In case the set-domain ele-
ment is inconsistent (i.e., does not represent any concrete element),
GenerateP simply returns false.

3.3 Examples of Set Domains
In this section, we show that several popular heap/shape analysis
domains can be viewed as set domains. In particular, we show that
for each of these domains we can easily implement the required
operations to be used in the combination framework.

In all three cases the domain is a powerset domain over some
base domain. The combination with the numerical domain is per-
formed at the level of the base domain. The construction of the
powerset domain is done on top of the combined domain.

3.3.1 Canonical Abstraction
Canonical Abstraction[32] is a powerful domain for shape analysis.
The domain is a powerset of abstract shape graphs. Each abstract
shape graph is based on equivalence classes of memory locations
based on the unary predicates that hold for them. These equivalence
classes are called abstract nodes. Canonical abstraction maintains
the invariant that each abstract node η must represent at least
one memory location. Canonical abstraction can maintain binary
information that holds universally on abstract nodes, i.e., formulas
of the form ∀v1, v2 . η1(v1) ∧ η2(v2) → p(v1, v2) where p is a
binary predicate, vi ranges over memory locations and ηi(vi) holds
when vi is in the equivalence class defined by ηi. Specifically,
canonical abstraction can express the notion of an abstract node
η that represents exactly one memory location using the formula
unit(η) = ∀v1, v2 . η(v1) ∧ η(v2) → v1 = v2.

Required Operations The base-sets of an abstract shape graph
are its abstract nodes. Thus,

BaseSets(P )
def
= {η | η ∈ P}

The WitnessCA operation is straightforward as the abstract
nodes are based on equivalence classes. Thus, abstract nodes have



canonical names, which allow to easily relate abstract nodes from
different abstract shape graphs. Furthermore, because the base-sets
are equivalence classes of unary predicates, they are necessarily
disjoint.

The cardinality constraints arise from the non-emptiness re-
quirement and the definition of unit, i.e.,

GenerateCA(P )
def
=

V
({|η| ≥ 1 | η ∈ BaseSets(P )} ∪

{|η| = 1 | η ∈ BaseSets(P ), unit(η) ∈ P})

Finally, the canonical abstraction domain can easily interpret
cardinality constraints of the form |η| = 1 by asserting the formula
defining unit(η). Note that although this was not part of the
standard interface for the canonical abstraction domain, there is an
existing mechanism to easily support this constraint. We use this
choice of set domain in our experiments in Section 6.1.

3.3.2 Boolean Heaps
The Boolean Heaps Domain [29] is a powerset domain over
Boolean Heaps. As in canonical abstraction, each Boolean heap
is formed of equivalence classes of unary predicates. However,
there is no requirement for non-emptiness of abstract nodes and no
extra binary information. Boolean heaps support predicates of the
form v = t where t is a ground term. If such a unary predicate
holds on an abstract node, this node represents at most one mem-
ory location. Thus, we shall define unique(η) to hold for any η in
which there is a predicate of the form v = t.

Required Operations The base-sets of a Boolean heap are its
abstract nodes. Thus,

BaseSets(P )
def
= {η | η ∈ P}

The WitnessBH operation is very similar to that of canonical
abstraction as both abstractions are based on equivalence classes of
unary predicates. Because abstract nodes are equivalence classes of
unary predicates, the resulting base-sets are necessarily disjoint.

Boolean heaps have the notion of a unique base-set but no
requirement for non-emptiness. Thus, GenerateBH is defined by:

GenerateBH(P )
def
=

V
({|η| ≥ 0 | η ∈ BaseSets(P )} ∪

{|η| ≤ 1 | η ∈ BaseSets(P ), unique(η)})

Given a cardinality constraint of the form |η| = 0, the Boolean
heap can soundly remove η from the Boolean heap, thus reducing
its size and complexity.

3.3.3 Separation Domain
We use the separation domain of Distefano et al [12] as a represen-
tative of Separation Logic [30] based abstract domains. The sepa-
ration domain is a powerset domain of symbolic heaps. A symbolic
heap P is a separation logic formula of the form:

∃x′1, . . . , x′n.(
^

π∈ΠP

π) ∧ ( F
Q∈ΣP

Q)

ΠP is a set of equalities and dis-equalities between pointer vari-
ables (and possibly nil). ΣP can contain either

• junk — any non-empty memory,
• x 7→ y — a memory that contains a single address x whose

content is y, or
• ls(x, y) — a non-empty singly-linked list starting at address x

and whose last element points to the address y1.

1 ls(x, y) is defined recursively as x 6= y∧ (x 7→ y∨∃z. x 7→ z ? ls(z, y)

The formula ϕ1 ? ϕ2 holds on memories that can be decomposed
into two disjoint parts s.t. ϕ1 holds on one of them and ϕ2 holds on
the other.

Required Operations We use the members of ΣP (a.k.a. star
conjuncts) as base-sets, i.e.,

BaseSets(P )
def
= ΣP

The WitnessSL operation is computed by finding which star
conjuncts are subsets of other star conjuncts. Such algorithms al-
ready exist in the domain for performing containment checks. The
locality of most operations (i.e., the fact that they modify only small
parts of the memory each time) means that most of the star con-
juncts will appear verbatim. This allows for efficient implementa-
tion of the WitnessSL operation. Furthermore, the base-sets are
star conjuncts, thus all base-sets of an abstract element are disjoint.

Because all star conjuncts represent non-empty sets and a star
conjunct of the form x 7→ y is of cardinality 1, GenerateSL is
defined by:

GenerateSL(P )
def
=

V
({|η| ≥ 1 | η ∈ BaseSets(P )} ∪

{|η| = 1 | η ∈ BaseSets(P ), η ≡ x 7→ y})

Finally, if the numerical domain discovers that |ls(x, y)| = 1
then ls(x, y) can be strengthened to x 7→ y.

We use the syntax of separation logic in our examples2.

4. Set Cardinality Domain
In this section, we define the notion of a set cardinality domain
that is obtained by a combination of a set domain and a numeri-
cal domain. Given a set domain P and a numerical domain N, we
define their combination to be the set cardinality domain P on N
whose elements are pairs (P, N), where P is some element that
belongs to the set domain P and N is some element that belongs
to the numerical domain N. Furthermore, N uses some special
variables, each of which denotes the cardinality of some base-set
from BaseSets(P ). We denote the special variable corresponding
to a base-set p by ep. In addition, we use in our examples the short-
hand [p]A to mean A ≡ ep. We use the notation SpecialVars(N)
to denote the set of all special variables (i.e., non-program vari-
ables that corresponds to the cardinality of some base-set) that oc-
cur in N . For notational convenience, we overload the notation
SpecialVars(P ) to denote the set of all special variables that de-
note the cardinality of some base-set in P , i.e.,

SpecialVars(P ) = {ep | p ∈ BaseSets(P )}

Hence, every element (P, N) that belongs to the domain P on N
has the property that SpecialVars(N) ⊆ SpecialVars(P ).
Also, without loss of any generality, we assume that for any two
distinct elements (P1, N1) and (P2, N2), SpecialVars(P1) ∩
SpecialVars(P2) = ∅ since we can always rename the special
variables that denote the cardinality of some base-sets.

The pre-order �PonN between two elements of the combined
domain is defined as follows:

(P2, N2) �PonN (P1, N1)
def
= P3 �P P1 ∧ N4 �N N1

where (P3, N3) = Saturate(P2, N2)

N4 = P2N(P3, P1, N3)

The pre-order above has two important components Saturate
and P2N, which are described below.

2 Note that the join algorithm we use is a refined version of the one in [12]
and uses the ideas in [23].
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Figure 3. Flowchart Nodes.

Saturate The Saturate function takes as input an element
(P, N) from the combined domain and returns another element
(P ′, N ′) from the combined domain. P ′ and N ′ are obtained from
P and N respectively by repeated sharing of information about
relationships of base-set sizes with integral constants using the
GenerateP interface exported by the set domain (as described in
Section 3) and the GenerateN interface that can be provided by a
numerical domain as follows:

GenerateN(N)
def
=

^
x∈U

EliminateN(N, Vars(N)− {x})

where U = SpecialVars(N)

The function EliminateN(N, V ) eliminates all variables in set V
from the abstract element N . The function EliminateN is part
of the standard abstract interpretation interface that the numerical
domain N comes equipped with. Vars(N) denotes the set of all
variables that occur in N .

The Saturate function above is inspired by the Nelson-Oppen
methodology of combining decision procedures for disjoint the-
ories [26], where elements from different theories share variable
equalities (since that is the only information that can be understood
by elements from both theories) until no more equalities can be
shared. In our case, the information that can be understood by the
set-domain element as well as the numerical element involve re-
lating the size of any base-set with a constant. The Nelson-Oppen
decision procedure terminates because the number of independent
variable equalities that can be shared is bounded above by the num-
ber of variables. In our case, the number of relationships that can
be shared is potentially unbounded since there is no limit on the
size of the constants. To address this issue, we allow for sharing
of only those relationships that involve constants up to a bounded
size, say 2. This is because, in practice, all instances of set domains
can usually only make use of the information whether the size of
a base-set is 0, 1, or more than 1. Bounding the size of constants
that can be shared during the saturation process guarantees efficient
termination of the Saturate function.

We show below an example, where the Saturate function
leads to repeated sharing of information between a set-domain
element P and a numerical element N .

EXAMPLE 2. Consider a program that traverses two linked lists of
the same length. One of the lists is pointed to by x and the other
by y. Traversing the first list using the statement z = x → next
will cause the set domain to perform a case split on whether x is a
singleton list or not. The case in which x is a singleton yields the
element (P, N) where P is [x 7→ nil]A ? [ls(y, nil)]B ∧z = nil
and N is A = B. Calling GenerateP(P ) results in A = 1∧B ≥
1, which is used to strengthen N yielding A = 1 ∧ A = B.
Finally, GenerateN(A = 1 ∧ A = B) is A = 1 ∧ B = 1,
i.e., |x 7→ nil| = 1 ∧ |ls(y, nil)| = 1. When used to strengthen
P this yields x 7→ nil ? y 7→ nil ∧ z = nil. Thus, using the

cardinality information we have discovered that the second list is a
singleton as well.

Saturating the input abstract elements is the first step in all the
abstract domain operations described in Section 5. However, in the
examples there we use saturated elements as inputs to be able to
concentrate on other interesting aspects of the algorithms.

P2N Operator Note that the base-sets in P3 may have different
names than those in P1, yet the base-sets in P3 might be related
to those in P1 since these are interpreted base-sets. The function
P2N(P2, P1, N) performs the role of relating the sizes of the base-
sets in P1 and P3 using the Witness operator, translating this into a
numerical relationship, and communicating this information to N .

Given any two set-domain elements P , P ′, and a numerical
element N , the function P2N(P, P ′, N) yields a numerical element
that is more precise than N and incorporates information about
numerical relationships between sizes of base-sets in P ′ and those
in P .

P2N(P, P ′, N)
def
= PostPredicateN(N, S)

where S is the conjunction of linear inequalities, one corre-
sponding to each normalized set-inclusion relationship in WS =
Witness(BaseSets(P ′), P ).

S = {
X

i

epi ≤
X

j

ep′j | (
[

i

pi ⊆
[

j

p′j) ∈ WS}

The function PostPredicateN(N, pred) strengthens N by as-
suming the predicate pred.

We require that the P2N operator satisfies the following transi-
tivity property.

PROPERTY 1. For any set-domain elements P, P ′, P ′′ and any
numerical element N , if P �P P ′ �P P ′′, then
∃V : P2N(P ′, P ′′, P2N(P, P ′, N)) = P2N(P, P ′′, N), where V =
SpecialVars(P ′).

The operator P2N is used extensively in the implementation
of the abstract domain operations for the combined domain to
relate base-sets coming from different set-domain elements, and
strengthen the given numerical element with this information.

THEOREM 1. The relation �PonN defined above is, in fact, a pre-
order.

The proof of Theorem 1 is given in Appendix A. To recap, the
pre-order saturates the left element to share information between
the set domain and the numerical domain. It then uses P2N to relate
the base sets of the left element to those of the right element.

The pre-order, as stated above, also defines the logic or formal-
izes the reasoning power of our combination framework. In that re-
gard it is related to decision procedures that have been described for
logics that combine sets, and numerical properties of their cardinal-
ities. However, the two main differences are: (a) Our combination



framework is modular wherein any set analysis can be combined
with any numerical analysis, and (b) more importantly, we show
how to perform abstract interpretation of a program over such a
logic. Performing abstract interpretation requires many more trans-
fer functions besides a decision procedure (such as Join, Widen,
Eliminate, etc).

5. Abstract Interpreter for the Set Cardinality
Domain

Let P and N be any set domain and numerical domain respectively.
In this section, we show how to efficiently combine the abstract
interpreters that operate over the abstract domains P and N to
obtain an abstract interpreter that operates over the set cardinality
domain P on N. Our combination methodology yields the most
precise abstract interpreter for the set cardinality domain P on N
relative to the pre-order defined in Section 4. The key idea of our
combination methodology is to combine the corresponding transfer
functions of the abstract interpreters that operate over the domains
P and N to yield the transfer functions of the abstract interpreter
that operates over the domain P on N.

An abstract interpreter performs a forward analysis on the pro-
gram computing invariants (which are elements of the underlying
abstract domain over which the analysis is being performed) at each
program point. The invariants are computed at each program point
from the invariants at the preceding program points in an iterative
manner using appropriate transfer functions. We first describe our
program model in Section 5.1. In the subsequent sections, we de-
scribe the construction of these transfer functions for the set car-
dinality domain P on N in terms of the transfer functions for the
individual domains P and N.

5.1 Program Model
We assume that each procedure in a program is abstracted using the
flowchart nodes shown in Figure 3.

We allow for assume and assert program statements of the form
assume(pred) and assert(pred), where pred is a predicate that
is either understood by the set domain P, or it is a linear inequality
predicate. The linear inequality predicate can be over program vari-
ables and over special variables that denote the cardinality of some
base-set that can be specified using some base-set constructors ex-
ported by the set domain P.

Since we allow for assume statements, without loss of general-
ity, we can treat all conditionals in the program as non-deterministic
(i.e., control can flow to either branch irrespective of the program
state before the conditional). A join node has two incoming edges.
Note that a join node with more than two incoming edges can be
reduced to multiple join nodes each with two incoming edges.

We now describe the transfer functions for each of the flowchart
nodes.

5.2 Join Node
The abstract element E after a join node (Figure 3(a)) is obtained
by computing the join of the elements E1 and E2 before the join
node using the join operator.

E = JoinD(E1, E2)

The join operator JoinD for a domain D takes as input two
elements E1 and E2 from domain D and computes an optimal
upper bound of E1 and E2 with respect to the pre-order �D. The
following definition makes this more precise.

DEFINITION 1 (Join Operator JoinD). Let E = JoinD(E1, E2).
Then,

• Soundness: E1 �D E and E2 �D E.

• Completeness: If E′ is such that E1 �D E′ and E2 �D E′

and E′ �D E, then E �D E′.

Figure 4 shows how to implement the join operator JoinPonN

for the set cardinality domain P on N using the join operators
JoinP and JoinN for the set and numerical domains in a modular
fashion. The implementation also makes use of the eliminate oper-
ator EliminateN for the numerical domain, which is described in
Section 5.3.

EXAMPLE 3. We explain the implementation of the JoinPonN op-
erator by considering the example in Figure 4(b). This is a simpli-
fied example of a situation that occurs during an in-place reversal
of a linked list. The first input (P1, N1) represents two disjoint lists,
the list pointed to by x is of length 1 and the list pointed to by y is
of length n−1. The second input (P2, N2) also represents two dis-
joint lists. Here, the list pointed to by y is of length 1 and the list
pointed to by x is of length n− 1.

The first step in joining the input elements is to saturate both of
them. Remember that in all the examples, we use saturated elements
to be able to concentrate on the important issues. Thus, the saturate
operation has nothing to add.

Now, the join of the set domain is performed yielding P , which
represents two disjoint lists pointed to by x and y. The P2N operator
is used to strengthen the numerical element by relating the cardi-
nalities of the base-sets of P to the cardinalities of the base-sets in
the original elements. This is done using the Witness operation,
which interprets the base-sets of P using the base-sets of the orig-
inal elements3. For N1 this means that A = E and B = F and
for N2 this means that C = E and D = F . Note that without P2N
there will be no relation between the base-sets of the two inputs
and thus the numerical join would simply return n ≥ 2. Next, the
numerical join is performed. The join loses the fact that one of the
lists was a singleton, but retains the important information that the
sum of the lengths of the lists is n.

Finally, the numerical variables corresponding to the original
base-sets are eliminated to ensure that all the special variables in
the numerical element come from the set-domain element. In case of
polyhedra join, this has no effect as any information on the original
special variables relates to only one of the inputs and is thus lost in
the join.

THEOREM 2. The join operator described in Figure 4(a) satisfies
both the soundness and the completeness property stated in Defini-
tion 1 (provided the join operators for the base domains, JoinP

and JoinN, satisfy these properties, and the eliminate operator
for the numerical domain, EliminateN, satisfies the respective
soundness and completeness properties stated in Definition 2 on
Page 9).

PROOF: Consider the pseudo-code shown in Figure 4(a). First
note that the (P, N) is an element of the set cardinality domain
P on N since SpecialVars(N) ⊆ SpecialVars(P ). (This
is ensured by Line 8.)

We now prove soundness. Since P := JoinP(P ′
1, P

′
2), it

follows from the soundness of JoinP that P ′
1 �P P and

P ′
2 �P P . Similarly, since N := JoinN(N ′′

1 , N ′′
2 ), it follows

from the soundness of JoinN that N ′′
1 �N N and N ′′

2 �N N .
It follows from the soundness of EliminateN that N �N N ′,
and hence N ′′

1 �N N ′ and N ′′
2 �N N ′. It now follows from

the definition of �PonN that (P1, N1) �PonN (P, N ′) and
(P2, N2) �PonN (P, N ′).

3 Because any relation added by P2N is based on the Witness operation
and the original elements are saturated, no new relationships will be added
among the original base-sets.



JoinPonN((P1, N1), (P2, N2)) =
1 (P ′

1, N
′
1) := Saturate(P1, N1);

2 (P ′
2, N

′
2) := Saturate(P2, N2);

3 P := JoinP(P ′
1, P

′
2);

4 N ′′
1 := P2N(P ′

1, P, N ′
1);

5 N ′′
2 := P2N(P ′

2, P, N ′
2);

6 N := JoinN(N ′′
1 , N ′′

2 );
7 V := SpecialVars(N)− SpecialVars(P )
8 N ′ := EliminateN(N, V );
9 Output (P, N ′);

Inputs:
P1 = [x 7→ nil]A ? [ls(y, nil)]B

N1 = A = 1 ∧B = n− 1 ∧B ≥ 1
P2 = [ls(x, nil)]C ? [y 7→ nil]D

N2 = D = 1 ∧ C = n− 1 ∧ C ≥ 1
Trace of JoinPonN((P1, N1), (P2, N2)):

P = [ls(x, nil)]E ? [ls(y, nil)]F

N ′′
1 = A = E ∧B = F ∧A = 1 ∧B = n− 1 ∧B ≥ 1

N ′′
2 = C = E ∧D = F ∧D = 1 ∧ C = n− 1 ∧ C ≥ 1
N = E + F = n ∧ E ≥ 1 ∧ F ≥ 1
N ′ = E + F = n ∧ E ≥ 1 ∧ F ≥ 1

(a) Algorithm (b) Example

Figure 4. This figure describes the algorithm for join transfer function for set cardinality domain P on N in terms of the join transfer
functions for the domains P and N along with an example.

EliminatePonN((P, N), `) =
1 (P ′, N ′) := Saturate(P, N);
2 P1 := EliminateP(P ′, `);
3 N1 := P2N(P ′, P1, N

′);
4 V := {`} ∪ SpecialVars(N1)− SpecialVars(P1)
5 N2 := EliminateN(N1, V );
6 Output (P1, N2);

Inputs:
P = [ls(x, z)]A ? [ls(z, nil)]B

N = A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k
` = z

Trace of EliminatePonN((P, N), `):
P1 = [ls(x, nil)]C

N1 = A + B = C ∧A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k
V = {z, A, B}

N2 = C = n + k ∧ n ≥ 1 ∧ k ≥ 1

(a) Algorithm (b) Example

Figure 5. This figure describes the algorithm for existential elimination for the set cardinality domain P on N in terms of the existential
elimination algorithms for the domains P and N along with an example.

We now prove completeness. Suppose (P3, N3) is such that
(P1, N1) �PonN (P3, N3) and (P2, N2) �PonN (P3, N3) and
(P3, N3) �PonN (P, N). Then, it follows from the definition of
�PonN and Lemma 1 (Page 14) that P ′

1 �P P ′
3 ∧N ′′′

1 �N N3,
P ′

2 �P P ′
3 ∧ N ′′′

2 �N N3, and P ′
3 �P P ∧ N ′′′

3 �N N ,
where N ′′′

1 = P2N(P ′
1, P3, N

′
1), N ′′′

2 = P2N(P ′
2, P3, N

′
2),

N ′′′
3 = P2N(P ′

3, P, N ′
3), and (P ′

3, N
′
3) = Saturate(P3, N3).

Since P := JoinP(P ′
1, P

′
2), it follows from the completeness

of JoinP that P �P P ′
3, and hence P �P P3 (since clearly

P ′
3 �P P3). Let (P ′, N ′′) = Saturate(P, N ′). It now suf-

fices to show that P2N(P ′, P3, N
′) �N N3.

P2N(P ′, P3, N)

= P2N(P ′, P3, JoinN(N ′′
1 , N ′′

2 ))

�N JoinN(P2N(P ′, P3, N
′′
1 ), P2N(P ′, P3, N

′′
2 )) (4)

= JoinN(P2N(P ′, P3, P2N(P
′
1, P, N ′

1)),

P2N(P ′, P3, P2N(P
′
2, P, N ′

2)))

�N JoinN(P2N(P ′
1, P3, N

′
1), P2N(P

′
2, P3, N

′
2)) (5)

�N JoinN(N3, N3) = N3 (6)

We first explain why Eq. 4 holds. First, note that P ′ and
P ′

3 refer to the same abstract element (as P ′
3 �P P ′ and

P ′ �P P ′
3), and hence BaseSets(P ′) = BaseSets(P ′

3) =
BaseSets(P3). Let σ denote the bijective mapping from the
special variables in SpecialVars(P3) to those in SpecialVars(P ′)
that correspond to the same base-set. For any numerical ele-
ment N4, P2N(P ′, P3, N4) only adds the variable equalities to
N4 that correspond to v = σ(v) for all v ∈ SpecialVars(P3).
Now, note that JoinN(P2N(P ′, P3, N

′′
1 ), P2N(P ′, P3, N

′′
2 ))σ

= JoinN(N ′′
1 , N ′′

2 ) since without loss of any generality, we
can assume that the special variables in SpecialVars(P3) do
not occur in N ′′

1 and N ′′
2 (since we can always rename them).

Hence, P2N(P ′, P3, JoinN(N ′′
1 , N ′′

2 )) =

P2N(P ′, P3, JoinN(P2N(P ′, P3, N
′′
1 ), P2N(P ′, P3, N

′′
2 ))σ) �N

JoinN(P2N(P ′, P3, N
′′
1 ), P2N(P ′, P3, N

′′
2 )). The last deduc-

tion above follows from the fact that for any numerical element
N5, we have PostPredicateN(N5[x/y], x = y) �N N5

(provided PostPredicateN is complete).

Eq. 5 follows from the following property of P2N operator
(which in turn is a corollary of Property 1 (Page 6)): For any
set-domain elements P4, P5, P6 and any numerical element N ,
if P4 �P P5 �P P6, then P2N(P5, P6, P2N(P4, P5, N)) �N

P2N(P4, P6, N). Also, note that P2N(P ′
1, P, N ′

1) =
P2N(P ′

1, P
′, N ′

1) and P2N(P ′
2, P, N ′

2) = P2N(P ′
2, P

′, N ′
2)

since BaseSets(P ) = BaseSets(P ′).

Eq. 6 follows from the completeness of JoinN operator.

Now, observe that without loss of generality, we can assume
that SpecialVars(N1) and SpecialVars(N2) are disjoint
from SpecialVars(N3) (since we can always rename the spe-
cial variables that correspond to cardinalities of base-sets). It
now follows from the completeness of EliminateN operator
that P2N(P, P3, N

′) �N N3 since N ′ = EliminateN(N, V )
and N3 does not involve any variables in the set V .

�

5.3 Assignment Node
The abstract element E′ after an assignment node ` := e (Fig-
ure 3(b)) is the strongest postcondition of the element E before the
assignment node with respect to the assignment ` := e. It is com-
puted by using an existential quantification operator EliminateD

as described below.

E′ = EliminateD(E1, x
′)

where E1 = PostPredicateD(E[x′/x], x = e[x′/x])



The post-predicate operator PostPredicateD is defined in
Section 5.4. The existential quantification operator EliminateD

for any domain D takes as input an element E from D and an
lvalue `, and produces the least element that is above E and does
not get affected by any change to `.

DEFINITION 2 (Eliminate Operator EliminateD). Let
E′ = EliminateD(E, `). Then,

• Soundness: E �D E′ and E′ does not get affected by any
change to `.

• Completeness: If E′′ is such that E �D E′′ and E′′ does not
get affected by any change to `, then E′ �D E′′.

Figure 5 shows how to implement the eliminate operator
EliminatePonN for the set cardinality domain P on N using the
eliminate operators EliminateP and EliminateN for the set and
numerical domains in a modular fashion.

EXAMPLE 7. We demonstrate the implementation of the operator
EliminatePonN by the example in Figure 5(b). The example comes
from appending two linked lists. The input is a list pointed to by x
whose original length is n and a list pointed to by z whose length is
k. The second list has been appended to the first list. Now, we wish
to existentially eliminate z.

First, we eliminate z from the set domain, yielding P1, a list
pointed to by x, losing the information on where z pointed to.
Next, we use P2N to express the cardinalities of the base-sets of
P in terms of the cardinalities of the base-sets of P1. In this case,
A + B = C, i.e., the sum of the lengths of the two parts of the
list in P is equal to the length of the list in P1. Next we eliminate
z and variables corresponding to the original base-sets from the
numerical element. This loses the original partition of the list and
retains the important information that the length of the list is n+k.

THEOREM 3. The Eliminate operator described in Figure 5(a) sat-
isfies both the soundness and the completeness property stated in
Definition 2 (provided the eliminate operator for the base domains,
EliminateP and EliminateN, satisfy these properties).

PROOF: Consider the pseudo-code shown in Figure 5(a). Note that
(P1, N2) is an element of P on N since SpecialVars(N2) ⊆
SpecialVars(P1). (This is ensured by Line 5.)

We first prove soundness. It follows from the soundness of
EliminateP that P ′ �P P1 and change in ` does not affect
P1. It follows from the soundness of EliminateN that N1 �N

N2 and change in ` does not affect N2. Hence, change in ` does
not affect (P1, N2), and (P, N) �PonN (P1, N2).

We now prove completeness. Let (P ′
1, N

′
2) be such that

(P, N) �PonN (P ′
1, N

′
2) and (P ′

1, N
′
2) does not get affected by

change in `.

• From the above assumptions, we conclude that P ′
1 does not get

affected by change in `, and that P ′ �P P ′
1. It now follows

from completeness of EliminateP that P1 �P P ′
1.

• From the above assumptions, we conclude that
P2N(P ′, P ′

1, N
′) �N N ′

2. Thus,

P2N(P1, P
′
1, N1) = P2N(P1, P

′
1, P2N(P

′, P1, N
′))

�N P2N(P ′, P ′
1, N

′) (8)
�N N ′

2

Eq. 8 follows from the following property of P2N operator
(which in turn is a corollary of Property 1 (Page 6)): For any
set-domain elements P4, P5, P6 and any numerical element N ,

if P4 �P P5 �P P6, then P2N(P5, P6, P2N(P4, P5, N)) �N

P2N(P4, P6, N).
It follows from completeness of EliminateN operator that
EliminateN(P2N(P1, P

′
1, N1), V ) �N EliminateN(N ′

2, V ).
Now, observe that without loss of generality, we can as-
sume that SpecialVars(P ) and SpecialVars(P ′

1) are dis-
joint (since we can always rename the special variables that
correspond to cardinalities of base-sets). Since P1, P

′
1, N

′
2

do not get affected by any change to lvalues in V , it fol-
lows that P2N(P1, P

′
1, EliminateN(N1, V )) �N N ′

2, i.e.,
P2N(P1, P

′
1, N2) �N N ′

2.

This implies that (P1, N2) �PonN (P ′
1, N

′
2).

�

5.4 Assume Node
The abstract element E′ after an assume node Assume(pred) (Fig-
ure 3(c)) is obtained by using the post-predicate operator described
below.

E′ = PostPredicateD(E, pred)

The post-predicate operator PostPredicateD for a domain D
takes as input an abstract element E from domain D and a pred-
icate pred and returns the most precise abstract element E′ such
that γD(E′) ⊇ γD(E) ∩ γ(pred), where γ is the concretization
operation. The following makes this more precise.

DEFINITION 3 (Post-predicate Operator PostPredicateD). Let
E′ = PostPredicateD(E, pred). Let γD denote the concretiza-
tion function for domain D. Then,

• Soundness: γD(E′) ⊇ γD(E) ∩ γ(pred).
• Completeness: If E′′ is such that γD(E′) ⊇ γD(E)∩γ(pred),

then E′ �D E′′.

Figure 6 shows how to implement the post-predicate operator
PostPredicatePonN for the set cardinality domain P on N using
the post-predicate operators for the set and numerical domains
(PostPredicateP and PostPredicateN) in a modular fashion.

EXAMPLE 9. We demonstrate the PostPredicatePonN operator
by the example in Figure 6(b). We return to the example of a list
of length n pointed to by x to which a list of length k pointed to
by z has been appended. We wish to assume the predicate m =
|ls(x, nil)|, i.e., that m is the length of the entire list pointed to by
x. Note that the predicate refers to a base-set that P can interpret
but is not in BaseSets(P ). The variable that represents the length
of the list pointed to by x is C. First we assume that m = C. Next,
P2N is used to interpret C in terms of the cardinalities of the base-
sets in P . In this case, C = A+B, i.e., the sum of the lengths of the
two parts of the list. Finally, we eliminate the special variables that
do not correspond to the base-sets in BaseSets(P ). In this case, C
is eliminated, retaining the important information that m = n+k.

THEOREM 4. The post-predicate operator described in Figure 6(a)
satisfies the soundness property stated in Definition 3 (provided the
post-predicate operators for the base domains, PostPredicateP

and PostPredicateN, satisfy the same soundness property, and
the eliminate operator for the numerical domain, EliminateN,
satisfies the respective soundness property stated in Definition 2).

The proof of Theorem 4 follows simply from the observation that
the concretization function for the combined domain is the inter-
section of the concretization functions of the set domain and the
numerical domain. However, note that the post-predicate operator
described in Figure 6(a) does not necessarily satisfy the complete-
ness property stated in Definition 3 because the pre-order for the



PostPredicatePonN((P, N), pred) =
1 if pred is an arithmetic predicate:
2 V := SpecialVars(pred)− SpecialVars(P );
3 N1 := PostPredicateN(N, pred);
4 N2 := P2N(P, V, N1);
5 N3 := EliminateN(N2, V );
6 return (P, N3);
7 else // pred is set predicate:
8 P1 := PostPredicateP(P, pred);
9 return (P1, N)

Inputs:
P = [ls(x, z)]A ? [ls(z, nil)]B

N = A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k
pred = |[ls(x, nil)]C | = m

Trace of PostPredicatePonN((P, N), pred):
V = {C}

N1 = m = C ∧A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k
N2 = A + B = C ∧m = C ∧A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k
N3 = A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k ∧m = n + k

(a) Algorithm (b) Example

Figure 6. This figure describes the algorithm for the post-predicate operation (transfer function for assume node) in the set cardinality
domain P on N in terms of the post-predicate operations for the individual domains P and N along with an example.

combined domain �PonN only accounts for a limited (not neces-
sarily complete) sharing of information between the set domain and
the numerical domain. In other words, our pre-order is not the best
partial-order that corresponds to the concretization function for the
combined domain.

5.5 Fixed-point computation
In presence of loops, the abstract interpreter goes around each
loop until a fixed point is reached. A fixed point is said to be
reached when the abstract elements E1, E2 over domain D at any
program point inside the loop in two successive iterations of that
loop represent the same set of concrete elements, i.e., E1 �D E2

and E2 �D E1.
If the domains P or N have infinite chains, then fixed point for a

loop may not be reached in a finite number of steps. In that case, a
widening operation may be used to over-approximate the analysis
results at loop heads.

A widening operator for a domain D takes as input two elements
from D and produces an upper bound of those elements (which
may not necessarily be the least upper bound). A widening operator
has the property that it guarantees fixed point computation across
loops terminates in a finite number of steps even for infinite height
domains.

A widen operator WidenD for a domain D takes as input two
elements E1 and E2 from domain D and returns an element E with
the following property:

DEFINITION 4 (Widening Operator WidenD).
Let E = WidenD(E1, E2). Then,

• Soundness: E1 �D E and E2 �D E.
• Convergence: The sequence of widen operations converges in

a bounded number of steps, i.e., for any strictly increasing
sequence E0, E1, . . . (such that Ei �D Ei+1 but Ei+1 6�D Ei

for all i) , if we define E′
0 := E0, E′

1 := WidenD(E′
0, E1),

E′
2 := WidenD(E′

1, E2), . . ., then there exists i ≥ 0 such that
E′

j �D E′
i and E′

i �D E′
j for all j > i.

Figure 7 shows how to implement the widen operator WidenPonN

for the set cardinality domain P on N using the widen operators
WidenP and WidenN for the set and numerical domains in a mod-
ular fashion.

EXAMPLE 10. We demonstrate the WidenPonN operator by the
example in Figure 7(b). This example is taken from a program that
creates a list of length n. After the first iteration, the list pointed
to by x is a singleton and the loop counter i = 1. After the
second iteration, the length of the list pointed to by x is between
1 and 2 and i equals the length of the list. Note that using Join,
the constant 2 will keep increasing without ever converging. The

Widen operator for the set domain is equivalent to Join for this
set domain and returns a non-empty list pointed to by x. The
P2N operator expresses the cardinalities of the original base-sets
in terms of this new list. Eliminating the special variables for
the original base-sets yields numerical elements in which all the
information is in terms of the new base-set. This elimination is
necessary to ensure the widening operator precondition that N ′′

2

is weaker than N ′′
1 . Finally, the numerical widen operator loses the

possible range of the length of the list, but retains the important
information that the length of the list equals the iteration number
and that i ≤ n, which will allow us to prove that after the loop
terminates the length of the list is n.

The Widen operation described in Figure 7 clearly satisfies the
soundness property described above. It also satisfies the conver-
gence property; as stated in the theorem below.

THEOREM 5. The Widen operation described in Figure 7 satisfies
the convergence property stated in Definition 4 (provided the Widen
operations for the base domains, WidenP and WidenN, satisfy
Definition 4).

PROOF: Let (P1, N1), (P2, N2), . . . , be any chain of elements
in the set cardinality domain that arise at a given program point
during successive loop iterations. Let (Q1, M1) = (P1, N1)
and (Qi+1, Mi+1) = WidenPonN((Qi, Mi), (Pi, Ni)). Then,
according to Lemma 5 in Appendix B, we have (1) Qi �P Qj

for all i < j, and (2) If Qj �P Qi for some i < j, then
Mk �N Mk+1σ and Mk+1σ 6�N Mk for all i ≤ k < j
(otherwise the fixed-point computation converges), where σ is
some bijective variable renaming. Lemma 2 (in Appendix B)
bounds the number of times Qi can strictly increase. Lemma 4
(in Appendix B) bounds the number of times Mi can strictly in-
crease in case Qi is stationary up to variable renaming. Hence,
the length of the chain is bounded above by the product of the
number of times Qi can strictly increase and the number of
times Mi can strictly increase up to variable renaming. Hence,
the result.

�

5.6 Assert Node
After fixed-point has been reached, the results of the abstract inter-
preter can be used to validate given assertions in the program. Let
E be the abstract element computed by the abstract interpreter im-
mediately before an assert node Assert(pred) after fixed-point
computation. The assertion pred can be validated by using the
ImpliesD operator that takes as input an abstract element E and a
predicate pred and checks whether or not E implies pred.



WidenPonN((P1, N1), (P2, N2)) =
1 (P ′

1, N
′
1) := (P1, N1);

2 (P ′
2, N

′
2) := Saturate(P2, N2);

3 P := WidenP(P ′
1, P

′
2);

4 N ′′
1 := P2N(P ′

1, P, N ′
1);

5 N ′′
2 := P2N(P ′

2, P, N ′
2);

6 N ′′′
1 := EliminateN(N ′′

1 , SpecialVars(N ′
1)− SpecialVars(P ));

7 N ′′′
2 := EliminateN(N ′′

2 , SpecialVars(N ′
2)− SpecialVars(P ));

8 N := WidenN(N ′′′
1 , N ′′′

2 );
9 Output (P, N);

Inputs:
P1 = [x 7→ nil]A

N1 = A = 1 ∧ i = 1 ∧ i ≤ n
P2 = [ls(x, nil)]B

N2 = B ≥ 1 ∧B ≤ 2 ∧ i = B ∧ i ≤ n
Trace of WidenPonN((P1, N1), (P2, N2)):

P = [ls(x, nil)]C

N ′′
1 = C = A ∧A = 1 ∧ i = 1 ∧ i ≤ n

N ′′
2 = C = B ∧B ≥ 1 ∧B ≤ 2 ∧ i = B ∧ i ≤ n

N ′′′
1 = C = 1 ∧ i = C ∧ i ≤ n

N ′′′
2 = C ≥ 1 ∧ C ≤ 2 ∧ i = C ∧ i ≤ n
N = C ≥ 1 ∧ i = C ∧ i ≤ n

(a) Algorithm (b) Example

Figure 7. This figure describes the algorithm for widening for set cardinality domain P on N in terms of the widening algorithms for the
domains P and N along with an example.

ImpliesPonN((P, N), pred) =
1 (P1, N1) := Saturate(P, N);
2 if pred is an arithmetic predicate:
3 V := SpecialVars(pred)− SpecialVars(P );
4 N2 := P2N(P, V, N1);
5 return ImpliesN(N2, pred);
6 else // pred is set predicate:
7 return ImpliesP(P1, pred);

Inputs:
P = [ls(x, z)]A ? [ls(z, nil)]B

N = A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k
pred = |[ls(x, nil)]C | = n + k

Trace of ImpliesPonN((P, N), pred):
V = {C}

N2 = A + B = C ∧A ≥ 1 ∧B ≥ 1 ∧A = n ∧B = k

(a) Algorithm (b) Example

Figure 8. This figure describes the algorithm for the implication checking transfer function ImpliesPonN in terms of the implication
checking transfer functions for the domains P and N along with an example.

Program Loop Invariant Base-set Constructor

Acyclic List |R(x′)| = |R(x)| − |R(y)| R(x) = ∅, if x = null

= {x} ∪R(x → next), otherwise

Cyclic List |R(x′, y′)| = |R(x, y)| R(x, y) = ∅, if x = y

= {x} ∪R(x → next, y), otherwise

Tree |Rt(x
′)| = |Rt(x)| Rt(x) = ∅, if x = null

= {x} ∪Rt(x → left) ∪Rt(x → right), otherwise

n-ary Tree |Rn(x′, 0, i)| = |Rn(x, 0, i)|

Rn(x) = Rn(x, 0, x → nrChild)

Rn(x, low, high) = ∅, if x = null

= {x} ∪
[

low≤k<high

Rn(x → children[k])

List of Lists |R`(x
′)| = |R`(x)| − |R`(y)| R`(x) = ∅, if x = null

= R(x → list) ∪R`(x → nextL), otherwise

List of Arrays
(e.g., StringBuffer) |Ra(x′)| = |Ra(x)| − |Ra(y)|

A(x, l, h) = {x[k] | l ≤ k < h}
Ra(x) = ∅, if x = null

= A(x → arr, 0, x → len) ∪Ra(x → next), otherwise
Array of Lists
(e.g., Hashtable) |T (x′, 0, i)| = |T (x, 0, i)| T (x, low, high) =

[
low≤k<high

R(x[k])

Table 1. This table describes the loop invariants (and hence illustrates the choice of the set analysis domain) required to analyze the Copy
routine of various data-structures. The property discovered is the relationship between the size of the output data-structure with the size of
the input data-structure.

Figure 8 shows how to implement the operator ImpliesPonN

in terms of the operators ImpliesP and ImpliesN, along with an
example.

6. Case Study
The choice of which set analysis and which numerical analysis to
combine depends on what data-structures and what properties of
those data-structures we want to analyze. Different data-structures
typically require different base-set constructors, while different



Program Loop Invariant Numerical Domain
Copy |R(x′, null)| = |R(x, y)| Variable Equalities
Reverse |R(x′, null)| = |R(x, y)| Variable Equalities
Filter |R(x′, null)| ≤ |R(x, y)| Difference Constraints
Merge |R(x′, y′)| = |R(x1, y1)|+ |R(x2, y2)| Karr’s Domain [19] (arbitrary linear equalities)
Merge Without Duplicates |R(x′, y′)| ≤ |R(x1, y1)|+ |R(x2, y2)| Polyhedra Domain [8] (Linear Inequalities)

Table 2. This table describes the loop invariants (and hence illustrates the choice of the numerical analysis domain) required to analyze
various routines of acyclic list data-structure. The property discovered is the relationship between the size of the output data-structure with
the size of the input data-structure.

operations on the same data-structure typically require different
numerical domains. We illustrate this by two sets of examples.

Table 1 shows the loop invariants required to establish relation-
ships between the size of the output data-structure and the size
of the input data-structure for Copy function. These examples re-
quire different set domains, but the same numerical domain, namely
Karr’s linear equalities domain, works for all of these examples.
The base-set constructors given here are used to informally demon-
strate the type of invariants the set domain should be able to rep-
resent. The exact way that these base-sets are defined changes ac-
cording to the set domain used.

Table 2 shows the loop invariants required to establish relation-
ships between the sizes of the output data-structure and the size
of the input data-structure on various functions for an acyclic list
(see Table 1 for the definition of R(x, y)). These examples require
different numerical domains, but the same set analysis domain,
namely one that provides a “reachability via next link” base-set
constructor, works for all of these examples.

It is also interesting to note that in order to validate a given
program, one can either choose a more precise set domain or a
more precise numerical domain. For example, consider proving
the data-structure invariant for the list copy example. The induc-
tive invariant required to prove that the size of the copied list
is the same as the size of the input list can either be expressed
as |R(x′, null)| = |R(x, y)| (see Copy example in Table 2) or
|R(x′)| = |R(x)| − |R(y)| (see Acyclic List example in Table 1).
The former is an element in the set cardinality domain built from a
relatively more precise set domain (i.e., one that supports R(x, y)
as a base-set constructor as opposed to simply supporting R(x)),
but a relatively less precise numerical domain (i.e., one that sup-
ports variable equalities, as opposed to arbitrary linear equalities).

The above observations are not supposed to imply that for each
program, we need to work with a different combination of a set
domain and a numerical domain. Certain set domains and certain
numerical domains are more precise than several others; but pre-
cision comes at the cost of efficiency. Hence, we need to estimate
the least precise set domain and the least precise numerical domain
that would be good enough to reason about desired properties of
desired programs.

6.1 Experimental Results
We have implemented an instance of the combination framework
by combining the TVLA system [21] with the Polyhedra abstract
domain [8] as implemented by the PPL library [2] using some extra
widening heuristics. We chose these domains as they can together
handle all of the benchmarks described below. Using less precise
domains it would be possible to prove some of these benchmarks
with better efficiency. Table 3 summarizes the results of running the
tool on a set of benchmarks. In all cases, the properties specified
were proven without false alarms. The benchmarks were run on
a 2.4GHz E6600 Core 2 Duo processor with 2 GB of memory
running Linux. For each program we give the time, the overhead
factor over running TVLA without cardinality support, and the total

number of abstract shape graphs generated in the analysis. Note
that the overhead is rather low with an average of 60%. In some
cases, the analysis with cardinality is even faster, as it can prune
some of the search space using the more precise domain. In some of
the examples, running without cardinality support yields memory
safety false alarms.

The benchmarks are divided into the five categories detailed
below.

StringBuffer We analyzed the two most challenging methods
from among the methods supported by the String Buffer class (as
implemented in Microsoft product code): SBRemove (see Figure 1)
and SBToString. SBToString converts a StringBuffer to a single
string by allocating an array of the appropriate size and copying
the characters in the correct order. We prove memory safety and
data structure invariants on both examples. In SBRemove, we prove
that the number of characters in the resulting StringBuffer is in
sync with the number of characters removed. In SBToString, we
prove that the size of the resulting string equals the number of
characters in the original StringBuffer. These examples combine
recursively defined data structures with arrays and demonstrate
how the domain can track non-trivial relationships between the
heap and the numerical variables in the programs.

Termination We prove termination of two non-trivial examples:
BubbleSort (see Figure 2) and Mark. The Mark example performs
a DFS scan of a graph marking nodes as they are visited and
using a stack for pending nodes. The scan terminates when the
pending stack is empty. Proving termination in this case is non
trivial as the pending stack can grow as well as shrink in each
iteration. Our technique is able to prove termination of this example
by establishing the inductive invariant that the instrumented loop
counter is bounded above by the cardinality of the set of nodes
whose visited flag has been set to true.

Linked List Examples This includes all examples in Table 2. We
prove memory safety and data-structure invariants for all examples.
In Reverse we prove that the length of the reversed list equals the
length of the original list. In filter we prove that the length of the
list is less or equal to the length of the original list. In Merge we
prove that the length of the resulting list is the sum of lengths of
the original lists. In MergeNoDups we prove that the length of the
resulting list is less or equal to the sum of lengths of the original
lists.

Data Structure Copy This includes all examples in Table 1.
These examples illustrate the power of our technique for prov-
ing bounds on memory allocation in terms of inputs. We prove that
the size of the copied data-structure is equal to the size of the orig-
inal input data-structure. Note that since a deep copy is performed,
the relationship between the memory locations of the original data
structure and the copied one cannot be expressed using set compar-
ison operators (like set equality or set inclusion).

JDK Collections Library We have used the tool to analyze most
functions of the LinkedList and HashMap classes of JDK 5.0 [1].



Category Program Time Over- States
(secs) head

String SBRemove 295.21 2.83 50,615
Buffer SBToString 79.53 3.15 10,176

BubbleSort 3.57 0.54 886
Termination Mark 2.44 3.02 1,530

Reverse 0.34 1.64 90
Linked Filter 0.76 0.54 238

List Merge 1.08 1.88 341
MergeNoDups 4.06 2.53 1,838
AcyclicListCopy 0.39 1.44 74
CyclicListCopy 4.54 1.20 155

Data TreeCopy 4.15 1.45 642
Structure NaryTreeCopy 138.20 N/A 5,439

Copy ListOfListsCopy 39.95 1.44 5,353
ListOfArraysCopy 12.67 1.02 2,260
ArrayOfListsCopy 7.99 0.30 1,628
LLAdd 1.45 2.23 17

JDK LLAddAll 10.93 0.02 215
Collections LLRemove 2.51 1.20 173

Library HMPut 9.45 1.02 3,132
HMPutAll 111.84 2.59 22,431
HMRemove 2.13 1.92 725

Table 3. Experimental results for the set cardinality benchmarks

The LinkedList class implements a circular doubly-linked list and
the HashMap class implements an array of disjoint singly-linked
lists. These functions, listed in Table 3, include the ones used
to add a single element, add multiple elements and remove an
element. We prove memory safety, data-structure invariants, and
correct maintenance of the size field in all the examples (i.e., the
size field corresponds to the number of elements in the collection).
In addition, for HMPutAll we prove that the size of the resulting
HashMap is greater or equal to the sizes of the original HashMaps,
and less or equal to their sum.

7. Related Work
Combining Abstractions
The seminal paper by Cousot and Cousot in [7] introduces different
methods for combining abstract domains including reduced prod-
uct, which can be used to explain our domain construction (see [9]
for further elaboration on domain constructors). However, the prob-
lem of developing an effective procedure for computing abstract
transformers for reduced products has been addressed only in spe-
cific settings. Gulwani and Tiwari gave algorithms for constructing
the transfer functions for reduced products for a special case of
abstract domains (called logical abstract domains) with the further
restriction that the abstract domains being combined should be over
convex theories with disjoint signatures [16]. Their methodology is
not applicable in our setting since the abstract domains that we con-
sider in this paper, namely set domains and numerical domains, do
not fit the required restrictions: the set domain is not convex, and
furthermore, the set domain and the numerical domain both share
the cardinality function symbol. Our work thus extends the line of
work on constructive synthesis of abstract transformers for reduced
product domains (from the abstract transformers of individual do-
mains) for an important class of domains.

Combining Heap and Numerical Abstractions
The idea to combine numeric and pointer analysis for establishing
properties of memory was pioneered by Alain Deutsch [10, 11].
Deutsch’s abstraction deals with may-aliases in a rather precise

way but loses most of the information when the program performs
destructive memory updates.

In [18] a type and effect system is suggested for a variant of
ML that allows to bound the size of memory used by the program
with applications to embedded code. There, the type system allows
verifying bounds on memory usage while our analysis can be used
to infer the bound. Furthermore, their type system is for a func-
tional language while our analysis is appropriate for an imperative
language with destructive pointer updates.

In [17] linear typing and linear programming based inference
are used to statically infer linear bounds on heap space usage of
first-order functional programs running under a special memory
mechanism. In contrast, our method handles imperative programs
which use destructive updates.

In [34] an algorithm for inferring sizes of singly-linked lists was
presented. This algorithm uses the fact that the number of uninter-
rupted list segments in singly-linked lists is bounded. This limits
the applicability of the method for showing specific properties of
singly-linked lists. Similar restrictions apply to [3, 22].

A general method for combining numeric domains and canoni-
cal abstraction was presented in [14]. Their method is orthogonal to
ours, as it addresses the problem of abstracting values of numerical
fields. On the other hand, our work is concerned with cardinalities
of memory partitions. Combining the methods can be very useful
and is the subject of future work.

Rugina [31] presents a static analysis that can infer quantitative
properties (namely height and skewness) of tree-like heaps. Rugina
does not address the issue of sizes of data structures and is limited
to tree-like heaps. On the other hand, Rugina can handle properties
such as height, which are beyond the scope of this paper.

In [5] a method is presented for analyzing a memory allocator
by interpreting memory segments as both raw buffers and struc-
tured data. However, their method presents a limited way of treat-
ing sizes of chunks of memory since they are limited to contiguous
chunks of memory and cannot handle sizes of recursive data struc-
tures.

In [15], a specialized canonical abstraction was applied to ana-
lyze properties of arrays. Arrays are partitioned into the parts be-
fore, at, and after a given index. This gives a way to track sizes of
specific partitions. However, it does so only in the special case of ar-
rays. Furthermore, it cannot track sizes of partitions other than the
ones formed by index variables. Specifically, their method would
not be able to handle examples such as StringBuffer remove.

Reducing Pointer to Integer Programs
In [13, 3, 22] it was proposed to conduct pointer analysis in a pre-
pass and then to convert the program into an integer program to
allow integer analysis to check the desired properties. This “re-
duction based approach” allows using different integer analyzers
on the resulting program. Furthermore, for proving simple prop-
erties of singly-linked lists it was shown in [3], that there is no
loss of precision. However, it may lose precision in cases where
the heap and numerics interact in complicated ways. Also, the re-
duction may be too expensive. Our transformers avoid these issues
by iterating between the two abstractions and allowing information
flow in both directions. Furthermore, our framework allows for an
arbitrary set domain (it is not restricted to domains that can rep-
resent only singly-linked lists). Finally, proving soundness in our
case is simpler.

Decision Procedures for Reasoning about Heap and
Arithmetic
One of the challenging problems in the area of theorem proving
and decision procedures is to develop methods for reasoning about
arithmetic and quantification.



In [20] an algorithm for combining Boolean algebra and quanti-
fier free Presburger arithmetic is presented. Their approach presents
a complete decision procedure for their specific combined do-
main. In contrast, our method supports set domains that go beyond
Boolean algebra formulas and can thus express more complicated
invariants. More significantly our approach provides an effective
method for computing transformers for performing abstract inter-
pretation, which their method does not. Fortunately, by careful de-
sign of the interface between the abstract domains, we avoid solv-
ing the complex constraints which their algorithm handles.

In [27] a logic based approach that involves providing an entail-
ment procedure is presented. Their logic allows for user-defined
well-founded inductive predicates for expressing shape and size
properties of data-structures. They can express invariants that in-
volve other numeric properties of data structures such as height of
trees. However, their approach is limited to separation logic while
ours can be used in a more general context. In addition their ap-
proach does not infer invariants, requiring a heavy annotation bur-
den, while our approach is based on abstract interpretation and can
thus infer loop and recursive invariants.
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A. �PonN is a pre-order.
The proof of �PonN being a pre-order follows from Claim 1 and
Claim 2, stated and proved below. We start by introducing some
useful notation and a useful lemma.

We use the notation fst(P, N) and snd(P, N) to project out
the first and second elements of the input pair respectively, i.e.,
fst(P, N) = P and snd(P, N) = N .

The following lemma states that the pre-order �PonN is closed
under the Saturate operator.



LEMMA 1. Let (P1, N1) �PonN (P2, N2), i.e., P ′
1 �P P2 and

P2N(P ′
1, P2, N

′
1) �N N2, where (P ′

1, N
′
1) = Saturate(P1, N1).

Then (P1, N1) �PonN Saturate(P2, N2), i.e., P ′
1 �P P ′

2 and
P2N(P ′

1, P
′
2, N

′
1) �N N ′

2, where (P ′
2, N

′
2) = Saturate(P2, N2).

PROOF: We first prove that P ′
1 �P P ′

2.

P ′
1 = fst(Saturate(P ′

1, N
′
1)) (11)

= fst(Saturate(P ′
1, P2N(P

′
1, P2, N

′
1))) (12)

�P fst(Saturate(P2, N2)) (13)
= P ′

2 (follows from Definition of P ′
2)

Eq. 11 follows from the definition of the Saturate operator,
and Eq. 13 follows from the fact that Saturate is (clearly)
monotone in both its arguments.

Eq. 12 follows from the fact that adding extra information to
N ′

1 (using the P2N operator) about the special variables that
denote the cardinalities of the base-sets in P2 (which we can
assume without loss of generality are fresh variables that did
not already occur in N ′

1) does not affect any information that
N ′

1 can communicate to P ′
1 (in the Saturate process). This

is because a formula φ is logically equivalent to a formula
∃X(φ ∧ φ′), if X does not occur in φ and φ′ has the property
that ∃X(φ′) ≡ true.

We now prove that P2N(P ′
1, P

′
2, N

′
1) �N N ′

2.

P2N(P ′
1, P

′
2, N

′
1)

= P2N(P ′
1, P

′
2, snd(Saturate(P

′
1, N

′
1))) (14)

= snd(Saturate(P ′
1, P2N(P

′
1, P

′
2, N

′
1))) (15)

�N snd(Saturate(P2, N2)) (16)
= N ′

2 (17)

Eq. 14 follows from the definition of the Saturate oper-
ator, and Eq. 16 follows from the fact that Saturate is
monotone in its arguments. Eq. 15 follows from the fact
that during Saturate(P, N), N communicates information
to P only about the base-sets in BaseSets(P ) while during
P2N(P, P ′, N), P communicates information to N only about
the base-sets in BaseSets(P ′); and without loss of any gen-
erality, we can assume that BaseSets(P1) and BaseSets(P2)
are disjoint in Eq. 15.

�

CLAIM 1. The pre-order �PonN is transitive.

PROOF: Suppose the following holds.

• (P1, N1) �PonN (P2, N2), i.e., P ′
1 �P P2 and P2N(P ′

1, P2, N
′
1) �N

N2, where (P ′
1, N

′
1) = Saturate(P1, N1).

• (P2, N2) �PonN (P3, N3), i.e., P ′
2 �P P3 and P2N(P ′

2, P3, N
′
2) �N

N3, where (P ′
2, N

′
2) = Saturate(P2, N2).

We want to show that (P1, N1) �PonN (P3, N3), i.e., P ′
1 �P

P3 and P2N(P ′
1, P3, N

′
1) �N N3.

We first prove that P ′
1 �P P3. Note that it follows from

Lemma 1 that P ′
1 �P P ′

2. We are given that P ′
2 �P P3. Hence,

it follows from the transitivity of �P that P ′
1 �P P3.

We now prove that P2N(P ′
1, P3, N

′
1) �N N3. Let V =

SpecialVars(P ′
2).

P2N(P ′
1, P3, N

′
1)

= ∃V : P2N(P ′
2, P3, P2N(P

′
1, P

′
2, N

′
1)) (Property 1)

�N ∃V : P2N(P ′
2, P3, N

′
2) (18)

�N ∃V : N3

= N3

Eq. 18 follows from the fact that P2N is monotonic in its third
argument and the fact that P2N(P ′

1, P
′
2, N

′
1) �N N ′

2 (the latter
fact follows from Lemma 1).

�

CLAIM 2. The pre-order �PonN is reflexive.

PROOF: Let (P, N) be any abstract element from the combined
domain. Let (P1, N1) = Saturate(P, N). Clearly, P1 �P P .
Also, note that P2N(P1, P, N1) �N N1 �N N . Hence, the
pre-order �PonN is reflexive.

�

B. Lemmas used in Widening Proof
This section states and proves the lemmas used in the proof of
Theorem 5. We first introduce some notation.

Let (Pi, Ni) be an increasing sequence, (Q1, M1) = (P1, N1),
and (Qi+1, Mi+1) = WidenPonN((Qi, Mi), (Pi, Ni)). Following
the WidenPonN algorithm in Figure 7(a), we use the following
notations:

(P ′
i , N

′
i) = Saturate(Pi, Ni)

Qi+1 = WidenP(Qi, P
′
i )

Vi = SpecialVars(Mi)− SpecialVars(Qi+1)

Wi = SpecialVars(N ′
i)− SpecialVars(Qi+1)

M ′′′
i = EliminateN(P2N(Qi, Qi+1, Mi), Vi)

N ′′′
i = EliminateN(P2N(P ′

i , Qi+1, N
′
i), Wi)

Mi+1 = WidenN(M ′′′
i , N ′′′

i )

We now state and prove the lemmas used in the proof of Theo-
rem 5.

LEMMA 2. The number of strictly increasing steps in the sequence
Q1, Q2, ... is bounded.

PROOF: For every i, we have P ′
i �P P ′

i+1 by Lemma 1 using
(Pi, Ni) �PonN (Pi+1, Ni+1). Furthermore, since Q1 = P1

and Qi+1 = WidenP(Qi, P
′
i ), by convergence of WidenP, the

number of strictly increasing steps in the sequence Q1, Q2, ...
is bounded.

�

LEMMA 3. For every i > 0, if Qi and Qi+1 are equal up to vari-
able renaming then N ′′′

i−1 �N N ′′′
i and Mi+1 and WidenN(Mi, N

′′′
i )

are equal up to variable renaming.



PROOF: First, we prove that N ′′′
i−1 �N N ′′′

i . Let U = Wi−1 ∪
SpecialVars(P ′

i )

N ′′′
i−1

= EliminateN(P2N(P ′
i−1, Qi, N

′
i−1), Wi−1)

�N EliminateN(P2N(P ′
i−1, Qi, N

′
i−1), U)

= EliminateN(P2N(P ′
i , Qi, P2N(P

′
i−1, P

′
i , N

′
i−1)), U) (19)

�N EliminateN(P2N(P ′
i , Qi, N

′
i), U) (20)

�N EliminateN(P2N(P ′
i , Qi+1, N

′
i), Wi) (21)

= N ′′′
i

Eq. 19 follows from Property 1 since P ′
i−1 �N P ′

i �N Qi.
Eq. 20 follows from the fact that P2N is monotonic in its third
argument and the fact that P2N(P ′

i−1, P
′
i , N

′
i−1) �N N ′

i (the
latter fact follows from Lemma 1). Eq. 21 holds because Qi and
Qi+1 are equal up to variable renaming and all the variables
that appear in either P ′

i or Qi are in U∩Wi; thus only variables
that have no effect are changed.

Now we prove that Mi+1 and WidenN(Mi, N
′′′
i ) are equal

up to variable renaming. By definition we have M ′′′
i =

EliminateN(P2N(Qi, Qi+1, Mi), Vi), and thus, since Qi and
Qi+1 are equal up to variable renaming, this has the effect of
renaming the variables of Qi to their respective counterparts in
Qi+1. Thus, M ′′′

i and Mi are equal up to variable renaming
which means that Mi+1 and WidenN(Mi, N

′′′
i ) are equal up

to variable renaming.
�

LEMMA 4. For every sequence (Qi, Mi) there is an m that satis-
fies the following property: Let i be an index s.t., for every i ≤ k ≤
i + m, Qi and Qk are equal up to variable renaming. There is an
index j < i + m s.t., for every j ≤ k ≤ i + m, Mj and Mk are
equal up to variable renaming.

PROOF: Immediate from Lemma 3 by the convergence of the
WidenN operator.

�

LEMMA 5. (1) Qi �P Qj for all i < j, and (2) If Qj �P Qi

for some i < j, then Mk �N Mk+1σ and Mk+1σ 6�N Mk for
all i ≤ k < j (otherwise the fixed-point computation converges),
where σ is some bijective variable renaming.

PROOF: (1) comes from the soundness of WidenP since
Qi+1 = WidenP(Qi, P

′
i ). As for (2), anti-symmetry of �P

implies that Qi, . . . , Qj are equal up to variable renaming.
Thus, by Lemma 3, Mk+1 and WidenN(Mk, N ′′′

k ) are equal
up to variable renaming, i.e., Mk+1σ = WidenN(Mk, N ′′′

k ),
where σ is some bijective variable renaming. Finally, sound-
ness of WidenN gives us (2).

�


