
Computing Procedure Summaries for
Interprocedural Analysis�

Sumit Gulwani1 and Ashish Tiwari2

1 Microsoft Research, Redmond, WA 98052
sumitg@microsoft.com

2 SRI International, Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract. We describe a new technique for computing procedure sum-
maries for performing an interprocedural analysis on programs. Proce-
dure summaries are computed by performing a backward analysis of
procedures, but there are two key new features: (i) information is prop-
agated using “generic” assertions (rather than regular assertions that
are used in intraprocedural analysis); and (ii) unification is used to sim-
plify these generic assertions. We illustrate this general technique by
applying it to two abstractions: unary uninterpreted functions and lin-
ear arithmetic. In the first case, we get a PTIME algorithm for a special
case of the long-standing open problem of interprocedural global value
numbering (the special case being that we consider unary uninterpreted
functions instead of binary). This also requires developing efficient algo-
rithms for manipulating singleton context-free grammars, and builds on
an earlier work by Plandowski [13]. In linear arithmetic case, we get new
algorithms for precise interprocedural analysis of linear arithmetic pro-
grams with complexity matching that of the best known deterministic
algorithm [11].

1 Introduction

Precise interprocedural analysis (also referred to as full context-sensitive analysis)
is provably harder than intraprocedural analysis [14]. One way to do precise in-
terprocedural analysis is to do procedure-inlining followed by an intra-procedural
analysis. There are two potential problems with this approach. First, in presence
of recursive procedures, procedure-inlining may not be possible. Second, even if
there are no recursive procedures, procedure-inlining may result in an exponen-
tial blow-up of the program. For example, if procedure P1 calls procedure P2 two
times, which in turn calls procedure P3 two times, then procedure inlining will
result in 4 copies of procedure P3 inside procedure P1. In general, leaf procedures
can be replicated an exponential number of times.

A more standard way to do interprocedural analysis is by means of computing
procedure summaries [20]. Each procedure is analyzed once (or a few times in
� Second author supported in part by the National Science Foundation under grant

CCR-0326540.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 253–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 S. Gulwani and A. Tiwari

main(){
1 x := 0; y := 1; a := 2; b := 4;
2 P (); Assert(y = 2x + 1);
3 x := 0; y := 0; a := ?; b := 2a;
4 P (); Assert(y = 2x);
5 y := x + 3; a := ?; b := a;
6 P (); Assert(y = x + 3);
7 }

P (){
1 if (*) {
2 x := x + a;
3 y := y + b;
4 }
5 else P ()
6 }

Fig. 1. An example program

case of recursive procedures) to build its summary. A procedure summary can be
thought of as some succinct representation of the behavior of the procedure that
is also parametrized by any information about its input variables. However, there
is no automatic recipe to efficiently construct or even represent these procedure
summaries, and abstraction specific techniques are required.

The original formalism proposed by Sharir and Pnueli [20] for computing pro-
cedure summaries was limited to finite lattices of dataflow facts. Sagiv, Reps
and Horwitz generalized the Sharir-Pnueli framework to build procedure sum-
maries using context-free graph reachability [15], even for some kind of infinite
domains. They successfully applied their technique to detect linear constants
interprocedurally [17]. However, their generalized framework requires appropri-
ate distributive transfer functions as input - and such transfer functions are not
known for any natural abstract domain more powerful than linear constants.

In this paper (Section 3), we describe a general technique for constructing
precise procedure summaries. This technique can be effectively used for a useful
class of program abstractions (over infinite domains). We apply this technique
to obtain precise interprocedural analyses for two useful abstractions - unary
uninterpreted functions, and linear arithmetic (which is more powerful than
the domain of linear constants used by Sagiv, Reps and Horwitz). The former
(described in Section 4) gives a polynomial-time algorithm for a special case of
the long-standing open problem of interprocedural global value numbering, while
the latter (described in Section 5) yields a new algorithm for interprocedural
linear arithmetic analysis with the same complexity as that of the best known
deterministic algorithm [11].

Our procedure summaries are in the form of constraints (on the input vari-
ables of the procedure) that must be satisfied to guarantee that some appropriate
generic assertion (involving output variables of the procedure) holds at the end
of the procedure. A generic assertion is an assertion that involves some context
variables that can be instantiated by symbols (or more formally, by terms with
holes) of the underlying abstraction. For example, consider procedure P shown
in Figure 1 with input variables x, y, a, b and output variables x, y. αx+βy = γ is
a generic assertion in the theory of linear arithmetic involving variables x, y (and
context variables α, β, γ, which denote unknown constants). Using the technique
described in this paper, we compute the summary of procedure P as “αx+βy = γ

Computing Procedure Summaries for Interprocedural Analysis 255

(a) Assignment
Node

x := e

0

(d) Join Node

21

(c) Non-deterministic
Conditional Node

*True False

1 2

(b) Non-deterministic
Assignment Node

x := ?

0

(e) Procedure
Call Node

Call P0()

0

Fig. 2. Flowchart nodes in our abstracted program model

holds at the end of procedure P iff αa + βb = 0 ∧ αx + βy = γ holds at the
beginning of procedure P”. After computing such a procedure summary for P ,
we can use it to verify the assertions in the Main procedure. To verify the first
assertion y = 2x + 1, we first match it with the generic assertion αx + βy = γ
to obtain the substitution α �→ −2, β �→ 1 and γ �→ 1 for the context variables.
We then instantiate the procedure summary with this substitution to obtain the
precondition b − 2a = 0 ∧ y − 2x = 1. We then check that this precondition
is satisfied in procedure Main immediately before the first call to procedure P .
Similarly, we can verify the other two assertions.

The key idea in computing such procedure summaries is to compute weak-
est preconditions of generic assertions. However, a naive weakest precondition
computation may be exponential in the number of operations performed (each
conditional node can double the size of the precondition), and may not even ter-
minate (in presence of loops). Hence we use some techniques for strengthening
and simplifying the weakest preconditions (without any loss of precision). This
simplification is based on recent connections between unification and assertion
checking (described in Section 2.2). For example, consider computing the weakest
precondition of the generic assertion x = βy in the theory of unary uninterpreted
functions for the procedure Q in Figure 3. (Here β represents some unknown se-
quence of uninterpreted functions.) The naive weakest precondition computation
will not terminate and will yield x = βy∧fx = βfy∧ffx = βffy∧. . .. However,
our simplification procedure will simply (and strengthen) the first two conjuncts
to x = βy ∧ βf = fβ, denoting that the relationship x = βy holds at the end
of procedure only if (β is of the form such that) βf = fβ and x = βy holds at
the beginning of the procedure. It turns out that the constraints thus obtained
βf = fβ ∧ x = βy form a fixed-point, and hence our weakest precondition
computation terminates immediately.

2 Preliminaries

2.1 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 2. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as expression language of the program. Following

256 S. Gulwani and A. Tiwari

are examples of the expression languages for the abstractions that we refer to in
this paper:

– Linear arithmetic. e ::= y | c | e1 ± e2 | c × e
Here y denotes some variable while c denotes some arithmetic constant.

– Unary Uninterpreted functions. e ::= y | f(e)
Here f denotes some unary uninterpreted function.

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

A join node has two incoming edges. Note that a join node with more incoming
edges can be reduced to multiple join nodes with two incoming edges.

Non-deterministic conditionals, represented by ∗, denote that the control can
flow to either branch irrespective of the program state before the conditional.
They are used as a safe abstraction of guarded conditionals, which our abstrac-
tion cannot handle precisely. We abstract away the guards in conditionals be-
cause otherwise the problem of assertion checking can be easily shown to be
undecidable even when the program expressions involves operators from simple
theories like linear arithmetic [10] or uninterpreted functions [9]. This is a very
commonly used restriction for a program model while proving preciseness of a
program analysis for that model.

For simplicity, we assume that the inputs and outputs of a procedure are
passed as global variables. Hence, the procedure call node simply denotes the
name of the procedure to be called. Also, we assume that we are given the whole
program with a special entry procedure called Main.

2.2 Unification and Assertion Checking

A regular assertion is a conjunction of equalities e = e′ between two expressions.
A substitution σ is a mapping from variables to expressions. A substitution σ
is applied to an expression e (or assertion ψ), by replacing all variables x by
σ(x) in the expression (assertion). The result is denoted in postfix notation by
eσ (or ψ[σ]). A program state is a substitution on program variables. A regular
assertion ψ is said to hold at a program point π if ψ[σ] is valid (in the underlying
theory) for every program state σ reached at π (along any path).

A substitution σ is a unifier for ψ if ψ[σ] is valid. A substitution σ1 is more-
general than a substitution σ2 if there is a substitution σ3 s.t. xσ2 = xσ1σ3 for
all x. A theory is unitary if for all equalities e = e′ in that theory, there exists
a unifier that is more-general than any other unifier of e = e′. A substitution σ
can be treated as the formula

∧
x x = σ(x). For a unitary theory T, we denote

the conjunction representing the most-general unifier for ψ by UnifT(ψ).
The formula Unif(ψ) logically implies ψ, but it is, in general, not equivalent to

ψ. Since it is often “simpler” than ψ, we may wish to replace ψ by Unif(ψ). The
basic result formally stated in Property 1 is that, in many useful abstractions,
the formulas ψ and Unif(ψ) are “equivalent” as far as invariance of assertions
is concerned.

Computing Procedure Summaries for Interprocedural Analysis 257

Property 1 ([5]). Let π be any location in a program that is specified using the
flowchart nodes in Figure 2 and expressions from some unitary theory T. An
equality e = e′ holds at π iff UnifT(e = e′) holds at π.

The above property is stated and proved in [5]. The key insight is that runs of a
program are just substitutions and if every run validates an assertion, then every
run should also validate a more-general unifier of that assertion. Property 1 is
used at two places in our generic weakest-precondition computation based tech-
nique for interprocedural analysis: (a) for simplification of formulas for efficiency
purpose (Section 3.2), (b) for detecting fixed-point computation (Section 3.2).

Note that we present our results in the context of unitary theories for efficiency
reasons; otherwise both Property 1 and our general approach of Section 3 can
be generalized.

3 General Technique for Interprocedural Analysis

Our technique for interprocedural analysis uses the standard two phase summary-
based approach. The two phases are described in Section 3.2 and Section 3.3.

3.1 Generic Assertions

A generic assertion is an assertion that involves context-variables apart from
regular program variables. A context-variable represents some unknown term
with holes, with the constraint that this unknown term does not involve any
program variables (i.e., it only involves symbols from the underlying theory
or abstraction). An important consequence of this constraint is that generic
assertions are closed under weakest precondition computation across assignments
to program variables.

We say that a generic assertion A1 is more general than another generic
assertion A2 if there exists an instantiation σ of the context variables of A1 such
that A2 = A1[σ]. We define a set of generic assertions to be complete w.r.t. a
given set of program variables V if for any generic assertion A1 in the underlying
theory involving program variables V , there exists a generic assertion A2 in the
set such that A2 is more general than A1.

For the theory of linear arithmetic, the singleton set {
∑

i αixi = α} constitutes
a complete set of generic assertions with respect to the set of variables {xi}i.
Here α, αi denote unknown constants. For the theory of unary uninterpreted
functions, the set {αx1 = βx2 | x1, x2 ∈ V, x1 �≡ x2} is a complete set of
generic assertions with respect to the set of variables V . Here α, β represent
unknown strings (applications) of unary uninterpreted functions.

3.2 Phase 1: Computing Procedure Summaries

Let P be a procedure with V as the set of its output variables. Let G be some
complete set of generic assertions with respect to V for the underlying abstrac-
tion. The summary of procedure P is a collection of formulas ψi, one for each
generic assertion Ai in G. The formula ψi is the weakest precondition of the

258 S. Gulwani and A. Tiwari

generic assertion Ai denoting that the generic assertion Ai holds at the end of
procedure P only if the formula ψi holds at the beginning of procedure P . Each
formula ψi itself is a conjunction of generic assertions. (Observe that weakest
precondition computation involves substitution of regular variables by program
expressions and performing conjunctions of formulas. Hence, conjunctions of
generic assertions are closed under weakest precondition computation.)

Computing summary for procedure P requires computing the weakest pre-
condition of each generic assertion in G one by one. The weakest precondition
of a given generic assertion A across a procedure is computed by computing a
formula ψ at each procedure point using the following transfer functions across
flowchart nodes. The correctness of the following transfer functions is immediate.

Initialization: The formula at all procedure points except the procedure exit
point is initialized to true. The formula at the exit is initialized to the generic
assertion A.

Assignment Node: See Figure 2(a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, i.e. ψ′ = ψ[x �→ e].

Non-deterministic Assignment Node: See Figure 2(b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after the
non-deterministic assignment node by universally quantifying out the variable
x. However, for the case when program expressions come from a unitary theory,
we can simplify ∀x(ψ) to ψ[x �→ c1]∧ψ[x �→ c2], where c1 and c2 are two distinct
constants (or provably unequal terms) in the underlying theory.

Non-deterministic Conditional Node: See Figure 2(c). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, i.e., ψ = ψ1 ∧ ψ2.

Join Node: See Figure 2(d). The formulas ψ1 and ψ2 on the two predecessors of a
join node are same as the formula ψ after the join node, i.e., ψ1 = ψ and ψ2 = ψ.

Procedure Call Node: See Figure 2(e). Let ψ ≡
∧k

i=1 A′
i. Let Ai ∈ G be such that

Ai is more general than A′
i and let σi be the instantiation such that A′

i = Ai[σi].
Let ψ′

i be the formula in the summary of procedure P ′ that represents the
weakest precondition of Ai before procedure P ′. Then, ψ′ =

∧k
i=1 ψ′

i[σi].

Simplification
Property 1 says that we do not need to distinguish between two regular assertions
that have the same set of unifiers. We can generalize this to generic assertions.
We say two formulas (conjunctions of generic assertions) ψ and ψ′ are essentially
equivalent, denoted by ψ � ψ′, if ψσ and ψ′σ have the same set of unifiers for
every substitution σ that assigns every context variable in ψ, ψ′ to a term with a
hole (in the signature of the underlying theory). We denote by ψ ⇀ ψ′ the fact
that every unifier of ψσ is also a unifier of ψ′σ (for every σ).

Computing Procedure Summaries for Interprocedural Analysis 259

We can simplify ψ at any program point by replacing it by another essentially
equivalent formula ψ′. The soundness and completeness of this transformation
follows from Property 1. This simplification is needed to bound the size of the
formula ψ because otherwise a naive computation of weakest precondition may
lead to an exponential blowup in the number of operations performed. In case of
linear arithmetic, this simplification simply involves removing linearly dependent
equations. In case of unary uninterpreted functions, this simplification involves
strengthening the formula.

Observe that the number of conjuncts in the formula computed before any
node (in particular the procedure call node) is at most quadratic in the maxi-
mum number of conjuncts in any simplified formula. Hence, the time required
to simplify any such formula can be bounded by TT(k), which is as defined below.

Definition 1 (Simplification Cost TT(k)). For any theory T, let ST(k) denote
the maximum number of conjunctions (of generic assertions) in any simplified
formula over k program variables. Let TT(k) denote the time required to simplify
a formula over k program variables with at most (ST(k))2 generic assertions.

Fixed-Point Computation
In presence of loops (inside procedures as well as in call-graphs), we iterate
until fixed-point is reached. The standard way to perform such an iteration is to
maintain a worklist that stores all program points whose formulas have changed
with respect to the formulas in the previous iteration, but whose change has not
yet been propagated to its predecessors.

Let ψ be the formula computed at some program point π, and let ψ′ be the
formula at π in the previous iteration. If ψ and ψ′ are logically equivalent, then
it is intuitive that the formula at π has not changed from the previous itera-
tion (and hence does not require any further propagation to the predecessors of
π). However, it follows from Property 1 that we can strengthen this notion to
conclude that the formula at π has not changed even if ψ � ψ′. This observa-
tion is important because it allows to detect fixed-point faster. In case of unary
uninterpreted functions, this makes significant difference (E.g., for the loop in
procedure Q in Figure 3, fixed-point is not even reached with the former intuitive
notion of change, while it is reached in 2 steps with the latter stronger notion of
change, as explained on Page 255). The number of times the formula ψ at each
point inside a procedure gets updated is bounded by the maximum unifier chain
length of the underlying theory as defined below.

Definition 2 (Maximum Unifier Chain Length MT(k)). We define the
maximum unifier chain length of any theory T for k variables, denoted by MT(k),
to be the maximum length of any chain ψ1, ψ2, . . . (where each ψi is a conjunction
of generic assertions over k variables) such that ψi ⇀ ψi+1 but ψi+1 �⇀ ψi.

Computational Complexity
The number of updates performed during phase 1 is bounded above by n ×
MT(k), where n is the total number of program points and k is the maximum

260 S. Gulwani and A. Tiwari

number of program variables that are live at any program point (This follows
from Definition 2). The cost of each update is bounded above by TT(k). Hence,
the cost of Phase 1 is O(n × MT(k) × TT(k)).

3.3 Phase 2: Using Procedure Summaries

We now show how to use the procedure summaries computed in phase 1 to verify
and discover assertions at different program points. The correctness of this phase
is easy to observe, while its computational complexity is bounded above by that
of phase 1.

Verifying a given assertion at a given program point. For this purpose,
we can perform the weakest precondition computation of the given assertion as
in Phase 1. However, there are two main differences. The formula computed at
each program point is a regular assertion instead of a generic assertion. Secondly,
the preconditions computed at the beginning of the procedures are copied before
the call sites of those procedures. When the process reaches a fixed-point, we
declare the assertion to be true iff the precondition computed at the beginning
of Main procedure is true.

Computing all invariants at a given program point. Instead of com-
puting the weakest precondition of a given assertion at a program point π (as
described above), we can also compute the weakest preconditions of a complete
set of generic assertions. The preconditions obtained at the beginning of Main
procedure for each of these generic assertions will be in the form of constraints
on the context variables. These constraints exactly characterize the invariants
that hold at π.

Computing all invariants at all program points. We can repeat the above
process for all program points to compute all invariants at all program points.
However, when the expression language of the program comes from a unitary the-
ory (e.g., linear arithmetic and uninterpreted functions), we can perform a more
efficient analysis based on a forward intraprocedural analysis for that abstract
domain. For this purpose, we simply run a forward intraprocedural analysis on
each procedure. The invariant at the entry point of Main procedure is initialized
to true, while for all other procedures, it is obtained as the join of the invari-
ants before all call sites of that procedure. We only need to describe the transfer
function for the procedure call node. Let F be the invariants computed before
the procedure call node. Let σ = Unif(F) be the substitution representing the
most-general unifier of F . (Note that unitary theories have a single most-general
unifier). Let V be the set of variables that do not have a definition in σ, but are
the inputs to procedure P . Let the summary of procedure P be: “the assertion
ψi holds at the end of procedure iff the constraints ψ′

i hold at the beginning of
procedure” (for all generic assertions ψi from some complete set G). The trans-
fer function for the procedure call node then is: F ′

i =
∧

i

Normalize(∀V ψ′
i[σ], ψi).

The key idea here is to instantiate each of the constraints ψ′
i with σ and uni-

versally quantify out the remaining input variables V (by using the same tech-
nique described in weakest precondition computation across non-deterministic

Computing Procedure Summaries for Interprocedural Analysis 261

assignment nodes). There is no precision loss in quantifying out V since, by
assumption, there are no invariants on V . The resulting constraints on context
variables describe all relationships of the form ψi that hold among the output
variables of procedure P after the procedure call node. The function Normalize
translates these constraints into the desired invariants. Normalize(C, ψi) takes
as input some constraints C on the context variables corresponding to some
generic assertion ψi and returns the assertions obtained by eliminating the con-
text variables. (Eg., Normalize(a + b = 0 ∧ c − d = 0, ax + by + cz = d) returns
x = y ∧ z = 1, which is obtained by eliminating a, b, c, d from ∀a, b, c, d(a + b =
0 ∧ c − d = 0 ⇒ ax + by + cz = d)).

4 Unary Uninterpreted Functions

In this section, we instantiate the above general framework for performing inter-
procedural analysis over the abstraction of unary uninterpreted functions. As a
result, we obtain a PTIME algorithm for computing all equality invariants when
the program is specified using the flowchart nodes described in Figure 2, and the
expression language of the program involves unary uninterpreted functions.

Unary uninterpreted functions can be used to model fields of structures and
objects in programs, as well as deterministic function calls with one argument–
this is useful when the function body is unavailable or is too complicated to
analyze. Yet another motivation for studying the unary uninterpreted abstrac-
tion comes from the long-standing open problem of interprocedural global value
numbering. This problem seeks to analyze programs whose expression language
contains uninterpreted functions of any arity. A brief history of this problem is
given in Section 6. The results in this section, thus, make progress toward solving
this open problem.

Apart from the general ideas mentioned in Section 3, our results in this section
also rely on another key idea of representing large strings succinctly via singleton
context-free grammars [13].

Notation. Terms constructed using unary function symbols can be represented
as strings. For example, the term f(g(x)) can be treated as the string fgx. The
expressions f() and f(g()), (respectively strings f and fg) are terms with a
hole . Variables that take terms with a hole as values, or equivalently context
variables, will be denoted by α, β, etc. The concrete terms with holes are denoted
by C, D, E, F with suitable annotations.

4.1 Simplification

We compute procedure summaries by backward propagation of all the generic
assertions in the set {αx1 = βx2 | x1, x2 ∈ V, x1 �≡ x2}, where V is the set
of output variables of the corresponding procedure. The assertions generated in
the process are simplified to one of the following forms:

(1) αCxi = βC′xj (2) αCα−1 = βC′β−1 (3) α = βC

262 S. Gulwani and A. Tiwari

P (){
1 x := fgx;
2 y := gfy;
3 if (*) { Q(); }
4 else { P (); }
5 }

Q(){
1 while (*) {
2 x := fx;
3 y := fy;
4 }
5 }

main(){
1 y := a;
2 x := fa;
3 P ();
4 assert(x = fy);
5 }

Fig. 3. Program

Thus, every ψ is simply a conjunction of assertions of these forms. The inverse
operator, −1, satisfies the intuitive axioms: (αβ)−1 = β−1α−1, αα−1 = ε, and
(α−1)−1 = α.1 The strings C, C′ in Form 2 are allowed to contain the inverse
operator, whereas strings C, C′ in Form 1 and Form 3 do not contain the inverse
operator. Equations of Form 2 are an elegant way of encoding constraints on the
context-variables α and β that are generated by the backward analysis.

We show now that weakest precondition computation across the various pro-
gram nodes maintains assertions in one of these forms. We consider the case
of a Procedure Call node “Call P()” (the other cases are easy to verify). At
any stage of the fixpoint computation, the (partially computed) summary of a
procedure P will be given as: “α′xi = β′xj holds at the end of procedure P if
ψ′′

ij holds at the beginning” for each pair xi, xj ∈ V . Equations of Form 2 and
Form 3 are unchanged in the weakest precondition computation. The weakest
precondition of an equation αCxi = βC′xj is obtained by instantiating ψ′′

ij by
{α′ �→ αC, β′ �→ βC′}. Applying this replacement in equations of Form 1 or
Form 2 in ψ′′

ij gives back equations of the same form. When applied on equa-
tions of Form 3, we get equations of the form αC = βC′. We remove the largest
common suffix of C, C′ and if the equation does not reduce to Form 3, then the
weakest precondition is false .

Bounding the size of ψ. We will show that any conjunction of equations of
Form 1, Form 2, and Form 3 over k variables can be simplified to contain at
most k(k − 1)/2 + 1 equations. Specifically,

– for each pair xi, xj of variables, there is at most one equation of Form 1; and
– either there is at most one equation of Form 2, or there is at most one

equation of Form 3.2

The Simplification procedure uses unification to simplify the equations and keeps
the result essentially equivalent to the original set. It performs two main steps.
For a fixed pair x, y of variables, let ψxy denote the set containing all equations
of Form 1 in ψ. First, by repeated use of Lemma 1 ψxy is simplified to a set
containing at most one equation of Form 1 and either one equation of Form 3 or

1 Note that the inverse operator implicitly builds in simplification using unification.
For instance, while fx = fy does not logically imply x = y, using the inverse axioms
we have fx = fy ⇒ f−1fx = f−1fy ⇒ x = y.

2 Note that an equation of Form 3 essentially gives a concrete solution, since we can
assume, by Property 1, that one of α, β is ε.

Computing Procedure Summaries for Interprocedural Analysis 263

Ite Proc Current Summary for αx = βy Comment
0 P, Q true Init
1 Q Simp(αx = βy,αfx = βfy) = (αx = βy, αfα−1 = βfβ−1)
2 P αfgx = βgfy,αfα−1 = βfβ−1 Use Q’s summary
3 Q αx = βy, αfα−1 = βfβ−1 fixpoint for Q

4 P Simp(αfgfgx = βgfgfy,αfgx = βgfy, αfα−1 = βfβ−1) Use P ’s summary
5 P αf = β, αfgx = βgfy fixpoint for P

Fig. 4. This figure illustrates summary computation for interprocedural analysis over
the unary abstraction. In Column 3, the summary consists of the constraints that must
hold at the beginning of the procedure P/Q for αx = βy to be an invariant at the end
of the procedure.

finitely many equations of Form 2. For example, in iteration 2 of Figure 4, the set
of equations {αx = βy, αfx = βfy} is simplified to {αx = βy, αfα−1 = βfβ−1}.

Lemma 1. The equation set {αCix = βC′
iy : i = 1, 2} either has no solutions,

or it has the same solutions as a set containing either one of these two equations
and at most one equation of Form 2 or Form 3.

Next, if there is an equation of Form 3 then it can be used to simplify an equation
of Form 2 to either false or true. Otherwise, a set {αCiα

−1 = βC′
iβ

−1, i =
2, . . . , k} containing multiple equations of Form 2 is simplified by repeated use
of Lemma 2.

Lemma 2. The equation set {αCiα
−1 = βC′

iβ
−1, i = 1, 2} is either unsatisfi-

able, or has the same solutions as a set containing at most one equation of either
Form 2 or Form 3.

For example, in iteration 4-5 of Figure 4, {αfα−1 = βfβ−1, αfgα−1 = βgfβ−1}
is simplified to {αf = β}. In this way, any conjunction ψ of equations of Form 1,
Form 2, and Form 3 is simplified to a conjunction with at most k(k − 1)/2 + 1
equations.3

The algorithms used in the proof of Lemma 1 and Lemma 2 use a constant
number of string operations. Assuming the basic string operations take time
Tbase, the time taken to simplify Suu(k)2 = O(k4) assertions is O(k4Tbase).

Maximum Unifier Chain Length. It is easy to see that the maximum unifier
chain length for k variables is bounded by k(k − 1)/2 + 2. This is because the
number of equations in ψ can increase only k(k − 1)/2 + 1 times, and beyond
that the formula either becomes unsatisfiable, or it is forced to have a unique
solution for its variables. Note that it is not possible for the number of equations
to remain the same and the formula to get stronger. This is a consequence of
Lemma 1.
3 The observation that we need to keep only a small number of equations Cxi = αC′xj

intuitively means that we keep only a few runs. However, these runs in the simplified
formula may not correspond to any real runs, but some equivalent hypothetical runs.

264 S. Gulwani and A. Tiwari

Hence, for the case of unary uninterpreted (uu) abstraction, we have:

Suu(k) = k(k−1)
2 + 1 Tuu(k) = O(k4Tbase) Muu(k) = k(k−1)

2 + 2

4.2 Computational Complexity: Efficient Representations

We note that the time complexity of interprocedural analysis for the unary
uninterpreted abstraction is polynomial assuming that the string operations can
be performed efficiently. However, the length of strings can be exponential in the
size of the program, as the following example shows.

Example 1. Consider the n procedures P0, . . . , Pn−1 defined as

Pi(xi) { t := Pi−1(xi); yi := Pi−1(t); return(yi); }
P0(x0) { y0 := fx0; return(y0); }

The summary of procedure Pi is: yi = αxi iff α = f2i

.

Hence, if we use a naive (explicit) representation, the size of ψ can grow exponen-
tially (when we apply substitutions during transfer function computation across
procedure call nodes). Instead we appeal to shared representation of strings using
singleton context-free grammars (SCFG). An SCFG is a context-free grammar
where each nonterminal represents exactly one (terminal) string. An SCFG can
represent strings in an exponentially succinct way. The strings Ci’s that arise in
the equations can be represented succinctly using SCFGs in size that is linear
in the size of the program (because the program itself is an implicit succinct
representation of these strings using SCFGs).

Example 2. Following up on Example 1, we note that the string f2n

can be
represented by the SCFG with start symbol An and productions {Ai+1 → AiAi |
1 ≤ i ≤ n} ∪ {A0 → f}. In particular, the summaries of the procedures can be
represented as: yi = αxi iff α = Ai.

A classic result by Plandowski [13] shows that equality of two strings represented
as SCFGs can be checked in polynomial time. Apart from this, the simplification
procedure implicit in the proofs of Lemma 1 and Lemma 2 require largest com-
mon prefix/suffix computation and substring extraction. It is an easy exercise to
see that these string operations can also be performed on SCFG representations
in polynomial time. Hence, the computational procedure outlined above can be
implemented in polynomial time using the SCFG representation of strings. In
conclusion, this shows that summaries can be computed in PTIME on the ab-
straction of unary symbols. We remark here that Plandowski’s result has been
generalized to trees [19] suggesting that it may be possible to generalize our
result to the interprocedural global value numbering problem (over binary un-
interpreted functions).

Computing Procedure Summaries for Interprocedural Analysis 265

5 Linear Arithmetic

The technique described in Section 3.2 can also be used effectively to compute
procedure summaries for the abstraction of linear arithmetic. We compute the
weakest precondition of the generic assertion α1x1 + · · · + αkxk = α (which
constitutes a complete set by itself) where x1, . . . , xk are the output variables of
the corresponding procedure.

The conjunction ψ of equations thus obtained at any point in the procedure
during the weakest precondition computation can be seen as linear equations
over the k2 + k + 1 variables: k2 variables representing the products αixj and
the k + 1 variables αi and α. We can simplify the equations thus obtained by
maintaining only the linearly independent (non-redundant) equations. We know
that there can not be more than k2 + k + 1 linearly independent equations and
hence ψ can have at most k2 + k + 1 equations. This shows that for the linear
arithmetic (la) abstraction,

Sla(k) = k2 + k + 1 Tla(k) = O(Tbasek
8) Mla(k) = k2 + k + 1,

where Tbase denotes the time to perform an arithmetic operation. Since con-
stants can become large (programs can encode large numbers succinctly), we use
modulo arithmetic and randomization to get a true PTIME procedure, as in [11].

Müller-Olm and Seidl also gave a precise interprocedural algorithm for lin-
ear arithmetic of similar complexity [11]. However, their algorithm is different
and is based on the the observation that runs of a procedure correspond to lin-
ear transformations and there can be only quadratic many linearly-independent
transformations. In a certain sense, this is the dual of our approach.

6 Related Work and Discussion

Forward vs. Backward Analysis. The approach presented in this paper for
computing procedure summaries is based on backward propagation of generic
assertions. It is presently unclear how the dual approach, namely forward propa-
gation of a complete set of generic assertions, can be effectively used. A forward
propagation involves developing context-sensitive or distributive transfer func-
tions for assignment nodes (usually involves existential quantifier elimination)
and join nodes. Giving a general procedure for such operations appears to be
hard for regular assertions (intraprocedural case) and would be significantly more
difficult for generic assertions.

Nevertheless, these difficulties may be overcome for very specific abstractions,
such as linear arithmetic [11,8]. In this case, the authors essentially look at a pro-
cedure as a linear transformation and compute in the (k+1)2-dimensional vector
space of these linear transformations. This allows them to perform abstract inter-
pretation using either backward or forward analysis [11,8]. However, this general
approach of developing interprocedural analysis by describing program behav-
iors as transformations (in a finite dimensional vector space) is applicable only
on arithmetic abstractions. In contrast, our approach promises to be simpler,
and more generally applicable.

266 S. Gulwani and A. Tiwari

Weakest Precondition of Generic Assertions vs. Regular Assertions.
To ensure termination of weakest precondition computation over generic as-
sertions, we used some connections between unification and assertion checking.
Similar connections have been used earlier for weakest precondition computation
for regular assertions in the intraprocedural case [5,6]. However, in the intrapro-
cedural case, we just need to solve unification problems over regular assertions.
These problems are well-studied and efficient algorithms are known for several
theories. In the interprocedural case, we now have to solve unification problems
over generic assertions. In the theorem proving community, these are studied
under the name of “second-order unification” and “context unification”. These
problems are known to be more difficult than their first-order counterparts. Thus,
while our approach of backward analysis based on generic assertions provides a
uniform framework for developing interprocedural analyses, it also helps to as-
certain the difficulty of interprocedural analysis over intraprocedural analysis by
drawing connections with the complexity of second-order unification vs. stan-
dard unification in theorem proving. Templates, which are similar to generic
assertions, have been used to generate invariants, but only in the context of
intraprocedural analysis and without any completeness guarantees [18].

History of Global Value Numbering. Since checking equivalence of pro-
gram expressions is an undecidable problem, in general, program operators are
commonly abstracted as uninterpreted functions to detect expression equiva-
lences. This form of equivalence is also called Herbrand equivalence [16] and
the process of discovering it is often referred to as value numbering. Kildall [7]
gave the first intraprocedural algorithm for this problem based on performing
abstract interpretation [2] over the lattice of Herbrand equivalences in expo-
nential time. This was followed by several PTIME, but imprecise, intraproce-
dural algorithms [1,16,3]. The first PTIME intraprocedural algorithm was given
by Gulwani & Necula [4], and then by Müller-Olm, Rüthing, & Seidl [9]. How-
ever, PTIME interprocedural global value numbering algorithm has been elusive.
There are some new results, but only under severe restrictions that functions are
side-effect free and one side of the assertion is a constant [12]. Neither of these
assumptions is satisfied by the program in Figure 3. The technique described in
this paper yields a PTIME algorithm for the special case of unary uninterpreted
functions.

7 Conclusion

Proving non-trivial properties of programs requires analyzing programs over rich
abstractions. The scalability of such program analyses depends upon the pos-
sibility of constructing efficient and precise summaries of procedures over such
abstractions. In this paper, we have described a new technique for computing
procedure summaries for a class of program abstractions over infinite domains,
thereby adding to some limited piece of work known in this area.

In the description of our technique, we assume at some places that condition-
als are non-deterministic and expression language of the program comes from a

Computing Procedure Summaries for Interprocedural Analysis 267

unitary theory. These assumptions are needed to prove that our technique com-
putes the most precise procedure summary in an efficient manner. We believe
that the general ideas in our technique can be extended to reason about predi-
cates in conditionals and handle expressions that are not from a unitary theory
(e.g., as suggested in [6]), albeit with some (unavoidable) precision loss because
the problem is undecidable in general.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In 15th Annual ACM Symposium on POPL, pages 1–11, 1988.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th Annual
ACM Symposium on POPL, pages 234–252, 1977.

3. K. Gargi. A sparse algorithm for predicated global value numbering. In PLDI,
volume 37, 5, pages 45–56. ACM Press, June 17–19 2002.

4. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-
bering. In Static Analysis Symposium, volume 3148 of LNCS, pages 212–227, 2004.

5. S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of linear
arithmetic & uninterpreted functions. In ESOP, volume 3924 of LNCS, Mar. 2006.

6. S. Gulwani and A. Tiwari. Assertion checking unified. In Proc. VMCAI, LNCS
4349. Springer, 2007. See also Microsoft Research Tech. Report MSR-TR-2006-98.

7. G. A. Kildall. A unified approach to global program optimization. In 1st ACM
Symposium on POPL, pages 194–206, Oct. 1973.

8. M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally analyzing polynomial
identities. In STACS, volume 3884 of LNCS, pages 50–67. Springer, 2006.

9. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand equalities and
beyond. In VMCAI, volume 3385 of LNCS, pages 79–96. Springer, Jan. 2005.

10. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In 31st International
Colloquium on Automata, Languages and Programming, pages 1016–1028, 2004.

11. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In 31st ACM Symposium on POPL, pages 330–341, Jan. 2004.

12. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Herbrand equalities. In
ESOP, volume 3444 of LNCS, pages 31–45. Springer, 2005.

13. W. Plandowski. Testing equivalence of morphisms on context-free languages. In
Algorithms - ESA ’94, volume 855 of LNCS, pages 460–470. Springer, 1994.

14. T. Reps. On the sequential nature of interprocedural program-analysis problems.
Acta Informatica, 33(8):739–757, Nov. 1996.

15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In 22nd ACM Symposium on POPL, pages 49–61, 1995.

16. O. Rüthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining
efficiency with precision. In SAS, volume 1694 of LNCS, pages 232–247, 1999.

17. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. TCS, 167(1–2):131–170, 30 Oct. 1996.

18. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant genera-
tion using grbner bases. In POPL, pages 318–329, 2004.

19. M. Schmidt-Schauß. Polynomial equality testing for terms with shared substruc-
tures. Technical Report 21, Institut für Informatik, November 2005.

20. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

	Introduction
	Preliminaries
	Program Model
	Unification and Assertion Checking

	General Technique for Interprocedural Analysis
	Generic Assertions
	Phase 1: Computing Procedure Summaries
	Phase 2: Using Procedure Summaries

	Unary Uninterpreted Functions
	Simplification
	Computational Complexity: Efficient Representations

	Linear Arithmetic
	Related Work and Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

