
Bisimulations in the Join-Calculus

Cédric Fournet a Cosimo Laneve b,1

aMicrosoft Research, 1 Guildhall Street, Cambridge, U.K.
b Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura Anteo

Zamboni 7, 40127 Bologna, Italy.

Abstract

We develop a theory of bisimulations in the join-calculus. We introduce a refined
operational model that makes interactions with the environment explicit, and dis-
cuss the impact of the lexical scope discipline of the join-calculus on its extensional
semantics. We propose several formulations of bisimulation and establish that all
formulations yield the same equivalence. We prove that this equivalence is finer
than barbed congruence, but that both relations coincide in the presence of name
matching.

Key words: asynchronous processes; barbed congruence; bisimulation; chemical
semantics; concurrency; join-calculus; locality; name matching; pi-calculus.

1 Introduction

The join-calculus is a recent formalism for modeling mobile systems [15,17].
Its main motivation is to relate two crucial issues in concurrency: distributed
implementation and formal semantics. To this end, the join-calculus enforces a
strict lexical scope discipline over the channel names that appear in processes:
names can be sent and received, but their input capabilities cannot be affected
by the receivers. This is the locality property. 2

Locality yields a realistic distributed model, because the communication prim-
itives of the calculus can be directly implemented via standard primitives of

1 This work is partly supported by the ESPRIT CONFER-2 WG-21836
2 The term locality is a bit overloaded in the literature; here, names are locally
defined inasmuch as no external definition may interfere; this is the original meaning
of locality in the chemical semantics of Banâtre et al. [5] and in other papers on the
join-calculus.

Preprint submitted to Elsevier Preprint 10 May 2000

asynchronous systems [17,19,12]. It also plays a prominent role in the design
of implicit type systems for the join-calculus, because all contravariant occur-
rences of names are static [18]. In this paper, we show that locality strongly
affects the treatment of bisimulation and leads to simple semantics.

In order to reason about distributed processes, the join-calculus should be
equipped with semantics that have both a sensible discriminating power and
some convenient proof techniques. The usual approach in concurrency is to
focus on elementary forms of interaction between the process and its environ-
ment; this can be achieved simply by defining a reduction relation that repre-
sents internal evolution and an observation predicate that detects the ability of
interacting. Based on these two notions, numerous observational semantics can
be defined. As regards discriminating power, it would be adequate to test the
observation predicate under all possible contexts. In order to establish testing
equivalences, however, one must cope with quantification over both contexts
and series of reductions; this makes direct proofs particularly difficult [23].
To tackle these problems, it is convenient to consider equivalences that are
finer and easier to check, possibly using them as indirect proof techniques for
coarser semantics. Among them, bisimulation-based semantics are especially
convenient, because co-inductive proofs need to consider only single reduction
steps instead of traces [26]. Barbed bisimilarity has been proposed in [29] as
a uniform basis to define behavioral equivalences on different process calculi.
This is the approach taken so far for the join-calculus in [15,17,1], where barbed
congruence is defined as the coarsest congruence that is a barbed bisimulation.
Yet, checking that two processes are barbed congruent still requires explicit
quantification over all contexts. This makes routine or automated checking of
these properties problematic.

In this paper, we introduce a labeled operational model for the join calculus
and we equip it with the standard weak bisimulation [26]. We illustrate the
use of purely co-inductive proof techniques on labeled transitions. We also
consider alternative definitions of bisimulation and relate weak bisimilarity
to barbed congruence, showing that the two semantics coincide only in the
presence of name matching. A more precise account of our work follows.

The original semantics of the join-calculus is based on the reflexive chemical
abstract machine (rcham) [15]. This model accounts for the internal evolu-
tion of processes of the form def D in P by describing how name definitions D
can be used to receive and synchronize messages sent on these names in P .
In order to adapt labeled bisimulation to the join-calculus, we propose a re-
fined semantics—the open rcham—that makes explicit the interactions with
the environment. Via these interactions, the environment can receive locally-
defined names of the process when they are emitted on free names, and the
environment can also emit messages on these names. We call these interac-
tions extrusions and intrusions, respectively. To keep track of the defined

2

names that are visible from the environment, definitions of the join-calculus
are marked with their extruded names when extrusions occur. In turn, intru-
sions are allowed only on names that are marked as extruded. The refined
syntax for the join-calculus has processes of the form defS D in P , where S is
the set of names defined by D and extruded to the environment. Informally,
extruded names represent constants in the input interface of the process.

Let us illustrate locality in our setting: the process def{x} x〈u〉 .P in x〈v〉
defines a name x and sends a message x〈v〉 on that name. According to the
definition of x, a fresh copy of the process P is started whenever a message
x〈u〉 is received. Since the name x is marked as extruded, the environment can
send messages on x to trigger copies of P . However, the environment cannot
interfere with the definition of x; in particular, the message x〈v〉 cannot be
consumed by the environment, hence for any observational equivalence we
should have the equation

def{x} x〈u〉 .P in x〈v〉 = def{x} x〈u〉 .P in P{v/u}

Once the open rcham has been defined, weak bisimulation is obtained by
applying standard definitions. The largest weak bisimulation, named weak
bisimilarity, is preserved by renaming, is a congruence for all contexts of the
open calculus, and suitably abstracts from the actual structure of the defini-
tions. In particular, weak bisimilarity is insensitive to message buffering, as
can be expected from an asynchronous semantics.

The open rcham allows the intrusion of messages on extruded names, re-
gardless of the state of the process. This is crucial for hiding the presence of
messages on defined names, but this also saturates bisimulations with pro-
cesses that differ only on their intruded messages. To reduce the size of our
model, we modify the open rcham and equip it with an alternative equiv-
alence called asynchronous bisimilarity. The new chemical machine restricts
intrusions to sets of messages that immediately trigger a reaction rule. Follow-
ing the approach taken by Amadio et al. for the π-calculus [4], asynchronous
bisimulation explicitly models asynchrony by modifying the requirement for
the intrusions of messages. We prove that weak and asynchronous bisimilari-
ties coincide, so that either notion may be selected in proofs.

Our last characterization of weak bisimilarity is given in terms of barbed bisim-
ulation. The barbed congruence of [15] is strictly coarser than weak bisimilarity
because the contexts of barbed congruence have no name matching capabil-
ity, while the labels of weak bisimilarity separate names which exhibit the
same behavior. This is the only difference between the two equivalences: by
augmenting the join-calculus with a name matching operator, we show that
(a variant of) barbed congruence then coincides with weak bisimilarity. This
result relies on the technique presented in [16]; similar results for a variant of

3

the π-calculus are given in [22].

Besides their use as proof techniques, our labeled semantics yield a better un-
derstanding of multiway synchronization in the join-calculus. They also pro-
vide a basis for comparing the join-calculus to other process calculi equipped
with labeled transition systems, and in particular to the asynchronous π-cal-
culus [11]. In these calculi, asynchrony means that message outputs have no
continuation, and thus that there is no way to detect that a given message has
been received. The usual weak bisimulation of the π-calculus has too much
discriminating power, and separates processes with the same behavior such as
0 and x(u).x〈u〉; several remedies are considered in [21,4]. Our bisimulations
for the join-calculus embed similar accommodations, but they yield simpler
semantics because locality constrains interaction with the environment. This
reduces the number of cases to consider and rules out processes in which the
same message can be either received by the context or consumed by an internal
reduction.

The paper is organized as follows. In Section 2, we introduce our language
and its model. In Section 3, we define weak bisimulation and study its basic
properties. In Section 4, we introduce asynchronous bisimulation and prove
that it coincides with weak bisimulation. In Section 5, we give examples of
bisimilar processes. In Section 6, we study the impact of name matching and
relate our equivalences to barbed congruence. In Section 7, we discuss related
work for the asynchronous π-calculus. We conclude in Section 8. Additional
proofs appear in an appendix.

2 The open join-calculus

We define the open join-calculus and its operational semantics as extensions of
the join-calculus and the rcham of [15]. We refer to previous works for a dis-
cussion of the join-calculus as a model of distributed programming [15,17,14].

2.1 Syntax and scopes

The syntax of the open join-calculus relies on a countable set of names N
ranged over by x, y, u, v, . . . ; tuples of names are written ui

i∈1..p or simply ũ.
The syntax includes processes P , open processes A, definitions D, and join-
patterns J . A process P can be the inert process 0, a message x〈ũ〉 sent on a
name x that carries a tuple of names ũ, a parallel composition of processes,
or a defining process def D in P where D defines names that are local to P .

4

Table 1
Syntax for the open join-calculus

P ::= 0

| x〈ui
i∈1..p〉

| P |P

| def D in A

D ::= J . P

| D ∧ D

A ::= 0

| x〈ui
i∈1..p〉

| A |A

| defS D in A

J ::= x〈ui
i∈1..p〉

| J | J

A definition D is a conjunction of reaction rules J .P that associate join-
patterns J to guarded processes P ; the intended meaning is that, whenever
messages match the pattern J , these messages can be replaced with a copy
of the guarded process P where the formal parameters are replaced with the
content of the messages. The only binders of the calculus are join-patterns, but
the scope of names appearing in a join-pattern depends on their position: the
scope of received names is the guarded process; the scope of names carrying
messages is the main process of the definition and, recursively, all guarded
processes of the definition.

An open process A is like a process except that it has open definitions at
top-level instead of local ones. The open definition defS D in P exhibits a
subset S of names defined by D that are visible from the environment: the
extruded names. We may omit the index set S when it is empty and identify
open definitions def∅ D in P with local definitions def D in P . We refer to the
fragment of the calculus without extruded names as the plain join-calculus. We
also write

∧n
i=1 Ji .Pi for J1 .P1 ∧ . . . ∧ Jn .Pn and

∏n
i=1Ai for A1 | . . . |An.

The interface of an open process A consists of two disjoint sets of names: free
names fv(A) used in A to send messages out, and extruded names xv(A) used
by the environment to send messages in. We refer to names in either of these
sets as visible names. Our notion of “free names” is thus more restrictive
than usually; in [28], for instance, every visible name is considered “free”.
Other names that appear in a process are names bound in a join-pattern and
not extruded; we refer to these names as local names. Received names rv(J),
defined names dv(J) and dv(D), free names fv(D) and fv(A), and extruded
names xv(A) are defined in Table 2. As usual,] means disjoint union.

In the whole paper, we identify terms that are equal up to a renaming of local
names (called α-conversion) and we assume that all terms meet the following
well-formed conditions. These conditions extend those of [15], and will be
preserved by all transitions.

5

(1) Names carry fixed-sized messages, i.e., there is a recursive sorting dis-
cipline on names that avoids arity mismatch, in the style of [27]. We
refer to other works for a detailed treatment of sorts and arities in the
join-calculus [14,18].

(2) Join-patterns are linear, i.e., a variable may appear at most once in every
join pattern. Linearity of received variables rules out name matching.
Linearity of defined variables does not affect expressiveness (cf. [14]) but
it makes technical developments simpler.

(3) Sets of names extruded by different open sub-processes are disjoint—
informally, these names are independently defined.

(4) Open definitions defS D in P define their extruded names (S ⊆ dv(D)).

2.2 Open chemistry

We first illustrate our operational semantics for the process def∅ x〈〉 . y〈〉 in
z〈x〉 (omitting structural equivalence). The interface contains no extruded
name and two free names y, z. The message z〈x〉 can be consumed by the
environment, thus exporting x:

def∅ x〈〉 . y〈〉 in z〈x〉 {x}z〈x〉−−−−→ def{x} x〈〉 . y〈〉 in 0

Once x is known by the environment, it cannot be considered local anymore—
the environment can emit on x—, but it is not free either—the environment
cannot modify or extend its definition. A new transition is enabled:

def{x} x〈〉 . y〈〉 in 0
x〈〉−→ def{x} x〈〉 . y〈〉 in x〈〉

Now the process can input more messages on x, and also perform the two
transitions below to consume the message on x and emit a message on y:

def{x} x〈〉 . y〈〉 in x〈〉 → def{x} x〈〉 . y〈〉 in y〈〉
{}y〈〉−−−→ def{x} x〈〉 . y〈〉 in 0

We now extend the rcham of [15] with extrusions, intrusions, and explicit
bookkeeping of extruded names.

Definition 1 Open chemical solutions, ranged over by S, T , . . . , are triples
(D, S,A), written D `S A, where

• D is a multiset of definitions;
• S is a subset of names defined in D (S ⊆ dv(D));
• A is a multiset of open processes with disjoint sets of extruded names such

that dv(D) ∩ xv(A) = ∅.

6

Table 2
Scopes for the open join-calculus

In join patterns:

rv(x〈ṽ〉) def= {u ∈ ṽ} dv(x〈ṽ〉) def= {x}

rv(J | J ′) def= rv(J)] rv(J ′) dv(J | J ′) def= dv(J)] dv(J ′)

In definitions:

dv(J . P) def= dv(J) fv(J . P) def= dv(J) ∪ (fv(P)\rv(J))

dv(D ∧ D′) def= dv(D) ∪ dv(D′) fv(D ∧ D′) def= fv(D) ∪ fv(D′)

In processes:

fv(A |A′) def= (fv(A) ∪ fv(A′)) \ (xv(A)] xv(A′)) fv(0) def= ∅

xv(A |A′) def= xv(A)] xv(A′) xv(0) def= ∅

fv(defS D inA) def= (fv(D) ∪ fv(A)) \ (dv(D)] xv(A)) fv(x〈ṽ〉) def= {x, ṽ}

xv(defS D inA) def= S] xv(A) xv(x〈ṽ〉) def= ∅

In solutions:

fv(D `S A) def= (fv(D) ∪ fv(A)) \ (dv(D)] xv(A))

xv(D `S A) def= S] xv(A)

The interface of an open solution S also consists of two disjoint sets of free
names fv(S) and extruded names xv(S), defined in Table 2. (Functions dv(·),
fv(·), and xv(·) are extended to multisets of terms by taking unions for all
terms in the multisets.) When no ambiguity arises, we identify the term A
and the open solution ∅ `∅ A. We also let S |P abbreviate the open solution
D `S A, P , for all processes P and open solutions D `S A obtained from S
by α-conversion such that fv(P) ∩ dv(D) ⊆ S.

The chemical rules for the open rcham are given in Table 3; they define
families of transitions between open solutions ≡, →, and

α−→ where α ranges
over labels of the form Sx〈ṽ〉 and x〈ṽ〉. By convention, each chemical rule
mentions only the processes and definitions that are involved in the transition,
and the transition applies to every chemical solution S that contains them.
We define structural equivalence as the reflexive-symmetric-transitive closure
of the structural moves given in Table 3. We write ≡→≡ for silent steps up to
structural equivalence, and ⇒ for series of such steps (⇒ def

=
⋃

n≥0 ≡ (→≡)n).

Let us comment on the rules. The rules Str-Null, Str-Par, and Str-And
make parallel composition of processes and conjunction of definitions associa-
tive and commutative, with unit 0 for parallel composition. The rule Str-Def
enforces a lexical scoping discipline with scope-extrusion. The reduction rule
Red states how messages can be consumed and replaced with a copy of a

7

Table 3
The open rcham

Str-Null `S 0 ≡ `S

Str-Par `S A | A′ ≡ `S A, A′

Str-And D ∧ D′ `S ≡ D, D′ `S

Str-Def `S defS′ D in A ≡ Dσ `S]S′ Aσ

Red J . P `S Jρ → J . P `S Pρ

Ext `S x〈vi
i∈1..p〉 S′x〈vi

i∈1..p〉−−−−−−−→ `S∪S′

Int `S∪{x}
x〈vi

i∈1..p〉−−−−−−→ `S∪{x} x〈vi
i∈1..p〉

Side conditions on the reacting solution S = (D `S A):

Str-Def σ replaces dv(D) \ S′ with distinct fresh names;

Red ρ substitutes names for rv(J);

Ext x is free, and S′ = {vi | i ∈ 1..p} ∩ (dv(D) \ S);

Int vi∈1..p
i are either free, or fresh, or extruded.

guarded process. These first five rules are those of the rcham, except that
rule Str-Def performs additional bookkeeping on extruded names. More pre-
cisely, the original rcham of [15] can be recovered as the restriction of the
open rcham that operates on chemical solutions with no extruded variables
and that does not use the rules Ext and Int.

The last two rules model interaction with the context. According to rule Ext,
messages emitted on free names can be received by the environment; these
messages export any defined name that was not previously known to the en-
vironment, thus causing the scope of its definition to be opened. This is made

explicit by the set S ′ in the label of the transition
S′x〈ṽ〉−−−→. Names in S ′ must

be distinct from any name that appears in the interface before the transition;
once these names have been extruded they cannot be α-converted anymore,
and behave like constants. Our rule resembles the Open rule for restriction in
the π-calculus [28], with an important constraint due to locality: messages are
either emitted on free names, to be consumed by Ext, or on names defined
in the open solution, to be consumed by Red.

The rule Int enables the intrusion of messages on extruded names only. It
can be viewed as a disciplined version of one of the two Input rules proposed
by Honda and Tokoro for the asynchronous π-calculus, which enables the
intrusion of any message [21]. The side condition of Int requires that intruded

8

messages do not clash with local names of processes. (More implicitly, we may
instead rely on the silent α-conversion on those local names; this is the original
meaning of “intrusion” in [28].)

When applied to open solutions, our structural rules capture the intended
meaning of extruded names: messages sent on extruded names can be moved
inside or outside their defining process. For instance, we have the structural
rearrangement

`S x〈ṽ〉 | defS′ D in A ≡ `S defS′ D in (x〈ṽ〉 |A)

for any extruded name x, and as long as the names in ṽ are not captured by
D ({ṽ} ∩ dv(D) ⊆ S ′).

Remark 2 In its original presentation [15,14], the join-calculus is equipped
with auxiliary labeled transition systems that give an alternative, syntactic
description of chemical reduction steps. Transitions are labeled with whole re-
action rules; these large labels are discarded when the transition applies within
a defining process that contains the same reaction rule. In contrast, our open
rcham provides an extensional semantics of the calculus; labels are much
simpler than definitions, and silent steps are not defined as a combination of
labeled transitions and hiding.

2.3 Basic properties

In order to deal with bisimulations in the next section, we set additional
notations and we state elementary properties of the transition system.

The following property is inherited from the rcham of [15]. It provides two
different kinds of normal forms for open solutions.

Proposition 3 Every open chemical solution is structurally equivalent to a
solution that contains only simple reaction rules and messages, called a fully
heated solution, of the form

{. . . , Jj .Pj, . . . } `S {. . . , xi〈ũi〉, . . . }

which is unique up to α-conversion, and to a solution that contains a single
open process of the form

∅ `∅
{
defS

∧
Jj .Pj in

∏
xi〈ũi〉

}
The multiset of messages xi〈ũi〉 can be further partitioned into three parts:
messages on free names, messages on extruded names, and messages on locally
defined names.

9

Given a fully-heated solution S = D `S]S′ M, the restriction of S on S is
written S \ S and defined as follows:

(D `S]S′ M) \ S def
= D `S′ M

More generally, the restriction operator \S is defined for all solutions and
open processes that extrude every name of S, by applying the restriction to
the structurally-equivalent fully-heated solution. Since \S is partially defined,
when we write S \ S we will assume that S ⊆ xv(S). This linear, partial
definition of restriction is consistent with our explicit management of input
interface. In particular, it rules out erroneous restrictions on free names.

Definition 4 Let S be an open solution; a global renaming on S is a partial
function from names to names with finite domain that is injective on xv(S).

Global renamings operate on open solutions (and similarly on open processes)
by substituting their visible names. We let σ, σ′ range over global renamings.
As usual, the substitution may require α-conversion on local names to avoid
clashes. Following the definition, global renamings may map free names onto
previously free names, fresh names, or extruded names, but always map ex-
truded names to distinct extruded names.

The next propositions gather basic facts about interfaces, global renamings,
and chemical steps. Their proofs are straightforward consequences of previous
definitions.

Proposition 5 Let S be an open solution and S ⊆ xv(S).

(1) Let σ be a global renaming for S. Then fv(Sσ) = fv(S)σ \ xv(S)σ.
(2) Let S ≡ S ′. Then

(a) fv(S ′) = fv(S) and xv(S ′) = xv(S);
(b) S \ S ≡ S ′ \ S.

(3) Let S → S ′. Then
(a) fv(S ′) ⊆ fv(S) and xv(S ′) = xv(S);
(b) S \ S ≡→≡ S ′ \ S.

The following proposition relates extrusions and intrusions to internal moves.
It states two key properties of asynchrony: both extrusions and intrusions are
“buffered”, hence delayed extrusions and anticipated intrusions cannot affect
internal steps:

Proposition 6 Let S be an open solution.

(1) S ≡ Sx〈ṽ〉−−−→≡ S ′ if and only if S ≡ (S ′ |x〈ṽ〉) \ S.

If S Sx〈ṽ〉−−−→⇒ S ′, then S ⇒ Sx〈ṽ〉−−−→≡ S ′.

10

(2) S x〈ṽ〉−−→ S ′ if and only if x ∈ xv(S) and S ′ = S |x〈ṽ〉.
If S ⇒ x〈ṽ〉−−→ S ′, then S x〈ṽ〉−−→⇒ S ′.

The next lemma details the correspondence between transitions in a chemical
solution S and transitions in Sσ:

Lemma 7 Let S be an open solution and σ be a global renaming for S.

(1) S ≡ S ′ if and only if Sσ ≡ S ′σ.
(2) If S → T then Sσ → T σ.

If Sσ → T then S ≡ S1x1〈ṽ1〉−−−−−→ y1〈ṽ1〉−−−→ . . .
Snxn〈ṽn〉−−−−−→ yn〈ṽn〉−−−→≡→ S ′

where (S ′ \ ⊎n
i=1 Si)σ ≡ T and xiσ = yiσ for i = 1 . . . n.

(3) If S x〈ṽ〉−−→ T then Sσ (x〈ṽ〉)σ−−−−→ T σ.
If Sσ y〈w̃〉−−→ T then S x〈ṽ〉−−→ S ′ where S ′σ = T and (x〈ṽ〉)σ = y〈w̃〉.

(4) Let S be a set of names such that σ does not operate or range over S.

If S Sx〈ṽ〉−−−→ T and xσ ∈ fv(Sσ), then Sσ Sxσ〈ṽσ〉−−−−→ T σ.
If Sσ Sy〈w̃〉−−−→ T , then S Sx〈ṽ〉−−−→ S ′ where S ′σ = T and (x〈ṽ〉)σ = y〈w̃〉.

PROOF. We show in detail only the second part of Case 2, which is the less
obvious. The other cases are similar but easier. If Sσ → T , then by definition
of rule Red (and after α-conversion) S and T must be of the form

S = D, J . P `S P ,M

T = Dσ, Jσ .Pσ `Sσ Pσ, Pσρ

where M is a parallel composition of messages and ρ is the substitution used
in Red to consume the messages Mσ = Jσρ in Sσ.

We partition messages in M according to the names carrying the messages.
By definition of rule red every such name in Mσ is defined in Jσ, but before
renaming these names may be either free or defined in J : in the case they are
free, they are mapped to names defined in Jσ and extruded in Sσ. Let M ′′ be
the parallel composition of messages in M sent on names defined in J , let n
be the number of messages in M sent on free names, and assume that these
messages are of the form xi〈ṽi〉. Let also yi be the unique names in dv(J) such
that xiσ = yiσ. For i = 0 . . . n we write

Si
def
= D, J . P `

S∪
⊎i−1

j=1
Sj
P ,M ′′, y1〈ṽ1〉, . . . , yi−1〈ṽi−1〉, xi〈ṽi〉, . . . , xn〈ṽn〉

where the sets Si are successively defined as the names in ṽi that are not in the
interface of Si−1. Using Str-Par, we have S ≡ S0. Applying Ext and Int, we

have Si
Sixi〈ṽi〉−−−−→ yi〈ṽi〉−−−→ Si+1. Using Str-Par again, we assemble in Sn a parallel

11

composition of messages M ′ = Jρ′ where ρ′ operates on rv(J), M ′σ = Mσ,
and ρ′σ = σρ. Applying Red, the process Pρ′ can then be substituted for M ′,
yielding the solution S ′ of the lemma. �

Intrusions and extrusions always occur on disjoint sets of names, but this
property is not preserved by global renaming. The next lemma describes how
intrusions and extrusions may cancel one another after renaming.

Lemma 8 Suppose S ≡ Sx〈ṽ〉−−−→⇒ y〈ṽ〉−−→ S ′, and let σ be a global renaming for S
such that y /∈ S and xσ = yσ. Then we have Sσ ⇒ (S ′ \ S)σ.

PROOF. By applying Proposition 6, for some solution T we have

S ≡ (T |x〈ṽ〉) \ S ≡ Sx〈ṽ〉−−−→ y〈ṽ〉−−→ T | y〈ṽ〉 ⇒ S ′

We carry over these transitions to Sσ as follows:

• By applying Lemma 7(1), we have Sσ ≡ ((T |x〈ṽ〉) \ S)σ.
• By hypothesis, we have ((T |x〈ṽ〉) \ S)σ = ((T | y〈ṽ〉) \ S)σ.
• Since T | y〈ṽ〉 ⇒ S ′, we obtain (T | y〈ṽ〉) \S ⇒ S ′ \S by Proposition 5(2,3)

and ((T | y〈ṽ〉) \ S)σ ⇒ (S ′ \ S)σ by Lemma 7(1,2). �

3 Weak bisimulation

The join-calculus has been opened to support the standard notion of bisim-
ulation [26]. This section defines weak bisimulation for open solutions and
investigates its properties.

Definition 9 A relation φ on open solutions is a weak simulation if, whenever
S φ T , we have

(1) if S ≡→≡ S ′ then T ⇒ T ′ and S ′ φ T ′;
(2) if S ≡ α−→≡ S ′ then T ⇒ α−→⇒ T ′ and S ′ φ T ′,

for all labels α of shape x〈ṽ〉 or Sx〈ṽ〉 such that fv(T) ∩ S = ∅.

A relation φ is a weak bisimulation when both φ and φ−1 are weak simulations.
Weak bisimilarity ≈ is the largest weak bisimulation.

Following our conventions on processes as solutions, we shall write A ≈ B
instead of (∅ `∅ A) ≈ (∅ `∅ B).

12

The simulation clause for extrusion does not consider labels whose set of ex-
truded names S clashes with the free names of T : such transitions can never
be simulated. This standard technicality does not affect the intuitive discrim-
inating power of bisimulation, because names in S can be α-converted before
the extrusion.

It is possible to tell whether two processes are weakly bisimilar by reasoning
on their synchronization trees [26], without the need to exhibit discriminating
contexts. For example, x〈u〉 6≈ x〈v〉 because each process performs an extru-
sion with distinct labels. Likewise, x〈y〉 6≈ def z〈u〉 . y〈u〉 in x〈z〉 because the
first process emits a free name (label x〈y〉) while the latter emits a local name
that gets extruded (label {z}x〈z〉). Examples of processes that are weakly
bisimilar are presented in Section 5.

Remark 10 Rule Int makes weak bisimulation sensitive to input interfaces:
S ≈ T implies xv(S) = xv(T).

PROOF. Assume x ∈ xv(S) and S ≡ S ′ where S ′ is the fully-heated solution
obtained by Proposition 3. We have x ∈ xv(S ′) by Proposition 5(2), so rule

Int is enabled in S ′ and S ≡ x〈ṽ〉−−→ for all fresh names ṽ. The simulation of these

transitions yields T ⇒ T ′ x〈ṽ〉−−→⇒, hence x ∈ xv(T ′), and thus x ∈ xv(T) by
Proposition 5(2, 3). �

3.1 Up to proof techniques

A whole range of “up to proof techniques” are available to reduce the size of
the relation to exhibit when proving bisimilarities [26,29,34]. The lemma below
establishes that our definition of weak bisimulation is robust with respect to
reasoning up to structural equivalence, restriction of the input interface, and
weak bisimilarity on the right. Its proof appears in the appendix. As usual,
we derive the definitions of “weak bisimulation up to” from the definition of
weak bisimulation, and we use the resulting definitions as proof techniques.

Lemma 11 Let φ be a relation that satisfies all the bisimulation clauses of
Definition 9 after replacing the requirement “S ′ φ T ′” with one of the following
weaker requirements:

(1) (up to structural equivalence) S ′ ≡φ≡ T ′.
(2) (up to weak bisimilarity on the right) S ′ φ≈ T ′.
(3) (up to restriction) there are a set of names S and two solutions S ′′ and T ′′

such that S ′ ≡ S ′′ \ S, T ′ ≡ T ′′ \ S, and S ′′ φ T ′′.

Then we have φ ⊆ ≈.

13

3.2 Renaming and congruence properties

A context of the open join-calculus is an open process with a single process
placeholder [·]: we write C[·] for a context and C[A] for the process obtained
by substituting A for the placeholder. Whenever we apply a context, we im-
plicitly assume that the resulting open process is well-formed. We sometimes
use the subset of contexts that may bind some names of the interface of a pro-
cess, but cannot prevent its execution: evaluation contexts C[·] are defined by
the following grammar, up to structural equivalence.

C[·] def
= [·] | C[·]|A | defS D in C[·]

A congruence is an equivalence that is preserved by application of all contexts.

Theorem 12 Weak bisimilarity is a congruence.

The proof is detailed in the appendix; its structure is almost generic to mo-
bile process calculi in the absence of external choice (see, e.g., [21,4] for the
asynchronous π-calculus); it relies on two simpler closure properties:

Lemma 13 Weak bisimilarity is preserved by application of evaluation con-
texts.

Lemma 14 Weak bisimilarity is preserved by global renaming.

However, weak bisimulation up to global renaming is not a valid proof tech-
nique, because every intrusion could be cancelled by a substitution mapping
fresh variables to extruded ones. For instance, let An = def{y} y〈〉 . a〈〉 in∏n

i=1 xi〈〉, let Bn = def{y} y〈〉 . b〈〉 in
∏n

i=1 xi〈〉, and let φ = {(An, Bn) | n ≥ 0}.
The processes An and Bn are not bisimilar because, after an intrusion on y〈〉
and a silent step, An sends a〈〉 while Bn sends b〈〉. However, the relation φ is
a weak bisimulation up to the renaming {y/xn+1} after this intrusion.

4 Asynchronous bisimulation

In order to prove that two processes are bisimilar, a large candidate bisim-
ulation can be a nuisance, as it requires the analysis of numerous transition
cases. Unfortunately, weak bisimulations on open chemical solutions are typi-
cally rather large. For example, a process with an extruded name has infinitely
many derivatives even if no “real” computation is ever performed. Consider

14

Table 4
The j-open rcham

Rules Str-(Null,Par,And,Def) and Ext are as in Table 3.

Int-J J . P `S M
M ′
−−→ J . P `S Pρ

Side condition: Jρ ≡ M |M ′, dom(ρ) = rv(J), dv(M ′) ⊆ S,

names in rv(M ′) are either free, or fresh, or extruded.

the equivalence:

def x〈u〉|y〈v〉 .P in z〈x〉 ≈ def x〈u〉 | y〈v〉 .Q in z〈x〉

These two processes are bisimilar because their join-pattern cannot be trig-
gered, regardless of the messages the environment may send on x. Still, one is
confronted with infinite models on both sides, with a distinct chemical solu-
tion for every multiset of messages that have been intruded on x so far. This
problem with weak bisimulation motivates an alternative formulation.

We refine the open rcham by allowing inputs only when they immediately
trigger a guarded process. For example, the two processes above become inert
after an extrusion {x}z〈x〉, hence trivially bisimilar. If we applied this refine-
ment with the same labels for input as before, however, we would obtain a
dubious result. The solution x〈〉|y〈〉|z〈〉 .P `{x,y} z〈〉 can progress by first in-
puting two messages x〈〉 and y〈〉, then performing a silent step that consumes
these two messages together with the local message z〈〉 already in the solution.
Yet, neither x〈〉 nor y〈〉 alone can trigger the process P , and therefore this
solution would become inert, too. This suggests the use of join-inputs on x
and y in transitions such as

x〈〉 | y〈〉 | z〈〉 .P `{x,y} z〈〉
x〈〉 | y〈〉−−−−→ x〈〉 | y〈〉 | z〈〉 .P `{x,y} P

On the other hand, the solution x〈〉|y〈〉|z〈〉 .P `{x} z〈〉 is truly inert, since
the environment has no access to y, and thus cannot trigger P . In this case,
our refinement suppresses all input transitions.

4.1 The j-open rcham

The j-open rcham is defined in Table 4 as a replacement for the intrusion
rule. In contrast with the rule Int of Table 3, the new rule Int-J permits the
intrusion of messages only if these messages are immediately used to trigger
a process. This is formalized by allowing labels M ′ that are parallel composi-
tions of messages. If the solution contains a complementary process M such

15

that the combination M |M ′ matches the join-pattern of a reaction rule, then
the transition occurs and triggers this reaction rule. As for Int, we restrict
intrusions in M ′ to messages on extruded names.

We identify intrusions in the case M ′ = 0 with silent steps; the rule Red is
thus omitted from the new chemical machine. Nonetheless, we maintain the
distinction between internal moves and proper input moves in the discussion.

Each chemical solution now has two different models: for instance, the solution
x〈〉|y〈〉 .P `{x} has no transition in the j-open rcham, while it has infinite

series of transitions
x〈〉−→ x〈〉−→ x〈〉−→ · · · in the open rcham. In the sequel, we shall

keep the symbol
α−→ for the open rcham and use

α−→J for the j-open rcham;
we may drop the subscript J when no ambiguity can arise.

As a direct consequence of their definitions, we have the following relation
between the two models:

Proposition 15 Let S be an open solution.

(1) If S x1〈ṽ1〉 |··· |xn〈ṽn〉−−−−−−−−−→J T , then S x1〈ṽ1〉−−−→ · · · xn〈ṽn〉−−−→≡→ T .

(2) If S |x〈ũ〉 ≡ M−→J≡ T and x ∈ xv(S) , then

(a) either S ≡ M−→J≡ S ′ with S ′ |x〈ũ〉 ≡ T ;

(b) or S ≡ M |x〈ũ〉−−−−→J≡ T .

(3) S Sx〈ṽ〉−−−→J T if and only if S Sx〈ṽ〉−−−→ T

PROOF.

(1) The side-conditions on names that may appear on intrusion labels are
the same for the two rchams, so we can use rule Int to intrude every
message xi〈ṽi〉 of the compound label x1〈ṽ1〉 | · · · | xn〈ṽn〉 one at a time.
Once this is done, we can use the structural rule Str-Par to assemble
the parallel composition of messages that matches the join-pattern used
in Int-J, and perform a Red transition that uses the same reaction rule
to consume these messages and triggers the same process as in Int-J.

(2) The choice between the two cases depends on whether the message x〈ũ〉
is consumed by Int-J.

(a) For any series of reductions S |x〈ũ〉 ≡ M−→ T such that the intrusion
does not consume the message x〈ũ〉, any preliminary structural step
that operates on this message either commutes with the intrusion
or is reverted before the intrusion, so we can build another series

S |x〈ũ〉 ≡ M−→ S ′ |x〈ũ〉 ≡ T in which every step from S to S ′ applies
independently of the presence of x〈ũ〉.

(b) When x〈ũ〉 is consumed, by definition of Int-J, the transitions of the

16

lemma can be decomposed into

S ≡ D `S P , N |x〈ũ〉 M−→ T ′ ≡ T

where N |x〈ũ〉 is the process consumed by Int-J. We also have the

transition D `S P , N M |x〈ũ〉−−−−→ T ′ and, as described above, we can
eliminate preliminary structural steps that affect the message x〈ũ〉.

(3) Extrusions share the same definition. �

4.2 Asynchronous bisimulation

Next, we adapt the definition of weak bisimulation (Definition 9) to the new
j-open rcham. Consider for instance the two processes:

P
def
= def x〈〉 . a〈〉 ∧ a〈〉|y〈〉 .R in z〈x, y〉

Q
def
= def x〈〉|y〈〉 .R in z〈x, y〉

and assume a /∈ fv(R). With the initial open rcham, the processes P and Q
are weakly bisimilar. With the new j-open rcham and the same definition of
weak bisimulation, this does not hold because P can input x〈〉 after emitting
on z while Q cannot. But if we consider the weak bisimulation that uses join-
input labels instead of single ones, Q can input x〈〉|y〈〉 while P cannot, and
P and Q are still separated. It turns out that weak bisimulation discriminates
too much in the j-open rcham.

In order to retain an asynchronous semantics, weak bisimulation must be
relaxed, so that a process may simulate an Int-J transition even if it does not
immediately consume all its messages. This leads us to the following definition.

Definition 16 A relation φ on open solutions is an asynchronous simulation
if, whenever S φ T , we have

(1) if S ≡ Sx〈ṽ〉−−−→≡ S ′ then T ⇒ Sx〈ṽ〉−−−→⇒ T ′ and S ′ φ T ′

for all labels Sx〈ṽ〉 such that fv(T) ∩ S = ∅;
(2) if S ≡ M−→≡ S ′, then T | M ⇒ T ′ and S ′ φ T ′;
(3) xv(S) = xv(T).

A relation φ is an asynchronous bisimulation when both φ and φ−1 are asyn-
chronous simulations. Asynchronous bisimilarity ≈a is the largest asynchronous
bisimulation.

In the definition above, the usual clause for silent steps is omitted (it is sub-
sumed by the clause for intrusions with M = 0). On the other hand, an ad-

17

ditional clause requires that related solutions have the same extruded names.
Otherwise, Remark 10 would not hold for asynchronous bisimulation and, for
instance, the open deadlocked solution x〈〉|y〈〉 .P `{y} would be equivalent to
the empty solution `∅.

We now establish that asynchronous bisimilarity and weak bisimilarity actu-
ally coincide, by relating their respective intrusion clauses.

Theorem 17 ≈a = ≈.

In the following, we use up to proof techniques (up to structural equivalence,
up to asynchronous bisimulation on the right, up to restriction); these tech-
niques can be defined and validated in the same style as Lemma 11. We also
rely on a simple closure property, proved in the appendix:

Proposition 18 If S ≈a T and x ∈ xv(S), then S |x〈ṽ〉 ≈a T | x〈ṽ〉.

Proof of Theorem 17. We prove the inclusions ≈ ⊆ ≈a and ≈a ⊆ ≈. We
consider only the intrusions, as all other transitions are identical.

Weak bisimilarity is an asynchronous bisimulation. Suppose S ≈ T . Ac-

cording to Proposition 15(1), for every join-intrusion S M−→ S ′ with label
M = x1〈ṽ1〉 | · · · | xn〈ṽn〉 in the j-open rcham, there is a series of transitions
in the open machine that leads to the same solution S ′:

S x1〈ṽ1〉−−−→ · · · xn〈ṽn〉−−−→≡→ S ′

By weak bisimulation hypothesis, we obtain a mixed series of internal moves
and single intrusions from T :

T ⇒ x1〈ṽ1〉−−−→⇒ · · · ⇒ xn〈ṽn〉−−−→⇒ T ′

with S ′ ≈ T ′. In the open rcham we can always perform intrusions before
internal reductions: by iterating Proposition 6(2) we obtain:

T x1〈ṽ1〉−−−→ · · · xn〈ṽn〉−−−→≡ T |M ⇒ T ′

and we obtain the join-intrusion requirement of Definition 16 for the series of
reduction T |M ⇒ T ′.

Asynchronous bisimilarity is a weak bisimulation. Suppose S ≡ x〈ṽ〉−−→≡ S ′

and S ≈a T . By definition of rule Int, x ∈ xv(S) and S ′ ≡ S | x〈ṽ〉. By
asynchronous bisimulation hypothesis, xv(S) = xv(T), thus x ∈ xv(T) and

T ≡ x〈ṽ〉−−→≡ T |x〈ṽ〉. We conclude by Proposition 18. �

18

4.3 Bisimulation up to evaluation context

As an illustration, we show that P ≈a Q where P and Q are the processes
at the beginning of Section 4.2. Both P and Q perform the same extrusion
labeled {x, y}z〈x, y〉, therefore it suffices to prove

A
def
= def{x,y} x〈〉 . a〈〉 ∧ a〈〉|y〈〉 .R in 0 ≈a B

def
= def{x,y} x〈〉|y〈〉 .R in 0

To this end, we state the bisimulation up to evaluation context proof tech-
nique for asynchronous bisimulations. This technique is formalized in [34],
and provides an effective tool for establishing equivalences. (This technique
does not directly apply to weak bisimulation, because intrusions could always
be cancelled by discarding the intruded messages. For instance the two pro-
cesses def{x} x〈〉 . a〈〉 in 0 and def{x} x〈〉 . b〈〉 in 0 are not bisimilar, but they
are bisimilar up to parallel composition, because the context x〈〉 |[·] can be
discarded after intrusion but before the guarded processes are triggered.)

Lemma 19 (Up to evaluation contexts) Let φ be a relation on open pro-
cesses that satisfies all the clauses of Definition 16 after replacing the require-
ment “S ′ φ T ′” with “there is an evaluation context C[·] such that S ′ ≡ C[A],
T ′ ≡ C[B], and A φ B”. We have φ ⊆ ≈a.

PROOF. Let φ′ be the relation that contains all pairs of well-formed pro-
cesses (C[A], C[B]) such that A φ B and C[·] is an evaluation context. We
show that φ′ is an asynchronous bisimulation up to restriction and structural
equivalence, and remark that φ ⊆ φ′ ⊆ ≈a. Let C[A] φ′ C[B].

Assume C[A]
Sx〈ṽ〉−−−→ T with S ∩ fv(C[B]) = ∅. If the extruded message is in

C[·], this extrusion directly corresponds to one of C[B]; this yields related
processes of the form C ′[A] φ′ C ′[B]. If the extruded message is in A, there is

an extrusion A
S′x〈ṽ〉−−−→ A′, with S ′ ⊆ S and T ≡ C ′[A′]. (Names in S \ S ′ are

extruded names bound in C[·].) This extrusion is simulated by B ⇒ S′x〈ṽ〉−−−→⇒
B′ with A′ φ B′, hence C[B] ⇒ Sx〈ṽ〉−−−→⇒ C ′[B′] with C ′[A′] φ′ C ′[B′].

Assume C[A]
M−→ T . The names dv(M) are extruded by the same definition.

If the definition is in A (including the case of steps internal to A), we also have

an intrusion A
M ′
−→ A′ with M ′ ≡ M |M ′′ and T ≡ C ′[A′] (messages in M ′′

account for additional messages provided by C[·]). We have B |M |M ′′ ⇒ B′,
hence C[B] ⇒ C ′[B′] φ′ C ′[A′] ≡ T . If the definition is in C[·] (including
other cases of steps internal to C[A]), the intrusion can be simulated from
C[B] after extracting from B every message of A that is consumed by this
transition. Let M ′ be the messages of A consumed in this intrusion. For every

19

message of M ′, A can perform an extrusion, and B can simulate this extrusion.
Let A′ φ B′ be the processes obtained after performing all these extrusions,
and let S collect all the extruded names. We have T ≡ C[A′] \S and C[B] ⇒
C[B′ |M ′] \ S ≡ M−→≡ C ′[B′] \ S. Up to restriction, C ′[A′] and C ′[B′] are thus
related by φ′. �

Proof of the example. Let An
def
= A |∏n

i=1 a〈〉 and Bn
def
= B |∏n

i=1 x〈〉.
We prove that the relation φ

def
= {(An, Bn) | n ≥ 0} is an asynchronous

bisimulation up to evaluation context and structural equivalence. All the initial
transitions of the J-open rcham for An and Bn are intrusions on x and y:

(1) An ≡
x〈〉−→≡ An+1,

(2) Bn ≡
x〈〉 | y〈〉−−−−→≡ R |Bn,

(3) An+1 ≡
y〈〉−→≡ R |An,

(4) Bn+1 ≡
y〈〉−→≡ R |Bn.

Intrusions (3) and (4) lead to processes in φ up to the context R |[·]. In-
trusions (1) do not correspond to any intrusion in Bn, but nonetheless the
asynchronous bisimulation requirement can be met by adding the message x〈〉
in parallel to Bn; we obtain two related processes at rank n+1. Intrusions (2)
do not correspond to single intrusions in An, but the bisimulation requirement
can be met after adding the two messages in parallel to An, since two internal
steps can first consume the message x〈〉 and release a message a〈〉 instead,
then consume a〈〉 | y〈〉 and trigger R. �

4.4 Ground bisimulations

Ground bisimulation is a variant of bisimulation obtained by restricting the
intrusions to labels that convey fresh names. As first observed in the π-cal-
culus [21,4,10], asynchrony brings another interesting property as regards the
number of transitions to consider: the ground variant of bisimilarity coincides
with the original one. This property also holds in the join-calculus, thus pro-
viding proof techniques with, for every chemical solution, exactly one intrusion
per extruded name when using weak bisimulation, and one intrusion per “ac-
tive” partial join-pattern when using asynchronous bisimulation. The proof
appears in the appendix.

Proposition 20 Let ≈g be the bisimilarity obtained from Definitions 9 after
restricting intrusion labels to labels of the form x〈ṽ〉 where the names ṽ are
pairwise-distinct names that do not appear in the solution. Similarly, let ≈ag

be the bisimilarity obtained from Definition 16 by restricting intrusion labels

20

to x1〈ṽ1〉 | . . . |xm〈ṽm〉 where the names ṽi are pairwise-distinct fresh names.
We have ≈g = ≈ = ≈a = ≈ag.

5 Examples

We present a collection of simple bisimilarities, together with their proofs and
applications. These equations crucially rely on locality. We refer to [14] for
more complex applications of labeled bisimulation proofs, and to [31] for an
investigation of join-patterns without locality.

In the join-calculus, whenever a name x is defined by a single clause of the form
x〈ỹ〉 .P , the outcome of any message sent on x is determined, independently
of the context:

Example 21 (Deterministic reductions)

def{x} x〈ỹ〉 .P in x〈ũ〉 ≈ P{ũ/̃y} | def{x} x〈ỹ〉 .P in 0

This simple equation is especially useful, as it handles most of the reduction
steps that occur in standard deterministic encodings, such as the encodings of
functions and of data structures.

PROOF. Let A = def{x} x〈ỹ〉 .P in 0, and let φ be the singleton relation
{(A |x〈ũ〉, A |P{ũ/̃y)}. We prove that the reflexive closure of φ is an asyn-
chronous bisimulation up to evaluation context and structural equivalence.
The process A |x〈ũ〉 has two transitions: (1) the internal step

A |x〈ũ〉 ≡→≡ A |P{ũ/̃y}

yields the related process; all transitions of A |P{ũ/̃y} can thus be simulated
by A |x〈ũ〉 by composing this internal step and the same transitions, yielding
identical processes. (2) The intrusions

A |x〈ũ〉 ≡ x〈ṽ〉−−→≡ A |x〈ũ〉 |P{ṽ/̃y}

are simulated by identical intrusions on the other side; these resulting processes
can be obtained from φ by applying the context [·] |P{ṽ/̃y}. �

The following examples show that weak bisimulation is largely insensitive to
the shape of join-patterns. To begin with, some straightforward equations
allows one to get rid of redundant rules in definitions:

21

Example 22 (Redundant definitions)

defS D ∧ D′ in A ≈ defS D ∧ D ∧ D′ in A (1)

defS J .P ∧ J ′ .P ′

∧ D′ in A
≈

defS J .P ∧ J ′ .P ′

∧ J |J ′ .P |P ′ ∧ D′ in A
(2)

Similarly, definitions can be simplified whenever some of their locally defined
names do not occur anywhere else. The following example shows that it is not
possible to observe the internal state of processes.

Example 23 (Adjunction of internal state)

defS J .P in A ≈ defS J |s〈ṽ〉 .P |s〈ṽ〉 in A|s〈ṽ〉

where s is a fresh name and {ṽ} ∩ rv(J) = ∅.

Indeed, there is always one available message s〈ṽ〉 that conveys the same
names, which are initially bound in a process within the same scope. This
equality suffices to prove interesting properties with regards to our scoping
rules. If we take {ṽ} = dv(J) ∪ {s}, then all occurrences of names of dv(J)
that appear in P—we call them recursive occurrences—are now bound as re-
ceived variables. Up to weak bisimulation, we can therefore eliminate recursion
from every definition. If we take {ṽ} = (fv(P)∪{s})\ rv(J), then all names in
P are now bound as received variables. This is reminiscent of lambda-lifting
in the λ-calculus; in combination with the congruence property of weak bisim-
ilarity, this validates a compilation scheme for the join-calculus that would
replace every process with an equivalent process with simpler binders (either
receptions or immediate definitions).

Next, we consider the introduction of intermediate buffers; as one would expect
in an asynchronous calculus, our semantics is not sensitive to such buffers,
either before a join-synchronization or after it.

Example 24 (Buffering before synchronization)

defS D in A ≈ defS x〈ũ〉 . x′〈ũ〉 ∧ D′ in A

where x ∈ dv(D), x′ is a fresh name, and D′ is obtained from D by substituting
x′〈ṽ〉 for x〈ṽ〉 in every join-pattern.

Example 25 (Buffering after synchronization)

defS J .P ∧ D in A ≈ defS J . x〈ṽ〉 ∧ x〈ṽ〉 .P ∧ D in A

22

where x is a fresh name and ṽ is a tuple that conveys the names of rv(J).

These simple properties of asynchrony are easily established. Using a weak
bisimulation argument, for instance, we establish the equation above:

Proof of Example 25. Let φ be the relation that contains all pairs of open
processes (A1, A2) of the form

A1
def
= defS J .P ∧ D in A |∏ρ∈U Pρ

A2
def
= defS J . x〈ṽ〉 ∧ x〈ṽ〉 .P ∧ D in A |∏ρ∈U x〈ṽρ〉

for the terms D and P of the lemma, and for all S ⊆ dv(D), A, and U such
that x is fresh and U is a finite multiset of substitutions with domain ṽ. We
check that φ is a weak bisimulation up to structural equivalence, and obtain
the lemma in the case U is empty. We detail only the transitions that affect U .

• any transition that consumes a message x〈ṽρ〉 in A2 is simulated in A1 with
no transition, leading to a pair of related processes with A |Pρ instead of
A and a smaller multiset U .

• Any transition that involves processes Pρ in A1 can be simulated in A2

after performing silent steps that substitute these processes Pρ for the cor-
responding messages x〈ṽρ〉. After structural rearrangement, the derivatives
of A1 and A2 are still in φ for some other choice of S, A, and U .

• Any transition that uses the join-patterns J .P in A1 or J . x〈ṽ〉 in A2, re-
spectively, is handled by adding the substitution used by rule Red to U . �

The buffering of partial join-patterns may not preserve weak bisimilarity, be-
cause it can affect the branching structure of processes. For instance, the
internal commitment to one of the two messages on x separates the second
process from the first one.

def{z} x〈u〉|y〈〉|z〈v〉 .P in x〈1〉|x〈2〉|y〈〉

6≈ def{z} x〈u〉|y〈〉 . t〈u〉 ∧ t〈u〉|z〈v〉 .P in x〈1〉|x〈2〉|y〈〉

While these processes have the same traces, the latter can reduce to def{z}
x〈u〉|y〈〉 . t〈u〉 ∧ t〈u〉|z〈v〉 .P in t〈1〉|x〈2〉, and this internal step cannot be
simulated by the former process. This well-known problem of gradual commit-
ment is further discussed in [14], where coupled simulations are used to relate
the two processes above.

23

6 The discriminating power of matching

In this section, we relate weak bisimulation to the standard barbed equiva-
lence semantics. As in other process calculi, their coincidence relies on the
discriminating power of an additional, name matching operator [22,4].

6.1 Barbed congruence

The main semantics of the join-calculus in [15] is barbed congruence. This
equivalence was initially studied for the π-calculus as a “reduction-based
equivalence” in [29]. We recall its definition below, and refer to the mentioned
papers for discussion.

Definition 26 The output barb ⇓x is a predicate over open rchams that
tests for the potential emission of messages: S ⇓x when S ⇒ C[x〈ṽ〉] for some
evaluation context C[·] such that x is free.

A relation φ is a barbed simulation if, whenever S φ T , we have

(1) xv(S) = xv(T);
(2) if S ⇓x then T ⇓x ;
(3) if S ≡→≡ S ′ then T ⇒ T ′ and S ′ φ T ′.

A relation φ is a barbed bisimulation if both φ and φ−1 are barbed simulations.
Barbed congruence ≈b is the largest barbed bisimulation that is preserved by
application of open join-calculus contexts.

The first clause departs from the standard definition of barbed bisimula-
tion [29]; it demands that bisimilar processes have the same extruded names.
For instance, we have def{x} x〈u〉 . 0 in 0 6≈b 0 by definition.

6.2 Weak bisimilarity versus barbed congruence

By definition of rule Ext, we have S ⇓x if and only if S ⇒ Sx〈ṽ〉−−−→ S ′. Weak
bisimilarity is thus a barbed bisimulation, and also a congruence (Theorem 12),
hence it is finer than barbed congruence (≈ ⊂ ≈b). This containment is strict,
as can be seen from the paradigmatic example of barbed congruence:

x〈z〉 ≈b def u〈v〉 . z〈v〉 in x〈u〉

24

That is, emitting a free name z is the same as emitting a bound name u that
forwards all the messages it receives to z, because the extra internal move for
every use of u is not observable. On the contrary, weak bisimilarity separates
these two processes because their respective extrusion labels reveal that z is
free and u is extruded. Since the contexts of the open join-calculus cannot
identify names in messages, more powerful contexts are required to reconcile
the two semantics.

6.3 Name matching

In this section only, we extend the syntax of the join-calculus with a name
matching operator, in the same style as [28].

A
def
= . . . | [x=y]A P

def
= . . . | [x=y]P

Accordingly, we extend our chemical machines with a new reduction rule.

Match `S [x=x]A → ` A

A technical drawback of name matching is that global renamings do not pre-
serve weak bisimilarity anymore. For instance, 0 ≈ [x=y]x〈〉, while after ap-
plying the renaming {x/y}, 0 6≈ [x=x]x〈〉. Accordingly, weak bisimilarity is not

a congruence anymore. For instance, the context C[·] def
= def z〈x, y〉 .[·] in

z〈u, u〉 separates 0 and [x=y]x〈〉.

In order to retain the full congruence property, we may consider the coarsest
equivalence contained into ≈ and preserved by global renaming. It is possible
to prove, in the same style as for Theorem 12, that this equivalence is indeed
a congruence; however this equivalence is not a bisimulation.

Alternatively, we consider equivalences that are not full congruences. The next
lemma restates the partial congruence property of Lemma 13 in the presence
of matching—the same proof techniques apply unchanged.

Lemma 27 Weak bisimilarity is preserved by application of evaluation con-
texts with name matching.

We adapt our definition of barbed congruence accordingly:

Definition 28 Barbed equivalence ≈be is the largest barbed bisimulation in
the open join-calculus with matching that is preserved by application of all
evaluation contexts of the plain join-calculus with matching.

Barbed equivalence now separates x〈z〉 from def u〈v〉 . z〈v〉 in x〈u〉 by using
the context def x〈y〉 . [y=z] a〈〉 in [·], and weak bisimilarity clearly remains

25

finer than barbed equivalence. In the next section, we focus on the converse
property. (As a corollary of Theorem 29, it turns out that barbed equivalence
is also preserved by application of evaluation contexts with extruded names.)

6.4 Barbed equivalence is a weak bisimulation

In a process calculus with matching, the coincidence of weak bisimilarity and
barbed equivalence is not easy to prove or disprove. A first positive result
is given in [22] for the ν-calculus. In the π-calculus, the question was raised
in [29], and closed with both positive and negative results depending on slightly
different definitions of equivalences [16]. Sangiorgi, in [33], proves that stan-
dard early bisimulation coincides with barbed equivalence both in CCS and
in the monadic π-calculus. The technique consists of building contexts that
test all possible behaviors of a process under bisimulation. This technique re-
quires infinite contexts with infinite numbers of free names and of recursive
constants. Such contexts are otherwise never considered in congruence prop-
erties, and cannot be expressed using constructs such as replication instead
of parameterized recursive constants. In recent works, partial results for vari-
ants of the π-calculus are obtained by using the same technique; since only
finite contexts are available, the coincidence is established only for image-finite
processes (i.e., processes with a finite set of derivatives).

As discussed in [16,14], there are actually two ways of defining barbed equiv-
alence. In “classical” barbed equivalences, a congruence property is required
once, before checking that the two processes are bisimilar. In definitions 26
and 28, however, as in the ν-calculus [22], congruence and bisimulation proper-
ties are required at the same time. This technical choice is essential to obtain a
simple proof that weak bisimulation and barbed equivalence coincide: instead
of considering whole synchronization trees, we can focus on single transitions.
For every labeled transition, we apply a specific evaluation context that “cap-
tures” the label, then disappears up to barbed equivalence. (The corresponding
π-calculus proof appears in [16]; further discussion of barbed equivalences, in-
cluding a proof that the two definitions of barbed equivalence yield the same
equivalence appears in [14].)

Theorem 29 With name matching, we have ≈be = ≈.

In the following proof, we focus on the inclusion ≈be ⊆ ≈; the converse inclu-
sion holds by Definition 28 and Lemma 27. The problematic case is extrusion,
because a context of the join-calculus must define a name in order to detect an
output transition on that name; this case is handled by creating a permanent
relay for all other messages on that name. Without additional care, this relay
can be detected by name matching, so we use instead a family of contexts that

26

separate two aspects of a name. For every name x ∈ N , we let

Rx[·] def
= def x〈ỹ〉 . x′〈ỹ〉 in vx〈x〉 |[·]

where the length of ỹ matches the arity of x. Assuming x ∈ fv(A), the process
Rx[A] uses x′ as a free name instead of x, and forwards all messages from x
to x′. The context should still be able to discriminate whether the process sends
the name x or not by using name matching; this extra capability is supplied in
an auxiliary message vx〈x〉. The next proposition describes reductions within
contexts Rx[·]:

Proposition 30 If Rx[A] ⇒ T then for some A′ we have A ⇒ A′ and
Rx[A

′] ≈ T .

PROOF. We prove by induction on n that if Rx[A] (≡→≡)n≈ T then A⇒
A′ and Rx[A

′] ≈ T . The base case is immediate; we distinguish two situations
for the inductive case, according to the initial reduction step.

• If this step occurs in A, we apply the induction hypothesis.
• Otherwise, this step uses the single rule of the context; it consumes a mes-

sage x〈w̃〉 and replaces it with a message x′〈w̃〉; this step commutes with all
subsequent steps and preserves weak bisimulation (Example 21). We apply
the induction hypothesis for all other steps and substitute weak bisimulation
for the last step. �

Informally, the contexts Rx[·] are the residuals of contexts that test for labels
of the form {x}y〈x〉. The next lemma captures the essential property of Rx[·]:

Lemma 31 (Accommodating the extrusions) For all open processes A
and B such that x 6∈ xv(A) ∪ xv(B) and x′, vx are not in the interface of A
and B, we have A ≈be B if and only if Rx[A] ≈be Rx[B].

PROOF. If A ≈be B, then the closure property of ≈be with respect to plain
evaluation contexts yields Rx[A] ≈be Rx[B]. To prove the converse implication,
we let

φ
def
=

(A,B) |
x 6∈ xv(A) ∪ xv(B)

Rx[A] ≈be Rx[B] for some fresh names x′ and vx

and establish that φ is a barbed equivalence. Let A φ B.

(1) φ is a weak bisimulation for silent steps. If A ≡→≡ A′, then Rx[A] ≡→≡
Rx[A

′]. By hypothesis Rx[A] ≈be Rx[B] hence this reduction is simulated

27

by reductions Rx[B] ⇒ T with Rx[A
′] ≈be T . By Proposition 30, we have

B ⇒ B′ and Rx[B
′] ≈be T . By transitivity Rx[A

′] ≈be Rx[B
′] and thus

A′ φ B′.
(2) φ respects the barbs. If A ⇓y with y 6= x, then also Rx[A] ⇓y by using the

same reductions; by hypothesis Rx[B] ⇓y and, since y /∈ {vx, x
′} we must

have B ⇓y . Similarly, if A ⇓x then Rx[A] ⇓x ′ , Rx[B] ⇓x ′ , and B ⇓x .
(3) φ is preserved by application of evaluation contexts of the plain join-

calculus with matching. It suffices to show the closure property for any
context of the form C[·] = def

∧n
i=1 Ji .Pi in Q |[·]. We show that

Rx[C[A]] ≈be Rx[C[B]] by translating C[·] to another context [[C]][·]
that binds vx, receives x on vx, uses x everywhere except for the def-
inition of x′, and re-applies Rx on the outside. We pick fresh names ρ
and wx, and distinguish two cases according to the scope of x, In case
C[·] binds x (x ∈ ⋃n

i=1 dv(Ji)), we use the translation

[[C]][·] def
= Rx[0] |def

∧n
i=1 Ji{x′/x} | ρ〈x〉 .Pi | ρ〈x〉 ∧ vx〈x〉 . ρ〈x〉 |Q in [·]

Otherwise, we use the translation

[[C]][·] def
= def

∧n
i=1 Ji | ρ〈x〉 .Pi | ρ〈x〉 ∧ vx〈x〉 . ρ〈x〉 |wx〈x〉 |Q in [·]

In each case, we establish [[C]][Rx[A]] ≈ Rx[C[A]] by a standard bisimu-
lation argument. We then use the inclusion ≈ ⊆ ≈be, apply the congru-
ence property for [[C]][·] to the hypothesis Rx[A] ≈be Rx[B], and obtain
C[A] φ C[B] by transitivity. �

Proof of Theorem 29. We establish that ≈be is a weak bisimulation up to
structural equivalence. Let A ≈be B. For each kind of transition A ≡ α−→≡ A′

we use a context that specifically consumes this transition, then behaves as
the trivial context [·].

Internal step ≡→≡. This follows from the bisimulation property of ≈be.

Intrusion ≡ x〈ỹ〉−−→≡. Independently of the values ỹ, intrusion is enabled on x

if and only if x ∈ xv(A), and we have both A ≡ x〈ỹ〉−−→≡ A′ ≡ A |x〈ỹ〉
and B

x〈ỹ〉−−→ B |x〈ỹ〉. We apply the congruence property of ≈be for the
context [·] |x〈ỹ〉.

Extrusion ≡ Sx〈y1,...,yn〉−−−−−−−→≡. Let m ∈ 0 . . . n be the cardinal of S. Without
loss of generality, we assume that the freshly extruded names in S are the
first arguments of the message (S = {y1, . . . , ym}). We also assume that

28

S ∩ (fv(A) ∪ fv(B)) = ∅. We use the congruence property for the context

E[·] def
= def x〈z̃〉 | grab〈〉 . V

∧ x〈z̃〉 | done〈〉 . x′〈z̃〉 | done〈〉

∧ once〈〉 . test〈〉

∧ once〈〉 | done〈〉 . done〈〉

in once〈〉 | grab〈〉 | vx〈x〉 |[·]

with the auxiliary definitions

T
def
= {(yi, zi) | m < i ≤ n} ∪ {(zi, zj) | 0 ≤ i ≤ m < j and yi = yj}

F
def
=

(fv(A) ∪ fv(B) ∪ xv(A) ∪ xv(B))× {z1, . . . , zm}

∪ {(zi, zj) | 0 ≤ i, j ≤ m and yi 6= yj}

V
def
=

⋂
(y,z)∈T

[y = z]done〈〉 |
∏

(y,z)∈F

[y = z]test〈〉

where the names z̃, grab, once, done, test , and vx are fresh, and where the
notation

⋂
in V abbreviates a sequence of tests. Informally, E[·] receives a

message on x, checks that its arguments match the expected label using the
process V , then behaves like Rx[·]. The parameters are bound to names z̃,
then compared to the names expected on the label. The finite set T ⊂
N × N gathers all pairs of names that must coincide: previously-known
names and repeated fresh names. The finite set F ⊂ N × N gathers all
pairs of names that must be distinct: freshly-extruded names are distinct
from any previously visible name, and pairwise distinct unless syntactically
the same on the label.

• if A ≡ Sx〈y1,...,yn〉−−−−−−−→≡ A′, then E[A] ⇒≈ Rx[A
′].

Let t be the cardinal of T . We use the series of t + 2 reductions that
consumes x〈ỹ〉 | grab〈〉, passes the series of positive tests T in V—thus
releasing the message done〈〉—then consumes once〈〉 | done〈〉—thus re-
moving the barb ⇓test . Using structural rearrangement, the remains of the
context can be written

E ′[·] def
= def x〈z̃〉 | done〈〉 . x′〈z̃〉 | done〈〉 ∧ D in

done〈〉 | vx〈x〉 |[·] |
∏

(y,z)∈F [y = z]test〈〉

where D and
∏

(y,z)∈F [y = z]test〈〉 are inert. We easily establish that
E ′[A′] ≈ Rx[A

′] for any A′ where the names grab, once, done, and vx are
fresh.

• if E[B] ⇒ U and U 6⇓test , then B ⇒ Sx〈y1,...,yn〉−−−−−−−→≡ B′ with Rx[B
′] ≈be U .

In order to get rid of the barb ⇓test , every step in the series detailed above

29

is required to emit the message done〈〉. Let x〈z̃〉 be the first message
received by E[·]. We decompose the reductions leading to U as follows.
Before the first reception on x, all reductions are internal to B; after this
reception, all reductions are either internal steps in the derivative of B,
internal steps to E[·] exactly as described above, or further receptions
on x in E[·], which do not affect barbed equivalence.
Since the barb ⇓test disappears, every comparison in the series on the
first line of V has succeeded, which ensures yi = zi for i = m + 1 . . . n.
Besides, no comparison in the parallel composition on the second line
of V may succeed, as this would reintroduce a test〈〉 message, hence the
names z1, . . . , zm are all fresh names and we can perform α-conversion
before the reduction to enforce yi = zi for i = 1 . . .m.
We write B ⇒ C[x〈ỹ〉] for the series of reductions internal to B, we choose

B′ such that C[x〈ỹ〉] ≡ Sx〈y1,...,yn〉−−−−−−−→≡ B′, and we use the first item above to
obtain Rx[B

′] ≈be U .

Let us assume A ≈be B and A ≡ Sx〈y1,...,yn〉−−−−−−−→≡ A′. By context closure prop-
erty, E[A] ≈be E[B]. By barbed equivalence, the reductions E[A] ⇒ E ′[A′]
must be simulated by some reductions E[B] ⇒ U with E ′[A′] ≈be U . Since
E ′[A] 6⇓test , we have U 6⇓test and thus Rx[A

′] ≈be Rx[B
′]. By Lemma 31, this

entails A′ ≈be B
′. �

7 A comparison with the π-calculus

The join-calculus can be considered as a disciplined version of the asyn-
chronous π-calculus, in which the syntax enforces locality in the usage of
names. These calculi have a lot in common, and our semantics largely draw
upon the bisimulations developed for the π-calculus [28,29,36,21,4]. In this
section, we relate our definitions to previous proposals in the literature and
we compare the equivalences obtained by applying similar definitions to both
calculi.

In the sequel, we focus on the asynchronous π-calculus with the following
grammar for processes:

P ::= 0 | x〈v〉 | x(y).P | νx.P | !P | P |P

We refer to [11] for the operational semantics. In short, the basic reduction
step matches complementary pairs of emission and reception (x〈v〉 |x(y).Q→
Q{v/y}); other transitions render intrusion or extrusion of messages with labels
that carry the same information as those of the open rcham. Crucially, output
labels explicitly mention the names being extruded.

The join-calculus and the asynchronous π-calculus have the same expressive

30

power, at least up to barbed congruence [15], but their treatment of names is
rather different. In the open join-calculus, the interface of a process consists
of two disjoint sets of names; free names are used exclusively for extrusions;
extruded names have local definitions and can be used in silent steps.

In the π-calculus, on the contrary, the same free name can be used for intrusion,
extrusion, and internal reduction. Besides, a received name can be used to
set up new receivers, as in x(y).y(z).P , thus extending the discriminating
power of contexts. (This would amount to redefining the name in the join-cal-
culus.) To illustrate this point, we consider a rough π-calculus encodings of the
processes mentioned in the discussion of barbed congruence in Section 6.2; the
processes x〈z〉 and νu.(!u(v).z〈v〉 |x〈u〉) are not barbed congruent, and this
can be established using a context that invalidates locality. For example, if we
choose the context C[·] def

= νx, z.(x(a).a(u).u〈〉 | z〈b〉 |[·]), we obtain C[x〈z〉] ⇓b

and C[νu.(!u(v).z〈v〉 |x〈u〉)] 6⇓b .

We now compare the labeled semantics for the open join-calculus with previous
proposals for the asynchronous π-calculus, notably [21] and [4]. In these works,
a major issue is to adapt the semantics inherited from the original π-calculus
to asynchrony: since message output is not a prefix anymore, emitters in the
context cannot detect whether their messages are actually read. Technically,
this leads to a special treatment of input actions, either in the definition of
transitions or in the definition of bisimulation.

In [21], Honda and Tokoro take as observational semantics the standard notion
of weak bisimulation. As a consequence, they have to change the definition of
transitions. Take for instance the π-calculus processes 0 and x(u). x〈u〉. In
order to progress, the process x(u). x〈u〉 has to consume an emission x〈v〉,
thus exhibiting a new emission x〈v〉. Similarly, the process 0 “takes” x〈v〉 and
“gives” the same x〈v〉 (just nothing is consumed or produced). Therefore 0 and
x(u). x〈u〉 should be considered equal in an asynchronous setting: indeed, they
are barbed congruent. However, standard bisimulation obviously discriminates
between 0 and x(u). x〈u〉. To alleviate this problem, Honda and Tokoro adopt
an operational model where asynchrony of communication is rendered as the
total receptiveness of the process. In other words, any message can be intruded
from the environment at any time, using extended structural equivalence in
combination with the rule:

Input 0
x〈v〉−−→ x〈v〉

The intrusion rule of the open rcham is reminiscent of this kind of opera-
tional semantics, with two important differences: (i) our rule Int can be used
only with previously extruded names; conversely, their input rule immediately
yields an infinite transition system; and (ii) extraneous inputs in the join-cal-
culus are not observable, and thus messages not used by the process can safely
be discarded.

31

In [4], Amadio et al. take the opposite approach. They keep the standard
synchronous semantics and they modify the notion of bisimulation. For two
processes to be bisimilar, they do not require that every input be simulated
by an input of the other side. Rather, they supplement bisimulation with a
delay clause that can simulate an input on one side by adding a new message
in parallel on the other side. Their resulting asynchronous bisimulation offers
three advantages: it eliminates the need for total receptiveness, it is consistent
with external sum, and it relies on a widely-used semantics.

The asynchronous bisimulation of Section 4 relies on similar motivations—
handling asynchrony in the definition of bisimulation with a relaxed clause
for intrusions—but our intrusion clause is different from theirs: we deal with
multiple intrusions, and we allow the simulating process to perform arbi-
trary internal moves after parallel composition with the intruded messages;
in their terminology, this would place our equivalence between 1-bisimulation
and asynchronous bisimulation. Also, the j-open rcham equipped with asyn-
chronous bisimulation is not meant to be a main semantics, but rather a
technical device to reduce branching in the underlying transition system; ar-
guably, the open rcham gives a more intuitive meaning to extruded names.
We complete this comparison by pointing out two technical differences:

• The intrusion clause for their asynchronous bisimulation does not suitably
carry over to the join-calculus. In our syntax, this clause is

if P ≡ x〈ũ〉−−→≡ P ′ then
either Q⇒ x〈ũ〉−−→⇒ Q′ and P ′ φ Q′

or Q⇒ Q′ and P ′ φ (Q′ | x〈ũ〉)

Its generalization to the j-open rcham obtained by allowing join-intrusions
leads to a notion of equivalence strictly finer than weak bisimilarity. Take,
for instance, the following equivalence:

def{x,y} x〈z〉 | y〈〉 . z〈〉 in x〈a〉

≈ def{x,y} x〈z〉 | y′〈〉 . z〈〉 ∧ y〈〉 . y′〈〉 in x〈a〉

The two processes are weakly bisimilar (see Example 24), but the first pro-
cess can perform a double intrusion x〈b〉 | y〈〉 that emits the message b〈〉,
while the second process can neither perform the same intrusion nor exclude
the emission of a〈〉 instead of b〈〉.

• Weak bisimulation and asynchronous bisimulation coincide in the open join-
calculus, for simple reasons. In contrast, the correspondence between the
bisimulations of [21] and those of [4], discussed in details in the latter paper,
is a delicate issue; it is unclear, for instance, whether both approaches yield
the same relation in the weak case.

32

Other devices have been proposed to reduce the number of transitions to
consider when comparing π-calculus processes. An alternative approach is to
use typed interfaces and typed bisimulations in order to structure interaction
with the environment [9]. A more dynamic approach is to prune families of
extraneous transitions from the synchronization tree. In [30] for instance, only
transitions on “active names” are considered.

Independently, several notions of locality have been considered in a pure π-
calculus setting. An early reference is [20], where an object calculus is derived
from the asynchronous π-calculus. To maintain the integrity of objects, pro-
cesses that receive object names cannot receive on those names. In [3], the
π-calculus is equipped with a type system that bans multiple receptors for
the same message. It is proved that this π-calculus with unique receptors is
expressive enough to simulate the asynchronous π-calculus. In [6], a fragment
of the π-calculus is considered where received names cannot be used for in-
put (i.e. cannot be redefined) and this language is compositionally compiled
into a simple substitution-free calculus. The condition of transmitting output
capabilities is further strengthened into uniform receptiveness in [35] by also
demanding that replicated name definitions be available as soon as the name
is created. Uniform receptiveness is actually a locality property, which is for-
mulated by syntactic means in join-calculus and by means of a type system
in the π-calculus.

8 Conclusions

In this paper, we have developed a theory of bisimulations for the join-calculus.
Starting from the reduction-based definitions of [15], we extended the rcham
with intrusions and extrusions, in two different styles, and we studied for each
style a relevant definition of labeled bisimulation. Asynchronous bisimulations
seem best suited for proofs, as they relate smaller synchronization trees, but
both labeled equivalences should be amenable to automated verification by
means of the existing algorithms (see, for instance, [37] and [30]).

The precise role of name matching deserves further investigation. The coinci-
dence of weak bisimilarity and barbed equivalence holds only in the presence of
matching, which invalidates useful process equalities. It would be interesting to
find direct, purely co-inductive characterizations of barbed equivalence in the
absence of matching. This issue is addressed in [9] in a π-calculus setting, and
in [25] in an asynchronous calculus closely related to the join-calculus. In this
latter work, Merro and Sangiorgi introduce a new extrusion clause requiring
that either the extruded name be the same on both sides of the bisimulation
or that the two resulting processes can be made indistinguishable by adding a
relaying process on the fly. They prove that this coarser bisimulation coincides

33

with barbed equivalence for image-finite processes.

Our labeled semantics can be carried over to richer variants of the join-cal-
culus that account for distribution and agent mobility [17,12], or for security
properties [1,2]. For example, an open variant of the join-calculus is used
in [2] to express authentication properties; in that setting, extruded names
appearing in a parallel composition of processes are interpreted as mutually-
trusted channels between those processes. Besides, the information conveyed
by the labels can also be supplemented with other properties of interest. Such
approaches have been recently explored in other process calculi by Amadio [3]
and Hennessy and Riely [32] for coping with partial failures in distributed
systems, and by Boreale et al. for dealing with cryptography [8].

Acknowledgements

Preliminary results in collaboration with Michele Boreale appeared in [7]. We
thank the anonymous referees for their constructive remarks. We also thank
Jean-Jacques Lévy, Massimo Merro, Uwe Nestmann, and especially Georges
Gonthier for their fruitful comments.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel
abstractions. In Thirteenth Symposium on Logic in Computer Science
(LICS’98), pages 105–116. IEEE, June 1998.

[2] M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their
compilation. In 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’00), pages 302–315. ACM, Jan. 2000.

[3] R. M. Amadio. An asynchronous model of locality, failure, and process mobility.
In COORDINATION’97, volume 1282 of LNCS. Springer-Verlag, 1997.

[4] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the
asynchronous π-calculus. Theoretical Comput. Sci., 195(2):291–324, 1998.

[5] J.-P. Banâtre and D. L. Métayer. The Gamma model and its discipline of
programming. Science of Computer Programming, 15:55–77, 1990.

[6] M. Boreale. On the expressiveness of internal mobility in name-passing calculi.
Theoretical Comput. Sci., 195(2):205–226, 1998.

[7] M. Boreale, C. Fournet, and C. Laneve. Bisimulations in the join-calculus. In
PROCOMET’98, pages 68–86. IFIP, Chapman and Hall, June 1998.

34

[8] M. Boreale, R. D. Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Fourteenth Symposium on Logic in Computer Science (LICS’99).
IEEE, July 1999.

[9] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without
matching. In Proceedings of LICS’98. IEEE, June 1998.

[10] M. Boreale and D. Sangiorgi. Some congruence properties for π-calculus
bisimilarities. Theoretical Comput. Sci., 198(1–2):159–176, 1998.

[11] G. Boudol. Asynchrony and the π-calculus (note). Rapport de recherche 1702,
INRIA Sophia-Antipolis, May 1992.

[12] S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective-caml. In
ASA/MA’99, pages 22–29. IEEE, Oct. 1999.

[13] P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors. 24th Colloquium
on Automata, Languages and Programming (ICALP’97), volume 1256 of LNCS.
Springer-Verlag, July 1997.

[14] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998.

[15] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL’96, pages 372–385. ACM, Jan. 1996.

[16] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous
calculi (extended abstract). In Larsen et al. [24], pages 844–855.

[17] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In U. Montanari and V. Sassone, editors, 7th International
Conference on Concurrency Theory (CONCUR’96), volume 1119 of LNCS,
pages 406–421. Springer-Verlag, Aug. 1996.

[18] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la
ML for the join-calculus. In A. Mazurkiewicz and J. Winkowski, editors, 8th
International Conference on Concurrency Theory, volume 1243 of LNCS, pages
196–212. Springer-Verlag, July 1997.

[19] C. Fournet and L. Maranget. The join-calculus language (version 1.03 beta).
Source distribution and documentation available from http://join.inria.
fr/, June 1997.

[20] K. Honda and M. Tokoro. An object calculus for asynchronous communication.
In P. America, editor, Proceedings of the ECOOP’91 Conference, volume 512
of LNCS, pages 133–147. Springer-Verlag, 1991.

[21] K. Honda and M. Tokoro. On asynchronous communication semantics. In
P. Wegner, M. Tokoro, and O. Nierstrasz, editors, Proceedings of the ECOOP’91
Workshop on Object-Based Concurrent Computing, volume 612 of LNCS, pages
21–51. Springer-Verlag, 1992.

35

http://join.inria.fr/
http://join.inria.fr/

[22] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Comput. Sci., 152(2):437–486, 1995.

[23] C. Laneve. May and must testing in the join-calculus. Technical Report UBLCS
96-04, University of Bologna, Mar. 1996. Revised: May 1996.

[24] K. Larsen, S. Skyum, and G. Winskel, editors. Proceedings of the
25th International Colloquium on Automata, Languages and Programming
(ICALP’98), volume 1443 of LNCS. Springer-Verlag, 1998.

[25] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Larsen
et al. [24], pages 856–867.

[26] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[27] R. Milner. The polyadic π-calculus: a tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag,
1993.

[28] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100:1–40 and 41–77, Sept. 1992.

[29] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proceedings of ICALP’92, volume 623 of LNCS, pages 685–695. Springer-Verlag,
1992.

[30] U. Montanari and M. Pistore. Checking bisimilarity for finitary π-calculus. In
I. Lee and S. A. Smolka, editors, 6th International Conference on Concurrency
Theory (CONCUR’95), volume 962 of LNCS, pages 42–56. Springer-Verlag,
1995.

[31] U. Nestmann. On the expressive power of joint input. In C. Palamidessi and
I. Castellani, editors, EXPRESS’98: Expressiveness in Concurrency, volume
16.2 of Electronic Notes in Theoretical Computer Science. Elsevier, Sept. 1998.

[32] J. Riely and M. Hennessy. Distributed processes and location failures. In
Degano et al. [13], pages 471–481.

[33] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D. thesis, University of Edinburgh, May 1993.

[34] D. Sangiorgi. On the bisimulation proof method. Revised version of Technical
Report ECS–LFCS–94–299, University of Edinburgh, 1994. An extended
abstract appears in Proc. of MFCS’95, LNCS 969, 1994.

[35] D. Sangiorgi. The name discipline of uniform receptiveness. In Degano et al.
[13], pages 303–313.

[36] D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. In
W. R. Cleaveland, editor, Proceedings of CONCUR’92, volume 630 of LNCS,
pages 32–46. Springer-Verlag, 1992.

[37] B. Victor and F. Moller. The mobility workbench – a tool for the π-calculus. In
Proceedings of CAV’94, volume 818 of LNCS, pages 428–440. Springer-Verlag,
1994.

36

Additional proofs

Proof of Lemma 11. In each case, we exhibit a bisimulation that contains φ:

(1) The definition of weak bisimulation already takes into account structural
rearrangements, so ≡φ≡ is clearly a weak bisimulation.

(2) The relation ≈φ≈ is a weak bisimulation; this directly follows from the
transitivity of ≈. (However, the lemma would not hold if we used ≈φ≈
instead of φ≈ in the simulation clause.)

(3) We prove that the relation

ψ
def
=

{
(S\S, T \S) | S φ T and both restrictions are defined

}
is a weak bisimulation up to structural equivalence. All intrusions and
internal reductions that are enabled after applying the restriction are
also enabled before; and additional internal steps ≡→≡ are preserved by
the restriction, so we can obtain the required simulation properties by
reporting series of transitions obtained by simulation before restriction.

We consider the case of extrusions: assume S φ T and S\S ≡ S′x〈ṽ〉−−−→ S ′.

Taking T = S ∩ S ′, we rewrite the transition as S \ (U] T) ≡ (V]T)x〈ṽ〉−−−−−−→
S ′ then argue that, for some solution S ′′, we have S ≡ V x〈ṽ〉−−−→ S ′′ and
S ′ ≡ S ′′ \ U . By simulation hypothesis, there is a solution T ′′ such that

T ⇒ V x〈ṽ〉−−−→⇒ T ′′ and S ′′ φ T ′′, so T \ (U] T) ⇒ (V]T)x〈ṽ〉−−−−−−→⇒ T ′′ \ U . We
finally obtain S ′ ψ T ′′ \ V . �

Proof of Lemma 13. We show that the relation φ
def
= {(C[A], C[B]) | A ≈

B} is a weak simulation up to restriction and structural rearrangement.

Transitions that do not depend on the process placed in the context C[·] are
in direct correspondence on both sides of φ, and yield new pairs of related
processes. Likewise, transitions in A that are not affected by the context C[·]
are simulated in B by hypothesis, yielding new related processes. This leaves
us with two cases:

• Some messages of C[·] are consumed by a reaction rule of A.
Let x1〈ṽ1〉 | . . . |xn〈ṽn〉 be these messages. We must have x1, . . . , xn ∈ xv(A)
and, by applying Proposition 6, the internal move C[A] ≡→≡ E can be
displayed as

A ≡ x1〈ṽ1〉−−−→ · · · xn〈ṽn〉−−−→≡→≡ A′

C[·] ≡ C ′[x1〈ṽ1〉 | . . . |xn〈ṽn〉 | ·]

37

where the latter relation abbreviates a structural equivalence that holds
for any process with the same extruded names as A substituted for [·],
and where E ≡ C ′[A′]. Since A ≈ B, the first series of transitions can be

simulated by B as B ⇒ x1〈ṽ1〉−−−→ · · · ⇒ xn〈ṽn〉−−−→⇒ B′ with A′ ≈ B′. By applying
Proposition 6 again, we obtain C[B] ⇒ C ′[B′], and C ′[A′] φ C ′[B′].

• Some messages of A are consumed by a reaction rule of C[·].
Let x1〈ṽ1〉 | . . . |xn〈ṽn〉 be these messages. We have x1, . . . , xn ∈ fv(A) and,
by applying Proposition 6, the internal move C[A] ≡→≡ E can be displayed
as

A ≡ S1x1〈ṽ1〉−−−−−→ · · · Snxn〈ṽn〉−−−−−→≡ A′

C[x1〈ṽ1〉 | . . . |xn〈ṽn〉 | ·] ≡→≡ C ′[·]

where the second series applies for all processes within the context that
extrude every name in S

def
=

⋃n
i=1 Si, and where E = C ′[A′] \ S. Since

A ≈ B, the first series can be simulated by B as

B ⇒ S1x1〈ṽ1〉−−−−−→ · · · ⇒ Snxn〈ṽn〉−−−−−→⇒ B′

with A′ ≈ B′. By applying Proposition 6 we can defer the extrusions, per-
form all the internal steps of B within the context C[·], then perform the
internal step from C[·] to C ′[·]. We obtain C[B] ⇒ C ′[B′] \ S and again
we have related processes up to restriction. �

Proof of Lemma 14. We prove that the closure of ≈ for all valid global
renamings

φ
def
= {(Sσ, T σ) | S ≈ T and σ global renaming for S and T }

is a weak bisimulation. The proof relies on the analysis of the effects of a global
renaming on every chemical rule, as described in Lemma 7. Let Sσ φ T σ.

Intrusions Sσ ≡ x〈ṽ〉−−→≡ S1: by Lemma 7(3, second part), we have S ≡ α−→≡ S ′

for some α and S ′ such that ασ = x〈ṽ〉 and S ′σ = S1. Since S ≈ T , we have
T ⇒ α−→⇒ T ′′σ′ for some σ′ such that S ′ = S ′′σ′ and S ′′ ≈ T ′′. By Lemma

7(3, first part), there is a transition after renaming T σ ⇒ x〈ṽ〉−−→⇒ (T ′′σ′)σ,
and the pair S1 = (S ′′σ′)σ φ (T ′′σ′)σ meets the bisimulation clause for
intrusion.

Extrusions Sσ ≡ Sx〈ṽ〉−−−→≡ S1: the proof is similar.
Internal move Sσ ≡→≡ S1: by Lemma 7(2), there is a series of n ≥ 0

extrusion-intrusion pairs followed by a silent move:

S ≡ S1x1〈ṽ1〉−−−−−→ y1〈ṽ1〉−−−→ · · · Snxn〈ṽn〉−−−−−→ yn〈ṽn〉−−−→≡→≡ S ′

38

such that yi ∈ xv(S) and xiσ = yiσ for all i ≤ n, and such that S ′ \ S ≡ S1

with S
def
=

⋃
i=1...n Si. Since S ≈ T , there is a matching series of transitions

T ⇒ S1x1〈ṽ1〉−−−−−→⇒ y1〈ṽ1〉−−−→⇒ . . .⇒ Snxn〈ṽn〉−−−−−→⇒ yn〈ṽn〉−−−→⇒ T ′

such that S ′ ≈ T ′. Repeatedly applying Proposition 5, Lemma 8, and
Lemma 7(2), we translate these transitions under the global renaming σ
and obtain T σ ⇒ (T ′ \S)σ. By Lemma 11(3), we have S ′ \S ≈ T ′ \S, and
finally S1 ≡ (S ′ \ S)σ φ (T ′ \ S)σ. �

Proof of Theorem 12. We first establish that ≈ is preserved by application
of contexts of the form defS J .[·] in A. Let us show that the relation

φ
def
=

{(
(D, J . P `S A), (D, J .Q `S A)

)
| P ≈ Q

}
is a weak bisimulation up to weak bisimulation on the right. All transitions are
in direct correspondence, except for reduction steps that consume messages in
A to trigger the reaction rule J .P or J .Q.

Let S φ T , let S ≡→≡ S1 be a reduction that consumes messages Jσ in A,
and assume A ≡ defS′ D in A′ | Jσ. We have the reductions

S ≡→≡ D, D, J .P `S]S′ A′ |Pσ ≡ S1

T ≡→≡ D, D, J .Q `S]S′ A′ |Qσ def
= T1

By definition of φ we have P ≈ Q, by Lemma 14 Pσ ≈ Qσ, and thus by
Lemma 13 T1 ≈ (D, D, J .Q `S]S′ A′ |Pσ). Composing these relations, we
have S1 ≡φ≈ T1.

We obtain the congruence theorem by structural induction on every context
of the open join-calculus, using the above closure property or Lemma 13 at
each step. �

Proof of Proposition 18 We prove that the relation

φ
def
= ≈a ∪ {(S |x〈ṽ〉, T | x〈ṽ〉) | S ≈a T }

is an asynchronous bisimulation up to structural equivalence. We consider only

intrusions, all other cases being immediate. Assume S ≈a T and S |x〈ṽ〉 ≡ M−→J≡
S ′. By Proposition 15, one of the following holds:

(a) S ≡ M−→J≡ S ′′ with S ′ ≡ S ′′ |x〈ṽ〉.

39

Since S ≈a T , there is a solution T ′′ such that T |M ⇒ T ′′ and
S ′′ ≈a T ′′. The same steps apply in a solution that contains the additional
message x〈ṽ〉, so (T |M) |x〈ṽ〉 ⇒ T ′′ |x〈ṽ〉 with S ′′ |x〈ṽ〉 φ T ′′ |x〈ṽ〉, and
thus S ′ ≡φ T ′′ |x〈ṽ〉.

(b) S ≡ M |x〈ṽ〉−−−−→J≡ S ′. Since S ≈a T , there is a solution T ′′ such that
T |(M |x〈ṽ〉) ⇒ T ′ and S ′ φ T ′, as required. �

Proof of Proposition 20 We prove ≈g = ≈. (We obtain ≈g = ≈ag with the
same proof of as for Theorem 17.) By definition, ≈ ⊆ ≈g. To establish the
converse inclusion, we let

φ
def
= {(Sσ, T σ) | S ≈g T and σ global renaming for S and T }

and prove that φ is a weak bisimulation up to structural equivalence. Let

Sσ φ T σ. The only problematic transition is an intrusion Sσ ≡ x〈w̃〉−−→≡ S ′

when w̃ contains free and/or extruded names. By Lemma 7(3), S ≡ y〈ṽ〉−−→≡ S ′′

with S ′ ≡ S ′′σ and x〈w̃〉 = (y〈ṽ〉)σ. Names in ṽ may contain free and/or
extruded names. Nonetheless, the label y〈ṽ〉 can be written y〈ũρ〉 for some

distinct fresh names ui, and S can perform a ground intrusion S y〈ũ〉−−→ S1 such
that S1ρ ≡ S ′′ and thus S1ρσ ≡ S ′.

The ground bisimulation clause now applies and yields transitions from T . By
Lemma 7(1,3), these transitions carry over to T ρσ:

T ⇒ y〈ũ〉−−→⇒ T ′

T ρσ ⇒ x〈w̃〉−−→⇒ T ′ρσ

with S1 ≈g T ′. Since T ρ = T , the latter series of transition show that S1(ρσ) φ
T ′(ρσ). �

40

	Introduction
	The open join-calculus
	Syntax and scopes
	Open chemistry
	Basic properties

	Weak bisimulation
	Up to proof techniques
	Renaming and congruence properties

	Asynchronous bisimulation
	The J-open RCHAM
	Asynchronous bisimulation
	Bisimulation up to evaluation context
	Ground bisimulations

	Examples
	The discriminating power of matching
	Barbed congruence
	Weak bisimilarity versus barbed congruence
	Name matching
	Barbed equivalence is a weak bisimulation

	A comparison with the pi-calculus
	Conclusions
	Acknowledgements
	References

