
THÈSE

présentée à

L'ÉCOLE POLYTECHNIQUE

pour obtenir le titre de

DOCTEUR DE L'ÉCOLE POLYTECHNIQUE

spécialité :

INFORMATIQUE

par

Cédric FOURNET

Sujet de la thèse :

LE JOIN-CALCUL :

UN CALCUL POUR LA PROGRAMMATION

RÉPARTIE ET MOBILE

The Join-Calculus:

a Calculus for Distributed Mobile Programming

Soutenue le 23 Novembre 1998 devant le jury composé de :

MM. Robin Milner Président

Roberto Amadio Rapporteurs
Gérard Boudol

Jean-Jacques Lévy Directeur de thèse

Gérard Berry Examinateurs
Luca Cardelli

Georges Gonthier

.

Remerciements

� M. Robin Milner a bien voulu présider le jury ; je l'en remercie chaleureusement.

� MM. Roberto Amadio et Gérard Boudol ont lu cette thèse en détail et ont accepté
d'en être les rapporteurs. Qu'ils en soient remerciés, et qu'ils me pardonnent ses
longueurs.

� M. Jean-Jacques Lévy a été un directeur de thèse amical, disponible, et de bon
conseil. Il m'a persuadé de l'intérêt de la recherche en informatique et m'a suggéré
l'étude de la programmation répartie. Au cours de la thèse, il m'a apporté son
soutien tout en me laissant une grande liberté. Je lui en suis particulièrement
reconnaissant.

� M. Georges Gonthier a également guidé cette thèse. Sa collaboration fut essen-
tielle à la plupart des résultats décrits ici. Je l'en remercie tout particulièrement.

� MM. Luca Cardelli et Gérard Berry ont accepté de participer au jury. Je les
remercie de l'attention qu'ils accordent à mon travail.

Je tiens à exprimer ma gratitude envers Martin Abadi, Michele Boreale, Georges
Gonthier, Cosimo Laneve, Jean-Jacques Levy, Luc Maranget, et Didier Rémy, avec
qui j'ai eu la chance de collaborer dans l'étude du join-calcul. Je remercie encore Luc
Maranget, qui a réalisé avec moi une implémentation répartie du join-calcul. Notre
prototype n'aurait sans doute pas abouti sans son bon sens ni son expérience de la
compilation. Peter Sewell et Carolina Lavatelli ont relu le manuscript. Je les remercie
de leur patience.

J'ai béné�cié de vives discussions sur les langages de programmation, les calculs de
processus, et leur application à la programmation parallèle ou répartie. Merci à Ilaria
Castellani, Damien Doligez, Andrew Gordon, Florent Guillaume, Matthew Hennessy,
Kohei Honda, Ole Jensen, Fabrice Le Fessant, Xavier Leroy, Ugo Montanari, Uwe
Nestmann, Benjamin Pierce, Jon Riecke, Davide Sangiorgi, Peter Sewell, David Turner,
et à ceux que j'oublie ici.

Cette thèse s'est déroulée dans l'excellent environnement scienti�que et la bonne
ambiance du projet PARA et des projets voisins, à l'Institut National de Recherche
en Informatique et en Automatique (INRIA). J'ai été invité par MM. Robin Milner et
Benjamin Pierce à l'université de Cambridge pendant l'été 1995. J'ai aussi béné�cié des
programmes de recherche européens ESPRIT Basic Research Action 6454 - CONFER,
puis ESPRIT Working Group 21836 - CONFER-2.

Ce document, ainsi que l'implémentation répartie du join-calcul, ont été produits
à l'aide des logiciels Emacs, TEX , LATEX , et Objective Caml.

Contents

Résumé en français 7

Main Notations 37

1 Introduction 39

1.1 Structure of the dissertation . 41
1.2 Related work on the join-calculus . 42

2 The Join-Calculus 45

2.1 The channel abstraction . 46
2.2 Chemical machines . 50

2.2.1 The chemical metaphor . 50
2.2.2 The chemical abstract machine 52
2.2.3 Ensuring locality, adding re�exion 54

2.3 The re�exive chemical abstract machine 56
2.3.1 Overview . 56
2.3.2 Syntax and scopes . 57
2.3.3 Operational semantics . 60

2.4 Examples . 61
2.4.1 Some wiring . 61
2.4.2 Chemical inertness, units, and deadlocks 62
2.4.3 Abstractions of processes . 63
2.4.4 Channels of the �-calculus . 64
2.4.5 Representing choice . 64
2.4.6 The reference cell . 65

2.5 Basic properties of the re�exive cham 65
2.5.1 Normal forms . 66
2.5.2 Built-in locality . 66
2.5.3 Reductions on processes . 67
2.5.4 Case analyses on reduction steps 67
2.5.5 SOS-style semantics . 67
2.5.6 Re�ned chemical machines . 70

2.6 Other models of concurrency . 70
2.6.1 Higher-order Gamma . 71
2.6.2 Data �ow languages . 71
2.6.3 Multi-functions . 71
2.6.4 Petri nets . 72

1

2 CONTENTS

2.6.5 Other variants of the �-calculus 72

3 Adding Types and Functions 73

3.1 Polymorphism in the join-calculus . 74
3.2 The typed join-calculus . 75

3.2.1 Syntax . 75
3.2.2 Typing rules . 76
3.2.3 External primitives . 76
3.2.4 Types and chemistry . 78
3.2.5 Types at work . 80

3.3 Correctness of the evaluation . 82
3.3.1 Basic properties for the typing 82
3.3.2 Subject reduction . 82
3.3.3 No run-time errors . 85

3.4 Functional constructs . 85
3.4.1 Sequential control in the join-calculus 86
3.4.2 Two evaluation strategies of the �-calculus 87
3.4.3 Synchronous names . 89
3.4.4 A typed CPS encoding . 90
3.4.5 Toward a concurrent functional language 91
3.4.6 Types and side e�ects . 92

3.5 Concurrent objects as join-de�nitions 93
3.5.1 Primitive objects . 94
3.5.2 Values, classes and inheritance 96

3.6 Related type systems for concurrent languages 96
3.6.1 Typing communication patterns 97
3.6.2 Implicit polymorphism and control 97

4 Equivalences and Proof Techniques 99

4.1 Reduction-based semantics . 101
4.1.1 Abstract reduction systems . 101
4.1.2 What can be observed in the join-calculus 102
4.1.3 Contexts and congruence properties 103
4.1.4 Weak semantics . 104
4.1.5 On barbs and contexts . 105

4.2 Testing semantics . 106
4.3 Fair testing . 107

4.3.1 Fair testing versus may testing 109
4.4 Barbed Congruence . 110

4.4.1 Diagrams . 112
4.4.2 About co-inductive de�nitions 112
4.4.3 The two congruences . 113
4.4.4 Single-barbed bisimulation . 115

4.5 Coupled simulations . 115
4.5.1 Internal choice and gradual Commitment 116
4.5.2 The two congruences yield distinct equivalences 118
4.5.3 A model of coupled simulations 120

CONTENTS 3

4.6 A hierarchy of equivalences . 122
4.6.1 The situation in the �-calculus 122

4.7 Techniques of bisimulation �up to� . 125
4.7.1 Con�uence by decreasing diagrams 126
4.7.2 Weak bisimulation up to bisimilarity 127
4.7.3 Expansions . 128
4.7.4 Accommodating deterministic reductions 131

4.8 Barbed equivalence versus barbed congruence 132
4.8.1 Double-barbed bisimulation . 132
4.8.2 All integers on two exclusive barbs 134
4.8.3 A join-calculus interpreter for the join-calculus 137
4.8.4 Reducing contexts to integers 140
4.8.5 Universal contexts . 141

5 The Open Join-Calculus 145

5.1 Opening the calculus . 147
5.1.1 Open syntax . 147
5.1.2 Open chemistry . 148
5.1.3 Tracking transitions in context 151

5.2 Weak bisimulation . 153
5.2.1 Renaming and congruence properties 154

5.3 Asynchronous bisimulation . 158
5.3.1 The j-open rcham . 159
5.3.2 Asynchronous bisimulation . 160
5.3.3 Ground bisimulations . 162

5.4 Reduction-based equivalences on open terms 163
5.4.1 Observation . 163
5.4.2 Extruded names and congruence properties 164
5.4.3 Plug-in's versus extruded names 165
5.4.4 Weak bisimulation versus barbed congruence 167

5.5 The discriminating power of name comparison 168
5.5.1 Should the join-calculus provide name comparison? 168
5.5.2 The join-calculus with name-matching 168
5.5.3 Barbed congruence is a weak bisimulation 169

5.6 Related equivalences in the �-calculus 173

6 Encodings 177

6.1 On encodings . 178
6.1.1 Formal properties of translations 179
6.1.2 Contexts and compositionality 180

6.2 The core join-calculus . 181
6.3 Simpler de�nitions . 182

6.3.1 Binders and internal state . 182
6.3.2 Rearranging synchronization patterns 183
6.3.3 Encoding complex de�nitions 185

6.4 Relays everywhere . 188
6.5 Polyadic messages . 193

4 CONTENTS

6.5.1 Communicating pairs and lists 194
6.5.2 Compositional translation . 194
6.5.3 Full abstraction . 195

6.6 Cross-encodings with the �-calculus . 199
6.6.1 The asynchronous �-calculus 200
6.6.2 Asynchrony, relays, and equators 201
6.6.3 Encoding the �-calculus . 202
6.6.4 Encoding the join-calculus . 205

6.7 Proof of Theorem 10 . 209

7 Locality, Migration, and Failures 221

7.1 Computing with locations . 222
7.1.1 Distributed solutions . 223
7.1.2 Should locations be nested? . 226
7.1.3 The location tree . 227
7.1.4 Moving locations . 229
7.1.5 Examples of agent-based protocols 229
7.1.6 Circular migration . 233
7.1.7 Erasing locality information . 233

7.2 Failure and recovery . 236
7.2.1 The fail-stop model . 236
7.2.2 Representing failures . 237
7.2.3 Primitives for failure and recovery 240
7.2.4 Fault-tolerant protocols . 241
7.2.5 Other models for failure . 244

7.3 Proofs for mobile protocols . 246
7.3.1 A few simplifying equations . 247
7.3.2 Failures and atomicity . 250

7.4 Related work . 251
7.4.1 Applets in Java . 251
7.4.2 Migration as a programming language feature 251
7.4.3 Migration as a programming paradigm 252
7.4.4 Agent-based mobility and network transparency 252
7.4.5 Locality and failures . 252
7.4.6 Modeling heterogeneous networks 253

Conclusions 255

References 257

List of Figures

2.1 Syntax for the join-calculus . 59
2.2 Scopes for the join-calculus . 59
2.3 The re�exive chemical machine (rcham) 60
2.4 Structural congruence on processes and de�nitions 69
2.5 Syntactic transitions with wide labels 69

3.1 Syntax for the types . 77
3.2 Typing rules for the join-calculus . 77
3.3 Extended syntax with synchronous names 89
3.4 Syntax for a language with processes and expressions 92

4.1 A hierarchy of equivalences for the join-calculus. 123

5.1 Scopes for the open join-calculus . 149
5.2 The open re�exive chemical machine 149
5.3 The j-open rcham . 159

7.1 Syntax for the distributed-join-calculus 237
7.2 Scopes for the distributed-join-calculus 238
7.3 The distributed re�exive chemical machine 239

5

6 LIST OF FIGURES

Résumé

Ce résumé en français présente les principales idées de cette thèse, rédigée
ensuite en anglais. Les dé�nitions et résultats formels en sont systéma-
tiquement omis ; de nombreuses références permettent de se reporter au
corps de la thèse.

Notre sujet d'étude est la programmation de systèmes répartis. De tels systèmes
comportent de nombreux ordinateurs interconnectés par un réseau ; chacune de ces
machines exécute une portion d'un programme de manière concertée, en s'échangeant
des valeurs, du code exécutable, voire des processus en cours d'exécution.

Bien que relativement récent ce type de programmation, au sens large, est très
répandu : De nombreuses applications utilisent le réseau et font intervenir plusieurs
machines, le plus souvent selon des schémas bien établis comme le modèle client-
serveur. Dans la plupart des cas ces applications utilisent des langages traditionnels et
diverses bibliothèques de protocoles, ce qui obscurcit l'aspect réparti de l'application.

Par ailleurs, une multitude de langages d'avant-garde abordent la programmation
répartie de manière plus radicale, en proposant de nouveaux concepts comme les objets
mobiles [80], les agents mobiles [149], les applets [64], la portée lexicale globale [44],
les ambiances [46]. Malgré leur popularité ces langages expérimentaux sont encore peu
utilisés, et leurs avantages respectifs largement controversés.

Quel que soit le choix du langage, la programmation répartie reste notoirement
délicate parce qu'elle cumule les problèmes traditionnels du parallélisme et certaines
contraintes, comme l'absence d'opérations atomiques globales, ou encore l'hétérogé-
néité de l'environnement à l'exécution.

Les systèmes répartis sont naturellement parallèles : Chaque machine fonctionne de
manière autonome ; de plus chaque programme local a souvent recours au parallélisme
pour faire progresser une partie du calcul en attendant certains messages. De manière
plus spéci�que, ce parallélisme est essentiellement asynchrone : chaque communication
prend un temps inconnu, très variable. Ainsi plusieurs ordres de grandeur séparent
une communication locale à un processeur d'une communication planétaire. Cette
grande variabilité semble inévitable : Les réseaux informatiques ne peuvent s'a�ranchir
de certaines limites physiques comme les temps de propagation. Tandis que le débit
d'information échangée augmente rapidement, il ne sera jamais possible d'échanger en
une seconde plus d'une vingtaine de messages d'un bout à l'autre de la planète.

Pour des raisons plus structurelles, il n'est pas réaliste (ni sans doute souhaitable)
d'imaginer à brève échéance un réseau uniforme et �able, à l'administration centrali-
sée. Au contraire, la tendance actuelle est plutôt à la coexistence de systèmes di�érents
administrés de manière autonome avec chacun ses particularités. En outre, la struc-

7

8 Résumé

ture du réseau est très dynamiques, de nombreux systèmes apparaissent, évoluent,
deviennent temporairement inaccessibles. En particulier, la panne d'une machine ou
d'une partie du réseau au cours d'un calcul réparti est relativement fréquente, et à dé-
faut d'une programmation particulièrement soignée il su�t en général d'une machine
dé�ciente pour invalider l'ensemble du calcul.

Il existe de nombreux travaux d'algorithmique sur les protocoles répartis fonda-
mentaux, ainsi que de programmation système sur les mécanismes d'implémentation
sous-jacents. En revanche, l'étude formelle de la programmation et de ses langages
semble dans ce domaine pratiquement inexistante, en tout cas très en retard par rap-
port à la programmation séquentielle ou parallèle. En l'absence d'un modèle, pourtant,
il n'est pas possible de spéci�er le comportement d'un programme ou l'impact d'une
modi�cation dans un programme, de valider une implémentation répartie, d'en étudier
certaines propriétés délicates comme la sécurité du système, ou sa �abilité en cas de
pannes.

Notre objectif est de construire et d'étudier un langage de programmation élémen-
taire � le join-calcul �, dans lequel chaque étape du calcul correspond naturellement
à l'envoi d'au plus un message entre machines. Nous utilisons les termes de langage et
de calcul de manière voisine : Un calcul est un langage réduit à sa plus simple expres-
sion a�n de modéliser précisément certains aspects du langage, en faisant abstraction
de tout le reste.

Le join-calcul s'inspire largement de deux modèles bien connus du parallélisme, les
calculs de processus comme CCS ou le pi-calcul de Milner Parrow et Walker d'une
part [100], et la machine chimique abstraite de Berry et Boudol d'autre part [29]. A
première vue ces modèles développés pour formaliser les systèmes parallèles devraient
également s'appliquer ici, a fortiori leurs variantes asynchrones.

Ces calculs sont utilisés principalement pour étudier la spéci�cation de systèmes,
typiquement pour en énoncer les propriétés de manière formelle pour ensuite les prou-
ver ou les véri�er. Notre objectif ici est plus particulier. Le join-calcul correspond au
noyau d'un langage de programmation directement utilisable ; en particulier, il est
implémentable de manière répartie. Par construction, notre modèle de parallélisme
préserve la plupart des propriétés formelles du pi-calcul, mais il présente de meilleures
propriétés de localité au cours du calcul.

Idéalement, notre modèle doit être beaucoup plus simple et général qu'une im-
plémentation particulière, sans pour autant masquer les phénomènes essentiels de la
programmation répartie. Son expressivité est encadrée par deux objectifs opposés :
l'écriture naturelle de programmes, et l'exécution e�cace de tout programme dans un
environnement distribué. Par exemple, si chacune des étapes du calcul requiert une
synchronisation entre toutes les machines participantes, l'implémentation du langage
sera nécessairement ine�cace au moins pour certains programmes, ce qui n'apparaît
pas dans le modèle. Notre objectif étant de re�éter les particularités du calcul distribué,
ce type de modèle n'est pas adéquat.

Une fois le join-calcul dé�ni au chapitre 2, nous utilisons ce calcul à la fois comme
noyau d'un langage de programmation et comme calcul de processus. Bien que cette
thèse présente surtout les aspects théoriques du join-calcul, nous avons développé une
implémentation répartie en même temps que le formalisme ; cette correspondance entre
la programmation et le calcul est de notre point de vue essentielle. Notre implémen-
tation expérimentale comporte un langage de haut niveau, modulaire et fortement

Résumé 9

typé, qui est compilé en code mobile avant d'être exécuté par un ensemble de ma-
chines connectées au réseau Internet. L'élaboration du langage ainsi que les propriétés
formelles du système de types sont traitées au chapitre 3.

Ensuite, nous nous intéressons aux propriétés formelles du join-calcul, aux équiva-
lences entre processus, aux techniques de preuves, et à leur application. Nous construi-
sons un cadre général pour comparer des processus dans le join-calcul de manière plus
ou moins �ne (chapitre 4) ; nous élaborons des techniques de preuves adaptées au
join-calcul (chapitre 5) ; nous relions également le join-calcul à d'autres calculs de
processus, principalement le pi-calcul asynchrone (chapitre 6).

Dans un troisième temps, nous décrivons de manière explicite des primitives sup-
plémentaires pour la programmation mobile distribuée, comme un ra�nement du
join-calcul. Plus précisément, nous dé�nissons une sémantique opérationnelle qui rend
compte des pannes locales au cours du calcul distribué, et permet d'exprimer les pro-
priétés de programmes répartis dans un tel environnement (chapitre 7).

10 Résumé

Comment modéliser un calcul réparti ?

De manière générale, un modèle du parallélisme fait intervenir plusieurs agents,
ou processus, et décrit leurs interactions ; l'évolution globale d'un système résulte
de l'agrégation de ces interactions élémentaires. Le modèle dépend donc essentielle-
ment du mécanisme de communication élémentaire entre agents. Traditionnellement,
la communication entre processus est modélisée par la transmission de messages d'un
processus émetteur vers un processus récepteur. Plus précisément, un médium inter-
vient également ; il véhicule le message, et le fait parvenir à destination selon diverses
modalités. Par exemple, le médium peut préserver l'ordre des messages, garantir une
certaine équité, avoir une capacité bornée : : : et ces détails varient souvent d'une
implémentation à l'autre.

Dans son calcul des systèmes communiquants (CCS), Milner simpli�e grandement
le modèle en utilisant un médium idéalisé, qu'il nomme l'éther. Les propriétés de
l'éther permettent de modéliser la communication d'une manière uniforme, abstraite,
qui passe le médium sous silence. Ainsi, deux processus communiquent par rendez-
vous, cette étape de communication a�ectant simultanément l'émetteur et le récepteur.
Intuitivement, le rendez-vous présuppose que les deux agents sont adjacents, mais
quand ce n'est pas réaliste il est toujours possible de réintroduire le médium comme
un agent intermédiaire, et de décrire la communication entre l'émetteur et le récepteur
comme une succession de rendez-vous intermédiaires.

Par ailleurs, CCS et ses descendants structurent la communication par noms. Ces
noms (ou adresses, ou canaux) représentent les capacités de communications élémen-
taires de chaque processus. Ainsi, l'émission et la réception sur un nom modélisent
simplement les opérations de transmission, de routage, et de synchronisation sous-
jacentes dans un système parallèle.

Le pi-calcul constitue une amélioration signi�cative en terme d'expressivité, en
modélisant l'échange de canaux au cours de la communication. Ainsi, un agent peut
créer un canal de communication, puis le communiquer à ses pairs, qui acquièrent alors
de nouvelles capacités de communication. Cette mobilité de nom permet de modéliser
aisément tous les paradigmes de programmation traditionnels.

CCS et le pi-calcul permettent de décrire précisément de nombreux systèmes paral-
lèles répartis ou non, et d'en évaluer les propriétés formelles. Bien sûr, la communica-
tion immédiate par l'éther ne correspond pas toujours au système modélisé beaucoup
plus limité, mais il est toujours possible de ra�ner le modèle pour faire apparaître les
problèmes de communication si nécessaire.

De manière à re�éter plus �dèlement la communication asynchrone, en particulier
présente dans les modèles à objets répartis, Boudol [37] et Honda et Tokoro [70] ont
proposé une version simpli�ée du pi-calcul qui abandonne la notion de rendez-vous :
Seule la réception est décelable, tandis que le processus émetteur d'un message ne
peut directement détecter que son message a été reçu. Cette modi�cation rapproche
le pi-calcul de la pratique, puisqu'il n'est plus possible d'écrire un protocole qui utilise
la communication synchrone [114].

En revanche, il devient possible d'implémenter chacune des étapes de communi-
cation de manière raisonnablement e�cace, quoique centralisée. Ainsi, le langage de
programmation PICT démontre que le pi-calcul peut être e�ectivement utilisé comme
noyau d'un langage de haut niveau pour la programmation parallèle [122, 145]. Comme

Résumé 11

nous le verrons, pourtant, l'absence de communication synchrone dans le langage n'im-
plique pas nécessairement son absence dans l'implémentation ; par exemple, l'implé-
mentation répartie du �-calcul asynchrone est loin d'être évidente.

Dans la pratique, la programmation répartie est plus compliquée. Pour programmer
un ensemble d'ordinateurs connectés en réseau, l'interface des systèmes d'exploitations
fournit des primitives de plus bas niveau que la communication par canaux dans l'éther.
En général, il s'agit d'envois de messages asynchrones d'un point �xe du réseau à un
autre, de manière peu �able, comme dans le protocole IP ; des primitives de plus haut
niveau rendent l'adressage plus commode � par exemple l'appel d'une procédure ou
d'une méthode à distance masque le routage et l'encodage des données ; la résolution
dynamique de l'adressage permet de rediriger les messages d'un point à un autre
� et fournissent davantage de garanties � par exemple, l'absence de duplication des
messages, leur intégrité, ou la con�rmation ultérieure de leur réception. Par ailleurs, ces
mécanismes de communication ne sont pas intégrés aux langages de programmation
traditionnels ; ils sont disponibles dans des bibliothèques de protocoles ou dans des
extensions, et se juxtaposent aux mécanismes de base du langage.

Il est bien sûr possible de ne pas considérer ces problèmes dans un langage �de
haut niveau� fondé sur un calcul de processus, à condition d'implémenter son modèle
de communication à partir de primitives de bas niveau. Outre d'évidents problèmes de
performance, cette approche n'est pas satisfaisante parce que certains détails de l'im-
plémentation doivent nécessairement être révélés au programmeur, qui ne peut alors
plus raisonner uniquement sur son programme indépendamment d'une implémentation
particulière. Le modèle abstrait perd alors beaucoup de son intérêt.

L'écart entre l'implémentation et le modèle cache par exemple le nombre de mes-
sages et de machines requis pour implémenter une opération �élémentaire�. Dès lors,
l'e�cacité d'un programme mesurée par exemple par le volume de messages émis sur
le réseau ne peut pas se déduire facilement du code source.

Dans certaines situations relativement courantes, cet écart devient évident. Lorsque
certaines machines sont plus lentes que d'autres, ou sont en panne, l'utilisation de ces
machines ralentit ou fait échouer le calcul. Si l'utilisation de ces machines n'apparaît
pas dans le langage, ce comportement devient incompréhensible.

Dans le cas particulier de CCS asynchrone, le problème provient de certains as-
pects dynamiques de la communication : Lorsqu'un message est émis sur un canal
par une machine, et qu'il existe un récepteur en attente sur une autre machine, le
message devrait en théorie arriver sur cette machine sans autre détour. Cependant, la
localisation des récepteurs sur un canal donné varie en fonction des autres étapes de
calcul ; elle est une propriété globale dont chaque machine ne peut maintenir qu'une
image approximative, par exemple par envoi de messages de mise à jour.

Par exemple, si une machine attend un seul message sur un canal donné, plusieurs
autres machines peuvent en même temps produire un message sur ce canal et tenter
de le communiquer à cette machine. Dans ce cas, seul le premier message est reçu,
tandis que les suivants doivent être réexpédiés à d'autres récepteurs potentiels. Outre
la présence de nombreux messages inutiles, cela pose un sérieux problème en cas de
panne d'une machine qui a reçu trop de messages : Si un processus reçoit un seul
message, en théorie sa disparition peut causer la perte d'au plus un message, tandis
que d'autres récepteurs reçoivent les autres messages émis sur ce canal. En pratique,
avec l'implémentation esquissée ci-dessus, de nombreux messages peuvent être perdus.

12 Résumé

En fait, ces problèmes semblent irréductibles en présence de pannes de machines,
quelle que soit la complexité de l'implémentation, du moment que celle-ci n'utilise que
des messages asynchrones entre machines : Le choix d'un récepteur parmi plusieurs
possibles s'apparente en e�et à une élection (le récepteur élu peut ensuite envoyer des
messages sur d'autres canaux aux autres machines, pour leur signaler la réception du
message), problème pour lequel il n'y a pas de solutions asynchrones sans divergences.

Nous pouvons énoncer un critère simple pour l'implémentation d'un canal, de ma-
nière à garantir l'absence de messages inutiles, donc en particulier la possibilité de
détecter un écart d'atomicité entre le modèle et l'implémentation : Quand un mes-
sage est émis sur une machine, cette machine doit pouvoir déterminer une machine
�réceptrice� telle que

� ou bien il y aura un processus récepteur pour ce message sur cette machine
lorsque le message arrivera, c'est-à-dire indépendamment du reste du calcul ;

� ou bien il n'y aura plus jamais de récepteur sur ce canal.

Dans l'esprit de CCS, il existe une solution formelle à notre problème, qui consiste
à faire réapparaître le médium sous forme de processus auxiliaires, de manière à véri�er
le critère ci-dessus au prix d'une complexité accrue dans le calcul. En théorie, s'il existe
en permanence sur chaque machine un processus-relais par canal qui lit tout message
et le ré-émet sur ce même canal, alors l'existence de communications inutiles apparaît
dans le modèle, et justi�e formellement la vulnérabilité de ces messages à la panne
de n'importe quelle machine. L'ine�cacité de cette solution est �agrante, puisqu'en
particulier le même message peut être réexpédié de relais en relais indé�niment, et
ainsi créer des divergences dans le calcul.

Une autre solution plus réaliste consiste à matérialiser chaque canal de l'éther
par un processus auxiliaire chargé de centraliser toutes les requêtes d'émissions et de
réception sur ce canal. Ce processus se situe alors sur une machine donnée ; si cette
machine tombe en panne, il devient clair dans le modèle que la communication sur ce
canal est coupée. (Comme nous le verrons, c'est au fait l'encodage du pi-calcul dans
notre modèle.)

Cette analyse reprise plus en détail au chapitre 2 souligne que le pi-calcul asyn-
chrone � et plus généralement les calculs de processus pour le parallélisme � ne nous
paraît pas adéquat pour la programmation répartie, même s'il permet d'en étudier
certains aspects. Nous proposons un calcul similaire qui véri�e notre critère d'implé-
mentation pour tout programme, indépendamment de la localisation des processus.

Pour cela, nous étudions un autre modèle standard du parallélisme, la machine
chimique abstraite de Berry et Boudol [28]. Ce formalisme présente la sémantique
opérationnelle des calculs de processus sous une forme compacte et intuitive, comme
un ensemble de règles de réécritures opérant sur des multi-ensembles de processus élé-
mentaires. Nous montrons que le même problème de routage apparaît pour sélectionner
une règle de réécriture lorsque le multi-ensemble est réparti entre plusieurs sites, et
suggérons une modi�cation qui nous amène directement au modèle opérationnel du
join-calcul, la machine chimique ré�exive.

Résumé 13

Présentation du join-calcul

Le chapitre 2 présente notre modèle pour la programmation répartie. Nous y dis-
cutons tout d'abord le cheminement qui nous conduit à proposer ce nouveau modèle
plutôt que d'utiliser un modèle existant. Bien que de nombreux calculs de processus
existent, nous expliquons pourquoi ces modèles sont inadaptés à la programmation
repartie. Nous y présentons ensuite notre modèle en détail.

Un premier exemple

Au chapitre 2, la sémantique opérationnelle est présentée à partir d'un exemple,
puis dé�nie de manière générale. Nous reprenons ici l'exemple de manière plus infor-
melle, sans utiliser le formalisme chimique.

Notre exemple est la version simpli�ée d'un serveur d'impression sur un réseau
local. Chaque station de travail sur le réseau peut envoyer des requêtes d'impression
au serveur. D'autre part, chaque imprimante peut signaler sa présence au serveur, qui
répartit la charge entre les imprimantes disponibles.

Les seules valeurs dans le join-calcul sont les noms de canaux, ou adresses. De ce
point de vue, le join-calcul est une variante du pi-calcul, dont il utilise la mobilité
de nom. Plus tard, il sera facile de généraliser le calcul à d'autres valeurs primitives
comme les entiers ou les chaînes de caractères.

L'état du calcul est représenté par deux sortes de termes, des messages, et des
règles de réaction. Ces termes peuvent être assemblés par composition parallèle pour
former les processus du calcul.

Le message xhyi comporte deux noms ; x est l'adresse du message, y est son
contenu. Plusieurs messages peuvent être assemblés par composition parallèle.

Par exemple, nous modélisons l'interface du serveur par deux noms, imprimer

pour les requêtes d'impression, et accepter pour les imprimantes disponibles. Ainsi, le
processus

imprimer h1i j imprimer h2i j accepter hlaseri

se compose de trois messages, et décrit un état du système où deux impressions des
�chiers 1 et 2 sont en attente, tandis qu'une imprimante laser est disponible. L'ordre
des messages est sans importance ; formellement la composition parallèle est associative
et commutative.

Notée J . P , une règle de réaction consomme un ensemble de messages de la forme
décrite dans le �ltre J , et déclenche l'exécution d'une copie du processus P dans
lequel les paramètres formels de J sont remplacés par les arguments transmis dans
ces messages. La même règle peut être utilisée à plusieurs reprises, tant qu'il y a des
messages à consommer.

Par exemple, nous dé�nissons le comportement du serveur par une règle de réaction
notée D, qui décrit comment les messages envoyés sur les noms imprimer et accepter
sont traités.

D
def

= accepter himprimantei j imprimer h�chier i . imprimanteh�chieri

Cette règle consomme deux messages, l'un sur accepter , l'autre sur imprimer , et
déclenche l'impression en envoyant le �chier à l'imprimante. Nous pouvons regrouper

14 Résumé

la dé�nition du serveur d'impression et son état courant dans un seul processus.

P
def

= def D in imprimer h1i j imprimer h2i j accepter hlaseri

Suivant notre explication informelle de la règle D, le message accepter hlaseri et
l'un des deux messages imprimer h1i ou imprimer h2i peuvent être consommés par le
serveur d'impression. Par exemple, nous avons une étape de réduction

P ! def D in imprimer h2i j laser h1i

Cette réduction a opéré une synchronisation entre les deux messages consommés ;
en particulier le choix entre 1 et 2 n'est pas déterminé avant la réduction.

En revanche, le traitement des messages envoyés sur imprimer et accepter est en-
tièrement dé�ni par D. Ces deux noms sont liés par D, ce qui exclut la réception de
tels messages dans toute autre dé�nition, ou la redé�nition du serveur d'impression.
Cette propriété, appelée portée lexicale des noms, simpli�e beaucoup l'étude formelle
du join-calcul et son implémentation. En particulier, toute synchronisation entre mes-
sages doit être déclarée au préalable, au moment ou les noms des messages sont dé�nis,
et cette information est disponible à la compilation.

Un serveur d'impression plus réaliste pourrait par exemple envoyer le nom imprimer

aux di�érentes machines du réseau, en utilisant d'autres noms dé�nis sur ces machines.
De manière plus générale, nous utiliserons la syntaxe suivante pour le join-calcul :

P ::= processus
xhv1; : : : ; vni message asynchrone

j def D in P dé�nition locale
j P jP 0 exécution parallèle
j 0 processus inerte

D ::= dé�nitions
J . P règle de réaction

j D ^ D0 composition de dé�nitions
j T dé�nition vide

J ::= �ltre
xhy1; : : : ; yni message requis

j J j J 0 synchronisation de messages

Parmi ces termes, nous n'avons pas encore introduit le processus inerte 0 utilisé
pour représenter l'absence de messages. Nous n'avons pas non plus utilisé la forme
générale d'une dé�nition, qui peut comporter un nombre quelconque de règles de
réductions. A nouveau, nous utilisons une dé�nition inerte T pour représenter l'absence
de règles.

A partir de cette syntaxe, nous décrivons l'état du calcul par une solution chimique
qui comporte deux multi-ensembles : un multi-ensemble de processus P en cours d'exé-
cution et un multi-ensemble de règles de réactions actives D.

� Une relation d'équivalence structurelle (notée
) décrit comment passer d'une
solution à une autre en réarrangeant l'ordre des dé�nitions et des processus, et
en activant de nouvelles règles de réaction. Toutes ces étapes sont réversibles.

Résumé 15

� Une relation de réduction chimique (notée !) décrit l'utilisation d'une règle
de réaction particulière qui consomme un paquet de messages préalablement
assemblé par équivalence structurelle pour correspondre au �ltre de la règle.
Seules ces étapes correspondent intuitivement à une progression du calcul.

Les relations d'équivalence structurelle
 et de réduction ! sont dé�nies dans la
�gure 2.3 page 60. Dans la suite de ce résumé, nous passerons souvent sous silence les
étapes intermédiaires d'équivalence structurelle.

Nous terminons cet aperçu en indiquant comment le mécanisme qui permet d'ac-
tiver et de désactiver des règles de réaction dans une solution permet en particulier
de modi�er la portée apparente des noms dé�nis, et par conséquent d'implémenter
l'extension de portée lexicale. Ce mécanisme commun avec le pi-calcul est essentiel
pour modéliser la dynamique du calcul.

Pour permettre la réception d'un message en dehors de la portée des dé�nitions de
ses arguments, il est possible de déplacer les dé�nitions à condition de ne pas modi�er
les liaisons : Par exemple,

def xhui j yhvi . P in (def ahi .Qa in xhai) j(def bhi .Qb in yhbi)

� def xhui . P ^ ahi .Qa ^ bhi .Qb in xhai j yhbi

!
 def xhui . P ^ ahi .Qa ^ bhi .Qb in Pf
a=u;

b=vg

(en supposant que a n'apparaît pas dans P et Qb et que b n'apparaît pas dans P et Qa,
ce dont on peut s'assurer par �-conversion.) Techniquement, toutes les solutions ci-
dessus comportent un seul processus et aucune règle active. En revanche, la succession
d'étapes d'équivalences structurelles intermédiaires
� active les trois règles xhui . P ,
ahi .Qa, et bhi .Qb, les réarrange de manière di�érente, puis les désactive sous cette
nouvelle forme, pour permettre l'étape de réduction sans déplacer les lieurs.

Nous donnons quelques exemples typiques de processus dans le join-calcul, avec
une description informelle de leurs propriétés.

Relais La primitive de base du join-calcul étant la communication asynchrone, il est
facile de dé�nir de simples relais ou multiplexeurs, qui n'e�ectuent aucun calcul mais
se contentent de faire suivre des messages d'un canal à un autre.

Par exemple, dans le processus

P = def xhui . yhui in Q

le nom y est libre, tandis que le nom x est lié. A chaque fois que Q envoie un message
sur x, ce message est consommé par l'unique règle qui dé�nit x, et un autre message
adressé à y avec le même contenu est émis. Ainsi, la dé�nition ci-dessus introduit
un relais de x vers y. Puisque la dé�nition de x est entièrement déterminée, on peut
utiliser x ou y indi�éremment dans Q.

Ce type de relais n'a�ecte pas le calcul ; il peut le ralentir un peu, mais ce ralen-
tissement est imperceptible ; formellement, nous verrons que la présence de relais est
indécelable dans le join-calcul, cette propriété sémantique étant essentielle au calcul
asynchrone [139].

16 Résumé

Une légère modi�cation de l'exemple précédent permet de distribuer le même mes-
sage à plusieurs destinataires :

def xhui . x1hui j x2hui j : : : j xnhui in Q

Chaque message xhvi émis par Q déclenche l'émission de n messages, qui peuvent
être reçus par n dé�nitions di�érentes dans un contexte approprié. De manière plus
générale, il est possible de modéliser d'autre types de routage, par exemple avec une
distribution des messages qui dépend de l'un des champs des messages.

Comment communiquer un processus ? Le join-calcul est un calcul du premier
ordre en ce qui concerne les valeurs : Contrairement à d'autres formalismes, seuls des
noms peuvent être communiqués, pas des processus. Cependant, il existe un encodage
bien connu d'un processus arbitraire P en tant que nom ; il su�t de placer ce pro-
cessus P sous une garde, puis de communiquer le nom correspondant à la place du
processus. Ce nom est une continuation, souvent notée � dans les exemples suivants.
Nous utiliserons donc la règle

�hi . P

Dans un contexte où � est ainsi lié, le join-calcul donne des garanties très fortes,
puisque l'association entre le nom et le processus ne peut pas être altérée au cours du
calcul.

Par exemple, il est facile de dé�nir la réplication d'un processus en dé�nissant une
continuation et en la déclenchant à répétition :

repl Q
def

= def �hi .Q j �hi in �hi

! def �hi .Q j �hi in (Q j �hi)

� Q jrepl Q

La réduction consomme le message �hi, et génère immédiatement un autre message
�hi avec une copie de Q. En prenant garde de choisir un nom � qui n'apparaît pas
dans Q, nous pouvons utiliser l'équivalence structurelle pour faire sortir Q de la portée
de �hi. Nous obtenons les réductions attendues :

repl Q ! Q jrepl Q ! Q jQ jrepl Q ! � � �

Choix interne Par dé�nition, un processus e�ectue un choix interne lorsqu'il choi-
sit une alternative parmi d'autres de manière non-déterministe, indépendamment du
contexte. Ce type de choix est facilement encodable dans le join-calcul.

Par exemple, le choix entre les processus P et Q peut s'écrire simplement

def x hi . P ^ x hi = Q in xhi

(pour un x qui n'apparaît pas dans P ou Q) en utilisant plusieurs règles consommant
le même message, ou encore

def phi . P ^ qhi = Q in def xhi j yhui . uhi in xhi j yhpi j yhqi

Résumé 17

en utilisant deux continuations et plusieurs combinaisons de messages pour la même
règle de réaction.

Au passage, nous remarquons que dans le join-calcul une dé�nition répliquée est
plus simple qu'une dé�nition à usage unique, pour laquelle un message auxiliaire xhi
limite le nombre d'utilisations. Cet aspect correspond à ce qui se passe dans l'implé-
mentation, où une dé�nition simple n'a pas d'état.

Programmation impérative Nous terminons notre série d'exemples par un codage
un peu plus long mais particulièrement utile. Il s'agit d'une cellule de référence, qui
permet de stocker une valeur, d'y accéder, et de la modi�er au cours du calcul. La
cellule de référence permet de modéliser tout système réparti impératif à base de
mémoire partagée. Par ailleurs, cet exemple illustre bien l'usage de la portée lexicale
pour contrôler le comportement de chaque cellule.

Nous dé�nissons l'abstraction qui génère une nouvelle cellule par la règle

cellulehv0; �0i .

�
def

lireh�i j shvi . �hvi j shvi
^écrirehu; �i j shvi . �hi j shui

in �0hlire; écrirei j shv0i
�

Chaque message envoyé sur cellule déclenche un processus qui contient la dé�ni-
tion d'une nouvelle cellule, indépendante des autres. Dans ce processus gardé, trois
nouveaux noms lire, écrire, s sont dé�nis selon deux règles, puis les deux premiers
noms sont envoyés sur un canal de continuation �0 fourni par l'appelant. Ces deux
noms lire, écrire constituent l'interface de la nouvelle cellule. Le troisième nom s reste
local (cette propriété est facile à établir, puisque s n'est jamais communiqué à l'inté-
rieur de la portée lexicale de la dé�nition, et n'est pas accessible de l'extérieur) ; de
plus, il y a toujours exactement un message sur s, qui contient la valeur courante v
de la cellule (cet invariant s'établit aisément ; il est initialement véri�é par le message
shv0i, et chacune des deux règles de réduction le préserve), et cette valeur est consul-
tée ou modi�ée lors des réceptions de messages sur lire ou écrire. Dans le premier cas,
le même message shvi est immédiatement ré-émis tandis que la valeur courante est
également renvoyée à l'appelant ; dans le deuxième cas la valeur courante est jetée et
remplacée par la nouvelle valeur fournie par l'appelant.

Typage des canaux de communication

Le join-calcul résulte de notre insistance à prendre en compte certaines contraintes
inhérentes à la programmation répartie. Cependant, ces contraintes s'avèrent égale-
ment intéressantes pour dé�nir un langage fondé sur le join-calcul.

Ainsi, la communication est largement déterminée statiquement par la dé�nition
de nouveaux noms, et cet aspect déclaratif facilite l'analyse des programmes et, de
notre point de vue, leur clarté. Comme nous le verrons, il est possible par exemple de
ré-interpréter le join-calcul comme une extension naturelle d'un langage fonctionnel de
haut niveau à la ML auquel on aurait ajouté le parallélisme. Aussi, l'analyse statique
des programmes est sensiblement plus simple que pour les autres calculs de processus
avec mobilité de nom, parce que pour un nom donné l'ensemble des récepteurs sur ce
nom est connu.

18 Résumé

A�n de détecter à la compilation le mauvais usage des noms du join-calcul, nous
proposons un système de typage simple et expressif qui béné�cie directement de ces
propriétés statiques. En fait, notre système est proche du polymorphisme paramétrique
à la Milner, popularisé par le langage ML, et il en conserve tous les avantages.

La communication dans le join-calcul consiste à envoyer et recevoir des messages
sur certains noms, ces messages contenant eux-mêmes d'autres noms qui peuvent in-
tervenir dans la suite du calcul. De ce point de vue, le join-calcul est un calcul d'ordre
supérieur, où les canaux remplacent les fonctions.

Bien que la sémantique opérationnelle soit très di�érente, la structure syntaxique
des dé�nitions dans le join-calcul généralise celle des dé�nitions mutuellement récur-
sives de ML. La di�érence la plus notable est la présence de �ltres qui reçoivent plu-
sieurs messages de sources di�érentes au cours de l'exécution, ce qui requiert quelques
précautions dans la règle de généralisation.

Un nom x utilisé pour communiquer des messages contenant n valeurs de types
respectifs �1; : : : ; �n est naturellement doté du type h�1; : : : ; �ni. En pratique, il y a
d'autre types que les types de canaux ; par exemple, nous ajoutons les booléens, les
entiers, les chaînes de caractères, chaque ensemble de valeurs ayant son propre type et
un ensemble de fonctions primitives typées.

Dans l'exemple qui suit, nous supposons que imprimer est un nom primitif qui
a�che sur la console les arguments entiers qu'il reçoit. Si Entier est le type des
entiers, alors le type de imprimer est hEntieri (un canal transportant un entier).
Nous pouvons dé�nir un nom qui reçoit une paire d'entiers et les imprime, par la règle

imprimer_pairehx; yi . imprimer hxi j imprimer hyi

Il alors facile d'inférer que le type de imprimer_paire est hEntier; Entieri (un canal
transportant deux entiers).

Dans certains cas, l'usage d'un nom dans un processus gardé ne détermine pas
entièrement son type ; ce nom est alors polymorphe. Par conséquent, le type des argu-
ments n'a pas besoin d'être entièrement déterminé pour garantir le bon typage du nom
polymorphe ; les parties non-spéci�ées sont représentées par des variables de type qui
peuvent être remplacées par n'importe quel type. Cette approche bien connue s'ap-
pelle le polymorphisme paramétrique. Par exemple, la règle suivante dé�nit un nom
polymorphe :

appliquer h�; xi . �hxi

Le nom appliquer reçoit deux arguments � et x, et déclenche le processus �hxi. Si � est
le type de x, alors � qui transmet des valeurs x doit être de type h�i. Par conséquent,
le nom appliquer doit être de type hh�i; �i, pour tout type � . Cette généralisation
est rendue explicite par un quanti�cateur, en dotant appliquer du schéma de type
8�: hh�i; �i.

Par la suite, ce schéma de type permet de bien typer des messages qui instancient �
de plusieurs manières di�érentes, par exemple pour typer le processus

appliquer himprimer ; 4i j appliquer himprimer_chaine;00 bonjour00i

Contrairement à ML, le join-calcul permet de décrire des calculs parallèles, et
en particulier des e�ets de bord, en utilisant des �ltres qui synchronisent plusieurs

Résumé 19

messages dans une même règle. Par exemple, nous pouvons considérer une variante
plus répartie de appliquer qui reçoit le canal � et l'argument x sur deux canaux
di�érents :

canal h�i j argumenthxi . �hxi

Les types des arguments � et x restent inchangés, et donc les noms canal et argument

ont pour types respectifs hh�ii et h�i. Pourtant, ces deux types sont corrélés par
l'usage du même �. Cela exclut la généralisation de l'un ou l'autre de ces types,
puisqu'autrement deux instances di�érentes lors de l'envoi indépendant de chacun des
messages pourrait conduire à une erreur à l'exécution. Par exemple, le processus

canal himprimer i j argumenth4i

j canalhimprimer_chainei j argumenth00bonjour00i

n'est pas typable avec la dé�nition ci-dessus, et peut conduire à une erreur manifeste
de typage imprimer h00bonjour00i en cas de synchronisation croisée.

Pour tenir compte de la synchronisation par le �ltrage, nous dé�nissons notre
critère de généralisation pour un ensemble de règles comme suit : Une variable est
généralisable tant qu'elle n'apparaît pas dans le type de plusieurs noms co-dé�nis.

Une fois ce critère très simple identi�é, le reste du système de typage est standard.
L'ensemble des règles de typage sont rassemblées dans la �gure 3.2 page 77.

Après quelques lemmes standards, nous établissons que chacune des étapes de ré-
duction de notre sémantique chimique préserve le bon typage d'un programme (théo-
rème 1, page 83) et qu'un programme bien typé ne contient pas d'erreurs d'arité ni
d'erreurs de typage lors de l'application d'une primitive (théorème 2, page 85). Ce
système de types est intégré à notre implémentation-prototype ; il répond aux besoins
d'un langage de programmation moderne ; en particulier les types peuvent être auto-
matiquement inférés à la compilation, et les erreurs de typage sont intelligibles pour
le programmeur.

De nombreux systèmes de types plus sophistiqués ont été proposés, en particu-
lier pour le pi-calcul. Ces systèmes n'o�rent pas l'inférence de type polymorphe parce
que les occurrences contravariantes de chaque nom ne sont pas connues statiquement.
En revanche, ces systèmes décrivent plus précisément certains aspects de la commu-
nication, comme l'absence de certains blocages à l'exécution, le nombre de messages
échangés, où l'usage purement local de certains noms. Ces extensions devraient égale-
ment s'appliquer au join-calcul considéré comme sous-ensemble contraint du pi-calcul.

Vers un langage de programmation

Le join-calcul comporte un seul mécanisme pour contrôler l'exécution d'un pro-
gramme, la réception conjointe de messages asynchrones. Les exemples ci-dessus sug-
gèrent que ce mécanisme est su�samment expressif, mais pas toujours commode pour
programmer.

Ainsi, il n'y a aucun opérateur de composition séquentielle, et pour exprimer que
deux processus P et Q s'exécutent dans un certain ordre, il faut placer ces processus

20 Résumé

sous des gardes, les représenter par des continuations, et déclencher celles-ci explici-
tement dans d'autre parties du programme. Il est bien connu que le passage de conti-
nuations permet d'exprimer les diverses stratégies d'évaluation de langages séquentiels
comme le �-calcul ; nous en donnons quelques exemples dans la section 3.4.

Pour le programmeur, la manipulation explicite des continuations est notoirement
délicate ; en pratique il est préférable de �xer une stratégie d'évaluation (ici l'appel
par valeur) et d'ajouter le contrôle séquentiel sous la forme de sucre syntaxique dans
le langage. Cette approche a été par exemple proposée dans le langage PICT [122].

Nous expliquons sa mise en oeuvre dans le join-calcul en reprenant notre exemple
imprimer_paire . En e�et, le message imprimer_paireh1; 2i peut causer l'a�chage de
�12� ou �21�, selon l'ordonnancement des deux appels à imprimer , ce qui en général ne
conviendra pas au programmeur. Pour contraindre l'ordre d'a�chage, il faut modi�er
la dé�nition de ces noms : Nous utilisons la nouvelle primitive typée

imprimer : hEntier; hii

où l'argument supplémentaire de type hi est la continuation déclenchée après l'a�-
chage ; la nouvelle dé�nition de imprimer_paire est :

imprimer_pairehx; y; �i . def �yhi . �hi in
def �xhi . imprimer hy; �yi in
imprimer hx; �xi

Dans ce cas, la continuation est un message vide, ou signal ; de manière plus générale,
la continuation peut aussi retourner à l'appelant un résultat.

L'usage du contrôle séquentiel étant très courant, il est indispensable de masquer
cet encodage pénible. Pour cela, nous distinguons deux sortes de canaux : Les ca-
naux asynchrones et les canaux synchrones. Les canaux asynchrones sont des canaux
ordinaires du join-calcul ; les canaux synchrones sont des canaux qui transportent im-
plicitement un argument supplémentaire comme continuation, que chaque dé�nition
peut utiliser pour retourner un signal ou un résultat. Par convention, nous utilisons une
typographie di�érente pour les noms synchrones. Par exemple, la dé�nition ci-dessus
devient simplement

imprimer_paire(x; y) . imprimer(x);

imprimer(y);

reply to imprimer_paire

où le point-virgule exprime de manière concise l'attente d'un signal sur la continua-
tion implicite, et où le processus �reply to imprimer_paire� déclenche la continuation
implicitement reçue dans le message � imprimer_paire(x; y)�.

De manière plus générale, le point-virgule est remplacé par l'expression

let v1; : : : ; vn = nom_synchrone(u1; : : : ; um) in P

qui crée une continuation pour P , la transmet comme m+1-ème argument, et attend
sur cette continuation n résultats. En �xant l'ordre d'évaluation des arguments chaque
valeur peut être remplacée par une expression à évaluer préalablement à l'envoi du
message.

Résumé 21

Le langage synchrone obtenu est très proche de ML. En fait, si l'on se limite aux
noms synchrones et que l'on exclue la composition parallèle dans les processus et les
�ltres, on obtient un langage noyau pour ML.

Dès lors, nous pouvons ré-interpréter le langage complet comme une extension de
ML pour le parallélisme avec la possibilité d'évaluer plusieurs expressions en parallèle,
et d'attendre le résultat de plusieurs expressions avant de poursuivre l'exécution.

Ce style de parallélisme a au fait déjà été proposé dans le cadre plus restreint de la
programmation parallèle impérative, sous le nom de multi-fonctions [23]. Par exemple,
deux tâches parallèles peuvent s'exécuter indépendamment en échangeant au milieu du
calcul leurs résultats partiels ; cette synchronisation intermédiaire s'écrit en join-calcul

synca(va) j syncb(vb) .reply vb to synca jreply va to synca

tandis que chaque tâche s'écrit de manière fonctionnelle (ici pour la tâche a) let va =
Ea in let vb = synca(va) in E

0
a.

L'encodage des noms synchrones s'étend sans problème particulier au système de
typage ; nous dé�nissons un nouveau constructeur de types fonctionnels ! pour les
noms synchrones

h�1; : : : ; �qi!h�
0
1; : : : ; �

0
pi

def

= h�1; : : : ; �q; h�
0
1; : : : ; �

0
pii

Par exemple, � imprimer_paire� peut être doté du type hEntier; Entieri!hi.
La comparaison du join-calcul avec noms synchrones et de ML est intéressante

pour plusieurs raisons. Ainsi, nous retrouvons les limitations apportées au polymor-
phisme paramétrique en présence d'e�ets de bord, traditionnellement représentés par
un modèle de la mémoire, simplement en utilisant notre codage de la cellule mémoire.
Grâce au sucre syntaxique, cette cellule s'écrit maintenant

cellule(v0) .

0
@ def

lire() j shvi . reply v to lire j shvi
^ écrire(u) j shvi . reply to écrire j shui

in reply lire; écrire to cellule j shv0i

1
A

L'allocateur de cellules a un type polymorphe

cellule : 8�: h�i!hhi!h�i; h�i!hii

En revanche, chaque cellule allouée est monomorphe, du type de l'argument d'initia-
lisation v0.

Cette proximité a également de nombreux avantages pratiques, dont béné�cie notre
implémentation du join-calcul. Par exemple, le langage utilise un système de modules
standard, et le compilateur infère les types des noms du join-calcul. De plus, le lan-
gage d'implémentation du join-calcul étant CAML, une variante de ML, des passerelles
existent entre les deux langages, et ces passerelles sont bien typées : Ainsi il est relati-
vement facile de générer un code exécutable qui rassemble plusieurs modules écrits en
join-calcul et en CAML. De plus, chacun de ces modules peut être compilé indépen-
damment et interfacé avec le reste du code par une déclaration d'interface. Chaque
interface contient les types des valeurs dé�nies dans chaque module, et l'utilisation
correcte de ces valeurs peut dont être véri�ée à la compilation de chaque module. A
l'exécution, chaque langage accepte des valeurs en provenance de l'autre langage sans

22 Résumé

tests ou conversions supplémentaires. En particulier, toutes les librairies CAML sont
accessibles en join-calcul.

Le chapitre 3 contient en�n une discussion plus prospective sur la programmation
orientée-objet dans le join-calcul. Bien que le calcul ne comporte pas de primitives
spéci�ques à la programmation objet, chaque dé�nition peut être interprétée comme
un objet dans un contexte parallèle. Ainsi, la cellule de référence devient un objet
dont �cellule� est le créateur, � lire� et �ecrire� les méthodes, et s la représentation de
l'état interne ; d'autres exemples plus complexes sont développés dans la section 3.5. La
déclaration de �ltres combinant méthodes et états est très expressive en ce qui concerne
la synchronisation. Pour modéliser directement un calcul à objets, cependant, il est
nécessaire d'ajouter des enregistrements extensibles comme valeurs.

Equivalences entre processus

Nous nous intéressons maintenant aux propriétés formelles de processus dans le
join-calcul. Cette partie de la thèse est largement inspirée des techniques et des résul-
tats pour CCS et le pi-calcul ; en retour, une bonne partie des résultats présentés ici
sont nouveaux et devraient également s'appliquer à la plupart des calculs de processus
asynchrones.

Au chapitre 4, nous posons les bases d'une théorie de l'équivalence entre processus
dans le join-calcul.

Notre objectif est d'identi�er les relations d'équivalences permettant d'énoncer
des relations intéressantes et de les prouver. Ainsi une �bonne� équivalence doit être
facile à interpréter, ne pas identi�er de processus évidemment di�érents ni séparer de
processus intuitivement équivalents dans un environnement réparti, et si possible o�rir
des techniques de preuves su�santes pour établir ces équations.

A première vue, il semble que nous n'avons que l'embarras du choix, tant ces
aspects théoriques ont été développés. Par exemple, il existe plusieurs centaines de
propositions subtilement di�érentes pour dé�nir l'équivalence entre processus [61].

Cela dit, notre approche intègre certaines spéci�cités techniques (sémantique à
réduction, communication asynchrone, absence de tests de nom), ce qui nous éloigne
des résultats bien connus, et nous amène à une présentation originale de l'équivalence
entre processus.

Nous posons tout d'abord quelques critères naturels d'observation :

1. Deux processus qui émettent des messages sur des noms libres di�érents ne sont
visiblement pas équivalents.
Plus généralement, nous supposons données certaines observations élémentaires,
les �barbes� dans le jargon des calculs de processus. Dans le join-calcul, un pro-
cessus a une barbe sur un nom x lorsque ce nom est libre dans le processus et que
le processus peut émettre un message sur ce nom, éventuellement après quelques
réductions préalables.

2. L'exécution d'étapes de calculs internes n'est pas détectable en elle-même. Intui-
tivement, une équivalence qui compterait le nombre d'étapes présupposerait une
horloge globale. Par ailleurs dans la programmation répartie un message passant
par le réseau sera beaucoup plus lent qu'une dizaine de messages locaux. Une

Résumé 23

mesure précise du coût du calcul est délicate ; en tout cas le nombre d'étapes
de calcul n'est pas signi�catif dans un calcul asynchrone, parce que le coût de
chaque étape n'est pas uniforme.

3. Deux processus équivalents doivent être interchangeables ; en particulier leur
équivalence ne doit pas dépendre du contexte dans lequel ils sont placés.

Cela nous amène à exiger des propriétés de congruence vis-à-vis des opérateurs
du join-calcul pour nos équivalences.

Nous retrouvons heureusement au passage de nombreuses notions d'équivalence
proposées dans d'autres contextes. Certaines dé�nitions d'apparence fort di�érentes
produisent les même équivalences, ce qui réduit le nombre d'équivalences à considérer.
Au terme de notre étude, nous identi�ons quatre notions d'équivalences de plus en
plus précises et nous exposons ce qui les sépare :

La notion la plus grossière d'équivalence est l'équivalence de tests (may testing).
Cette notion est la plus naturelle ; elle identi�e deux processus lorsque dans tout
contexte ils peuvent émettre des messages sur les même noms. Elle exprime des pro-
priétés de sûreté, mais est di�cile à établir directement et ne dit rien quant à la
présence de comportements souhaitables.

Si l'on s'intéresse aux comportements in�nis, il est naturel de considérer certaines
propriétés d'équité, ou de progression dans le calcul. Par exemple, il est possible d'ob-
server les messages qui peuvent toujours être émis. De telles propriétés s'expriment
sous la forme de conditions d'�équité formelle�, qui imposent que si un message peut
toujours être émis indépendamment du calcul en cours, alors ce message est e�ective-
ment émis au cours de n'importe quel calcul équitable. L'équivalence de tests équitable
(fair testing) s'avère plus précise que le may-testing, mais malheureusement encore
plus délicate à manipuler directement. Nous proposons d'autres caractérisations plus
e�caces, quoique peut-être moins intuitives, en termes de simulations couplées. Ces
caractérisations semblent spéci�ques au join-calcul.

Si l'on s'intéresse également à l'évolution interne des processus, telle que re�étée par
leur comportement observable, on retrouve la notion de congruence barbue proposée
par Milner et Sangiorgi, ainsi que celle proposée par Honda et Tokoro.

Ces deux équivalences sont des bisimulations faibles. Une relation R est une bi-
simulation faible lorsque, pour toute paire de processus P R Q, pour chaque étape
de calcul P ! P 0 (ou Q ! Q0), il existe des étapes de calcul Q !� Q0 permettant à
l'autre processus de rejoindre le premier, en restant dans la relation : P 0 R Q0. Ainsi,
les points de choix internes de P et Q doivent correspondre.

De notre point de vue, l'intérêt majeur de la bisimulation barbue est technique :
Ce type d'équivalence peut être établie par co-induction, en considérant une étape de
réduction à la fois, et non plus des traces arbitrairement longues.

Bien que le problème soit peu connu, il existe au fait deux manières di�érentes de
dé�nir la congruence barbue. La dé�nition traditionnelle de Milner et Sangiorgi retient
la plus grande congruence contenue dans la plus grande bisimulation barbue. La dé�ni-
tion de Honda et Tokoro considère la plus grande congruence qui est une bisimulation
barbue. Cette seconde dé�nition est plus exigeante, et les deux relations coïncident
dans la mesure où la congruence barbue de Milner et Sangiorgi est elle-même une
bisimulation. Cependant, cette propriété de congruence est loin d'être évidente ; elle
est laissée comme un problème ouvert par Honda. Nous établissons ici la coïncidence

24 Résumé

de ces deux types de dé�nitions dans le join-calcul (théorème 3, page 114) ; la preuve
est complexe, mais les techniques employées s'appliquent également au pi-calcul pour
fournir le même résultat [56].

Si l'on distingue les valeurs transmises syntaxiquement, et non plus selon leur com-
portement, on obtient plusieurs bisimulations étiquetées interchangeables. Ces équiva-
lences abordées au chapitre 5 sont particulièrement faciles à établir parce qu'il n'est
plus nécessaire de faire intervenir le contexte comme observateur : Les étiquettes suf-
�sent. En revanche leur interprétation est douteuse, et de nombreuses équations utiles
ne sont pas valides pour ces équivalences.

Une fois cette hiérarchie mise en place, la preuve d'une équivalence particulière
peut avantageusement s'appuyer sur plusieurs équivalences auxiliaires plus �nes et
plus faciles à établir.

Toutes les équivalences mentionnées ci-dessous peuvent être dé�nies à partir de
diagrammes de simulation faible, de congruence, et de barbes, et la plupart des preuves
présentées utilisent des techniques co-inductives. Pour factoriser certains arguments
récurrents, nous développons dans ce cadre des techniques de preuve relativement
générales, en nous appuyant sur des résultats de con�uence.

Un modèle plus explicite du join-calcul

Les équivalences observationnelles dé�nies au chapitre 4 sont relativement faciles
à interpréter, mais elles fournissent une sémantique du join-calcul peu explicite. En
e�et, l'interaction entre un processus et son environnement n'est pas apparente ; elle
est révélée par l'application de contextes particuliers, suivie de réductions internes.

Pour obtenir des techniques de preuves plus directes, en particulier pour éviter la
quanti�cation sur tous les contextes dans la dé�nition des équivalences, nous ra�nons
donc notre sémantique en ajoutant des interactions primitives avec l'environnement.
Cela nous permet de générer des transitions étiquetées, dont l'enchaînement décrit
entièrement le comportement observable des processus.

L'interaction entre un processus et son environnement se décompose en deux ac-
tions complémentaires : Un processus peut émettre des messages vers le contexte, ce
qui fournit au contexte de nouveaux noms, et réciproquement le contexte peut utiliser
les noms qu'il a reçus pour émettre des messages vers le processus. En l'absence du
contexte, nous avons besoin d'une syntaxe �ouverte� qui étend la syntaxe du join-calcul
pour garder la trace des noms qui ont été communiqués à l'environnement.

Par exemple, le processus def xhui . P in yhxi peut émettre le message yhxi,
puisque y est un nom libre, et donc communiquer le nom x à l'environnement. Cepen-
dant, x reste exclusivement dé�ni par le processus. Nous notons cette interaction par
la transition étiquetée

def xhui = P in yhxi
fxgyhxi
����! defx xhui = P in 0

L'étiquette indique que la communication a lieu sur le nom libre y, que cette com-
munication exporte pour la première fois x vers l'environnement, et que le message
contient simplement ce nom x. Tandis que x était auparavant un nom local, x est

Résumé 25

devenu visible de l'extérieur, ou �exporté�. Il peut maintenant être utilisé pour envoyer
un message vers le processus :

defx xhui = P in 0
xhzi
��! defx xhui = P in xhzi

L'étiquette indique que la communication a lieu sur le nom exporté x, et que le message
contient le nom z, un nom libre ou exporté. En�n, ce message peut être utilisé comme
auparavant par la dé�nition de x pour déclencher une copie du processus P :

defx xhui = P in xhzi ! defx xhui = P in Pfz=ug

Par la suite, ce nouveau sous-processus peut lui-même extruder certains noms loca-
lement dé�nis, et l'environnement peut indépendamment démarrer d'autres copies de
P pour d'autres valeurs de u, comme détaillé ci-dessus.

Ainsi, l'interface d'un processus �ouvert� comporte deux ensembles de noms dis-
joints : Les noms libres et les noms exportés, ces noms servant de supports exclusifs
pour l'interaction avec l'environnement. Cette séparation provient de la dé�nition sta-
tique des récepteurs. Dans les calculs de processus habituels, au contraire, le même
nom peut servir à la fois pour émettre un message vers l'environnement, recevoir un
message de l'environnement, ou encore e�ectuer une réduction interne. L'utilisation
ici d'une interface structurée simpli�e l'étude des processus, puisqu'il y a moins de
transitions parasites à prendre en compte.

A partir de cette sémantique ouverte, nous appliquons la dé�nition habituelle de
la bisimulation étiquetée faible : Deux processus sont bisimilaires si lorsque l'un d'eux
produit une transition, l'autre peut produire la même transition éventuellement suivie
ou précédée de réductions internes, et que les deux processus résultants restent bisi-
milaires. Cette équivalence s'avère être une congruence (théorème 5, page 158) ; elle
est strictement plus �ne que la congruence barbue, ce qui la place au sommet de notre
hiérarchie d'équivalences.

Par dé�nition, notre sémantique ouverte autorise l'intrusion de tout message sur
un nom x dès que ce nom est exporté (pourvu que le message soit bien typé). Cette
propriété nous est dictée par la sémantique asynchrone du join-calcul : En e�et, l'émet-
teur d'un message ne peut détecter que ce message est e�ectivement reçu, donc l'in-
trusion d'un message ne doit pas dépendre de l'état interne du processus. Malheureu-
sement, cela induit de nombreuses intrusions parasites dans notre modèle ouvert, qui
se contentent d'accumuler des messages inutiles dans le processus étudié. En parti-
culier, l'arbre de synchronisation est presque toujours in�ni, ainsi que la plus petite
bisimulation qui contient une paire de processus ouverts.

Pour réduire la taille du modèle, nous modi�ons notre sémantique en n'autori-
sant plus l'intrusion de messages que s'ils sont immédiatement consommés par une
réduction interne. Puisque la nouvelle sémantique opérationnelle est plus stricte, nous
dé�nissons une nouvelle sorte de bisimulation faible plus laxiste, appelée bisimulation
asynchrone et initialement proposée pour le pi-calcul : Lorsque deux processus sont
bisimilaires et que l'un d'eux e�ectue une intrusion-réduction, l'autre processus peut
soit e�ectuer une intrusion-réduction, soit stocker le message pour un usage ultérieur,
tant que les deux processus restent bisimilaires.

Ce n'est pas encore su�sant, parce que parfois il faut fournir plusieurs messages à
la fois pour passer un �ltre ; par conséquent, nous considérons des intrusions multiples,

26 Résumé

qui fournissent plusieurs messages à la fois, à condition que tous ces messages soient
immédiatement consommés par une réduction (potentiellement avec d'autres messages
locaux requis par le �ltre).

Nous établissons que les deux modèles équipés de leurs bisimulations étiquetées
respectives sont équivalents (théorème 6, page 161), ce qui suggère l'utilisation géné-
ralisée de la bisimulation asynchrone, dont le modèle est nettement plus compact.

Nous étudions en�n en détail le lien entre ces bisimulations étiquetées et les
congruences barbues. Puisque ces bisimulations sont des congruences et qu'elles res-
pectent les barbes, elles sont au moins aussi �nes que les congruences barbues. De
fait, elles séparent davantage de processus, parce que l'égalité des étiquettes permet
à l'environnement de comparer les noms de l'interface d'un processus, tandis qu'un
contexte du calcul ne peut que les utiliser pour communiquer. Ainsi, la présence d'un
relais devient décelable.

La comparaison de noms est une primitive courante dans les calculs de processus,
mais elle est indésirable dans le cadre d'un langage de programmation, parce que
l'implémentation doit alors respecter l'égalité, et ne peut plus librement introduire des
noms intermédiaires�par exemple, notre implémentation introduit dynamiquement
des relais lorsqu'un nom acquiert une portée globale, ce qui serait impossible si la
comparaison de noms se réduisait à la comparaison de pointeurs.

Quoi qu'il en soit, nous montrons que ce problème de comparaison implicite dans
les étiquettes est tout ce qui sépare nos sémantiques extensionnelles et intentionnelles.
Dans ce but, nous ajoutons la comparaison de noms dans le calcul, et nous prouvons
que la plus grande bisimulation barbue qui est une congruence pour tous les contextes
d'évaluation coïncide alors avec la bisimulation étiquetée. La contrepartie de ce résul-
tat dans le pi-calcul asynchrone valide une conjecture de Milner sur la bisimulation
barbue [101].

Variantes et Encodages

Le chapitre 6 est presque entièrement consacré à l'exploration des propriétés for-
melles du join-calcul, à travers l'étude comparative de variantes du join-calcul, puis
du pi-calcul. Ces variantes peuvent être reliées par divers encodages ; nous décrivons
ces encodages, et nous en étudions les propriétés de correction. Cet ensemble de ré-
sultats permet de passer d'une variante à l'autre en préservant certaines équivalences,
et fournissent des points de repères techniques utiles. Par ailleurs, ils fournissent de
nombreuses illustrations des équivalences et techniques de preuve développées précé-
demment.

Dans le domaine des calculs de processus, une grande diversité de formalismes
et de variantes coexistent ; en e�et, chaque problème semble appeler une nouvelle
variante, voire un nouveau calcul mieux adapté au problème. Bien que les mêmes
idées et les mêmes méthodes s'appliquent, il en résulte une profusion de variantes,
dont les liens formels ne sont pas toujours très clairs. Ainsi, en général chaque résultat
est exprimé pour une variante particulière, et ne s'applique pas automatiquement aux
autres variantes.

En ce qui concerne le join-calcul, cette variété apparaît pour deux raisons :

Résumé 27

� En tant que noyau d'un langage de programmation, le join-calcul comporte cer-
taines opérations utiles dont l'implémentation ne pose pas de problèmes particu-
liers. En théorie, pourtant, il est possible de simpli�er davantage ces opérations
a�n d'obtenir un calcul minimaliste plus facile à étudier.

Ainsi, la communication polyadique est commode, mais elle nous impose l'usage
d'un système de types ; de même, une dé�nition peut lier un grand nombre
de noms et comporter de nombreuses clauses, ce qui complique les inductions
structurelles.

� En tant que variante du pi-calcul adaptée à la programmation distribuée, le
join-calcul semble béné�cier de propriétés formelles similaires. Il est utile de
relier précisément ces deux calculs pour faciliter leur comparaison et permettre
le transfert de résultats de l'un à l'autre.

Notre objectif est ici surtout théorique. En particulier certains encodages sont
précis mais ine�caces ; cela n'est pas grave puisque ces variantes ne sont pas destinées
à la programmation.

A propos des encodages

A titre d'exercice, il est souvent intéressant de relier deux formalismes en traduisant
les termes d'un langage à l'autre. Cette approche est largement exploitée dans l'étude
des calculs de processus.

Evidemment, il est souhaitable que cette traduction re�ète et préserve également
les propriétés entre les deux calculs. Si ces calculs s'expriment dans le même forma-
lisme, il est possible de relier directement chaque processus P à sa traduction [[P]] par
une équivalence. Souvent pourtant, chaque calcul a sa propre notion d'équivalence, ce
qui rend impossible une comparaison directe des processus. On combine alors deux
types de résultats :

1. La correspondance opérationnelle relie directement les réductions du calcul source
à celles de l'image de la traduction. Par exemple, chaque réduction source peut
donner lieu à une série de réductions dans la traduction initiale qui amène à
la traduction du nouveau terme source, peut-être à une équivalence près pour
rester dans l'image de [[�]].

2. La complétude (full abstraction) relie les équivalences du calcul source à celles
de l'image de la traduction : P � Q si et seulement si [[P]] �0 [[Q]]. Elle indique
ainsi ce que la traduction révèle ou masque par rapport aux termes initiaux.
Cette propriété est délicate à obtenir pour des équivalences observationnelles,
parce que les contextes sources et objets peuvent être très di�érents. Souvent par
exemple, de nombreux contextes dans le calcul cible ne sont pas des traductions
de contextes sources ; ils peuvent en théorie briser des invariants imposés par
la sémantique du calcul source, pour détecter des propriétés jusque là invisibles
dans l'image de la traduction. Cette situation récurrente complique beaucoup
certains codages.

Nos principaux résultats s'expriment en termes de complétude pour les équivalences
mises en place au cours des chapitres 4 et 5. Le plus souvent, deux instances de la
même équivalence sont utilisées de part et d'autre de la traduction.

28 Résumé

Vers un join-calcul minimaliste

En théorie, le join-calcul que nous utilisons comme noyau de notre langage de
programmation répartie peut encore être sensiblement simpli�é. Outre son intérêt
formel, cette entreprise s'avère utile par la suite, puisque les développements ultérieurs
peuvent se concentrer sur le calcul réduit.

Le join-calcul élémentaire est dé�ni par la grammaire suivante :

P ::= processus élémentaire
xhui message transmettant un seul nom

j P1 jP2 composition parallèle
j def xhui j yhvi . P1 in P2 dé�nition de deux noms par une règle

Nous établissons que ce calcul a exactement la même expressivité que le join-calcul
complet en exhibant une série de codages complets (théorème 8, page 181).

Compilation interne des dé�nitions

La première étape de cette réduction concerne les dé�nitions ; en e�et, l'équivalence
structurelle su�t pour normaliser tout processus du join-calcul en un terme �plat� de
la forme def D inM où le processus M est une composition parallèle de messages.

En revanche, la structure des dé�nitions semble complexe, puisqu'une seule dé�-
nition peut dé�nir un nombre arbitraire de noms et introduire des règles qui joignent
un nombre arbitraire de messages en une seule étape de calcul.

Les propriétés asynchrones et statiques du join-calcul permettent pourtant de ma-
nipuler cette structure sans modi�er son comportement externe. Par exemple, une
étape qui joint n messages ne semble pas implémentable dans un calcul où chaque
étape joint 2 messages, mais comme tous ces messages sont adressés à la même dé�ni-
tion, il su�t de stocker les messages un par un au fur et à mesure de leur arrivée, de
représenter ces messages par un état interne, et de véri�er lorsqu'un nouveau message
arrive si l'ensemble des messages en attente permet ou non de déclencher la traduction
d'une règle n-aire.

Notre codage d'une dé�nition complexe consiste donc à rendre explicite l'automate
qui reconnaît les �ltres de la dé�nition et à stocker l'état de l'automate dans une cellule
mémoire. Diverses précautions permettent de construire un tel codage complet pour la
congruence barbue. Le codage est détaillé dans la section 6.3.3 ; il réduit une dé�nition
à n noms et m clauses à environ 1 + 2n + 2m dé�nitions élémentaires imbriquées.
Curieusement, l'usage de cet automate ressemble à la technique de compilation des
dé�nitions mise en oeuvre dans notre prototype, où le même automate apparaît, sous
une forme plus e�cace quoique formellement moins précise. (Une présentation détaillée
de ces automates et de leur e�cacité est disponible [87].)

Par ailleurs, il est possible de normaliser davantage la structure d'un processus en
introduisant systématiquement des relais intermédiaires, ce qui permet par exemple
de réduire le nombre de cas à considérer pour établir une bisimulation étiquetée, et de
construire des traductions plus résistantes vis-à-vis du contexte (cf. section 6.4).

Ainsi, on peut s'assurer par une compilation préalable que tout nom communiqué
à l'extérieur est un relais dé�ni par une simple règle du type xheui . yheui, ou de ma-
nière plus sophistiquée que le même nom n'est jamais communiqué plus d'une fois à

Résumé 29

l'environnement. Ces compilations successives préservent et re�ètent également l'équi-
valence observationnelle.

Encodage de la communication polyadique

La deuxième étape de notre réduction consiste à restreindre la communication aux
messages monadiques : Tandis que chaque message du join-calcul transmet un nombre
�xe mais arbitraire de noms, il est possible de remplacer l'émission et la réception de
ce message par l'exécution de protocoles complémentaires qui transmettent les mêmes
noms un par un.

Ce codage est un classique des calculs de processus, mais sa correction n'a semble-
t-il jamais été établie en général pour des équivalences aussi �nes que la congruence
barbue (souvent, seule une correspondance opérationnelle est mentionnée). De fait, le
codage de base ne préserve pas toutes les équations, puisque certaines de ces équations
dépendent de l'utilisation exclusive de contextes bien typés, tandis que les traductions
de contextes mal typés sont des contextes valides. Par exemple, une dé�nition qui reçoit
deux noms de types di�érents a la certitude que ces noms eux-mêmes sont di�érents ;
en revanche, la traduction de cette dé�nition peut recevoir deux fois le même nom.

En utilisant les encodages préalables décrits ci-dessus, le codage peut être renforcé,
ce qui nous permet d'établir �nalement sa complétude.

Du pi-calcul au join-calcul, et vice versa

Intuitivement, le join-calcul est une variante réduite du pi-calcul, et malgré une
certaine divergence syntaxique les di�érences essentielles entre les deux calculs sont
peu nombreuses :

1. Les trois lieurs du pi-calcul (réception, restriction, réception répliquée) sont re-
groupés en une seule construction syntaxique dans le join-calcul : La dé�nition.

2. Le join-calcul impose la dé�nition statique de tous les récepteurs, et ne commu-
nique donc que la capacité d'envoyer des messages ; au contraire, un nom reçu
dans le pi-calcul peut être utilisé comme un nom dé�ni.

3. Le join-calcul ne calcule jamais sur des noms libres.

4. Le pi-calcul n'autorise la réception que d'un message à la fois.

De fait, le join-calcul et le pi-calcul ont la même expressivité en ce qui concerne
l'équivalence observationnelle (cf. section 6.6, en particulier pour la dé�nition du pi-
calcul), mais les codages les plus précis sont compliqués. Nous nous contentons ici de
donner une idée de chacun des encodages.

La traduction du join-calcul dans le pi-calcul asynchrone décompose chaque dé�ni-
tion en utilisant les trois pré�xes du pi-calcul. Par exemple, dans le cas d'une dé�nition
binaire, nous avons la traduction

[[def xhui j yhvi . P in Q]] def

= �x:�y:(!xhui:yhvi:[[P]] j [[Q]])

(Le reste de la traduction reproduit les constructeurs du join-calcul à l'identique.) Dans
cette traduction, le processus xhi:yhi:[[P]] reçoit un message sur x, puis un message
sur y, puis se comporte comme [[P]]. L'opérateur de réplication � !� reproduit le même
comportement pour toute paire de messages xhi et yhi. La symétrie entre x et y est

30 Résumé

donc brisée, mais cela n'est pas observable ; en e�et la première famille de réductions
qui reçoivent les messages sur x peut s'e�ectuer n'importe quand, tandis que chaque
réception d'un message sur y correspond à une réduction source. Cet encodage n'est
pas complet, mais il peut être renforcé pour le devenir (théorème 11, page 207).

La traduction du pi-calcul asynchrone dans le join-calcul est nécessairement plus
complexe, puisqu'il faut communiquer deux capacités de communication par canal : Un
canal du pi-calcul x permet d'e�ectuer à la fois l'envoi de messages xhui et la réception
de messages x(y):P ; son encodage dans le join-calcul comporte donc deux noms xe
et xr utilisables pour chacune de ces opérations. Dans le pi-calcul, la communication
est possible lorsqu'il y a un message et un récepteur ; cela se traduit naturellement par
la règle

xehye; yri j xr() . reply ye; yr to xr

tandis que chaque traduction d'un récepteur alloue implicitement une continuation
pour y placer son processus gardé :

[[x(y):P]] def

= let ye; yr = xr() in [[P]]

Cette traduction impose la présence d'une dé�nition de xe et xr pour chaque canal x
du pi-calcul, ce qui est problématique lorsque x est un nom libre. Néanmoins, il est
également possible de renforcer cette ébauche de codage pour le rendre complet vis-à-
vis de la congruence barbue (cf. théorème 10, page 205).

Localisation et mobilité

Le join-calcul est un modèle élémentaire adapté à la programmation répartie, mais
où la localisation des processus et des dé�nitions est implicite. Plus précisément, le
modèle est implémentable dans un environnement à plusieurs machines, quelle que
soit la répartition des ressources à l'exécution, à condition que toutes les machines
participantes puissent s'échanger des messages asynchrones.

Pour étudier cette implémentation répartie, ainsi que pour décrire certains com-
portements de programmes s'exécutant sur plusieurs machines, il est utile de ra�ner
le modèle pour faire apparaître la distribution des ressources.

D'autre part, ce ra�nement nous permet de présenter un modèle où la localisation
des ressources devient dynamique, intégrée au calcul. Dans un programme distribué, il
est parfois nécessaire de contrôler la localité, en particulier parce que celle-ci détermine
la résistance aux pannes. Ainsi, chaque groupe de processus et de dé�nitions peut
migrer d'une machine à l'autre, ou s'arrêter. En termes de langage de programmation,
cela correspond à un modèle très expressif d'agents mobiles.

Nous représentons la répartition des ressources en les organisant par emplacements.
Intuitivement, un emplacement réside sur un site particulier, et peut contenir des
processus et des règles de réductions. Un emplacement peut se déplacer d'un site à
l'autre ; ainsi un emplacement peut représenter un agent mobile. Un emplacement peut
également contenir des sous-emplacements, ce qui donne une structure hiérarchique
au calcul et permet de modéliser les sites comme des emplacements particuliers.

Résumé 31

Les noms d'emplacements sont des valeurs de première classe, tout comme les
noms de canaux. Ces noms peuvent être communiqués à d'autres processus éventuel-
lement dans d'autres places, ce qui permet de programmer la gestion des places tout
en contrôlant la migration par la portée lexicale. Chaque emplacement contrôle ses
propres mouvements relativement à son sur-emplacement, en désignant son nouvel
emplacement. Ce mécanisme permet de simpli�er l'analyse des programmes lorsque
certains emplacements sont immobiles, et fournit l'ébauche d'un mécanisme plus éla-
boré de sécurité.

Plusieurs machines chimiques A�n de modéliser la présence de plusieurs sites
de calcul, nous ra�nons la machine abstraite chimique ré�exive en faisant apparaître
une machine abstraite par emplacement, et en ajoutant une règle de communication
asynchrone entre emplacements : Ainsi, l'état du calcul est maintenant représenté par
une famille de paires de multi-ensembles f(Di;Pi)g qui contiennent respectivement les
règles de réaction et les processus en cours d'exécution dans chaque emplacement.

Conformément à notre intuition de la localité, nous imposons que toutes les règles
qui dé�nissent un même nom soient localisées au même emplacement.

Chacune des machines chimiques évolue localement comme précédemment : Cer-
tains messages locaux sont consommés par des règles locales et remplacés par de
nouveaux processus, tandis que les processus peuvent introduire de nouveaux noms
avec leurs règles de réactions. (Dans ce cas, nous imposons, bien sûr, que ces noms
n'apparaissent pas dans d'autres emplacements.)

Par ailleurs, une règle supplémentaire décrit la communication globale : Lorsqu'un
message est émis dans un emplacement et que ce message est dé�ni dans un autre em-
placement, une étape de calcul transporte ce message de l'emplacement émetteur vers
l'emplacement récepteur. Cette étape est muette ; elle ne dépend pas du message lui-
même ou de l'emplacement émetteur, mais uniquement de l'emplacement récepteur ;
elle n'a�ecte qu'un message à la fois. Par la suite, ce message pourra être consommé
localement, peut-être avec d'autres messages.

Informellement, ce nouveau mécanisme de calcul re�ète le routage des messages
d'un point à l'autre du réseau.

Dans le join-calcul et avec la restriction donnée ci-dessus, l'implémentation du rou-
tage est élémentaire. En e�et, chaque nom du join-calcul est irréversiblement attaché à
l'emplacement où il a été introduit, et l'adresse de l'emplacement peut facilement être
propagée chaque fois que ce nom est communiqué d'une machine à l'autre. Puisque cet
aspect technique n'a�ecte pas la sémantique du langage, nous en e�açons les détails,
et ne conservons que l'étape du calcul, qui est importante pour la synchronisation.

Nous illustrons notre propos en reprenant notre exemple favori, le serveur d'im-
pression. Nous distinguons maintenant trois machines : La machine du serveur s, une
imprimante laser p qui contacte le serveur, et la machine d'un utilisateur u sur laquelle
une requête d'impression est en attente. Nous conservons la même dé�nition pour le
serveur

D
def

= accepter himprimantei j imprimer h�chier i . imprimanteh�chieri

32 Résumé

Nous avons la série de réductions suivante :

D `s k laserhfi . P `p accepter hlaseri k `u imprimer h1i

Comm
! D `s imprimer h1i k laserhfi . P `p accepter hlaseri k `u

Comm
! D `s

accepter hlaseri;
imprimer h1i

k laserhfi . P `p k `u

Red
! D `s laser h1 i k laserhfi . P `p k `u

Comm
! D `s k laserhfi . P `p laser h1 i k `u

La première étape transmet le message imprimer h1i de la machine de l'utilisateur à la
machine du serveur ; cette réduction a lieu parce que le nom imprimer est uniquement
dé�ni sur la machine du serveur ; en particulier on peut imaginer que l'information sta-
tique �imprimer est dé�ni dans s� est propagée en même temps que le nom imprimer .
De la même manière, la deuxième étape du calcul transmet le message accepter hlaseri
de l'imprimante au serveur. Ensuite, les deux messages maintenant sur le serveur sont
conjointement reçus ; cette étape représente une synchronisation locale au serveur, et
la seule étape utile si l'on oublie la localisation. Elle déclenche un nouveau message
sur le serveur, adressé à l'imprimante. A nouveau, ce message est d'abord transmis à
cette machine, puis traité localement.

Cet exemple permet aussi d'illustrer la portée statique globale des noms dans le
join-calcul réparti, ainsi que le mécanisme d'extension de portée par la communication.
En supposant que le nom laser est initialement local à la machine p, une étape de
réduction préliminaire sur cette machine peut être

`p def laser hfi . P in accepter hlaseri
Str-def

 laser hfi . P `p accepter hlaseri

Ensuite, la deuxième réduction Comm dans la série ci-dessus étend e�ectivement la
portée de laser à la machine du serveur d'impression � il n'est plus possible d'ef-
fectuer une étape Str-def pour restreindre sa portée à une seule machine. Ainsi, le
serveur d'impression devient capable d'envoyer des messages à l'imprimante qu'il ne
connaissait pas auparavant.

Agents mobiles

Les di�érents emplacements qui apparaissent au cours du calcul sont structurés
en arbre ; nous commençons par justi�er ce choix. En e�et, une alternative serait de
considérer un modèle d'emplacements indépendants, dynamiquement liés à la machine
sur laquelle ils s'exécutent. Ce modèle pose cependant certains problèmes.

Dans le cas où plusieurs emplacements changent de place au cours du calcul, par
exemple, il est souhaitable que la con�guration �nale de dépende pas de l'ordre des
migrations. L'objectif d'une migration est le plus souvent de se retrouver �au même
endroit� qu'un autre emplacement. Or, cette liaison entre emplacements n'est pas
assurée en cas de migrations multiples : Par exemple, si un programme crée un agent
mobile pour se rendre sur un serveur, tandis que le serveur change de machine, il faut
programmer explicitement l'agent pour suivre le serveur. De plus, la migration du

Résumé 33

serveur et celle de l'agent ne sont pas atomiques ; il est ainsi possible que le serveur se
déplace avant l'agent, puis que l'ancienne machine du serveur tombe en panne.

En revanche, une structure d'emplacements imbriqués permet de re�éter de ma-
nière stable la proximité de certaines parties du calcul, ainsi que l'atomicité de leur
migration (ou de leur échec). Par ailleurs, cette structure permet de modéliser faci-
lement des systèmes à objets répartis avec des sous-objets. Techniquement en�n, les
machines peuvent elles-mêmes être modélisées par des emplacements immobiles, ce
qui allège notre formalisme et nous permet de décrire des con�gurations distribuées
complexes par des hiérarchies d'emplacements.

Jusqu'ici, la description de la localité dans le join-calcul reste purement descriptive :
La nouvelle sémantique indique précisément où se situe chacun des termes du calcul,
mais cette localisation n'a�ecte pas le calcul lui-même (cf. théorème 12, page 234), en
particulier pour nos équivalences qui ne mesurent pas l'e�cacité du calcul. L'apparition
de pannes, en revanche, donne un sens directement observable à la localité.

Pannes

Notre calcul fournit également un modèle élémentaire de pannes. L'arrêt brutal
d'une machine peut causer la terminaison des emplacements qui y résident, de manière
irréversible. De manière plus générale, chaque emplacement peut s'arrêter, entraînant
tous ses sous-emplacements. La terminaison d'un emplacement est détectable à partir
d'autres emplacements qui continuent à fonctionner, ce qui permet de programmer
explicitement la résistance aux pannes si besoin est.

Le modèle de pannes et le modèle de migration sont loin d'être indépendants ;
outre le partage de la notion d'emplacements, la migration peut être utilisée de manière
constructive pour se prémunir contre certaines erreurs. Par exemple, un protocole entre
deux programmes est considérablement compliqué lorsque chacun des programmes
craint une panne de l'autre programme entre chaque message : Il faut alors écrire de
nombreux codes de rattrapage de panne. En revanche, si les deux programmes envoient
leur agent sur une machine �able, le problème disparaît presque entièrement (il faut
encore véri�er la vivacité des deux programmes à la �n du protocole). Même dans le
cas où la machine commune n'est pas �able, elle donne une garantie très utile : Les
deux agents disparaissent ensemble en cas de pannes ; à nouveau, un test unique dans
chacun des programmes su�t à se prémunir contre ce type de pannes.

Nous donnons un sens opérationnel précis aux pannes � l'arrêt irréversible d'une
branche d'emplacements �, en donnons quelques exemples, et en exhibons quelques
propriétés formelles en prouvant certaines équations élémentaires. L'utilisation de
telles techniques pour prouver des protocoles distribués plus complexes reste à ex-
plorer.

Autres aspects du join-calcul

Cette thèse aborde surtout les aspects formels du join-calcul décrits ci-dessus, et
laisse de coté deux développements importants dont nous donnons ici également une
idée.

34 Résumé

Implémentations Avec Maranget, nous avons prototypé une implémentation du
langage réparti décrit aux chapitres 3 et 7 [59].

Cette implémentation comporte un compilateur et un interprète, tous deux écrits
dans le langage Objective Caml. Le langage correspond assez �dèlement au join-calcul
distribué équipé du système de types polymorphes paramétriques. Il permet également
de structurer le code en modules qui peuvent être compilés de manière autonome.
En�n, son interface avec le langage sous-jacent Objective Caml permet d'importer
et d'exporter des modules d'un langage à l'autre, en particulier toutes les librairies
standards.

Le Fessant et Maranget décrivent de manière détaillée diverses stratégies pour la
compilation des �ltres du join-calcul, dont celle mise en oeuvre dans notre implémen-
tation.

L'implémentation est répartie, dans la mesure où un nombre arbitraire de machines
connectées au réseau Internet peuvent prendre part au calcul, y compris en cours de
route, que le code et les ressources peuvent migrer librement d'une machine à l'autre,
et que l'arrêt d'une machine n'a�ecte que les emplacements qui s'y trouvent ou�en
l'état actuel�qui s'y sont trouvés.

Bien que le nombre de messages échangés au cours de l'exécution soit en général
plus faible que le nombre d'étapes de calcul e�ectivement globales dans le calcul (règles
Comm etGo), l'e�cacité à l'exécution reste très perfectible, cet aspect du problème
n'étant pas une priorité pour notre prototypage.

Par ailleurs, l'implémentation ne fournit qu'une implémentation incomplète du
modèle de pannes pour les pannes �réelles�. La détection de pannes est très partielle ;
en outre, la migration d'emplacements crée encore certaines dépendances parasites
vis-à-vis des machines précédentes, qui peut conduire à la perte de certains messages.

Cette implémentation est disponible gratuitement depuis Juin 1997 [59] ; outre le
code source, elle contient un manuel de référence et une présentation informelle de la
programmation parallèle et répartie dans le join-calcul, avec de nombreux exemples
de programmes.

D'autres implémentations sont disponibles : La première implémentation du join-
calcul est sans doute celle de Selinger [138]. Son compilateur accepte en entrée un
processus du join-calcul, et génère le code C qui lui-même exécute ce processus loca-
lement. En outre, Padovani a écrit une implémentation très complète du join-calcul
distribué en C [113]. Il utilise le système PVM pour implémenter la communication
globale.

En�n, Le Fessant implémente actuellement le join-calcul distribué de manière plus
complète et plus intégrée au langage Objective Caml [86]. Contrairement à notre proto-
type qui préservait la distinction entre Objective Caml et le join-calcul distribué tout
en proposant des passerelles entre les deux langages, cette nouvelle implémentation
intègre les deux langages en un seul qui o�re toutes les fonctionnalités de Objective
Caml avec les primitives pour le parallélisme et la programmation répartie proposées
dans le join-calcul distribué. Le support à l'exécution est nettement plus performant ;
il intègre par exemple un glaneur de cellules réparti [88].

La sécurité et la programmation répartie Le problème de l'implémentation
répartie devient particulièrement sensible lorsque l'on considère l'ensemble du réseau
et des autres machines comme potentiellement hostiles, et non plus seulement faillibles.

Résumé 35

De ce point de vue, le join-calcul est adéquat pour étudier certains aspects de ce
problème. Plus précisément, son modèle de communication peut être implémenté de
manière répartie avec de fortes garanties de sécurité, même en présence d'un attaquant
sur le réseau (au prix d'un encodage complexe et coûteux).

En collaboration avec Abadi et Gonthier, nous avons proposé un schéma d'im-
plémentation sécuritaire en compilant formellement tout processus écrit dans le join-
calcul dans un langage qui étend le join-calcul avec des primitives de cryptographie
à clé publique. L'image de notre traduction utilise uniquement des protocoles crypto-
graphiques qui communiquent sur un réseau public pour faire parvenir les messages
du join-calcul de l'émetteur à la dé�nition. Ainsi, la sécurité est garantie quelle que
soit la répartition des processus et des dé�nitions à l'exécution.

Techniquement, nous établissons des résultats de complétude entre le join-calcul et
sa traduction cryptographique. Pour cela, nous utilisons les équivalences et techniques
de preuves développées dans cette thèse.

Conclusion

Nous avons présenté un formalisme adapté à la programmation répartie. Bien que
notre motivation initiale ait été d'obtenir un formalisme e�ectivement implémentable,
notre modèle se révèle utile pour la programmation parallèle en général, comme une ex-
tension naturelle des langages fonctionnels. Ainsi, la dé�nition locale, statique de tous
les récepteurs pour un ensemble de noms dé�nis permet de transférer de nombreuses
techniques standards comme le typage polymorphe, ou l'utilisation de fermetures et
de piles dans l'implémentation.

L'inconvénient évident d'un nouveau formalisme est qu'il faut re-développer toute
une méta-théorie avant de pouvoir pleinement l'utiliser. Dans notre cas, nous pensions
pouvoir transférer la plupart des résultats du pi-calcul vers le join-calcul. A posteriori,
les équivalences et résultats techniques souhaitables pour le join-calcul n'étaient pas
réellement disponibles dans le pi-calcul. Au contraire, certaines techniques développées
pour le join-calcul fournissent des résultats nouveaux qui devraient s'appliquer à la
plupart des calculs de processus.

Au cours de ce travail, d'autres personnes ont développé diverses variantes asyn-
chrones du pi-calcul dans le même esprit, avec en particulier une attention accrue
envers les problèmes de programmation et d'implémentation. Nous percevons une cer-
taine convergence de vue avec notre approche. Bien sûr, il serait préférable de disposer
d'outils communs qui puissent s'appliquer à ces diverses variantes, mais la recherche
d'un formalisme uni�é est particulièrement ardue. Ces approches explorent également
d'autres aspects de la programmation des réseaux, comme le problème du routage
dynamique.

L'implémentation du join-calcul s'est avéré délicate, et il serait intéressant d'étudier
plus en détail certains aspects pratiques, en ra�nant notre sémantique opérationnelle,
par exemple pour y faire apparaître certaines structures de données locales, tels que
les piles, les automates, les fermetures, ou le code lui-même. Des analyses statiques
plus sophistiquées devraient permettre une amélioration sensible des performances, en
détectant à la compilation certains schémas de communication dans les �ltres. En�n,
une meilleure intégration de la programmation orientée-objet permettrait, entre autres,

36 Résumé

une comparaison avec les systèmes à objets répartis qui constituent de fait la majeure
partie des langages répartis.

Le choix des primitives pour la programmation explicitement répartie, en particu-
lier pour la détection des pannes, doit encore être validé par la pratique. Par exemple,
la détection des pannes ne va pas de soi, mais l'utilisation de protocoles temporisés
semble prometteuse. Formellement, l'analyse de programmes distribués en présence de
pannes est délicate ; bien que les équivalences opérationnelles soient en place, des tech-
niques de preuve adaptées au problème font encore défaut. C'est un enjeu important
pour aborder ce problème di�cile.

De manière plus générale, l'application de techniques sémantiques maintenant bien
connues pour la programmation séquentielle est encore largement inexplorée dans le
cas de la programmation de systèmes répartis. Notre formalisme fournit un modèle
élémentaire qui, nous l'espérons, favorisera cette exploration.

Main Notations

In this dissertation, we use the following standard conventions:

Tuples: ev is the tuple v1; v2; : : : ; vn for some integer n � 0; when the notation occurs
several times in the same formula, we assume a di�erent choice of n for each argument
of the notation.

Multisets: We use the same notations for both sets and multisets�the context
should prevent any ambiguity. We write fexg for the set or the multiset that contains
the ex's, and fx j p(x)g to denote the set or the multiset that contains all the x's such
that the predicate p(x) holds. We use the operators \, [and,] to note intersection,
union, and disjoint union of sets and multisets, respectively.

Relations and predicates: A binary relation R between the sets S1 and S2 is a
subset of S1 � S2. Most of our relations will range over the same sets. We usually
adopt an in�x notation for all relations. We let the variables R;R0; ' and symbols of
equality and equivalences range over relations. We write Id for the identity relation.

Let R and R0 be two relations. When de�ned, we write RR0 for the composition
of relations f(x; y) j 9z; x R z R0 yg, R�1 for the converse relation f(y; x) j x R yg,
Rn for the repeated relation inductively de�ned by R0 = Id and Rn+1 = RRn, R=

for the re�exive closure Id [R, R+ for the transitive closure
S
n�1 R

n, and R� for
the re�exive-transitive closure

S
n�0 R

n.
A preorder is a transitive re�exive relation; an equivalence is a symmetric transitive

re�exive relation. A relation re�nes another relation when it is included in it.
Every relation R de�nes a predicate, also written R, de�ned as x R i� 9y j x R y.

For every predicate T , the predicate 6 T is its negation.

Strings: A string is a �nite sequence of elements from a base set. We let the variables
'; � range over strings. '� is the concatenation of the strings ' and �, and � is the
empty string.

Variables and Substitutions: We use variables to denote names and provide scop-
ing rules that determine when a variable is bound. Bound variables can be substituted
for any variable that does not appear in its scope; we call such internal substitutions
�-conversion. A variable is fresh with regards to a collection of terms when it does
not appear in any of these terms.

37

38 Main Notations

We use a post�x notation for substitutions. We write fy1=x1 ; : : : ;
yn=xng or simply

fey=
exg for the substitution that simultaneously replaces every occurence of a variable

xi by the variable yi, and write � for an arbitrary substitution. We assume implicit
�-conversion on bound variables before substitution to avoid name clashes.

Chapter 1

Introduction

Network-based applications have become pervasive over the last few years, and var-
ious avant-garde languages have advocated the use of new constructs for expressing
distributed computation. However, little is known about the formal foundations of
such computations, at least from a programming language viewpoint. This is in sharp
contrast with the situation for sequential programming and concurrent programming,
where high-level programming languages can be given formal foundations using small
calculi such as the �-calculus or CCS and the �-calculus, and where these calculi can
be used in turn to state and prove correctness properties, both for the programs and
for the implementations of these languages.

More precisely, there is a gap between formal models of concurrency and languages
for programming distributed and mobile systems. In concurrency theory, process
calculi such as CCS or the �-calculus [97, 100] introduce a small number of constructs,
and have a thoroughly studied meta-theory. However, they are mostly based on atomic
non-local interaction�typically rendez-vous�which is di�cult to implement fully in
a distributed setting, and which makes formal results hard to interpret.

In contrast, programming languages such as Actors [12], Telescript [149], Obliq [44]
have separate primitives for transmission and synchronization that directly re�ect the
implementation mechanisms�such as remote procedure calls and semaphores. How-
ever, they also have a much larger set of constructs, usually including imperative
primitives, and this hinders their formal investigation. Overall, distributed program-
ming is still more an art than a science; it requires skills in system programming and
a working knowledge of the subtleties of each given distributed architecture.

We propose an elementary model of distributed programming. As an attempt to
bridge the gap between concurrency theory and distributed programming, we intro-
duce a model of concurrency named the join-calculus, use this model as the foundation
of a practical programming language, and study this model formally as a process cal-
culus.

The join-calculus is a small calculus in which every computation consists solely of
asynchronous message-passing communication. It retains the style of process calculi;
in particular, it relies on the elegant technique for managing the scopes of names
developed for the �-calculus, and it inherits numerous notions of equivalences for
relating the behavior of programs, along with e�cient proof techniques. The join-cal-
culus also has some useful properties for the programmer. By construction, the basic
communication steps of the calculus are restricted to those that are straightforward to

39

40 CHAPTER 1. INTRODUCTION

implement in a distributed setting, independently of the distribution of the computation
at run-time. Technically, this is re�ected as a �locality property� that rules out any
synchronization between components that may not be located at the same machine.

Independently of distributed implementation issues, locality also induces properties
that are appropriate for concurrent programming. It promotes a declarative program-
ming style for synchronization, and makes the static analyses of programs simpler. For
example, the join-calculus can be given an implicit type system that combines both
polymorphism and type inference. Also, it yields a direct relation with functional
programming. For instance, languages like core-ML can be naturally embedded in the
join-calculus�which suggests that many techniques and results developed for these
languages directly apply to the join-calculus.

In this dissertation we present the join-calculus, give a formal account of its model
of concurrency, and explore re�ned models of distributed programming based on the
join-calculus. We give the operational semantics of the join-calculus and of its re-
�nements in terms of chemical abstract machines, which yields an e�ective model of
our distributed implementation in a simple setting. We explain how the join-calculus
can be used as the basis of a high-level programming language with functional and
object-oriented features. The more practical aspects of the join-calculus, as the core
of a programming language for distributed systems, are explored in our prototype
implementation [59].

As regards semantics, we de�ne a notion of observation that naturally captures
the semantics of subcomponents in a distributed program, but also raises numerous
technical issues. We consider what should be the �right� notion of equivalence based
on these observations, and develop the corresponding proof techniques for the join-
calculus. Our notions of equivalence are hardly new; they have been proposed and
studied in other settings. However, some new results obtained for the join-calculus
carry over to more traditional calculi. In particular, some of the results in Chapters 4,
5, and 6 also hold in the �-calculus, where they answer some long-standing questions
about equivalence relations.

We complete our study by proposing extensions of the join-calculus that give a
more explicit account of distributed programming, with agent-based mobility and a
simple model of failure. We refer to the re�ned calculus as the distributed join-cal-
culus. At this point, we make further assumptions about distributed programming in
the resulting language.

The extended language provides network transparency. In the absence of failure, for
instance, the outcome of a program does not depend on the localization of resources.
Channel names in the language have a global lexical scope, meaning that a message
sent on a given name has the same meaning, independently of its emitter. In some
cases the message remains local to the machine of the emitter, in some other cases
it triggers some lower-level communication on the network, but anyway the message
eventually arrives at the same place. At the same time, the language provides network
awareness. The localization of any resource is entirely determined by the programmer,
who may dynamically move groups of resources from one machine to another. Hence, it
is possible when necessary to forecast the e�ective distribution of resources at runtime,
and to ensure that parts of the computation are located at the same machine, which
may be useful to achieve better performance, or to control the risks induced by the
failure of some machine that takes part to the computation.

1.1. STRUCTURE OF THE DISSERTATION 41

1.1 Structure of the dissertation

In Chapter 2 we begin our work by a review of two well-known models of concurrency,
namely name-passing process calculi such as the �-calculus of Milner, Parrow, and
Walker, and the Chemical Abstract Machine of Berry and Boudol. We recall how
concurrent computation can be simply re�ected as series of basic steps that represent
communication, and we show that this model is not adequate for distributed program-
ming: it turns out that some of these basic steps cannot be e�ectively implemented
on top of an asynchronous network. This makes unclear the connection between the
abstract model and its implementation as a programming language. We analyze this
mismatch, and introduce a few changes that lead to our solution.

Accordingly, we de�ne the join-calculus, a new process calculus that provides built-
in locality, in a setting that retains the style and the formal simplicity of process calculi,
but that can be fully implemented in a distributed manner. We give a number of small
examples that illustrate the expressiveness of the calculus. We discuss the behavior of
our example processes in an informal manner. Many ideas introduced in the examples
are developed more formally later in the dissertation.

In Chapter 3, we elaborate on the join-calculus, and show how this calculus can
be turned into a high-level programming language. We equip the join-calculus with a
practical type system�parametric polymorphism�and establish the standard prop-
erties of this type system. Also, we analyze the relation between functions and join-
calculus processes, and reinterpret the join-calculus as an extension of functional pro-
gramming with fork and join operators for concurrency and synchronization. In partic-
ular, the de�nition of functions can be translated into the de�nition of communication
channels in a type-preserving manner. We conclude the chapter by a discussion of
object-oriented features.

The next two chapters lay the technical foundations of the join-calculus by studying
a series of equivalences relations on processes, and by placing these relations in a
hierarchy of equivalences, according to their discriminative power and their ease of
proof. In Chapter 4, we mostly focus on reduction-based equivalences. We generate
a family of standard equivalences from a few natural properties (congruence, basic
observation of messages, abstraction over internal computations, simulation diagrams),
discuss their relative advantages, and establish that many of these de�nitions yield the
same equivalences. Some of these results are rather surprising, and also apply to the
�-calculus, where they close conjectures by Milner and Sangiorgi [101] and Honda
and Yoshida [73]. The main proof involves the construction of �universal contexts�.
Besides, we also develop convenient bisimulation proof techniques based on general
con�uence theorems.

In Chapter 5 we give a more extensional account of the join-calculus. We study
labeled-based, purely co-inductive proof techniques developed on top of an auxiliary
semantics for the join-calculus that makes interaction with the environment explicit,
instead of relying on potential reductions in a context. We place the resulting equiva-
lence relations at the top of our hierarchy, assess the formal impact of name-comparison
in the calculus, and begin a technical comparison with the �-calculus.

In Chapter 6, we apply the equivalences and the proof techniques developed so far
to conduct an analysis of several variants of the join-calculus. We provide a series of
fully abstract internal encodings. We also complete our comparison with the �-cal-

42 CHAPTER 1. INTRODUCTION

culus by exhibiting cross-encodings between the two formalisms and studying their
properties.

In Chapter 7 we use the join-calculus as a formal basis to explore several re�ned
models of distributed programming that provide explicit control over the localization of
processes and resources. We group these resources in named �locations� that constitute
the units of mobility and of failure, and we give their semantics in an extended chemical
abstract machine style. We also provide a number of examples of typical distributed
programs, and discuss the properties of the distributed join-calculus in the presence
of partial failures.

Dependencies The whole thesis uses the de�nition of the join-calculus given in
Chapter 2 (Sections 2.3, 2.4, and partly 2.5.5). Chapters 4 and 5 are initially inde-
pendent, but really present two sides of the same problem. Chapter 6 strongly relies
on these two chapters. Some lemmas rely on the type system developed in Chapter 3.
Conversely, most of Chapter 7 can be read independently of Chapters 4�6. The tech-
nical comparison with other process calculi assumes a working knowledge of CCS and
of the �-calculus.

1.2 Related work on the join-calculus

This dissertation contains revised material from works on the join-calculus in collab-
oration with other authors. Here is a list of this material in chronological order, with
references to the related chapters.

1. The re�exive chemical abstract machine and the join-calculus, by Cédric Four-
net and Georges Gonthier [55]. The paper contains the original de�nition of
the join-calculus (Chapter 2), a preliminary discussion of functions and objects
(Chapter 3), several results on internal encodings, and translations between the
join-calculus and the �-calculus (Chapter 6).

2. A Calculus of Mobile Agents, by Cédric Fournet, Georges Gonthier, Jean-Jacques
Lévy, Luc Maranget and Didier Rémy [57]. The paper introduces an extended
join-calculus with explicit localization of resources and agent-based mobility.
It contains numerous examples of mobile agents, and a technical discussion of
failure recovery (Chapter 7).

3. Implicit Typing à la ML for the join-calculus, by Cédric Fournet, Cosimo Lan-
eve, Luc Maranget, and Didier Rémy [58]. The paper carries over parametric
polymorphism to the join-calculus, and provides a translation of typed functions
into typed processes (Chapter 3).

4. Bisimulations in the Join-Calculus, by Michele Boreale, Cédric Fournet, and
Cosimo Laneve [35]. The paper proposes auxiliary, �open� chemical semantics
for the join-calculus, and uses these semantics to de�ne labeled bisimulation
equivalences (Chapter 5).

5. A Hierarchy of Equivalences for Asynchronous Calculi (extended abstract), by
Cédric Fournet and Georges Gonthier [56]. In a �-calculus setting, the paper

1.2. RELATED WORK ON THE JOIN-CALCULUS 43

organizes numerous equivalences in a hierarchy according to their discriminative
power, and establishes that some de�nitions yield the same equivalences; in �rst
approximation, the same hierarchy applies to the join-calculus, where it was
initially studied (Chapters 4�5).

In addition, two applications of the join-calculus are left outside this dissertation,
even as they represent a signi�cant part of the work devoted to the thesis:

Distributed implementations In collaboration with Luc Maranget, we have de-
veloped a prototype implementation of a distributed language based on the join-cal-
culus [59].

The system contains a compiler and an interpreter written in Objective-CAML.
The language is the distributed join-calculus, with parametric polymorphic types,
simple modules, the standard libraries of Objective-CAML, a few speci�c libraries
for distributed programming, and a generic interface to incorporate other Objective-
CAML modules. Le Fessant and Maranget give a detailed analysis of the compilation
strategies for join-patterns in [87].

The language fully supports our model of distributed and mobile computations.
Numerous machines connected through the Internet network may take part to the
computation and execute some of its code. The overall performance was not a primary
issue, and only partial support for failure-detection is available so far.

The distribution includes the source in Objective-CAML and in join language, a
reference manual, tutorials for both concurrent and distributed programming, and a
suite of examples.

There are several other implementations of the join-calculus:

� The �rst implementation of the join-calculus is due to Peter Selinger; the com-
piler supports the core calculus and generates C code [138].

� Luca Padovani developed a full-�edged implementation of the distributed join-
calculus in C; it relies on the PVM system for distributed execution [113].

� Last but not least, Fabrice Le Fessant is conducting a second implementation at
INRIA [86]. As opposed to our prototype implementation, the system is based on
the standard Objective-CAML distribution supplemented with runtime support
for distributed execution�especially a distributed garbage-collector [88]�and
all the concurrent and distributed features of the join-calculus. The language
is an extension of Objective-CAML with join-calculus constructs (join-patterns,
de�nitions, locations). Programs previously written in ML are supported after
recompilation.

Application to security The join-calculus is adequate for modeling some signi�-
cant security aspects of distributed computation. In particular, its model of commu-
nication can be implemented in a distributed manner with strong security guarantees,
even if the network is subject to deliberate attacks.

We have conducted a study of the secure implementation of the join-calculus by
formally translating any join-calculus program into a language that extends the join-
calculus with public-key cryptography, in the spirit of the spi-calculus of Abadi and

44 CHAPTER 1. INTRODUCTION

Gordon [3, 4, 5]. The image of the translation does not rely on abstract channels.
Instead, it involves communication only through a public network. Low-level contexts
can express many sophisticated attacks, but several full abstraction results relate such
attacks to simpler equivalence properties in the source join-calculus [2].

Chapter 2

The Join-Calculus

This chapter introduces our basic model of concurrency. The model consists of a name-
passing process calculus�the join calculus�equipped with an operational semantics�
the re�exive chemical abstract machine (rcham).

We �rst discuss the reasons that lead us to this new model, starting from existing
formalisms. There already exist numerous models of concurrency, and the join-calculus
draws upon some of these models. Nonetheless, these models su�er from serious �aws
when applied to distributed programming, which motivates our attempt to design a
more adequate formalism.

Process calculi were initially proposed to study the speci�cation of concurrent
systems; this underlying idea in�uenced the design of well-known calculi such as the
Calculus of Communicating Systems (CCS) of Milner. Most subsequent process calculi
have retained this bias toward speci�cation. In contrast, our goal in this dissertation is
to study concurrent distributed programming, which raises speci�c issues. Foremost,
we are concerned with the implementation of the model, as the core of a practical
programming language. Ideally, the model should be much simpler than the imple-
mentation, but should not hide the essential phenomena.

The join-calculus draws most heavily upon two well-known models of concurrency:
process calculi�exempli�ed by CCS and numerous variants of the �-calculus�and
chemical abstract machines. These two models are not entirely unrelated, since several
recent variants of the �-calculus are equipped with chemical semantics. Our work is
more directly related to the recent �asynchronous� trend of the �-calculus [71, 70, 37],
and its application to concurrent programming languages [121, 119].

We start our dissertation with a survey of these two models. We recall their main
features, then discuss their application to distributed programming. This leads us to
an alternate proposal, and to its discussion. Next, we de�ne the join-calculus and its
semantics. We give the grammar for processes and the scopes for their names, then
we present the basic mechanisms of the rcham. Later on, the rcham is re�ned in
Chapters 3, 5, and 7 according to our needs. We also illustrate our model by a series of
examples to get acquainted with the calculus, and mention a few technical properties of
the rcham. We �nally relate our presentation of the join-calculus to the traditional
process calculus framework, and discuss a few other models of concurrency. The
comparison with models speci�cally designed for distributed programming is deferred
until Chapter 7.

45

46 CHAPTER 2. THE JOIN-CALCULUS

2.1 The channel abstraction

In a concurrent setting, several entities (usually named agents, or processes) are placed
in parallel and can interact with one another. Conceptually, the global computation
consists entirely of these interactions between agents, and thus the de�nition of a
model essentially reduces to the de�nition of its basic communication mechanism.

The communication of information between agents is naturally modeled as the
transmission of messages from one agent�the emitter�to another�the receiver. In
practice, there is usually a third entity involved�the medium�where messages reside
while in transit. Besides, there are many di�erent ways to specify and to implement the
medium: as a shared memory, as bu�ers, as the interface to some low-level networking
library, : : : with speci�cities for each implementation.

In his Calculus of Communicating Systems (CCS), Milner proposes that every basic
communication occur in the ether, an idealized medium that hides the choices and the
limitations of the implementation: �an ether is just that which contains an unordered
set of messages and enables them to move from source to destination� [97]. As a result,
CCS describes communication in a simple, abstract, and uniform manner. Agents
are able to synchronize by handshake communication, or rendez-vous, that atomically
a�ect both the emitter and the receiver. Handshake communication intuitively occurs
between entities that are immediate neighbors, hence Milner also suggests that, in
the case more complex media are used, these media should be explicitly represented
as intermediate agents, and that complex communication should be split into several
simpler stages, for instance basic interaction between the emitter and the medium,
then between the medium and the receiver.

Starting from CCS and CSP [69], most process calculi also provide some structure
to communication by using names that represent communication capabilities. These
names are often called port names, or communication channels. In a sense, they are
abstractions of the communication media on which data is exchanged. In CCS, for
instance, every process can attempt a rendez-vous at a given channel, and commu-
nication may occur whenever two processes attempt to communicate over the same
channel. Send and receive operations on channels provide concise abstractions for the
transmission, routing, and synchronization that occur in a concurrent system.

In combination, communication channels in the ether yield a simple and expressive
model, which is adequate for speci�cation purposes. In practice CCS has been suc-
cessfully applied for modeling various existing protocols and for reasoning about their
formal properties. In such protocols, ethereal communication is still meant to occur
locally, which usually happens to be the case because these protocols have already
been implemented, or designed with an idea of their implementation. Hence, their
abstractions as processes typically make a sensible usage of communication channels.
Indeed, every channel might in theory be used by an arbitrary number of processes
attempting to communicate at the same time, but in almost all practical examples
found in CCS there are just two or three processes involved.

Elaborating on CCS, process calculi can model any kind of computation as basic
communications on channels. This is best achieved with two successive improvements:

� Some basic values may be transmitted as part of the communication mechanism.
This yields a variant of CCS closer to practice, which is called value-passing CCS.

2.1. THE CHANNEL ABSTRACTION 47

� The �-calculus [100, 98] further improves on CCS by providing an elegant scope
management technique for the channels, named scope extrusion. It can de-
scribe mobile systems, in which channels are values that can be exchanged on
channels, thus dynamically establishing new communication capabilities between
processes.

The additional expressive power of the �-calculus is useful to encode many other
paradigms such as functions and objects, which makes the �-calculus a reference cal-
culus for concurrency. Moreover, numerous variants of the �-calculus have been devel-
oped to address more speci�c issues in concurrency, and still retain the formal basis
of the �-calculus.

Following our special interest in distributed programming, we focus on the asyn-
chronous �-calculus, a variant introduced both in [37] and in [70] (where it is named
the �-calculus). Taking advantage of name mobility, the asynchronous �-calculus gets
rid of several complicated features of the full �-calculus, such as arbitrary summa-
tion and recursion. What is more, it simpli�es the communication mechanism so that
only the receiver notices that communication occurs. Message-passing becomes asyn-
chronous, in the sense that it does not require any form of handshake. The symmetry
between emitters and receivers, already altered by the communication of values, is
de�nitely broken.

As a �rst advantage, the resulting calculus is much easier to implement. Indeed,
the PICT experiment [119, 122, 121] shows that the asynchronous fragment of the
�-calculus can be used as the basis of a practical higher-order programming language,
at least in a non-distributed setting.

Further, the asynchronous �-calculus can be used to model asynchronous protocols
in a simpler setting. Protocols written in this calculus are closer to their actual
implementation because they cannot rely on primitive synchronous communication.

Ethereal communication on asynchronous channels may also seem easy to imple-
ment in a distributed asynchronous manner, but this is not the case. Quoting Gérard
Boudol in his presentation of the model [37],

In the asynchronous �-calculus we propose, the communication media are
just the (channel) names. However, we shall not give any particular status
to these communication media. Instead, we shall regard the messages
themselves as elementary agents, freely available for processes waiting for
them.

This approach aims at simplicity, but it hides too much in a distributed setting.
In a centralized implementation running on a single machine, pending messages may
simply be stored in global tables attached to every channel. In a distributed imple-
mentation, however, it is hard to make all messages available to all machines, as it
involves atomic operations on channels. In short, the asynchronous �-calculus removes
the possibility of using synchronous operations in the calculus, but the implementation
of an asynchronous channel still relies on synchronous operations.

In the case there are several distant receivers competing for a single message, for
instance, these receivers atomically interact as one of them receives the message, thus
preventing any other receiver getting this message. Since the successful receiver can
communicate its success to all other receivers on some other channel, the initial step of

48 CHAPTER 2. THE JOIN-CALCULUS

communication yields a direct solution to the well-known problem of reaching a global
consensus among several machines.

In a practical distributed system, however, the primitives found in system libraries
to communicate from one machine to another are much lower-level than ethereal chan-
nels or global atomic interactions. Typically, the libraries provide unreliable message-
passing from one machine to another. Message-passing is asynchronous, with explicit
addressing toward a single receiver. For instance, the model of IP datagrams provides
point-to-point communication on wide-area networks, together with some broadcast-
ing on local networks. It uses a machine number plus a port number as static routing
information to designate the receiving process.

While it may be tempting to forget about the implementation details of the net-
work, the discrepancy between the asynchronous �-calculus as a programming lan-
guage and its implementation induces serious problems, because in numerous situa-
tions these details must be revealed to the programmer. The distance between the
model and its would-be implementation hides important issues, such as the cost of
communication primitives, and the machines involved in a communication. Indeed,
the cost of sending a high-level message should be related to the cost of a low-level
message, rather than the cost of running a sophisticated distributed protocol as pow-
erful as a global consensus in the worst cases. Likewise, basic communication between
two machines should involve only the emitter and the receiver, and no other machine.

Unfortunately, the discrepancy becomes apparent in numerous practical situations.
Besides overall e�ciency, some machines or some parts or the network may be much
slower than others, or may even fail. Also, important properties such as security or
fault-tolerance crucially depend on the actual low-level messages exchanged by the
implementation.

Let us develop our point on an example in a value-passing asynchronous CCS, with
four machines labeled 1; 2; 3; 4 that send and receive on a single channel x. This is
modeled by the following processes:

xh1i j xh2i j x(u):P j x(v):Q
on machine 1 on machine 2 on machine 3 on machine 4

where the parallel composition operator j is meant to represent the frontiers between
di�erent machines connected through an asynchronous network, where the process xh1i
emits the message 1 on x, and where the process x(u):P receives a message on x then
binds u to the contents of the message before running the process P .

According to the semantics of CCS, the speci�cation of a channel guarantees that
every message that is emitted is received at most once. Besides, minimal assumptions
on fairness guarantee that communication on a channel eventually occur if there is at
least an emitter and a receiver on this channel. In our example�and if we further
assume that neither P or Q attempt to communicate on x�both machine 3 and
machine 4 should get one message. Informally, we would also assume that, in the case
a machine goes down, then its host process simply disappears. (Models of failures will
be discussed in Chapter 7.)

As we try to sketch an implementation of this system, several questions arise. From
the viewpoint of a local runtime in one of these machines, where shall we send messages
that are locally emitted on x ? What shall we do when a local process attempts to
receive a message on x ? Assuming machine 1 has no information about receivers

2.1. THE CHANNEL ABSTRACTION 49

on other machines, it may send its message to any machine across the network, for
instance machine 2, in the hope there might be a receiver there. At this stage, both
messages on x depend on machine 2, which may be very slow, or may fail, preventing
any message from reaching a receiver. Once machine 1 has sent its message�and even
if it detects that machine 2 has failed�it cannot deliver the message to any other
machine: there is no simple way to determine whether machine 2 handled the message
prior to its failure, hence if the message is re-sent by machine 1 the same message
might be received twice on another machine. All of this is hidden in CCS, where
either P or Q is triggered even if machine 2 is down�which is represented by deleting
its local message xh2i.

Ideally, each local runtime should forward messages on x only to the machines
that have a pending receiver on x. In our virtual implementation, however, the ap-
pearance and disappearance of receivers on remote machines may only be signaled
asynchronously to other machines. Hence, by the time the message arrives on the ma-
chine of its potential receiver, the communication o�er may have disappeared, while
another communication o�er may have popped out on its original machine. Actually,
we are still confronted with the issue of implementing synchronous communication
in an asynchronous setting, and it seems that any symmetric implementation would
introduce diverging computations, as some messages are endlessly forwarded from one
machine to another. Note that acknowledgment messages after reception or reception
requests from the receivers would not solve the problem, but only postpone it one step
further. Multicast or broadcast are not especially useful either, because in the model
one receiver can prevent a message being received anywhere else as it consumes the
message, thus ensuring mutual exclusion.

In the initial spirit of CCS, we would explicitly model this situation by providing
a local proxy channel on every machine, and by forwarding local messages from one
proxy to another. At least, this approach explains that a proxy on a distant machine
may interfere with any communication at a given channel; for instance, if machine 2
hosts a proxy on x, then it can receives the message from machine 1, then fail before
forwarding it to another proxy on machine 3 or 4. This solution is more transparent,
but still unsatisfactory; it is fairly complex to describe, and immediately introduces
divergences in the computation, as messages are communicated from proxy to proxy.

As a last resort, we can use a centralized implementation. Intuitively, for every
channel x there is somewhere an attached �channel manager� that maintains some state
of the computation�for instance pending messages. The practical solution would be
to implement every channel on a single machine. This would solve our problems of
symmetry, and in particular of diverging computations, but this is entirely centralized,
and still does not explain how messages are routed from one emitter to one receiver.
Also, communication on x now obviously depends on the machine that hosts the chan-
nel manager. This mechanism is hidden in the model, which tells nothing about the
creation, the interface, or even the machine where our hypothetical channel manager
is located.

In short, asynchronous channels still provide some form of atomic interaction be-
tween distant emitters and receivers, hence a faithful implementation in an asyn-
chronous setting becomes problematic. Although the asynchronous �-calculus can be
used to write and reason about abstractions of asynchronous protocols, asynchrony
à la �-calculus is still too complex for a distributed implementation. This is not the

50 CHAPTER 2. THE JOIN-CALCULUS

right notion of asynchrony for distributed programming.
In order to capture distributed programming in a simple process calculus, we need

a communication mechanism that can be trivially implemented using only a few low-
level asynchronous datagrams.

2.2 Chemical machines

Our second reference model is the chemical abstract machine (cham), which can be
regarded in particular as a computational model of the �-calculus.

Despite their names, abstract machines usually provide a rather detailed model
of computation. The machine is abstract because it does not refer to a particular
implementation, but its mechanisms and data structures are more explicit than in
most operational semantics. Classical examples of such machines are Turing machines
in complexity theory, or numerous machines for the �-calculus and its variants. As
regards concurrency, chemical machines have been recently used to model a large
variety of situations.

We �rst present the chemical approach in general, then its formulation as an ab-
stract machine for process calculi�the cham. Our new model�the re�exive cham�
follows the general approach, but signi�cantly departs from the cham.

2.2.1 The chemical metaphor

In [24, 25, 26], Banâtre et al. propose a new framework for concurrent distributed
programming. Named Gamma, this framework is entirely based on multiset transfor-
mation.

The underlying intuition is to hide the mapping from each individual resource that
participates to the computation to a particular machine. All resources are collected in a
multiset, then concurrent rewriting is speci�ed as local transformations on small parts
of this multiset. With respect to other approaches based on imperative programming
languages, the pervasive use of multisets removes arti�cial sequentiality, hides the
physical distribution of resources, and naturally re�ects the symmetries of the system,
which ultimately makes concurrent programming simpler.

The operational model of [25] is de�ned by a generic multiset transformer, named
the Gamma function, and parameterized by a few pairs of functions (R;A), where R is
a predicate on multisets�the reaction condition�and A is a function on multisets�
the action. The Gamma function is a partial function from states to sets of states; it
can be recursively de�ned as follows:

�(S) = if 9(R;A);M jM � S and R(M);
then

S
(R;A);M jM�S and R(M) �

�
(SnM) [A(M)

�
else fSg

That is, the state of the computation is represented as a multiset of resources S, which
is repeatedly mutated as long as some of its components match a reaction condition,
and �nally the resulting stable multisets are returned.

By analogy with elementary chemistry, we can interpret the model as a chemical
experiment; resources in multisets become molecules �oating in a chemical solution,
or chemical soup, while reaction-action pairs become chemical reactions that consume

2.2. CHEMICAL MACHINES 51

speci�c molecules and produce some other molecules. As in chemistry, we are not
directly interested in the individual Brownian motion of molecules in the solution;
rather, we describe local reactions that involve a few molecules, and we expect that
molecules in the solution will move around until they come into contact, match a
reaction rule, and interact.

In this chemical setting, the locality property states that every rewriting that oper-
ates on a given multiset also operates on any larger multiset. Hence, there is no need to
know about other molecules or other reactions when a reaction rule is triggered. Such
locality is guaranteed by construction in Gamma, and suggests implementations on
massively parallel architectures that can take advantage of this locality by performing
numerous rewritings at the same time.

In most examples of Gamma programs, the computation is meant to terminate
and to be con�uent, but this is not part of the model. Besides, only a few kinds of
chemical reactions are used in the programming practice; in [27], these basic patterns
of reaction rules are named �tropes�; they perform uniform operations (e.g., �ltering,
or combination) on singleton or pairs of molecules present in solution.

Restating the metaphor in a distributed setting, each machine in the implementa-
tion can be considered as a reaction site that handles some or all of the chemical rules,
and the implementation must organize the circulation of values from one reaction site
to another. Of course, the chemical metaphor does not magically solve the problem
of distributed implementation, but at least it clearly identi�es the issue. For each
reaction (R;A), the delicate part of the implementation searches for elements M in
the multiset that match the reaction condition R, and gathers them on a machine
that can performs the reaction; conversely, the subsequent computation of A(M) for
selected disjoint multisets M can easily be performed in parallel.

In general, the random motion hinted by the chemical metaphor is not very ef-
fective. According to Le Métayer, �because of the combinatorial explosion imposed
by its semantics, it is di�cult to reach a decent level of e�ciency in any general
implementation of the language.� [95]. Indeed, Banâtre and Le Métayer argue that
implementation concerns should be tackled only once the chemical speci�cation of the
program is written and veri�ed. They provide several examples, and they propose ef-
�cient implementations tuned to these particular examples, and also to the particular
topology of the interconnection network in their target distributed architecture. Such
implementations mostly consist of manually mapping reaction rules to machines, and
directing the �ow of molecules from one machine to another.

There is another, more e�ective interpretation of the chemical machine: if all the
chemical rules operate on disjoint kinds of molecules, then all molecules can travel to
a unique reaction site associated with their kind, where they can be locally sorted,
matched, and made to react. Figuratively, reactions are �catalyzed� at the reaction
sites.

We �nally remark that termination detection is not an essential feature of chemical
semantics, even if a signi�cant part of the implementation of Gamma actually deals
with the distributed termination of chemical rewriting. As we shall see, there are
alternative ways to observe the result of the computation, for instance by de�ning
observation itself as chemical interaction. This is one of the enhancements of the
chemical abstract machine which is described next.

52 CHAPTER 2. THE JOIN-CALCULUS

2.2.2 The chemical abstract machine

In [29, 38], Berry and Boudol revisit the chemical metaphor in a more theoretical
manner. They introduce the chemical abstract machine (cham) as a convenient device
to write the operational semantics of concurrent systems.

As opposed to classical rewriting systems, concurrent systems do not operate on
simple redexes; rather, they operate on several sub-terms that would constitute the
redex, but that may appear almost anywhere in the term. Hence, the de�nition of re-
duction becomes unduly complicated in process calculi. Again, the chemical metaphor
is adequate to get rid of the explicit bookkeeping of the associate-commutative struc-
tures induced by parallel composition. More generally, structural rules can be given
that explain how redexes can be assembled from the molecules. Figuratively, these
structural rules �overcome the rigidity of the syntax� [38]. As a result, the cham
provides a clear and concise way to de�ne reduction-based semantics as reductions
modulo structural equivalence.

In contrast with the initial, labeled transition semantics of CCS and of the �-
calculus, the cham focuses on the standard notion of reduction, that is, unlabeled
transition steps. The resulting operational semantics is closer to that of sequential
languages, and generally simpler. Thus, the cham is convenient for presenting and
studying variations of a calculus, since most of the chemical mechanisms are common to
most calculi. For instance, Milner adopts a minimal chemical semantics for comparing
the �-calculus to the �-calculus [98], and for introducing the polyadic �-calculus [99].
As an abstract machine, the cham is also useful to convey some of the implementation
issues in concurrent languages, as for instance in FACILE [90]. This is a signi�cant
advantage over traditional SOS-style semantics, which lack a direct computational
interpretation.

Since we adopt the chemical style of Berry and Boudol in this work, we recall
their terminology and set our chemical notations. Chemical semantics use families of
chemical rules that operate on multisets of molecules, also called chemical soups, or
chemical solutions. The notion of chemical reaction is re�ned as follows:

� Reaction rules are local rewriting rules that describe the particular model. These
rules are partitioned into structural rules and reduction rules.

structural rules
 are reversible (* is heating, + is cooling). They represent
the syntactical rearrangements of molecules in solution. Heating breaks
molecules into smaller ones, cooling builds larger molecules from their com-
ponents. Informally, structural rules do not correspond to an actual com-
putation, but rather to some structural rearrangement.

reduction rules �! consume some speci�c molecules in the soup, replacing them
by some other molecules; they correspond to the basic computation steps.

In the following, a generic reaction rule is denoted by the symbol *)�!.

� General laws explain how local reaction rules apply within larger chemical so-
lutions. They correspond to the context rules in SOS semantics. For instance,
the chemical law says that every reaction rule applies to any larger multiset
of molecules, extraneous molecules being left unchanged by the reaction. The
original cham also features two other chemical laws, which are discussed later.

2.2. CHEMICAL MACHINES 53

We illustrate the chemical approach on a tiny fragment of asynchronous value-
passing CCS. We only present two rules:

Str-join P jP 0
 P; P 0

Red xhevi j x(ey):P �! Pffv=yg
The structural rule Str-join accounts for parallel composition; it de�nes two opposite
relations * and +. Paraphrasing the rule, any molecule of the form P jP 0 can be
heated in two smaller molecules P and P 0, and conversely any pair of �oating molecules
P and P 0 can be cooled down into a single compound molecule P jP 0. The reaction
rule Red consumes a single molecule that contains two processes glued by parallel
composition that can interact at some channel x; the rule produces a single molecule
that contains the receiving process after communication. For instance, we have the
chemical steps �

xh1i jP jx(u):Q
	

**
�
xh1i; P; x(u):Q

	
+

�
P; xh1ijx(u):Q

	
�!

�
P; Qf1=ug

	
+

�
P jQf1=ug

	
where heating is used twice to dissolve the initial process into smaller components, cool-
ing is used to form the redex xh1ijx(u):Q, communication occurs within this molecule,
and eventually cooling yields back a single process.

The cham also emphasizes the management of scopes and scope-extrusion by using
additional chemical structure. A membrane is the frontier of an active sub-solution,
considered as a single molecule in the enclosing soup. Thus, a chemical solution be-
comes a hierarchy of nested solutions. The membranes materialize the scopes of vari-
ables; they are porous, in the sense that controlled interaction can occur through a
membrane. To retain locality in reduction rules, molecules exhibit an external commu-
nication capability by using an airlock mechanism that insulates some communication
capabilities and make them available through the membrane in a reversible manner,
as a prerequisite to communication in the enclosing solution. The management of
membranes and airlocks is a generic attribute of the cham, and is expressed by two
additional chemical laws.

While membranes and airlocks render molecules more complex, they o�er a tight
control on the scopes, and they are useful to de�ne behavioral equivalences on chemical
solutions. In this work, we prefer the ��at� structure of a single multiset found in
Gamma, hence we drop membranes and airlocks in our presentation of the rcham.
These extensions are not required in our setting, and they seem irrelevant from the
implementor's point of view. This choice is discussed further in Section 2.5.5.

As regards implementation in a distributed setting, the cham inherits the proper-
ties of Gamma. On one hand, the cham conveys some intuition about implementation
schemes and implementation costs, in particular for distinguishing between local and
global operations. For instance, we can require that every chemical reduction occur on
a single machine, and rely on structural rules to convey molecules from one machine
to another. Then, we can discuss implementation issues in terms of the shape of the
structural rules.

54 CHAPTER 2. THE JOIN-CALCULUS

On the other hand, structural rules can specify complex, global rearrangements
on the state of the computation, and too much �magical mixing� can make the cham
very hard to implement, unless we precisely know how to direct chemical rewritings.
More precisely, if we reinterpret our attempts to implement asynchronous CCS in
a distributed manner using the chemical metaphor, we rediscover the problems of
the last section as we try to implement the structural rules that operate on several
machines, e.g., that transport a molecule from one machine to another. Unless we
globally know the machines where redexes on a given channel can be assembled, we
must let molecules �oat in solution from one machine to another. In particular, if
a machine is very slow, or fails, some structural rearrangements become irreversible;
they can be observed in the implementation, while in the cham such rearrangements
should not have any computational content.

2.2.3 Ensuring locality, adding re�exion

Before actually presenting our model of distributed computation, we construct our
model by applying some changes on existing models of concurrency, as motivated by
our discussion of the implementation issue.

We try to retain the simplicity of name-passing process calculi and of the cham, but
at the same time we want to ensure built-in locality. Pragmatically, any program that
can be written in our model should be straightforward to implement in a distributed
setting, by using only asynchronous communication primitives.

We �rst remark that the full power of channel-based communication à la CCS is
fortunately not required in distributed programming. While channels provide a pow-
erful abstraction, simpler communication schemes usually su�ce in the programming
practice. In that respect, the PICT experiment is enlightening [122]. While this lan-
guage is purely founded on channel-based communication, typical channels only have a
small number of emitters and receivers, and moreover these agents are often statically
known. (For a given channel, agents that may communicate over that channel are
named �dynamic� when the channel has been received, and �static� otherwise.) We
classify the communication patterns that appear in PICT programs according to the
complexity of the receivers:

1. The most common communication pattern features a single static replicated
receiver, with a few static and dynamic emitters. This is su�cient to express
any higher-order functional computation.

2. Also, numerous channels are used only once, with either a static receiver or a
static emitter. This typically represents continuations (cf. [82]).

3. A few channels have at most one active static receiver at any time, and some
static and dynamic emitters. This is useful to represent mutual exclusion, refer-
ence cells, and other forms of imperative control.

4. Some channels invert the communication patterns above, with for instance a
single static emitter and numerous receivers. For example, this provides a natural
encoding of multicast communication.

5. Finally, there are a few fully-dynamic usages of names. For example, a channel
may directly implements unsorted bu�ers, or similar concurrent data structures.

2.2. CHEMICAL MACHINES 55

In the few cases where genuine �-calculus channels are necessary, there are natural
encodings that use simpler communication patterns with a few additional messages, so
it seems reasonable to make these messages explicit. In all other cases, it is preferable
to induce a style of programming that does not use general channels when simpler
channels would do as well. This is already the spirit of PICT, where for instance
the primitives for input-guarded sums are provided as a library, but not in the core
language as usual in the �theoretical� asynchronous �-calculus.

More generally, full-�edged channel-based communication is seldom a primitive in
practical programming languages. The trouble is that the underlying protocols are
costly, and not much more useful. Other communication patterns, such as some forms
of atomic broadcast, may be easier to implement and more useful for the programmer.
Anyway, the communication model required in functional languages and in object-
oriented programming languages [12, 44] should be much simpler, since remote call or
remote method invocation are addressed to a single de�nition or a single object.

We adopt this restriction in the de�nition of the join-calculus, and therefore require
that each name of the model be attached to a single receiving agent; moreover, we
require that this agent be statically de�ned, at the time the name is created. One
may wonder what is left of the expressive power of the asynchronous �-calculus. In
fact, we do not loose anything as regards concurrency, and thus the join-calculus can
be considered as a natural distributed implementation language for the asynchronous
�-calculus. This issue is formally studied in Chapter 6.

Our design choice can be given a chemical interpretation, which we use to explain
why the resulting model is easier to implement. If we apply the practical implementa-
tion strategy described above for a given Gamma program to the cham, each rule is
allocated on a few machines, and the �ow of molecules from one machine to another
is directed according to the rules that can a�ect these molecules. Inasmuch as each
rule is centralized on a single machine, and each molecule can be consumed by a single
rule, the distributed part of the implementation becomes straightforward: we only
have to route each molecule toward its dedicated machine. Under this interpretation,
however, the cham is not very concurrent: communication is centralized in a �xed
set of chemical sites. Besides, the management of each site is still arbitrarily complex
and centralized.

To recover �ne-grain parallelism, it would be much better to have a larger number
of simpler reaction rules. This is exactly what the modi�cations of the re�exive cham
bring in, by allowing the dynamic creation of reaction rules, and constraining each
rule to express a �xed synchronization pattern.

In summary, the re�exive cham model is obtained from the generic cham by
imposing locality and adding re�exion:

� locality means that every message can be consumed by at most one group of
statically-de�ned chemical rules, that supply only minimal synchronization ser-
vices between pending messages.

� re�exion is added by letting reactions extend a machine with new names along
with their exclusive reaction rules; this lets our model be computationally com-
plete.

For the time being, distribution and locality are kept mostly implicit, as we use
a simple, �at multiset structure to represent the state of the rcham. At any point

56 CHAPTER 2. THE JOIN-CALCULUS

of the computation, however, we can obtain an e�ective distributed implementation,
simply by partitioning processes and reaction rules between the available machines. In
Chapters 7 we re�ne the chemical structure to give a more explicit account of locality.

2.3 The re�exive chemical abstract machine

2.3.1 Overview

We now sketch the basic mechanisms of the re�exive cham; the formal de�nition
is exposed in the next section. Our model operates on higher-order solutions D ` P
comprising two multisets. The molecules P represent the processes running in parallel;
the reactions D de�ne the active reaction rules.

Channel names can be used both as addresses to send messages and as message
contents. In that sense, the join-calculus belongs to the family of process calculus
with name mobility. We write xhyi to express that the name y is sent on the name x.
Applying the chemical framework, an atom is a pending message xhyi, and a compound
molecule consists of several sub-molecules glued by the parallel operator � j�. Molecules
can be heated into smaller ones, in a reversible way.

As a �rst example, we consider an idealized print spooler. This spooler handles the
print requests issued by workstations and drives the printers on the local network. We
assume that the spooler interface consists of two ports ready and job: available printers
like laser send their name on the port named ready , while users send the �lenames 1 ,
2 to be printed on the port named job. There are three atoms in solution on the �rst
line below, versus one atom and one compound molecule on the second line, where the
molecule joins the laser-printer and the �le 1 . The structural equivalence
� relates
these two solutions, without reactions yet.

` readyhlaser i; jobh1 i; jobh2 i

 ` readyhlaser ijjobh1 i; jobh2 i

Written D or J . P , a reaction consumes compound molecules that match a speci�c
join pattern J , and produces new molecules in the solution that are copies of the
process P where the formal parameters of J have been instantiated to the transmitted
values. Continuing our example, we add a reaction that matches printers and jobs,
then sends the �lename to the printer.

D
def

= readyhprinter i j jobh�lei . printer h�lei

We now add this chemical reaction to the previous solution, so that it can be
used to consume the compound molecule and generate a new atom. Notice that non-
determinism is induced by
, which can select either jobh1i or jobh2i�but is actually
committed by the reduction.

D ` readyhlaser i j jobh1 i; jobh2 i
�! D ` laser h1 i; jobh2 i

Our model is re�exive, meaning that reactions can be dynamically created. This
is done by our last kind of molecule. The de�ning molecule def D in P can be heated
in two parts, a new reaction D and a molecule P . In this case, the newly de�ned

2.3. THE REFLEXIVE CHEMICAL ABSTRACT MACHINE 57

ports can be used in both D and P . The solution we just considered may come from
a single molecule, with the structural rules:

` def D in readyhlaser i j jobh1 i j jobh2 i
* D ` readyhlaser i j jobh1 i j jobh2 i
** D ` readyhlaser i; jobh1 i; jobh2 i

A more realistic spooler would send the name job to its users, and the name ready

to its printer drivers. This corresponds to the well-known scope-extrusion of the �-cal-
culus. However, our de�nitions have a strict lexical discipline: the behavior of ready
and job may not be deterministic, but it is statically de�ned. Other processes that
receive these names may send messages, but they cannot add new reactions for these
names. This restriction simpli�es the study of join-calculus processes independently
of their context, and will be most useful in technical developments.

2.3.2 Syntax and scopes

In this section, we de�ne the syntax for the join-calculus, and we set the scopes for
variables. Some of the choices are quite arbitrary; for instance we choose a calculus
with polyadic messages, and with rather rich de�nitions; later in the dissertation we
consider other variants and extensions; we discuss the importance of such choices in
Chapter 6.

Names Our calculus is a name-passing calculus. We assume given a countable set
of port names N . We write name variables in lowercase letters x, y, foo, bar , : : : to
denote the elements of N . We also write ex for the tuple of names x1; x2; : : : ; xn 2 N .

Names are the only values in the join-calculus; they obey lexical scoping and can
be sent in messages. Following the usage for process calculi, we use the words �name�,
�variable�, �port� and �channel� interchangeably. Later in the dissertation, we will
introduce other values (location names, integers, booleans) and letters u, v, w will
denote values in general.

Names can be used to form messages that carry some other names, such as for
instance xhu; vi. The arity of a message is the number of values being carried, here
two. While this is not needed in the join-calculus, we usually assume that for any given
name the number of arguments is the same in every message and in every join-pattern.
For instance, when we write xhi jP and let P ranges over �any process of the join-
calculus�, we implicitly require that all messages on x emitted in P be also xhi, and
exclude processes that may send messages xhui or xhu; vi. This amounts to attach an
arity to every name, and to consider only processes that have messages with consistent
arities. We assume that there is an in�nite number of names of each arity. We use
the notation N0 for the subset of nullary names, that is, names in N with null arity.

To ensure this property, we could rely on a recursive sort discipline and consider
only well-sorted processes, as for the �-calculus [99, 120]. Also, we can rely instead on
the type system described in Chapter 3.

Processes and de�nitions The grammar for the join-calculus is inductively de�ned
in Figure 2.1. It contains two categories of terms: processes and de�nitions.

58 CHAPTER 2. THE JOIN-CALCULUS

A process P is the asynchronous emission of a polyadic message xhevi, the local
de�nition of new names def D in P , the parallel composition of processes P jQ, or the
null process 0. A de�nition D is a local rule J . P that matches a given join-pattern J
and associates a guarded processes P to it, the composition of de�nitions connected by
the ^ operator, or the null de�nition T. A join-pattern J is a parallel composition of
formal messages xhy1; : : : ; yni. We say that J is a n-way join pattern when it joins n
messages.

We de�ne the precedence of our operators. Processes and de�nitions of our abstract
syntax are denoted as concrete terms, with parentheses when there is an ambiguity.
To simplify the notation, we assume that the binary constructors j and ^ are left-
associative�anyway they are intended to be associative in the operational semantics�
and that parallel composition binds tighter than local de�nition. For example,

def xhi . 0 in yhxi j zhi jdef zhi . 0 in xhi j zhi
def

= def xhi . 0 in
�
yhxi j zhi j

�
def zhi . 0 in (xhi j zhi)

��
We also make use of the following pre�x notations, where the index variables may

range over any �nite set instead of 1 : : : n.

nY
i=1

Pi
def

= P1 j � � � jPn

n̂

i=1

Ji .Pi
def

= J1 . P1 ^ � � � ^ Jn .Pn

Scopes and substitution Intuitively, local rules entirely de�ne how messages are
consumed by supplying join-patterns that trigger guarded processes. They can be
considered as an extension of named functions with synchronization. For example,
the name variables f and x in the process def fhxi .P1 in P2 obey similar lexical
scoping rules than the variables f and x in the recursive let-binding let fx = e1 in e2
found in most programming languages�here in a ML-like syntax. More generally,
names that appear in a process P may be captured by an enclosing de�nition. The
only binder is the join pattern J = xhv1; v2; : : : ; vni j : : : , but the scope of its names
depends on their position in messages:

� The formal parameters v1; v2; : : : ; vn that are received in J are bound in the
corresponding guarded process. They must be pairwise distinct.

� The names x that are partially de�ned in J are recursively bound in the whole
de�ning process def D in P , that is, in the main process P and recursively in
every guarded process inside the de�nition D. They may appear at most once
in every pattern.

Received variables rv[J], de�ned variables dv[J] and dv[D], and free variables fv[D]
and fv[P] are speci�ed by structural induction in Figure 2.2. The conditions on the
occurrences of names in join-patterns enforces two restrictions: no received variable
may appear twice in the same pattern J , which avoid the comparison on names and
guarantees that join patterns remain linear; moreover, no pattern may join several

2.3. THE REFLEXIVE CHEMICAL ABSTRACT MACHINE 59

P ::= processes
xhv1; : : : ; vni message

j def D in P local de�nition
j P jP 0 parallel composition
j 0 null process

D ::= de�nitions
J . P reaction rule

j D ^ D0 conjunction of de�nitions
j T null de�nition

J ::= join-patterns
xhy1; : : : ; yni message pattern

j J j J 0 join of patterns

Figure 2.1: Syntax for the join-calculus

fv[xhv1; : : : ; vni]
def

= fx; v1; : : : ; vng

fv[def D in P]
def

= (fv[P] [fv[D]) n dv[D]

fv[P jP 0]
def

= fv[P] [fv[P 0]

fv[0]
def

= ;

fv[J .P]
def

= dv[J] [(fv[P] n rv[J])

fv[D ^ D0]
def

= fv[D] [fv[D0]

fv[T]
def

= ;

dv[J .P]
def

= dv[J]

dv[D ^ D0]
def

= dv[D] [dv[D0]

dv[T]
def

= ;

dv[xhy1; : : : ; yni]
def

= fxg

rv[xhy1; : : : ; yni]
def

= fy1; : : : ; yng

dv[J j J 0]
def

= dv[J]] dv[J 0]

rv[J j J 0]
def

= rv[J]] rv[J 0]

Figure 2.2: Scopes for the join-calculus

60 CHAPTER 2. THE JOIN-CALCULUS

Str-join ` P1 jP2
 ` P1; P2
Str-null ` 0
 `
Str-and D1 ^ D2 `
 D1;D2 `
Str-nodef T `
 `

Str-def ` def D in P
 D�dv ` P�dv

Red J . P ` J�rv �! J . P ` P�rv

side conditions for the substitutions:

Str-def �dv instantiates the port variables dv[D] to distinct, fresh
names: Dom(�dv)\ fv[S] = ; where S is the initial solution;

Red �rv substitutes the transmitted names for the distinct re-
ceived variables rv[J].

Figure 2.3: The re�exive chemical machine (rcham)

messages on the same de�ned name, which is less important but simpli�es some dis-
cussions; in e�ect, we can use �-conversion to ensure that no name appear twice in
any join-pattern.

2.3.3 Operational semantics

Re�exive solutions The state of the computation is a chemical soup; it consists
of two separate multisets of molecules D and P, and is written D ` P. On the
right-hand-side, P is a multiset of running processes; on the left-hand-side, D is a
multiset of active rules. The active de�nitions in D are reaction rules that de�ne the
possible reductions of processes; the running processes in P represent the state of the
computation. These processes interact only according to the reactions rules, but they
can in turn introduce new names and reaction rules, which is emphasized by naming
our machine �re�exive�.

We use the letters S; T to denote chemical solutions. We also extend our de�nitions
of de�ned variables and free variables to solutions component-wise:

dv[D ` P]
def

=
[
D2D

fv[D]

fv[D ` P]
def

=
�S

D2D fv[D] [
S
P2P fv[P]

�
n dv[D ` P]

Chemical rules for the rcham The semantics is given in Figure 2.3 as a collection
of chemical rules that operate on fragments of re�exive solutions.

The �rst four structural rules state that j and ^ are associative and commutative,
with units 0 and T. They give processes and de�nitions their multiset structure. The
structural rule Str-def provides re�exion, with a static scoping discipline: in the
heating direction, a de�ning process can activate its local reaction rules, provided that
fresh names are substituted for its de�ned variables. In the cooling direction, reaction

2.4. EXAMPLES 61

rules can be folded on a process, as long as their de�ned names only appear in that
process and in these rules.

The single reduction rule Red describes the use of active reaction rules J .P that
appear on the left-hand-side of the chemical solution. For every such reaction rule,
the corresponding reduction step consumes a parallel composition of messages that
matches J , and releases in the solution a copy of the associated guarded process,
where the sent names are substituted for the received parameters. The reaction rule
J . P is left unchanged, and can be used later on to e�ect further reduction steps.

The context is implicit In our rules and in our examples, we mention only the
elements of both multisets that participate in the rule, separated by commas, and we
omit the parts of multisets in chemical solutions that are left unchanged by the e�ect
of the presented rule and that do not condition it. That is, the presentation of every
chemical rule assumes an implicit context, and every rule applies on any matching
subpart of the soup. More explicitly, we also have a context rule:

(Context)

D1 ` P1 *)�! D2 ` P2 (fv[D] [fv[P]) \ (dv[D1]ndv[D2] [dv[D2]ndv[D1]) = ;

D [D1 ` P1 [P *)�! D [D2 ` P2 [P

where *)�! ranges over all chemical rules. For instance, the verbose Str-def rule
would be

D ` P [fdef D in Pg
 D [fD�dvg ` P [fP�dvg

with the side condition �dv : dv[D] 7! (N n fv[P] n fv[D] n fv[def D in P]).

Terms versus chemical soups In the following, we use both process notations
and chemical notations interchangeably, according to our needs. As we do so, we rely
on the obvious correspondence between a process (P) and the chemical solution that
only contains this process (; ` fPg). Moreover, we de�ne a notion of reduction on
processes up to structural rearrangement as follows:

P ! Q
def

= ; ` fPg
��!
� ; ` fQg

2.4 Examples

In order to get acquainted with the join-calculus, we present a series of simple terms
with an intuitive description of their meaning. The formal treatment of observations is
deferred until Chapter 4. Along the way, we introduce some processes and de�nitions
and we de�ne some derived constructs used later in the dissertation.

2.4.1 Some wiring

Our �rst example of de�nition does not perform any real computation, but merely
relays messages from one name to another:

P = def xhui . yhui in Q

The name y is free in P , while the name x is bound. Operationally, the rule
xhui . yhui receives any message sent on x and sends a message with the same contents

62 CHAPTER 2. THE JOIN-CALCULUS

on y, and thus the name x behaves as a local relay for y; it can be used within Q instead
of y for sending messages or as a value in messages. Independently of the context,
the semantics of the join-calculus guarantees that every message emitted on x will be
forwarded on y, which makes the names x and y synonyms. Elaborating on our simple
relay, we can also multicast a message by forwarding it on several names:

def xhui . x1hui j x2hui j : : : j xnhui in Q

Every message xhvi emitted in Q yields nmessages, meant to be received by n di�erent
agents in the enclosing computation. Likewise, we can model the routing of messages
through series of relays and �lters.

We can also multiplex several messages sent on a few names into larger messages
sent on a single name, or split large messages into smaller components:

P1 = def x1hui j x2hvi . xhu; vi in Q1

P2 = def xhu; vi . x1hui j x2hvi in Q2

In P1, local messages on x1 and x2 are jointly received, then their contents u and v
are assembled into a single message xhu; vi; in the case Q1 emits on x1 but not on x2,
the message is stuck. Conversely, in P2 every message emitted on x yields two smaller
messages. Note, however, that the two �lters above are not exactly inverse. Especially,
if we let Q1 = P2, then the process P1 that successively applies both �lters does not
behave like Q2. For instance if Q2 emits two messages xh1; 1i and xh2; 2i, then P1
may either emit the same messages xh1; 1i and xh2; 2i, or the shu�ed messages xh2; 1i
and xh1; 2i.

2.4.2 Chemical inertness, units, and deadlocks

We now present some inert terms, that is, terms that have no visible e�ect on the
chemical solution they are plunged in. Formally, we can de�ne chemical inertness as
follows: a process P is inert in the chemical solution S = D ` P when, for every
series of chemical steps D ` P;P *)�!

� T , there is also a series of chemical steps
D ` P *)�!

� D0 ` P 0 such that T
� D0 ` P;P 0.
For instance, a process of the form P = def D in 0 is clearly inert for any choice of

de�nition D: in solution, the only chemical rule that applies to P is Str-def, but the
side condition on that rule ensures that all names de�ned in D are replaced by fresh
names. Hence, no message on these names may ever be emitted, and these active rules
remain entirely passive, except for reversible syntactic rearrangements using the rules
Str-and and Str-def. Informally, the process P represents a deadlock.

In fact, the units 0 and T are included in our grammar because they are convenient
to re�ect the multiset structure of de�nitions and processes. Nonetheless, they could
also be considered as constructs derived from simple deadlocked terms. A good candi-
date for the null process 0 would be the process def xhi j yhi . xhi in xhi, which is inert
in any chemical solution, for the same reasons as above. Likewise, a good candidate
for the null de�nition T would be xhi . xhi in a solution where the name x does not
occur elsewhere.

We present another kind of inert processes; these processes never interact with the
enclosing solution, but they can always perform internal reductions. Informally, these

2.4. EXAMPLES 63

processes correspond to livelocks. For instance, a simple livelock process is P def

= def

xhi . xhi in xhi, which reduces to itself (P ! P), or Q def

= def xhi . xhi j xhi in xhi,
which accumulates local messages on x.

2.4.3 Abstractions of processes

Messages in the join-calculus transmit only names, not processes; in that sense, the
join-calculus is a �rst-order calculus. Nonetheless, there is a simple encoding of pro-
cesses as names: instead of passing the process P , we pass a name � de�ned by the
simple reaction rule �hi . P . Later on, receivers may issue messages �hi, and each copy
of the message will trigger a copy of the process P .

For instance, we de�ne process replication as the derived construct:

repl Q
def

= def �hi .Q j�hi in �hi

where � is a fresh name (� 62 fv[Q]). Each time the message �hi is received, the rule
forks a new copy of the process Q and regenerates the message �hi. We thus have the
expected behavior:

repl Q ! Q jrepl Q ! Q jQ jrepl Q ! � � �

Here, the process abstraction plays the role of the process variable X in the process
�X:(Q jX) that we could use instead to de�ne repl Q if we had a �x-point operator � in
the syntax. In our setting, however, the reaction rules naturally account for replication
and recursion, since they can be used any number of times.

Similarly, we can de�ne process abstractions that take values as parameters, meant
to bind the free variables of P . We consider for example the process

Q = def plughxi . xh1; 2i j xh3; 4i in
�
def �hu; vi . P in plugh�i

�
with the simple behavior

Q !!! Pf1=u;2=vg j Pf3=u;4=vg
j
�
def plughxi . xh1; 2i j xh3; 4i in 0

�
j
�
def �hu; vi . P in 0

�
The inner process def �hu; vi . P in plugh�i �communicates� P parameterized on the
names u and v, while the enclosing de�nition receives this abstraction on plug . The
�rst reduction step consumes the message emitted on plug , which releases the two
messages �h1; 2i and �h3; 4i. The two steps that follow each consume one of these
messages to trigger a copy of P after substituting actual values for the formal param-
eters u and v. Afterward, we can use structural rearrangement to restrict the scope
of plug and � to nothing, which emphasizes that the two de�nitions are now inert.
Formally, these de�nitions can be discarded up to strong equivalence (cf. Chapters 4
and 5), while in practice they would be garbage-collected by our implementation.

The name � represents the process P , and is called a continuation by analogy with
functional programming [21]. In the examples above, the continuation could be applied
any number of times by the receiver, and thus several instances of the process could
be triggered. Every reduction that uses one of these rules is entirely deterministic:
since there is no other way to consume messages sent on these names, these messages

64 CHAPTER 2. THE JOIN-CALCULUS

remain available until they are consumed. In particular, the same name can be sent
in several messages to represent the same process, and there will be no interference
between invocations. In case we need to ensure that at most one instance of P is
triggered, as is usually the case with continuations, we can use the re�ned abstraction

def �hevi j oncehi . P in plugh�i j oncehi

where once is a fresh name. Here, the state of the continuation is represented by the
message oncehi, which indicates that the continuation has not been triggered yet. As
the continuation is used, this message is consumed, and, since there is no occurrence
of once in any other process, the de�nition and any further message sent on � become
inert.

We generalize the use of continuations to represent functions in Section 3.4. We
also refer to [130] for a more formal encoding of higher-order processes into �rst order
processes, in a �-calculus setting.

2.4.4 Channels of the �-calculus

Continuing our discussion on the need to represent centralized channel managers for
each channel of the asynchronous �-calculus, we sketch the encoding of a single �-cal-
culus channel z as a join-calculus de�nition. We use the rule

xhvi j yh�i . �hvi

which is much like our print spooler presented in the overview. Reinterpreting this
example, �-calculus emitters zh1i are rendered as messages xh1i, while �-calculus re-
ceivers z(v):P are rendered as reception requests yh�i carrying a continuation that
stands for the receiving process P . That is, the two communication capabilities at-
tached to the channel z are implemented as two distinct names x and y together with
a channel manager.

This rule is the basis of our encoding of the �-calculus in the join-calculus. Espe-
cially, we retain name-mobility, as the encoding of a �-calculus channel z as a value
can be transmitted as the pair of join-calculus names (x; y). We detail the encoding
and we study its formal properties in Section 6.6.

2.4.5 Representing choice

As illustrated in previous examples, the semantics of the join-calculus is not determin-
istic. Speci�cally, non-determinism may stem from the de�nition of names, whenever
this de�nition features several exclusive manners to consume the messages emitted on
its de�ned names. Then, each reduction step commits a particular synchronization
and exclude all synchronizations that were competing for the same messages. We show
several forms of non-deterministic choice.

Internal choice is an operator commonly found in process calculi. It expresses that
a process may choose between several alternatives independently of its context. It is
often written �. For instance, P �Q reduces to either P or Q. A simple encoding of
this choice is

def shi . P ^ shi .Q in shi

2.5. BASIC PROPERTIES OF THE REFLEXIVE CHAM 65

where s is a fresh name. The single message shi may be consumed by either rule of
the de�nition, which starts either P or Q. Later on, the de�nition of s is inert. Since
internal choice often appears in the sequel, we de�ne a derived operator for it. We letM

i2S

Pi
def

= def
^
i2S

oncehi . Pi in oncehi

where S is a �nite set and once is a fresh name, and we use the in�x notation P1 �
� � � � Pn instead of

L
i2[1::n] Pi. We also extend the precedence of operators: j binds

tighter than �, which binds tighter than de�nitions.
Non-determinism is not only due to de�nitions with several rules; it can appear

in any join-synchronization, because messages may be combined in di�erent manner
before being consumed. For instance, we can choose between di�erent values by joining
them with a single message in a two-way pattern: the following process behaves as
one of the processes Pf1=vg, Pf2=vg, or Pf3=vg.

def oncehi j yhvi . P in yh1i j yh2i j yh3i j oncehi

More sophisticated variants of choice are available; for instance, we can use con-
tinuations to encode external choice, where the context�modeled here by the receiver
of the message plugh�1; �2i�may choose one of the two branches.

def
�1hevi j oncehi . P

^ �2hevi j oncehi .Q in plugh�1; �2i j oncehi

2.4.6 The reference cell

We �nish our series of examples with a larger example that illustrates both higher-
order and the use of internal messages to store some local state. Our reference cell
abstraction is de�ned as

mkcellhv0; �0i .

�
def

geth�i j shvi . �hvi j shvi
^ sethu; �i j shvi . �hi j shui

in �0hget ; seti j shv0i

�

Each message on mkcell triggers the external de�nition, which allocates a new refer-
ence cell. Three fresh names get; set; s are de�ned, and two rules are activated, then
the �rst two names are passed to the continuation �0 for later access or update to
the new cell. Thanks to lexical scoping, the last name s remains local, and the initial
message shv0i together with the two internal rules guarantee the invariant of the cell:
there is exactly one message on s, which contains the current value.

Using the same style of de�nition, we can de�ne other abstractions of concurrent
objects, such as locks, monitors, counters, concurrent data structures. Further exam-
ples are given in Chapter 3, where we also provide a much simpler syntax that hides
the details of continuations.

2.5 Basic properties of the re�exive cham

In this section, we discuss some chemical properties and we relate our chemical se-
mantics to more traditional operational semantics.

66 CHAPTER 2. THE JOIN-CALCULUS

2.5.1 Normal forms

The next remark prepares the identi�cation of processes and single-molecule solutions.
From an arbitrary chemical solutions, we can repeatedly apply heating rules until we
obtain two �at multisets of single-clause de�nitions and single messages. Then, we
can cool down this solution using rules Str-join and Str-and, and �nally Str-def
once.

Remark 2.1 Every chemical solution is structurally equivalent

� to a fully-heated solution that contains only simple reaction rules and messages
(unique up-to alpha-conversion)

f� � � Jj . Pj ; � � � g ` f� � � xihfuiki; � � � g
� and to the corresponding solution that contains a single, cooled-down process

; `
n
def

^
Jj . Pj in

Y
xihfuikio

The analysis of chemical reductions is especially simple on fully-heated solutions,
as we only have to assemble a few messages by rule Str-join to match a join-pattern.
After the reduction step, we can heat the triggered process to recover a normal form.
Up to renaming, these manipulations are independent of other components in solution.

2.5.2 Built-in locality

As a way of bringing the rcham closer to its actual implementation, we informally
describe the distributed aspects of the computation as a re�nement of our normal
forms. In Chapter 7, we elaborate on this distributed implementation scheme by
making explicit the boundaries of reactions rules plus their pending messages, which
will be called �locations�.

We �rst partition reaction rules so that the sets of names de�ned in each class of
reaction rules are pairwise disjoint, then we attach every message in solution to the
unique class of rules that may receive the message.

For every such partition of the rules, two reduction steps that operate on di�erent
classes are independent, and thus there is no need for shared information across the
di�erent classes of the partition. Moreover, we can use structural rearrangement in a
directed manner to obtain a normal form again whenever a new process is �red. In
case the new process is a de�ning process, we can apply rule Str-def then rule Str-
and to create a new class of rules. In case the new process is a parallel composition,
we apply Str-join and attach every new message to its receiving class of rules.

To sketch an implementation, we still have to describe how �local messages� at-
tached to a class of rules are organized, and how newly-created messages are attached
to a class. The �rst operation is local synchronization, which can be e�ciently imple-
mented using automata that operate on queues of messages. The second operation is
routing.

2.5. BASIC PROPERTIES OF THE REFLEXIVE CHAM 67

2.5.3 Reductions on processes

A chemical semantics naturally induces a structural equivalence � on terms, de�ned
as the smallest structural congruence that contains
; this leads to a more classical
presentation of the semantics as term rewriting modulo equivalence. Using the normal
forms of Remark 2.1, structural congruence can be checked e�ciently in polynomial
time. (The relations
� and � do not entirely coincide because
� is only a congru-
ence for evaluation contexts, and does not allows the rearrangement of terms under
join-pattern guards J .[�].)

Since we identify processes P and single-molecules chemical solutions ; ` fPg, we
can recover notions of structural equivalence and reduction on processes only from
our chemical semantics as the traces of chemical relations on solutions of the special
form ; ` fPg. This yields the structural equivalence
� and the single-step reduction
relation
��!
� on processes. The resulting rewriting system is a more traditional
presentation of the join-calculus, which is useful to compare our model to other calculi,
and to write terms and reductions in a more compact way.

In the following, we usually consider processes modulo structural rearrangement

�, and we use the shorter notation ! instead of
��!
� to denote a reduction
step on processes modulo structural rearrangement. More generally, any relation that
is closed by
� can be seen either as a relation on chemical solutions or as a relation
on processes.

2.5.4 Case analyses on reduction steps

Whenever we perform a case analysis on reductions, we implicitly use a bijection be-
tween reaction rules in solutions and reaction rules in cooled-down processes. Formally,

1. we use Remark 2.1 and we keep track of the series of structural rearrangements
from the original process to the normal form;

2. we perform the reduction or the structural rearrangement in question;

3. we check, by induction on the length of the series of rearrangements, that the
converse steps can be performed in the other direction and lead back to a deriva-
tive that has the same shape as the original process.

All structural steps are left unchanged, except for �-conversion, for the use of rule
Str-join which are used to assemble a join-pattern, and for the rule Str-def
in the case scope-extrusion occurred.

We omit this common argument in the following, and directly partition reductions
according to their syntactic join-patterns.

2.5.5 SOS-style semantics

We now give a alternative, direct characterization of � and !, which we prove equiv-
alent to our chemical characterization.

The structural congruence relations on processes and de�nitions are syntactically
re-de�ned in a mutual recursive way, as the smallest equivalences that satisfy all the
rules listed in Figure 2.4; they are both denoted �. The axioms P1�P3 and R1�R3

68 CHAPTER 2. THE JOIN-CALCULUS

equip processes and de�nitions with a multiset structure. The axioms D1�D3 deal
with the scopes of de�nitions. The axioms A1�A2 describe �-conversion on received
names and de�ned names, respectively. The rules C1�C3 are context rules.

The syntactic transitions on processes �
�! is the smallest transition system that

satis�es all the rules listed in Figure 2.5, where the �wide labels� � range over reaction
rules plus � . The syntactic reduction step ! is the relation �

�!. The axiom Red
describes join-reduction, the rules E1�E4 are context rules.

As previously mentioned, structural rearrangements cannot occur under a join-
pattern guard, but if we remove the context rule for guards, we obtain the expected
coincidence of chemical and syntactic relations

Proposition 2.2 In the absence of rule C2, we have the correspondences

1. P � Q i� ; ` fPg
� ; ` fQg.

2. P ! Q i� ; ` fPg
�!
� ; ` fQg.

Proof: The proof is simple but tedious because the structures of the derivations are
not the same in both cases.

1. We check that
� satis�es all the axioms and rules of Figure 2.4, and thus
obtain that � �
�. Each of the syntactic rules P1�P3, R1�R3, D1�D3 can be
derived from the chemical rules Str-* by composing a few chemical heating and
cooling steps. For the context rules C1 and C3 we use the same series of heating
and cooling in-between an initial heating step and a �nal cooling one. This
series of heating and cooling is enabled in the presence of additional processes
and de�nitions inasmuch as we perform �-conversion to prevent clashes in the
application of Str-def in the heating direction.

Conversely, we use Remark 2.1 for some canonical ordering of all processes and
de�nitions to associate to every chemical solution its unique cooled-down single-
molecule solution. For every heating and cooling step, we check that we can
perform matching structural rearrangement on the cooled-down processes.

� Str-null and Str-join correspond to P1�P3

� Str-nodef and Str-and correspond to R1�R3

� Str-def corresponds to D1�D3

Finally, we check that every process is structurally equivalent to its unique �at
cooled-down process.

2. We �rst restrict the proof requirement to fully-diluted normal forms by using
the same argument, then we have a direct correspondence between chemical
reduction steps and syntactic reduction steps RED�E1�E2. �

The side conditions in the chemical rule Str-def may seem to compromise the
locality property by requiring that names be fresh in the entire chemical solution.
From the implementor's point of view, this is not a problem, as it is easy to generate
new identi�ers distinct from any others. More formally, the inductive de�nition of !

2.5. BASIC PROPERTIES OF THE REFLEXIVE CHAM 69

P1 P j 0 � P
P2 P jQ � Q jP
P3 (P jQ) jR � P j(Q jR)

R1 D ^ T � D
R2 D1 ^ D2 � D2 ^ D1

R3 (D1 ^ D2) ^ D3 � D1 ^ (D2 ^ D3)

D1 def T in P � P
D2 P jdef D in Q � def D in P jQ (fv[P] \ dv[D] = ;)
D3 def D1 in def D2 in P � def D1 ^ D2 in P (fv[D1] \ dv[D2] = ;)

A1 J .P � J�rv . P�rv (�rv injective, on rv[J])
A2 def D in P � def D�dv in P�dv (�dv injective, on dv[D])

C1 P � Q =) P jR � Q jR
C2 P � Q =) J . P � J .Q
C3 P � Q;D1 � D2 =) def D1 in P � def D2 in Q

Figure 2.4: Structural congruence on processes and de�nitions

Red x1hev1i j � � � j xnhevni x1hey1i j ��� jxnheyni .P
�������������! P

ngv1=y1 ; � � � ; gvn=yno
E1 P

d
�! P 0 =) def d ^ D in P

�
�! def d ^ D in P 0

E2 P
�
�!P 0 =) P jQ

�
�!P 0 jQ

E3 P
�
�!P 0 =) def D in P

�
�! def D in P 0 (fv[�] \ dv[D] = ;)

E4 Q � P
�
�!P 0 � Q0 =) Q

�
�!Q0

d ranges over de�nition clauses J . P ; � ranges over d and � .

Figure 2.5: Syntactic transitions with wide labels

70 CHAPTER 2. THE JOIN-CALCULUS

clari�es the issue by decomposing the global freshness requirements into several local
steps (�-conversion may be required to apply rule D3).

We can tighten the structure of processes during reduction, preventing de�nitions
being merged or exchanged. This is achieved by removing the rule D3 from the
de�nition of structural equivalence. Also, we can further limit the use of structural
congruence to those that contribute to a reduction step. More precisely, the reduction
step obtained by retaining from the two above tables only the rules

� P2, P3, Red, E2, E3

� a merge of A2 and P2 that moves a process within a de�ning process after
�-conversion, only when the �rst process contains a message consumed in the
reduction step.

� an extended E1 that embeds R2,R3 on d ^ D.

still expresses all derivations, up to structural rearrangement on the resulting process
only. This suggests another de�nition of normal forms, where the historical nesting of
all de�nitions is preserved through reductions.

2.5.6 Re�ned chemical machines

We close the technical discussion of chemical semantics versus structured operational
semantics by references to other parts of this work where chemical mechanisms are
re�ned.

� In Chapter 3, we slightly restrict the chemical machine to preserve the grouping
of reaction rules in de�nitions, in order to establish the subject-reduction prop-
erty for our typing system. The resulting machine corresponds to a weaker rule
D3 that allows de�nition to be swapped but not merged.

� In Chapter 5, we supplement the chemical machine with rules that directly model
interaction with the environment, and obtain a more intensional model.

� In Chapter 7, we use re�ned chemical machines that keep track of some explicit
locality information, and we model both process migration and failures in that
setting. The chemical notation is especially convenient there, since structural
rearrangements become rather complex.

2.6 Other models of concurrency

We sketch a comparison with similar models of concurrency; models that speci�cally
address distributed computation are discussed in Section 7.4.

Our calculus focuses on mobility in a minimal setting. This contrast with languages
for concurrent programming and distributed programming that extend a functional
kernel [60, 124, 81, 12] or an object-oriented kernel [44, 63].

Other choices of communication primitives are possible. Instead of directed com-
munication with a functional �avor, some calculi rely for instance on uni�cation and
broadcast. This is the case for Oz [143], and for linear objects [20, 18, 19].

2.6. OTHER MODELS OF CONCURRENCY 71

2.6.1 Higher-order Gamma

Gamma and the chemical metaphor have been used in numerous contexts. We refer
to [27] for a recent survey of its applications. More speci�cally, in [95] Le Métayer
extends the Gamma model to higher-order, which generalizes the cham of Berry and
Boudol, and actually also the rcham.

Higher-order Gamma is a very expressive calculus; its named multisets are roughly
equivalent to asynchronous channels, but they provide internal multiset rewritings
in conjunction with primitives (access, union, di�erence) that are triggered by the
termination of internal rewritings.

The additional structure suggests e�cient implementations in special cases, be-
cause nested solutions may provide a better locality in the computation. However, it
seems hard to give a general implementation of the model, even for a centralized sys-
tem. We believe that lexical scoping on names is formally much simpler, and su�ces
for general-purpose programming.

2.6.2 Data �ow languages

The data �ow programming model also provides a �ne-grained parallelism, in a more
implicit manner than in the join-calculus: each argument of a function call is received
in a low-level message, and each call to a strict n-ary primitive performs a n-way
synchronization on its arguments before evaluation. However, the argument messages
are not �rst-class values, hence it is not possible to manipulate synchronization in the
language. In data �ow languages such as Id [54], the basic semantics is the one of
a parallel but deterministic functional language. Additional synchronization mecha-
nisms are introduced through speci�c data structures, such as mutable data structures,
or synchronization barriers. These speci�c mechanisms are easily implemented in the
join-calculus.

Despite this di�erence of expressiveness, the implementation mechanisms for data
�ow languages are surprisingly similar to those for the join-calculus. For instance, the
techniques developed for controlling the number of threads running in parallel also
applies to our implementation.

2.6.3 Multi-functions

To our knowledge, Banâtre [23] was the �rst to suggest �multi-functions� as primitives
for synchronization. To bene�t from a multiprocessor architecture, execution blocks
may fork into a number of threads running in parallel, and symmetrically any thread
may attempt a synchronization with all its siblings. The threads are blocked until
all other threads join the synchronization, then a few values are exchanged and all
threads resume their independent executions. Overall, multi-functions extend the
standard procedural model, with more �exibility than in the data-parallel model.
These concepts have been integrated in the GOTHIC programming language.

The multi functions correspond to a �rst-order version of our join de�nitions (after
applying the call-by-value CPS of Section 3.4). As an interesting programming exer-
cise, it is possible to encode the block-building and the synchronization primitives of
GOTHIC into the join-calculus language developed in the next chapter.

72 CHAPTER 2. THE JOIN-CALCULUS

2.6.4 Petri nets

The connection between petri nets and chemical machines is already stressed by Berry
and Boudol in [29]. Informally, the rcham corresponds to a dynamic variant of colored
Petri nets. Places are given names; markings of di�erent colors are represented as
messages on those names; reaction rules consume and generate markings. Actually a
very small part of the chemical machine is needed, as it coincides with the rcham
without de�nition of local rules (that is, no de�ning processes under guards).

In addition, the re�exive aspect of the rcham can be represented by the unfold-
ing of a new subnet whenever a guarded process de�nes new names. The formal
connection between the join-calculus and higher-order Petri nets is studied in [22].
Interestingly, the locality property of the join-calculus is not enforced in higher-order
Petri nets, which gives the latter more expressiveness, but renders its implementation
problematic.

2.6.5 Other variants of the �-calculus

Despite their di�erent syntaxes, the join-calculus is essentially a variant of the asyn-
chronous �-calculus, with two main di�erences: (1) the locality property is built-in,
and (2) join-patterns can de�ne richer, n-way synchronization. (The technical com-
parison with the �-calculus is continued in Sections 5.6 and 6.6.)

The extended, n-way synchronization of the join-calculus seems more general than
the input-output synchronization of the �-calculus, and is reminiscent of the polyno-
mial �-calculus, a variant of the �-calculus introduced by Milner with more general
communication pre�xes that may involve several channels in one communication. In
fact, n-way joins are not more expressive than plain �-calculus communication, because
the locality property and the asynchronous semantics render this synchronization in-
visible (cf. Section 6.6). Nestmann gives a more detailed account on the expressiveness
of join inputs without locality in [108].

Since we proposed the join-calculus to address distributed programming, several
other variants of the �-calculus have been proposed to a similar e�ect, in a more
conservative syntax [135, 142, 94, 13, 14]. The join-calculus syntactically separates re-
ceiving de�nitions and processes, in (multi) functional programming style. Conversely,
these variants retain the input guards of the �-calculus, but they restrict their use.

In [33], a fragment of the �-calculus is considered where received names cannot
be used for input (i.e., cannot be rede�ned). Communication patterns are further
restricted in [135] by also demanding that names be available in input-replicated form
as soon as created. The resulting notion of uniform receptiveness for the �-calculus
almost coincides with our locality property, but it is enforced by means of a type
system, while locality is syntactic in the join-calculus.

In the A-�-calculus of Merro and Sangiorgi [94] only output capabilities can be
communicated, hence all receiving pre�xes are statically known. In the �1-calculus
of Amadio [13], there is a unique receiving agent for every channel. In both cases,
these properties are enforced by a re�ned type discipline. As observed in [94], such
restrictions make the resulting calculus very similar to the join-calculus. If we measure
the distance between two calculi in terms of the complexity of fully abstract encodings,
then the A-�-calculus is much closer to the join-calculus than it is to the asynchronous
�-calculus.

Chapter 3

Adding Types and Functions

As discussed in the previous chapter, our main motivation in the design of the join-
calculus is to guarantee a transparent distributed implementation of channel-based
communication. To this end, we introduced an asynchronous process calculus that
enforces a more static control over communication than traditional process calculi, as
a way of re�ecting the need for locality present in realistic distributed systems.

In this chapter, we show that locality is also a sound design choice toward a
practical programming language, not just a technical device to support the constraints
of distributed programming. We expand our model of concurrency into a simple
programming language and we illustrate some of its features. We propose a type
system for the join-calculus whose simplicity owes much to locality. We also relate
our language to typed functional programming, and to object-oriented programming.
From the programmer's point of view, the join-calculus becomes the core of a high-
level concurrent language with lexical scope and asynchronous messages. Most of these
ideas have been integrated to our prototype implementation of the join-calculus [59].
Our programming environment provides several useful static semantics that analyze
programs written in the join-calculus and determine their properties at compile-time
instead of checking them at run-time.

As can be expected, our static semantics relies on a type system. The types we
need should be expressive enough for most useful programs and easy to understand for
programmers. This goal is achieved by adapting the Damas-Milner typing discipline
developed for ML [50] to the join calculus. Also known as implicit parametric poly-
morphism, this type discipline is widely used in functional programming languages, as
it strikes a good balance between simplicity and expressivity.

From the typing point of view, ML and the join-calculus have a similar structure:
de�nitions in the join-calculus are a generalized form of let expressions in ML and poly-
morphism can be introduced right after type checking the clauses of a join-de�nition.
However, their semantics are di�erent: synchronization on channels is more demand-
ing than plain function calls, as it interacts with polymorphism. The main technical
contribution here is a generalization criterion for the join-calculus that addresses this
issue. We prove the correctness of the resulting typing rules with regard to our con-
current semantics by adapting standard techniques to the chemical framework.

While the join-calculus can express various synchronization schemes in a declara-
tive manner, it lacks some syntactic support to express simple sequential control. We
identify function calls as a special case of message passing in continuation-passing style

73

74 CHAPTER 3. ADDING TYPES AND FUNCTIONS

(CPS) and we analyze two reduction strategies for their evaluation. It turns out that
the sequential deterministic subset of the join-calculus is basically the continuation-
passing style �-calculus; hence we can embed the �-calculus using any CPS transform.

Next, we choose a call-by-value CPS and we de�ne a convenient syntactic sugar for
sequential control, then for arbitrary functional expressions. The syntactic extension
carries over typing, and allows a direct comparison between our type system and the
type systems of functional languages with imperative constructs. Overall, the resulting
join-calculus language extends a higher-order sequential language with parallelism
in expressions (with fork calls) and in function patterns (with join patterns). Join
patterns are consistent with lexical scope: they statically bind (joint) function calls to
a body of code, whereas the binding of messages to receptors is dynamic.

The language also has object-oriented features. Simple concurrent objects corre-
spond to the de�nition of names in the join-calculus that represent both the state of
the object and its methods. The behavior of the object is declared in the rules of
the de�nition; in particular, concurrent objects can express elaborate synchronization
schemes as join patterns on their methods. Our �rm commitment to lexical scoping
makes our objects very static, but hopefully more primitive object features can be
merged to the model with a richer type system.

Contents of the chapter

In section 3.1 we give an overview of our type system. In section 3.2, we de�ne
the typed join-calculus. The rcham that is presented in Figure 2.3 has a defect as
regards typing; we introduce a variant and we relate it to the original. We present the
typing rules, and brie�y discuss type inference and recursive types. In section 3.3, we
establish our main results on types: we prove subject reduction in a chemical setting
and we show that well-typed programs cannot go wrong at run-time. In section 3.4, we
extend the join-calculus with support for functions and expressions, and we generalize
the type system accordingly. In section 3.5 we discuss the representation of objects
in the join-calculus. In section 3.6, we compare our work to other type systems that
have been proposed for concurrent calculi.

3.1 Polymorphism in the join-calculus

The join-calculus is essentially a name-passing calculus: port names are de�ned, then
used as addresses in messages that convey other names. In that sense the join-calculus
is a higher-order calculus (in concurrency theory, however, it would be labeled �rst-
order because processes are not �rst-class values).

Our polyadic messages are of the form xhx1; : : : ; xni; the type of a name x carry-
ing n objects of types �1, : : : , �n is written h�1; : : : ; �ni. Traditional languages come
with system-supplied primitives, which can be used in the programming practice. Sim-
ilarly, we could assume system-supplied primitive names for a language based on the
join-calculus, such as print_int that outputs its integer argument on the console. The
following rule de�nes a new name print_two_ints that prints two integers:

print_two_intshx; yi . print_inthxi j print_inthyi

3.2. THE TYPED JOIN-CALCULUS 75

When the name print_two_ints receives a couple of arguments x and y, it activates
two processes print_inthxi and print_inthyi running concurrently. The type of the
primitive print_int is hInti (i.e. a name that carries one integer) hence the type of
the new name print_two_ints is hInt; Inti (i.e. a name that carries two integers).

In this context, a name with a polymorphic type in the join-calculus is reminiscent
of a polymorphic function in ML: both do not necessarily perform fully type-speci�c
operations on their arguments. Thus, the types of the arguments are not completely
speci�ed and unspeci�ed parts are represented by type variables that stand for just
any type. This framework is known as parametric polymorphism. Let us consider the
following rule:

applyh�; xi . �hxi

The name apply takes two arguments � and x and activates the process �hxi. Thus,
if x is of type � , then � must carry names of type � , i.e., be of type h�i. The name
apply can be given the type hh�i; �i for any type � . As in ML, this is emphasized
by giving apply the type scheme 8�: hh�i; �i. Quanti�cation of the type variable �
is called generalization. Therefore apply can take print_int and 4 as arguments by
the call applyhprint_int ; 4i, thereby instantiating � with the type Int. Given an-
other primitive print_string , another legitimate invocation applyhprint_string ; �foo�i
would instantiate � with the type String.

While ML is a purely sequential language, the join-calculus describes parallel com-
putations, and features synchronization between messages in parallel through join-
patterns. Consider for instance a variant of apply that receives � and x from di�erent
sources.

porth�i j arghxi . �hxi

The concurrent activation of the co-de�ned names port and arg �res �hxi. The names
port and arg can be given the types hh�ii and h�i, respectively. Still, the names port
and arg are correlated by the use of the same type variable � in their types. This
forbids to give port and arg the type schemes 8�: h�i and 8�: hh�ii. Otherwise, their
types schemes could be instantiated independently, loosing their correlation. Clearly,
sending the primitive print_string on port and an integer on arg may cause a run-time
type error: attempting to print an integer as a string.

As a consequence, our generalization rule copes with synchronization in an abstract
way: a type variable is generalized as long as it does not occur free in the type of several
co-de�ned names.

3.2 The typed join-calculus

3.2.1 Syntax

We supplement our grammar for the untyped join-calculus with a de�nition of types,
typing environment, and typing judgments.

The grammar for types and typing environments is de�ned in Figure 3.1. We
assume given a �nite set of primitive types b 2 T such as Int or String and a
countable set of type variables �. A type � is either a primitive type, a type variable,

76 CHAPTER 3. ADDING TYPES AND FUNCTIONS

or a message type conveying a �xed number of types; a type scheme � may quantify
over type variables. We use the notations fv[�] and fv[�] for the free type variables
that occur in � and �.

We collect bindings between names and types into typing environments. A typing
environment A associates type schemes to names, while a simple environment B as-
sociates types to names. Given an environment A that already associates some type
scheme to a name u, the new environment A+ (u : �) is well formed and associates �
to u. More generally, we use the notation A + A0 for the new environment obtained
by extending A with every binding in A0 in turn. We also write fv[A] for the union of
the free variables in any binding of A.

We use three kinds of typing judgments for the terms of the join-calculus: names,
processes, and de�nitions:

� A ` u : � states that the name u has type � in A;

� A ` P states that the process P is well-typed in A;

� A ` D :: B states that the de�nition D is well-typed in A + B, where B is a
simple typing environment for the names de�ned in D (dv[D] � dom (B)).

3.2.2 Typing rules

The rules of Figure 3.2 describe valid proofs for our judgments. They are much inspired
by the typing rules for the (polyadic) �-calculus plus let rec, the real innovation being
the generalization in rule (Def). Our rules use the following de�nitions:

� in rule (And), B1 � B2 is B1 + B2, and requires that the restrictions of the
environments B1 and B2 on the names dom (B1) \ dom (B2) be identical.

� in rule (Def), Gen(B;A) is the generalization of the simple environment B
with respect to A: let (xi : �i) i21::n enumerate the bindings in B, and let B� x
denote the environment B after removing the binding for x. Then Gen(B;A) is
(xi : 8 (fv[�i] n fv[A+B � xi]) :�i) i21::n.

Intuitively, Gen(B;A) binds every name in dv[D] to the simple type collected in B
generalized on every type variable that occurs only in this simple type.

3.2.3 External primitives

While names already provide enough expressiveness to encode basic values such as
integers or strings, it is far more convenient to supplement names with constants that
represent basic values 1, 2, : : : ,�foo�, : : : along with their basic types such as Int,
String and their primitive operations add , string_of_int , print . In our implemen-
tation, these primitive are mapped to the programming environment and its libraries.

In the whole chapter, values are either port names x 2 N or constants k 2 K. We
use u; v 2 N [K to denote a value in general.

Constants in K are parameterized by a family of relations (�k)k2K that map values
ui

i21::p to processes P . We add a reduction rule that speci�es the behavior of constants
to the rcham de�ned in Figure 2.3:

Red-� ` kheui �! ` P when (ui
i21::p; P) 2 �k

3.2. THE TYPED JOIN-CALCULUS 77

� ::= type
b primitive type

j � type variable
j h�1; : : : ; �pi channel type

� ::= type scheme
� basic type

j 8�: � generalized type

A ::= typing environment
; empty environment

j A+ (u : �) overwrite/extension

B ::= simple typing environment
; empty environment

j B + (u : �) overwrite/extension

Figure 3.1: Syntax for the types

(Inst)

(u : 8�i i21::n: �) 2 A

A ` u : �f�i=�i
i21::ng

(Message)

A ` u : h�i i21::ni (A ` ui : �i) i21::n

A ` uhui i21::ni

(Par)

A ` P A ` Q

A ` P jQ

(Def)

A+B ` D :: B A+Gen(B;A) ` P

A ` def D in P

(Null)

A ` 0

(Rule)

A+ uij : �ij
i21::n;j21::mi ` P

A ` x1hu1j j21::m1i j : : : j xnhunj j21::mni . P :: (xi : h�ij j21::mii) i21::n

(And)

A ` D1 :: B1 A ` D2 :: B2

A ` D1 ^ D2 :: B1 �B2

(Nodef)

A ` T :: B

Figure 3.2: Typing rules for the join-calculus

78 CHAPTER 3. ADDING TYPES AND FUNCTIONS

In the functional tradition, we interpret the presence of a message kheui when no �-
rule applies as a run-time error. We can still maintain an arti�cial distinction between
erroneous �stuck� messages such as 3hprint_inti and correct idle messages by providing
a �-rule that leaves idle messages unchanged. Another, more explicit approach would
be to parameterize constants in K by a family of valid arguments (�k)k2K for each
primitive name, independently of primitive reductions.

It is useful to account for the constants in a type-preserving manner. To this end,
constants in K are given with a primitive typing environment AK of domain K. The
next de�nition gathers our requirement on the typed primitive environment; it requires
that every typable primitive message be reducible�which rules out immediate errors
on primitives�and that every primitive reduction be sound.

De�nition 3.1 The typed primitive environment (K; (�k)k2K; AK) is correct when, for
every typing environment A, if we can derive A+AK ` khui i21::pi, then

1. for some process P , we have (ui
i21::p; P) 2 �k

2. for all processes P with (ui
i21::p; P) 2 �k, we have A+AK ` P .

In particular, the second requirement ensures that the free names of P are either
constants or among the ui.

3.2.4 Types and chemistry

For our type system to be of some use, we must show its consistency with respect
to the semantics of the join-calculus. Before that, we modify our chemical semantics
by slightly restraining structural rearrangements, and we extend typing judgments to
chemical solutions.

Typing mutually-recursive de�nitions We would expect every typing judgment
to be preserved by structural equivalence, but this is not the case with the structural
rules of the rcham. The trouble lies in the grouping of de�nitions that changes outer
bound occurrences into recursive ones. Given two de�nitions D1 and D2 de�ning
disjoint sets of names and such that some names de�ned by D1 occur free in D2, but
not the converse, we have the structural equivalence

def D1 in def D2 in P � def D1 ^ D2 in P

Unfortunately, the valid typing judgments for the names de�ned in D1 and used
in D2 are not the same on each side of the equivalence. In the process def D1 in

def D2 in P , names that are de�ned in D1 can be generalized by rule Def, then
several instantiations may be used for typing the guarded sub-processes in D2. On the
contrary, in the process def D1 ^ D2 in P only simple types for names de�ned in D1

can be used in D2 because generalization is disabled in rule And. For instance, the
problem arises for the rather useless process def xhui . 0 in def yhi . xh3i j xh�foo�i in 0.
In fact, we run across the classical limitation of typing for mutually-recursive functions.

3.2. THE TYPED JOIN-CALCULUS 79

A restricted chemical machine To solve this problem, we introduce a variant
of the rcham that is better suited to our typing purposes. In the new machine,
de�nitions with several clauses are not heated; more speci�cally, the structural rule
Str-and disappears and the reduction rule Red is generalized to access clauses within
non-diluted de�nitions. We replace the two chemical rules

Str-and D1 ^ D2 `
 D1;D2 `
Red J . P ` J�rv �! J . P ` P�rv

by the single, generalized reduction rule

Red-And : : : ^ J . P ^ : : : ` J�rv �! : : : ^ J .P ^ : : : ` P�rv

(with the same side conditions as in rule Red) where the notation : : : ^ J . P ^ : : :
stands for a de�nition D that contains the clause J . P . This notation now expresses
the commutativity and the associativity of ^ , which were previously conveyed sepa-
rately by the structural rule Str-and.

In addition, and for every chemical soup D ` P, we require that every name be
de�ned in at most one de�nition (8D;D0 2 D; dv[D] \ dv[D0] = ;). This requirement
holds for any process before dilution, and is preserved by all chemical reactions in the
new machine.

We now relate this restricted machine to the original one. Let us �rst consider
machines that operate on completely diluted solutions (i.e., heating rules cannot apply
anymore). There is a straightforward correspondence between chemical solutions of
the two formalisms: the processes are the same messages; the non-diluted de�nitions
in the new machine are a partition of the diluted clauses in the original machine.
Given this correspondence between solutions in the two chemical frameworks, both
reduction rules Red and Red-and followed by heating yield equivalent fully-diluted
solutions. In the general case, cooling in the original machine may lead to more
processes. However, we still have:

Red
! �

Red-and
! �

�
Str-and
*

��
Red
!
�
Str-and
+

��
In the remaining parts of this chapter, we use the restricted chemical machine without
further discussion. We omit the explicit labels on top of the chemical relations. For
instance,
� stands for the transitive-re�exive closure of all the structural rules except
rule Str-and.

As an alternate approach, we could rearrange compound de�nitions using Str-and
to see a program as globally mutually recursive rules plus messages (cf. remark 2.1),
and independently type them in the �best� structured way after rearranging the rules
into several nested de�nitions. Pragmatically, this would correspond to a dependency
analysis before typing, as for instance in the language Miranda. We reject this ap-
proach because we believe globally recursive de�nitions are a source of errors and
we do not want to encourage them, as would be the case if de�nitions were silently
�attened by our compiler.

Type-checking solutions The typing of programs easily extends to chemical solu-
tions. Typing chemical solutions simpli�es our proofs by avoiding some of the techni-
calities induced by the more common formalism of term-rewriting modulo structural

80 CHAPTER 3. ADDING TYPES AND FUNCTIONS

equivalence. In particular, the chemistry allows us to treat structural rearrangements
and proper reductions in the same manner.

First, we introduce a judgment A ` D to state that the assumptions made in A
on the names de�ned in D are the same as if those names had been added to A after
typing the de�nition D. We add the typing rule

(Multi)

A+B ` D :: B Gen(B;A) � A

A ` D

That is, we type D in the environment A extended with new assumptions B that must
be exactly the typing environment produced by D as in rule Def; then, we check that
the generalization of B in A is equal to A restricted to dom (B), i.e., Gen(B;A) is a
subset of A. Observe that the �extended� environment A+B is also (A�dom (B))+B,
and overrides generalized types with simple ones.

We also introduce a typing judgment A ` D ` P to state that the chemical
solution D ` P is well-typed in environment A. This happens when all the terms in
the multisets D and P are independently well-typed in the environment A:

(Soup)

8P 2 P; A ` P 8D 2 D; A ` D

A ` D ` P

3.2.5 Types at work

We brie�y discuss typed extensions toward a more practical programming language.
Most of these features can be trivially transposed from ML to the join-calculus and do
not present much theoretical interest (although they are very useful, if not essential,
in practice). Speci�cally, recursive types and data-types are part of our prototype
implementation.

Others features of ML, such as region and e�ect type inference, might be more
interesting, since their adaptation to the join-calculus could yield useful techniques for
static analysis of concurrent programs.

Recursive types Recursive types naturally arise in many programs written in pure
message-passing process calculi. In particular, they are needed in most encodings of
this dissertation. Besides, the subset of processes that can be given monomorphic
recursive types appears in the statement of several full abstraction results (cf. [2], and
also Chapter 6).

In core ML, cyclic structures are allowed only in data-type de�nitions such as lists
or trees. This approach carries over the join-calculus extended with data-types, and
would su�ce to our needs. In this work, however, we choose a more liberal approach
that do not rely on extensions of the untyped calculus. We add implicit recursive types
to our type system.

Informally, recursive types can be thought of as in�nite regular trees. Technically,
recursive types are represented �nitely with a � binder; they are equivalence classes

3.2. THE TYPED JOIN-CALCULUS 81

of terms generated by the extended grammar

� ::= recursive type
b primitive type

j � type variable
j h�1; : : : ; �pi channel type
j ��:h�1; : : : ; �pi recursive channel type

and quotiented by the equivalence on terms de�ned as follows

1. the unfolding relation is the congruence for all channel constructors generated
by the axiom

��:h�1; : : : ; �pi = h�1; : : : ; �pi
n
��:h�1;::: ;�pi=�

o

2. two types are equivalent when for an arbitrary depth n they have unfoldings
that coincide on the �rst n levels of channel constructors.

(This notion of equivalence identi�es the two recursive types ��:hInt; hInt; �ii and
hInt; ��:hInt; hInt; �iii while these types are not related by folding or unfolding re-
lations.) For example, the message xhxi cannot be typed without recursive types, but
becomes typable in the environment A = (x : ��:h�i) by using the derivation:

A ` x : ��:h�i A ` x : h��:h�ii
(Message)

A ` xhxi

As an advantage, implicit recursive types induce minimal changes in our setting.
Except for the underlying notion of equality among types, the typing rules are un-
changed, the typing derivations only deal with su�ciently unfolded types, and most
properties of the type system extend smoothly. For instance, the proof of subject-
reduction in the next section carries over recursive types without any change, because
it relies only on syntactic matching on terms appearing in typing derivations.

Several more general techniques have been proposed to deal with recursive types,
usually in a more explicit manner. In [15] for instance, recursive types interfere with
subtyping properties. In a polyadic �-calculus setting, Turner gives in his dissertation a
detailed bisimulation-based account of implicit recursive types [145]. Also, it is possible
to enrich the syntax with explicit constructs to fold and unfold the recursive types,
which makes type inference much easier, in particular in the presence of subtyping.
This is the case in the PICT language [122].

Type inference Since our types and typing rules have the same structure as those
of ML, our type system also allows for type inference.

Precisely, there exists an algorithm that, given a soup D ` P and a typing en-
vironment A0 that binds the free names of D and P with the exception of the de-
�ned names dv[D], either returns a typing environment A of domain dv[D] such that
A0 � A ` D ` P, or fails if no such typing environment exists. Moreover, if the
algorithm succeeds, then A is principal, that is, for any other typing environment A0

of domain dv[D] such that A0 �A0 ` D ` P, then A is more general than A0.

82 CHAPTER 3. ADDING TYPES AND FUNCTIONS

Our implementation proceeds by �rst order-uni�cation plus generalization on se-
lected free variables. The type inference algorithm is part of our compiler; it supports
recursive types by using circular uni�cation. The complete formalization is a straight-
forward adaptation of the one for ML [50].

3.3 Correctness of the evaluation

From a quite abstract point of view, let us assume that some evaluation steps of a
program P yield a new program P 0. Typing and evaluation agree when two facts
hold: �rst, a typing derivation of P 0 can be constructed from a typing derivation of P .
Second, messages present in P 0 cannot cause �run-time type errors� such as adding a
string to an integer�no type mismatch for primitives�or sending one argument only
on a binary name�no arity mismatch on de�ned names.

3.3.1 Basic properties for the typing

We will need the following standard lemmas.

Lemma 3.2 (Useless variable) Let u be a name that is fresh in D and P (u 62
fv[D] [fv[P]). We have:

A ` P i� A+ (u : �) ` P
A ` D :: B i� A+ (u : �) ` D :: B

Lemma 3.3 (Substitution) Let ' be a substitution on free type variables. We have:

A ` P implies '(A) ` P
A ` D :: B implies '(A) ` D :: '(B)

We say that a type 8 e�: � is more general than 8 e�0: � 0 when � 0 is of the form
�f
f� 00=
e�g. We lift this notion to typing environments as follows: A0 is more general

than A when A and A0 have the same domain and for each u in their domain, A0(u)
is more general than A(u).

Lemma 3.4 (Generalization) If A ` P and A0 is more general than A, then we
have A0 ` P .

Lemma 3.5 (Substitution of a name in a process) If A+ (u : �) ` P and A `
v : � , then we have A ` Pfv=ug.

These lemmas are easily established by examining the use of each typing rule in
type derivations on both sides of the statements that appear in the lemmas.

3.3.2 Subject reduction

We say that two typing environments A and A0 agree when their restrictions on prim-
itive names are equal. We de�ne the relation v between rchams as the preservation
of typing, that is, S v S 0 if for any typing environment A such that A ` S, there
exists a typing environment A0 such that A0 ` S 0 and A and A0 agree.

3.3. CORRECTNESS OF THE EVALUATION 83

Theorem 1 (Subject reduction) Chemical reductions preserve typing for any cor-
rect primitive environment.

Proof: We must prove that *)�! is a sub-relation of v. In fact, we prove the stronger
property that typing environments also agree on variable names that appear in both
solutions. That is, for every chemical rule *)�!, for every single step S *)�! S

0 and
A ` S, we show that S 0 is well-typed in an environment A0 that possibly di�er from
A only on (dv[S] n dv[S 0]) [(dv[S 0] n dv[S]). In contrast with classical proofs, there is
no induction on the derivation of the reduction step. Instead, we check the property
for every chemical step, then uniformly for the chemical law Context.

Basic case: We �rst consider the basic case for every chemical rule.

Str-join The step is ` P1 jP2
 ` P1; P2; by using the rules Par and Soup, we
clearly have A ` P1 jP2 i� A ` P1; P2.

Str-null, Str-nodef are as easy, using the rule Soup and the corresponding typing
axioms Null and Nodef.

Str-def Possibly after �-conversion, the step is ` def D in P
 D ` P .

Heating: Assuming that A ` def D in P , there is a derivation ending with:

(Def)

A+B ` D :: B A+Gen(B;A) ` P

A ` def D in P

Clearly, Def and Soup give A+Gen(B;A) ` D ` P .

Cooling: Let A ` D ` P . Then A is of the form A0 + Gen(B;A0) and we have
both A0+B ` D :: B and A0+Gen(B;A0) ` P . Thus, by Def, A0 ` def D in P .

In both cases, the two typing environments agree on primitive names and on
names de�ned both in the solution to the left and to the right of the structural
rule.

Red-And The reduction is D ` '(J) �! D ` '(Q). We �rst assume that D is
simply J .Q where J = x1heu1i j : : : j xnheuni. Therefore let A ` J .Q ` '(J).
By the rule Soup, we have

A ` '(J) (3.1)

A ` J .Q (3.2)

We decompose the environment A into A0+Gen(B;A0) where B is (xi : he�ii) i21::n,
Gen(B;A0) is (xi : 8 e�i: e�i) i21::n, and e�i is fv[e�i] n (fv[A0] [Sj 6=i fv[e�j]). By the
rulesMulti and Rule, judgment (3.2) yields a judgment for the guarded process

A0 +B + (eui : e�i) i21::n ` Q (3.3)

Besides, the derivation of judgment (3.1) must have the shape:

A ` xi : he� 0ii A ` '(eui) : e� 0i
(Message)

A ` xih'(eui)i i 2 1::n
(Par)

A ` '(J) (3.4)

84 CHAPTER 3. ADDING TYPES AND FUNCTIONS

where each type e� 0i is an instance �i(e�i) of the type 8 e�i: �i, for some substitu-
tion �i on e�i.
Since generalizable variables never occur in two di�erent bindings, the domains
of �i's are disjoint. We de�ne the substitution � as the composition of the �i's
for i = 1; : : : ; n.

Applying Lemma 3.3 to the judgment (3.3) for the substitution ��which leaves A0

unchanged� we get the judgment

A0 + (xi : h�(e�i)i) i21::n + (eui : �(e�i)) i21::n ` Q
By lemma 3.4, we generalize the assumptions in the above judgment, and obtain

A+ (eui : �(e�i)) i21::n ` Q
Finally, this judgment and the hypothesis A ` '(eui) : �(e�i) of (3.4) allow us to
derive A ` '(Q) by iterating Lemma 3.5 for every received name ui.

We now consider the general case for a de�nition D = J .Q ^ D0. By the rules
Soup and Multi, the hypothesis A ` J . Q ^ D0 ` '(J) yields

A0 +B ` J .Q ^D0 :: B (3.5)

A0 +Gen(B;A0) ` '(J) (3.6)

where A = A0 + Gen(B;A0). By judgment (3.5) and rule And, and for some
partition B = B0 � B00 we have A0 + B00 ` J .Q :: B00 and A0 + B0 ` D :: B0.
By lemma 3.2 applied to A0+B00 ` J .Q :: B00 we get A0+B ` J .Q :: B00. We
reduce to the special case above by instantiating Rule with this last judgment.

Red-� holds by hypothesis on primitives.

Context rule: The chemical law Context introduce unrelated terms in chemical
solutions. We prove the corresponding inductive step. We assume A ` D[D1 ` P[P1.
By rule Def and Soup, we know that D, D1, P, and P1 are all well-typed in A. In
particular, A ` D1 ` P1.

In the case D1 ` P1 *)�! D2 ` P2, by inductive hypothesis there exists A0 such
that A0 ` D2 ` P2, and moreover A and A0 coincide on all names except names in
X = (dv[D1] n dv[D2]) [(dv[D2] n dv[D1]).

� By rule Soup, A0 ` D2 ` P2 implies A0 ` D2 and A0 ` P2.

� Since the solution D [D1 ` P [P1 is well-formed, we have dv[D] \ (dv[D1] [
dv[D2]) = ;, therefore by Lemma 3.2 applied to A ` D we have A0 ` D.

� Furthermore, the side condition of the rule S-Def yields fv[P] \X = ;. Thus,
by lemma 3.2 applied to A ` P. we also have A0 ` P.

We conclude A0 ` D [D2 ` P [P2 by rule Soup. �

3.4. FUNCTIONAL CONSTRUCTS 85

3.3.3 No run-time errors

We state the correctness of a computation from what can be observed on running
chemical machines, independently of typing properties. We assume that all the names
that appear in solution are either de�ned names or primitive names�intuitively the
running program has been entirely linked to its runtime environment. Especially, free
variables are turned into primitive names, which ensures that the environment speci�es
their type.

When ill-formed messages are released in a solution, there is no reduction that
would consume them, so they remain visible, exactly as barbs on free names in an
untyped setting. In this case the computation has failed.

De�nition 3.6 A chemical solution D ` P has failed when P contains either:

� A message khui
i21::ni when no �-rule applies;

� A message xhui i21::ni when x is de�ned in D with arity m 6=n.

In a sequential setting, errors are stuck con�guration of programs. They occur
only in the presence of primitive values, namely when a primitive is applied to a value
outside its domain. This is mimicked in the join-calculus by our de�nition of correct
environments, where stuck messages on primitive names are interpreted as run-time
errors.

Stuck messages may also appear in the absence of primitive names, since the
calculus we consider is polyadic. That is, sending messages with the wrong arity is an
error. An examples of misuse of names is applyhfi in the case apply is de�ned as in
Section 3.1. Of course, well-formed messages on de�ned names can still be deadlocked;
they are not considered as errors.

Theorem 2 (Correct computation) A well-typed chemical machine cannot fail as
the result of chemical rewriting in a correct primitive environment. In particular, a
well-typed program cannot fail.

Proof: The messages excluded in De�nition 3.6 cannot occur in a well-typed chem-
ical soup. Immediate errors on primitive names are excluded in De�nition 3.1. Arity
mismatch on de�ned names rules out any typing derivation for the chemical solution
because the use of rules Message and Def are in mutual exclusion.

By subject-reduction, the absence of failed messages in a solution is preserved by
chemical rewriting. �

3.4 Functional constructs

As emphasized by our treatment of polymorphism, join-calculus processes of the par-
ticular form def fhxi . P in Q jR are rather similar to the general expressions in
functional languages let f(x) = E in E0;E00. In particular, these terms share the same
static scoping discipline, even as their semantics are quite di�erent: join-calculus pro-
cesses are built using parallel composition, while functional expressions are built using
sequential composition, with a tighter control on the order of evaluation.

86 CHAPTER 3. ADDING TYPES AND FUNCTIONS

In our basic model, synchronization happens only as molecules are consumed, and
this su�ces to express control �ow. To encode functions as processes, we explicitly
create and send continuations that enforce a �xed evaluation strategy. This style of
programming is known as continuation-passing-style (CPS), and has been advocated
as a simple unifying framework to compile functional programs [21]. For any given
CPS, we obtain a simple embedding of higher-order functional programming. We
present two reduction strategies for the �-calculus, and their encoding in clear-cut
subsets of the join-calculus.

In practice, however, the direct manipulation of continuations is verbose, error-
prone, and generally too low-level for practical programming. Instead, we make the
sequential control apparent: we �x a call-by-value CPS, and we provide it as syntactic
sugar in the language. We supplement the join-calculus with functions and expressions,
and we re�ne the type system accordingly. This language design style has been exper-
imented �rst in the PICT language [122]. We describe a core programming language
based on these ideas, and we give some programming examples. Such extensions turn
the join-calculus into a convenient language that can be seen as a concurrent extension
of a higher-order typed functional language à la ML, supplemented with concurrent
evaluation of expression (forks) and synchronization in patterns (joins).

Alternatively, it is possible to extend the process-calculus to higher-order; for in-
stance in [39] functions can be directly expressed, without the need for continuation
channels. This approach would be interesting, in particular, to model the direct im-
plementation of functions in our implementation.

3.4.1 Sequential control in the join-calculus

Resuming our informal discussion of Section 3.1, programmers may feel uncomfort-
able with the non-deterministic behavior of the print_two_ints example; they would
prefer their program to print the arguments x and y in a �xed order. Indeed, our im-
plementation provides a synchronous print_int primitive that takes two arguments:
an integer to be output, and a continuation to be triggered thereafter. This con-
tinuation is used for synchronization only; it carries no argument, and has type hi.
Thus, the type of the synchronous print_int is hInt; hii. The synchronous version of
print_two_ints also takes an extra continuation argument � meant to represent the
termination of the call, and has type hInt; Int; hii:

print_two_intshx; y; �i . def �yhi . �hi in
def �xhi . print_inthy; �yi in
print_inthx; �xi

Continuations can also convey arguments back. For instance, assuming a synchronous
plus primitive of type hInt; Int; hIntii the synchronous process successor of type
hInt; hIntii could be de�ned by the rule

succhx; �i . plushx; 1; �i

The continuation passing style idiom is so common in process calculi that it de-
serves a convenient syntax that avoids writing explicit continuations. In our language,
continuation arguments become implicit in both primitive names and user-de�ned

3.4. FUNCTIONAL CONSTRUCTS 87

names. The synchronous version of print_two_ints becomes

print_two_ints(x; y) . print_int(x); print_int(y); reply to print_two_ints

The sequencing operator � ;� avoids the de�nition of explicit continuations inside the
body of print_two_ints. The �nal call to continuation is left explicit.

More generally, several synchronous names may be de�ned in the same join-
pattern, and thus several named continuations may appear in the same guarded pro-
cess. We write reply u1; : : : ; up to x for each synchronous name x, by analogy to the C
statement �return expression;�. In the extended syntax, for instance, we can set up a
rendez-vous between two computations by the de�ning the rule:

a(u) j b(v) .reply v to a jreply u to b

The two synchronous names a and b can be passed to two threads of computation
running in parallel, so that at some point of their computations they perform the calls
a(x) or b(y), respectively, to get synchronized and share their partial results with the
other thread, in the spirit of multi-functions [23].

We also provide a sequencing binding let x1; : : : ; xp = E in P , where E is an
expression, i.e., a process meant to return some value on a given continuation. For
instance, the successor process is written

succ(x) .let y = plus(x; 1) in reply y to succ

or, simply, succ(x) .reply x+ 1 to succ. As regards the types of synchronous names,
we do not refrain from the temptation of de�ning

h�1; : : : ; �qi!h�
0
1; : : : ; �

0
pi

def

= h�1; : : : ; �q; h�
0
1; : : : ; �

0
pii

Hence, the type of succ can eventually be written hInti!hInti.

3.4.2 Two evaluation strategies of the �-calculus

Before hiding continuations under syntactic sugar, we present two encodings of the
�-calculus. For a given CPS, we encode �-terms as named guarded processes and we
relate their respective behavior. Our purpose here is to illustrate the tight connection
between functions and join-de�nitions. The grammar for the �-calculus is as usual:

T
def

= x j �x:T j TT

Encodings of the �-calculus have been previously studied in detail in similar �-cal-
culus settings [98, 37, 132]. These encodings use only a small fragment of the �-cal-
culus, where every communication complies with the restrictions that are syntactically
enforced in the join-calculus. Thus, we believe that their adequacy results carry over
the join-calculus, where they are stated in a simpler setting. For instance, we easily
check that the terms and their translations converge or diverge accordingly, as is the
case in [98]. We postpone any formal development to future work.

88 CHAPTER 3. ADDING TYPES AND FUNCTIONS

Call-by-name In this reduction strategy, �-terms are reduced in leftmost-order and
no reduction may occur under a �. Our encoding is:

[[x]]v
def

= xhvi

[[�x:T]]v
def

= def �hx;wi . [[T]]w in vh�i

[[TU]]v
def

= def xhui . [[U]]u in def wh�i . �hx; vi in [[T]]w

Intuitively, the process [[T]]v sends its value on v, a value is represented as a process
abstraction that serves evaluation requests sent on �; and evaluation requests supply
two names: x to send requests for the value of the argument, and w to eventually
return a value when evaluation converges.

The image of the translation is exactly the deterministic subset of the join-calculus,
de�ned as the set of processes that contain no parallel composition, and neither join-
pattern nor �^� in de�nitions. As expected, reductions for processes in this subset are
entirely sequential.

To check the operational correspondence, we detail the mechanism of a �-reduction.
The same reduction would occur in any translated evaluation context of the �-calculus.

[[(�x:T)U]]v = def xhui . [[U]]u in

def wh�i . �hx; vi in
def �hx;wi . [[T]]w in

wh�i

!! def xhui . [[U]]u in [[T]]v jP

The process P contains the de�nitions of w and �; it is inert, and would be discarded
by any equivalence on processes (P � 0). The behavior of the resulting process is
similar to the behavior of the translation of the resulting �-term [[TfU=xg]]v: each
occurrence of [[x]]z reduces in a single step to an instance of [[U]]z. Anticipating on the
equivalences de�ned in the next chapters, we easily establish that weak bisimulation
is preserved through �-reduction.

Parallel call-by-value In this reduction strategy, the �-term (TU) can be reduced
as soon as both T and U have been reduced to values, but the function and the
argument can be evaluated in parallel. Again, no reduction may occur under a �. Using
a larger subset of the join-calculus, we encode this con�uent but non-deterministic
reduction strategy as follows:

[[x]]v
def

= vhxi

[[�x:T]]v
def

= def �hx;wi . [[T]]w in vh�i

[[TU]]v
def

= def th�i j uhwi . �hw; vi in [[T]]t j [[U]]u

Again, the encoding [[T]]v sends its value on v and a value is a process that serves
evaluation requests sent on �, but evaluation requests now supply the value of the
parameter along with a name for the value of the term.

The image of the translation uses parallel composition to capture the non deter-
minism of the strategy. The symmetry between the evaluation of the function and
of the argument is made apparent, backed by the two symmetries, on the fork of
evaluation requests and on the join of their results.

3.4. FUNCTIONAL CONSTRUCTS 89

P ::= processes
vhv1; : : : ; vni message

j def D in P local de�nition
j P jP parallel composition
j 0 null process
j let x1; : : : ; xm = vhv1; : : : vni in P synchronous call
j reply v1; : : : ; vn to x synchronous reply

� ::= type
b primitive type

j � type variable
j h�1; : : : ; �ni asynchronous channel type
j h�1; : : : ; �ni!h�

0
1; : : : ; �

0
mi synchronous channel type

Figure 3.3: Extended syntax with synchronous names

3.4.3 Synchronous names

We now supplement the join-calculus with primitive sequencing constructs. To this
end, port names are partitioned in two families according to their calling conventions:
synchronous names and asynchronous names. We emphasize that a name is syn-
chronous by using a di�erent font: we write x instead of x, and foo instead of foo for
synchronous names.

Asynchronous names are de�ned and used for asynchronous messages as before; in
addition, synchronous names transmit an implicit continuation within every message
and every join-pattern. Whenever a message is sent to a synchronous name, a continu-
ation channel is de�ned as the remaining part of the current instruction sequence, and
the continuation is added to the message. The synchronous invocation of a name f is
performed by the new process

let xi
i21::p = f(uj

j21::q) in P

Conversely, whenever such a message is received as part of a join pattern, the
continuation is bound in the corresponding guarded process, and may be used once
to send back results. The asynchronous invocation of a continuation attached to f is
performed by the process

reply ui
i21::p to f

We give the grammar for processes and types in a calculus extended with syn-
chronous calls in Figure 3.3. Patterns, clauses and typing environments are de�ned
as before. We let the sequencing operator � :; :� abbreviate the let-binding let= : in :
obtained for m = 0. We extend the precedence rules for let-binding and sequencing
in a di�erent manner, though: �;� binds tighter than � j�, which binds tighter than the
two binding constructs let : : : = � in � and def : : : in �.

We provide a new functional type constructor h�1; : : : ; �ni!h� 01; : : : ; �
0
mi for syn-

chronous names, and we supplement the typing rules of Figure 3.2 with speci�c rules
for the new constructs.

90 CHAPTER 3. ADDING TYPES AND FUNCTIONS

(Let-Val)

A ` u : h�j
j21::qi!h� 0i

i21::pi (A ` uj : �j)
j21::q A+ (xi : �

0
i)

i21::p ` P

A ` let xi
i21::p = uhuj

j21::qi in P

(Reply)

A ` u : h�j
j21::qi!h� 0i

i21::pi (A ` ui : �
0
i)

i21::p

A ` reply ui
i21::p to u

The resulting type system guarantees that synchronous and asynchronous invoca-
tions on the same name do not mix. Moreover, a user-de�ned name x must be in-
voked synchronously when its de�nition includes type-consistent occurrences of the
reply ui

i21::p to x construct.
While in theory we distinguish two classes of names, the asynchronous or syn-

chronous status for all de�ned names may also be determined by typing, with the
following convention: every name whose synchronous usage is not detected by the
type inference system is considered asynchronous. Similarly, our type system does not
prevent multiple invocations of the same continuation, which is easily ruled out by a
compile-time veri�cation.

3.4.4 A typed CPS encoding

As usual for process calculi, we can translate functional names back into the plain
join-calculus. Our translation applies on well-typed programs once synchronous names
have been identi�ed.

We assume that the names introduced by the translation do not mix with the names
in the source programs: we use the reserved name � for intermediate continuations
generated while translating let constructs; we assume that there is an injective function
between synchronous names f and asynchronous continuation names �f that do not
appear in the source program.

The call-by-value translation [[�]] is de�ned by structural induction on the syntax;
we mention only the clauses that modify the terms.

� in join-patterns, we add a continuation to any synchronous message:

[[f(ui i21::p)]]
def

= fhui
i21::p; �f i

� in processes guarded by a join-pattern that de�nes f, we translate:

[[reply ui i21::p to f]] def

= �f hui
i21::pi

� in let-binding processes, we de�ne and send a local continuation

[[let xi i21::p = f(uj
j21::q) in P]]

def

= def �hxi
i21::pi . [[P]] in fhuj j21::q; �i

� in types, we remove functional type constructors:

h�j
j21::qi!h� 0i

i21::pi
def

= h�j
j21::q; h� 0i

i21::pii

3.4. FUNCTIONAL CONSTRUCTS 91

Note that the encoding for both traditional functions�identi�ed to synchronous
names de�ned in a single rule with a single-message pattern�and for continuations
provides guarantees on the usage of these names. For instance, a process that receives
a name that encodes a function can use it only as a function; it cannot re-de�ne the
function, or even detect other calls to the function. Said otherwise, the substitution
lemma holds for every functional de�nition. This would not be the case in the �-cal-
culus, where more detailed types are required after translation to enforce the same
guarantees [120, 82].

We now relate the typing properties through the translation: we translate the two
additional typing rules component-wise and obtain

(translated Let-Val)

A ` u : h�j
j21::q; h� 0i

i21::pii (A ` uj : �j)
j21::q A+ (xi : �

0
i)

i21::p ` P

A ` def �hxi
i21::pi . P in uhuj

j21::q; �i

(translated Reply)

A ` u : h�j j21::q; h� 0i
i21::pii (A ` ui : � 0i)

i21::p

A ` �uhui i21::pi

These two rules are easily derived from the basic type system of Figure 3.2: the
translation of rule Let-Val is obtained from Def, Rule, and Message; the transla-
tion of rule Reply is obtained from Message. Hence, the translation preserves valid
typing derivations. (However, the translation may enable valid type derivations on
ill-typed programs that confound explicit and implicit CPS.)

3.4.5 Toward a concurrent functional language

Now that we have added synchronous names and their primitives, further extensions
of the syntax toward a convenient high-level language are mostly a delicate matter
of taste. For instance, we can proceed as in our implementation, where we basically
adopt (a subset of) the syntax of ML supplemented with join-patterns in functional
de�nitions, and with forks in expressions. This smoothly integrates some concurrent
programming with a functional framework, in declarative style. As observed in the
design of PICT [122], this integration is pragmatically important, because even dis-
tributed programs tend to be mostly functional. In the same manner, external libraries
can be embedded provided that they have a functional API, which can be turned into
a typed interface.

A complete grammar for processes and expressions is proposed in Figure 3.4, in
the spirit of our prototype language [59]. Clauses and de�nitions are unchanged; they
are omitted from the �gure. Again, expressions are only a convenient syntactic sugar,
which can be removed. This new translation amounts to introducing explicit bindings
of the kind of the previous section for all subexpressions, nested calls being translated
top-down, left-to-right.

reply Ei
i21::p to f

def

= �f hEi
i21::pi

uhEi i21::pi
def

= (let xi = Ei in)
i21::p uhxi i21::pi

let x = u in P
def

= Pfu=xg

let xi
i21::p = f(Ej

j21::q) in P
def

= def �hxi i21::pi .P in fhEj j21::q; �i

92 CHAPTER 3. ADDING TYPES AND FUNCTIONS

P ::= processes
vhE1; : : : ; Eni asynchronous message

j def D in P local de�nition
j P jP parallel composition
j 0 null process
j E;P sequence
j let x1; : : : ; xm = E in P synchronous call
j reply E1; : : : ; En to x synchronous reply

E ::= expressions
vhE1; : : : ; Eni synchronous call

j def D in P local de�nition
j E;E sequence
j let x1; : : : ; xm = E in E synchronous call

Figure 3.4: Syntax for a language with processes and expressions

In practice, we would introduce new typing judgments for expressions (A ` E :
�i

i21::p), along with new typing rules. The typing rules for expressions are derived
from the previous ones and are omitted.

3.4.6 Types and side e�ects

If we remove join-composition in patterns and parallel-composition in processes from
our extended language, we get a polyadic functional kernel similar to core-ML: both
the reductions and the typing rules do correspond. Let us consider in detail how we
would translate the let binder of ML. According to the let-bound expression, there
are two cases with distinct typing properties. When the syntax su�ces to identify
functions either directly or as aliases, we use a generalizing de�nition:

[[let f(x) = e1 in e2]] = def f(x) .reply e1 to f in e2
[[let g = let f(x) = e1 in f in e2]] = def f(x) .reply e1 to f in e2ff=gg

For other values such as the results of function calls, we use a continuation message to
convey the result, which forces this result to be monomorphic. Hence, polymorphism
is made available only on syntactic values, which is equivalent to Wright's restriction
for ML [151].

The language as a whole is more expressive than ML; it provides support for
general, concurrent programming, including imperative constructs and side e�ects as
messages. For instance, reference cells need not be taken as primitives; they are
programmable in the join-calculus using the following rule

mkcell(v0) .

0
@ def

get() j shvi . reply v to get j shvi
^ set(u) j shvi . reply to set j shui

in reply get; set to mkcell j shv0i

1
A

The mutable content of the cell is represented as the contents of a message on name s,
which is consumed and updated each time the cell is accessed or changed through the

3.5. CONCURRENT OBJECTS AS JOIN-DEFINITIONS 93

functional names get or set. (The translation of this rule in the pure join-calculus has
been presented and explained in Section 2.4.6.)

Using our type system, each instance of the reference cell is monomorphic, and the
three inner de�ned names get : hi!h�i, set : h�i!hi, and s : h�i are typable in an
environment with a shared type variable � representing the contents of the cell. Any
generalization here would break the assumption that they have been jointly de�ned
and thus jointly typed. For instance the process

let get; set = mkcell(1) in set(�world�) j print_int(get())

cannot be typed in our system, and may lead to a run-time error. Fortunately, some
polymorphism can be recovered by the time the reference cell is allocated. Since a
single name mkcell is being de�ned, its type h�i!hhi!h�i; h�i!hii can obviously
be generalized on �. And thus mkcell can be used polymorphically in the main body
of its de�nition, where several cells containing values of incompatible types can safely
be accessed by using di�erent functional names, as is the case in the process

let get; set = mkcell(1) in print_int(get())
j let get; set = mkcell(�hello�) in print_string(get()); set(�world�)

More generally, join-calculus de�nitions may describe protocols that involve so-
phisticated synchronization of numerous methods and/or partial states, but this is
largely independent of the typing, as long as side e�ects are tracked using the sharing
of type variables.

This is in contrast with the classical approach in ML, where references are intro-
duced in a �pure� language as dangerous black boxes that cannot be given polymorphic
types, and that communicate with a global store by magic.

In some recent expositions of imperative constructs [152], references are introduced
as local stores that can be extruded, which is closer to the join-calculus, but again
references are a new special construct. On the contrary, the store can be identi�ed as
some part of the chemical machine that consists of the instances of cell de�nitions on
the left-hand-side, and of their state messages on the right-hand-side, but there is no
reason to do so for typing. Our approach is uniform and allows us to type at least as
much as ML with references allocated by a primitive ref constructor.

3.5 Concurrent objects as join-de�nitions

Informally, name-passing calculi correspond to the message-passing interpretation of
objects in a concurrent setting, which is widely used to model distributed object-
oriented programming [32, 11]. Actually, some asynchronous variants of the �-cal-
culus have been introduced as abstract models for concurrent objects rather than as
process calculi [71, 70], and this analogy has been formalized for the �-calculus and
its variants [148].

As is the case for functions, objects are usually not primitive in process calculi, but
they can be either added to the calculus, or internally encoded. Accordingly, several
object-oriented idioms have been recently expressed in a process calculus setting [74,
136, 121, 76, 147] either as pure encodings or as hybrid calculi, typically with primitive
extensible records [49] or with an object-calculus kernel [63].

94 CHAPTER 3. ADDING TYPES AND FUNCTIONS

As a process calculus, the join-calculus provides the essential features of objects.
We �rst describe the kind of objects that can already been expressed in the join-
calculus. Using message-passing and pattern-matching in our de�nitions, we encode
objects as servers that receive requests to execute their methods. Nonetheless, the
design of a full-�edged object-oriented language would require some extensions. For
instance, inheritance (or cloning) is not primitive, and there is no convenient data-type
to represent objects as extensible records of methods. We sketch some features to sup-
port more general objects with dynamic de�nitions and inheritance. These extensions
can of course be encoded on top of the join-calculus, but it may be interesting to check
how they interact with types. In this section, we mostly present direction for future
work; there is no formal treatment of the proposed extensions of the calculus.

3.5.1 Primitive objects

We interpret the join-calculus with functions in an object-oriented manner. We iden-
tify synchronous names and methods, de�nitions and concurrent objects.

Objects are created in de�nitions, whose port names may be either returned and
made public, or kept private in the body of their de�nition. In that sense, our cell
example is a simple imperative object with two methods get and set, and a current
state�the contents of the cell�held on a message on the internal name s. More
generally, the current state of an object can be split into several components held on
internal messages, according to the critical sections. Besides, the interface may feature
several states with di�erent synchronization capabilities. The resulting objects sup-
ports rich synchronization capabilities, which may for instance involve several states of
their interface. As regards control, the declarative pattern-matching on join messages
is richer than a �xed control strategy, such as the serialization of method calls.

We illustrate the combination of concurrency and synchronization with a larger
example of concurrent object: the priority queue. The de�nition of a constructor for
a queue that is initially empty may be:

mk_priority_queue() .
def empty() j nonehi .

fnonehi jreply true to emptyg
^ empty() j somehx; e; a; ri .

fsomehx; e; a; ri jreply false to emptyg
^ add(x) j nonehi .

freply to add jlet e; a; r = mk_priority_queue() in somehx; e; a; rig
^ add(x) j somehy; e; a; ri .

freply to add j a(max(x; y)); somehmin(x; y); e; a; rig
^ remove() j somehx; e; a; ri .

freply x to remove jif e() then nonehi else somehr(); e; a; rig
in

nonehi jreply empty; add; remove to mk_priority_queue

The queue as a value is represented by a tuple of three synchronous methods, with
the following types and intuitive meanings:

empty : hi!hBooli checks whether the queue is empty;

3.5. CONCURRENT OBJECTS AS JOIN-DEFINITIONS 95

add : h�i!hi inserts a new value in the queue and (always) returns; and

remove : hi!h�i retrieves the smallest value present in the queue, if any, or blocks
until a value is inserted otherwise.

There are two internal states, nonehi when empty, and somehx; e; a; ri when con-
taining the smallest value x in its head and another priority queue with methods e; a; r
in its tail. Statically, we can check that there is always exactly one state message avail-
able for each de�nition. Values can be concurrently tested, added, and removed; in
particular, a new message someh� � �i is released after at most one comparison when a
new value is added, while the update propagates toward the tail in parallel. When the
tail is eventually reached, a new, empty priority queue is created using the recursive
de�nition mk_priority_queue, which returns three fresh methods e; a; r on an empty
priority queue to be stored in the message someh� � �i of the last-but-one component of
the concurrent queue. It is easy to check that the priority queue enforces the expected
properties, e.g., that series of values that have been added are removed in increasing
order.

This example of concurrent data structure is simple, but not very e�cient, since
for instance insertion is linear on the size of the queue. Possible enhancements would
be an indirection in every cell�so that we can add a small value without traversing
the whole queue, and the use of a tree structure instead of a linear one�so that the
number of nodes being traversed is kept small for long queues. This would use more
complicated de�nitions, with the same join-synchronizations. More examples of data
structures are described in the documentation of our implementation, in particular in
the �rst part of the tutorial [59].

More generally, several standard strategies for synchronization within an object
can be encoded as multi-clause de�nitions. We brie�y give the generic shape of such
de�nitions.

A partially-serialized object is de�ned as^
m

�
m(ev) jQs2locks(m) sheusi . let ew; eu0s = E inQ

s2locks(m) sheu0si jreply ew to m

�

where m ranges over the methods, the eus partition the state, and each method grabs
locks on all the required parts of the state, executes its body, then returns and releases
all the locks, possibly mutating parts of the state.

More concurrency can be achieved by releasing parts of the locks before the end
of the computation. For instance, the method m may be de�ned by the rule

m(x) j s0hyi j s1hzi . s0hyi j s1hf(x; y) jreply z to m

where the �rst part of the state is unchanged, and can be immediately released, while
the second part is released only as the computation of f(x; y; z) returns. Even as
each method call may return at once, concurrent calls on m will be deferred until the
second part of the state is made available again. Conversely, concurrent calls to other
methods that do not require access to y may still occur in parallel.

An object with several states and transitions between states at method invocation
is de�ned as^

m

�
m(ev) jQs2pre(m) sheusi . let ew; ezs0 = E inQ

s02post(m) s
0hezs0i jreply ew to m

�

96 CHAPTER 3. ADDING TYPES AND FUNCTIONS

where the transition (meta) functions pre and post specify the state transition in terms
of resources being consumed and released.

Some objects may also provide a �ner control on invocation of several methods. Ex-
tending the multi-function paradigm of [23], such objects would feature multi-methods
that have to be jointly triggered, and thus guarantee atomicity in simultaneous method
invocations, or even multiple copies of the state messages, accounting for a �nite num-
ber of resources being concurrently available.

Our approach is more declarative than the traditional object-as-server encoding,
where there is a single port name where all method calls are sent, and where the
decoding of methods is entirely dynamic and imperative, as is the case with Actors
for instance.

3.5.2 Values, classes and inheritance

So far, our calculus lacks convenient values that can encapsulate the tuple of methods
representing our objects. In order to integrate objects in the join-calculus, this strongly
suggests that we supplement values with extensible records. Accordingly, we would
obtain a pure object-oriented calculus by changing our naming scheme from port
names x de�ned in def D in � into labels x applied to named de�nitions def o = D in �.
The synchronization mechanism and the scoping properties remain the same, yet we
need to implement anonymous method invocation, and provide subtyping that enforce
restricted access to the internal �methods� hosting the state.

Besides, our primitive objects are very static, because the lexical scope of their
de�nitions forbids any extension of the synchronization patterns on an existing object,
and because de�nitions as a whole are not �rst-class values that can be overloaded or
cloned.

It is well-known that inheritance and synchronization for concurrent objects do not
merge gracefully [92]. In our case, we can easily express synchronization, but there is
no support for inheritance.

We can recover some dynamicity using indirections; pre-methods are stored in
an extended state, and method update are just state updates. Likewise, one can
substitute state overwriting for method overriding in many cases, and mix freely static
and dynamic components within the same objects.

We can also adapt the more sophisticated approach to typed objects that has been
proposed for ML in [126, 127]. Again, we believe that the locality property would
enable a smooth integration of concurrency. Should we adopt a class-based inheri-
tance mechanism, for instance, we obtain a static mechanism to assemble fragments
of de�nitions, which seems useful from a programming language viewpoint.

3.6 Related type systems for concurrent languages

While parametric polymorphism su�ces to our present needs, more sophisticated types
systems have been developed as a way to capture additional static properties of pro-
cesses. We brie�y survey some of these type systems and their additional bene�ts.

3.6. RELATED TYPE SYSTEMS FOR CONCURRENT LANGUAGES 97

3.6.1 Typing communication patterns

In the area of name-passing process calculi, the �rst step was taken by Milner in [99].
Milner introduces an improvement of the �-calculus�the polyadic �-calculus�where
channels are allowed to carry tuples of messages. Polyadicity naturally supports a
concept of recursive sorting. Maintaining the sort discipline enforces channels to always
carry tuples of the same length and nature. Recursive sorts correspond to the recursive-
monomorphic variant of our system.

The �rst extension of Milner's system has been undertaken by Pierce and San-
giorgi, who distinguish between input-only, output-only, and input-output channels.
This extension naturally leads to recursive types with subtyping [120]. Since then,
more and more elaborate extensions have been proposed and experimented, mostly
around the PICT language [122, 145]. For instance, further extensions capture linear-
ity information in channel types [82]. This provides a �ner account on communication
patterns, and static type inference leads to a more e�cient compilation.

The type systems of all these authors are usually more sophisticated than ours.
Some of this sophistication is due to the higher dynamicity of the �-calculus semantics
and is thus irrelevant in our case. Nevertheless, it would be interesting to re�ne our
basic type system to include some of these elaborate static analysis such as deadlock
or linearity analysis, and to make use of this information in an optimizing join-calculus
compiler.

The basic theory of polymorphic extensions of Milner's sort discipline for �-calculus
has been developed by Turner in his dissertation [145]. We recall that Turner's poly-
morphism is explicit: inputs and outputs are always annotated with sorts. For exam-
ple, the �-calculus process x[y; z] j x[u;w]: u[w] is tagged as follows:

x[Int; y; z] j x[�;u :" �;w : �]: u[�;w] :

Consequently, explicit abstraction and application of types are interleaved with com-
munication: in the above example the sort � in the output u[�;w] depends on the
message received on the channel x. This commitment to explicit polymorphism in
�-calculus follows from the absence of a place where sort generalization may occur.

3.6.2 Implicit polymorphism and control

Typing à la ML for concurrent languages is not new; proposals have been de�ned for
languages that combine functional and concurrent primitives in a symmetric manner,
such as for instance Concurrent ML [128] and FACILE [144]. In these languages chan-
nels are always monomorphic, and polymorphism is only allowed under functional
abstractions. An analogous approach has been taken by Vasconcelos for an exten-
sion of �-calculus with agent names [146]. In his setting, channels can be generalized
when they precisely encode functions (a single, replicated receiver). Processes can
thus be parameterized by arguments of di�erent types. However, two processes can
never communicate values of di�erent types over the same channel, which restricts the
expressiveness of the language. In particular, it is impossible to implement polymor-
phic services, such as for instance a remote authentication server that would take any
piece of data, sign it, and return its signed certi�cate, and that would also check such
certi�cates upon request from a third party.

98 CHAPTER 3. ADDING TYPES AND FUNCTIONS

As a simpli�ed example, we consider a computing server

def runhf; x; ri . fhx; ri in : : :

where run is a channel�not a function�meant to accept remote evaluation requests,
run them locally, then return the answer on a continuation. In our type system, the
name run can be given the generalized type 8�; �:hh�; h�ii; �; h�ii.

Of course, this channel is much like a function, but the programmer may hesitate
between functions or channels for expressing sequential control; he may also have to
choose channels because the control structure gets more involved, or because functions
and channels do not have the same properties in a distributed setting.

For instance, we can alter our pure rendez-vous multi-function to allow for some
more functional style; we would write

def sync_1(a) j sync_2(b) .
reply a to sync_1 jreply b to sync_2 in

: : : f(sync_1(: : :)) : : : j : : : g(sync_2(: : :)) : : :

where the two �identities� sync_1 and sync_2 can both be given the generalized type
8�:h�i!h�i, and still provide additional control as a side e�ect: the results of the
inner computations are communicated to f and g only when both computations have
completed.

The following program models a scheduler, and illustrates a case where polymor-
phism and control get intertwined:

def job(f; x) j token(n; z) .
let result = fhx; n; zi in
tokenhn+ 1; zi jreply result to job in

tokenh1; �red�i j tokenh1; �blue�i j jobhf1; 12i j jobhf2; �join.inria.fr�i

The scheduler provides some control over the degree of parallelism of a computation;
there are at most two jobs running concurrently; moreover, these jobs are labeled
with a color �red� or �blue��standing for some more useful resource�and with a
serial number. The name token that represents the state of our controller is kept
local, while the access method job is made available to the context. Running our
type-inference algorithm, we obtain the types

job : 8��:

h�; Int; Stringi!h�i; �

�
!

�
�

token : hInt; Stringi

We might still implement job as a function (but not as a channel) by representing
the state in an imperative manner, or by playing a continuation game to separate
values from control. Yet, there is no simple way to de�ne such a service in CML,
Facile, or the language proposed in [146]. In fact, this limitation has been known in
CML. A natural solution would be to use �rst-order, explicit existential types such
as in [85]. Then after CPS, the channel run could be given the monomorphic type
9�; �:hh�; h�ii; �; h�ii. The translation of the example in PICT would give run a
similar type.

Chapter 4

Equivalences and Proof Techniques

This chapter and the next one are devoted to the study of equivalences for the
join-calculus. In this chapter we focus on reduction-based equivalences; in the next
chapter we depart from reductions to consider labeled transitions and develop purely
bisimulation-based proof techniques.

Now that we have settled the operational semantics of the join-calculus and ex-
plored its expressiveness, we need tools to state and prove the properties of distributed
programs. To this end, we must equip our calculus with equivalence relations that have
both a sensible discriminating power and some convenient proof techniques. As an
extreme example, syntactic equality is immediate to check but it separates numer-
ous processes that have the same behavior; structural equivalence (�) is also easily
checked�for instance by computing unique normal forms�and equates terms that
are intuitively equivalent, but still discriminates too much.

Our main goal is to use these equivalences to relate distributed programs writ-
ten in the join-calculus or in its extensions. A more speci�c issue is to discuss the
properties of the implementation, and various program transformations performed by
the compiler or the run-time system. From a more theoretical point of view, these
equivalences provide a deeper understanding of the calculus, and they yield a formal
basis to compare variants of the join-calculus to other formalisms, in particular to the
�-calculus.

The notions of equivalence that we use are hardly new; they draw upon a large body
of theoretical work on process algebra and process calculi; they also have been suc-
cessfully applied to a broad range of practical issues, such as automated or computer-
aided veri�cation of concurrent systems and distributed protocols. Actually, there are
numerous proposals for the �right� equivalence for concurrent processes�see for in-
stance [61] for an impressive overview. Choosing the proper equivalence with which to
state a correctness argument often means striking a delicate balance between a simple,
intuitively compelling statement, and a manageable proof.

For instance, there are many e�ective, sometimes automated techniques for proving
bisimulation-based equivalences. Nonetheless, it can be quite hard to prove that two
processes are not bisimilar�and to interpret this situation�because bisimulation may
not directly correspond to the operational model, and may fail to capture some subtle
identities that are key in a protocol. On the contrary, it can be quite hard to prove a
coarser, testing equivalence, but the proof that two processes are not testing equivalent
is simply a failure scenario. In practice, the proper choice is likely to vary according

99

100 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

to the problem being studied. Besides, several related equivalences may be useful for
tackling the same problem, as indirect proof techniques or intermediate lemmas rely
on �ner equivalences than those of the main results.

In this chapter, we pick a few signi�cant equivalences that are used in the disser-
tation, we describe their main features, and we establish their connections. We are
mostly interested in reduction-based, weak equivalences, which is not the traditional
approach in process calculi; besides, speci�c problems arise as we deal with asyn-
chronous, mobile calculi. To our knowledge, there is no guideline available so far in
this setting.

Pragmatically, we arrive at a simpli�ed hierarchy of equivalences, where each tier
introduces a useful tradeo� between expressiveness and ease of proof, and each tier
can have several, sometimes very di�erent formal characterizations. The four main
tiers are, with increasing discriminative power,

� may testing

� fair testing (and coupled simulations congruences)

� barbed bisimulation congruences

� labeled bisimulations

In this framework, one can start a proof e�ort at the upper tier with a simple labeled
bisimulation proof; if this fails, one can switch to a coarser equivalence by augmenting
the partial proof�typically by considering more processes and reductions; if the proof
still fails for the testing equivalences in the last tiers, then at least meaningful counter-
examples can be found.

Our main technical results relate de�nitions stated in di�erent styles: trace-based
equivalences versus bisimulation-based equivalences, labeled semantics versus reduc-
tion semantics, fairness conditions versus coupled simulations. Several results�or,
more to the point of the comparison, the corresponding results for the �-calculus�are
new. Speci�cally, some of the standard de�nitions of equivalences are related by un-
expected identities, some of which close conjectures of Milner and Sangiorgi [101], and
Honda and Yoshida [73]. We mention similar results for the �-calculus at the end of
the chapter, but we refer to [56] for a detailed analysis of reduction-based equivalences
centered around the asynchronous �-calculus and for the corresponding proofs. The
direct comparison of the join-calculus and the �-calculus is deferred till Chapter 6.

Contents of the chapter

Before discussing technical subtleties, we spend some time to sketch a general picture
and to motivate our choices. In Section 4.1 we describe the general setting of reduction-
based systems and we discuss observation predicates and congruence properties. The
three next sections detail the �rst three tiers of our hierarchy of equivalences. In
Section 4.2 we begin our study of testing semantics. In Section 4.3 we focus on fair-
testing. In Section 4.4 we incorporate bisimulation requirements and we explain the
issue of barbed bisimulation congruence. In Section 4.5 we propose coupled-barbed
simulations as a coarser alternative to barbed bisimulation, and we relate it to fair-
testing. In Section 4.6 we complete our overview of reduction-based equivalences by a

4.1. REDUCTION-BASED SEMANTICS 101

general picture of our hierarchy that summarizes our results (page 123), and we also
discuss the main di�erences with the �-calculus, for which the same programme leads
to a roughly similar hierarchy of equivalences.

The two �nal sections contain more speci�c technical developments. In Section 4.7
we develop useful diagram-chasing techniques for bisimulations. In Section 4.8 we
prove the coincidence of the two barbed bisimulation congruences.

4.1 Reduction-based semantics

In this section, we recall standard notions in reduction-based semantics. The gen-
eral approach in concurrency is to isolate the process from its environment and to
focus on their visible interaction. Ideally, observing a process should be the same as
communicating with it. This is achieved through the de�nition of two notions that
are common to most process calculi: a reduction relation ! that represents internal
evolution and an observation predicate #x that detects the ability of interacting at a
given channel. Based solely on these two notions, numerous observational semantics
can then be de�ned.

4.1.1 Abstract reduction systems

We begin with a very general de�nition of reduction-based systems, which we use in
this chapter to minimize our dependence on speci�c syntaxes or semantics as we de�ne
our hierarchy of equivalences.

De�nition 4.1 An abstract reduction system (ARS) is a triple (P;!; #x), where P
is a set of terms, ! � P �P is a relation on terms, and #x is a family of predicates
on terms.

The reduction relation induces a few standard properties used in further discus-
sions: a process P is stable when it has no reduction (P 6!); a process has a divergent
computation when it has unbounded sequences of reductions (8n:P !n); a process
diverges when it has no �nite sequences of reductions (not P !� 6!); for example the
join-calculus process repl 0 = def �hi . �hi in �hi reduces to itself, and thus diverges.

The observation predicates #x are usually simple syntactic properties meant to
detect the outcome of the computation, e.g., �success�, convergence, deadlock. As
usual, we adopt a su�x notation for predicates (P#x). These predicates induce an
equivalence and a preorder on terms: let P;Q 2 P be two processes; P is equivalent
to Q when they pass the same tests (8x:P#x i� Q#x); P is smaller than Q when P
passes less tests than Q (8x:P#x implies Q#x). We refer to these relations when we
say that an equivalence or a preorder is a re�nement of the observation predicates.

The most studied reduction system is probably the �-calculus, with ��-reduction
as reduction, and syntactic properties on terms such as �is in normal form�, or �is in
head-normal form� as predicates [91]. As regards concurrency, process calculi such as
CCS or the �-calculus can also be considered as reduction systems with processes as
terms and silent (�) transitions as reductions, even if their operational semantics is
traditionally obtained from richer, labeled transitions systems; in this case, the obser-
vation predicates are immediate communication capabilities�also known as the barbs

102 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

since Milner and Sangiorgi's paper on barbed bisimilarity [101]. Finally, every formal-
ism with a chemical semantics induces a reduction system with chemical solutions as
terms, and reduction up to chemical rearrangement (
��!
�) as reduction.

While ARS have little structure, the operational semantics usually provides a good
idea of what immediate communication capabilities are. Besides, minor variations in
the de�nition of observation predicates do not usually a�ect the resulting equivalences,
and thus this style of de�nition is relatively independent of the syntactic details.

Our hierarchy of equivalences is de�ned for every ARS. More particularly, all def-
initions and most results carry over the numerous variants and re�nements of the
join-calculus that we consider in this work. In Chapter 6 for instance, we use this
common framework to relate the expressive power of several calculi; we exhibit a
translation from one language to the other, and we prove that this translation is fully
abstract with regards to each instance of the same reduction-based equivalence. In
the following, we try to maintain the distinction between properties that are generic,
properties that are particular to asynchronous process calculi, and properties that are
speci�c to the join-calculus.

With respect to transition systems (LTS), which are traditionally preferred for CCS
and the �-calculus, purely reduction-based semantics lack extensional proof techniques
and models. On the other hand, ARS are simpler and more intuitive, in particular
in an asynchronous setting, or in the absence of name-testing; ARS also carry over
higher-order settings such as the �-calculus or higher-order variants of the �-calculus,
which are often proposed to model mobile agents.

In this chapter, we argue in favor of reduction-based semantics for process calculi.
Nonetheless, both approaches are complementary and it is worthwhile to obtain de-
scriptions of the same calculus both in terms of reductions in context and of labeled
transitions. When this is the case, more intuitive results can be stated, and easier
proofs can be conducted with the support of labels. In general, little is known about
how to infer good LTS from a given ARS; for instance it is hard to derive labels such
that labeled bisimulation is a congruence (see [141] for a general approach to the prob-
lem). Even in speci�c settings, a precise correspondence may be di�cult to achieve,
since one wants to capture properties initially stated in a pure reduction-based setting.
Two properties are especially interesting for the join-calculus; they are discussed fur-
ther in the next chapter: how to accommodate asynchronous semantics? [73, 16, 35]
(cf. Section 5.3); how to deal with the absence of name testing? [94, 36] (cf. Sec-
tion 5.5).

4.1.2 What can be observed in the join-calculus

Back to the join-calculus, a natural manner to distinguish processes is to look at their
basic interaction with the environment, namely emission on free names. Speci�cally,
the �rst interaction between a process and an enclosing context only depends on the
presence of pending messages sent on free names; in the absence of such messages, the
process is chemically inert. We de�ne our predicates accordingly:

De�nition 4.2 The basic observation predicate #x , also known as the strong barb
on x, detects whether a process emits on some nullary free name x:

P #x
def
= 9P 0; P � P 0 jxhi

4.1. REDUCTION-BASED SEMANTICS 103

Barbs are messages in their simplest form; they do not carry any contents; they are
just �signals�. As we shall see, the nullary restriction on barbs is not very important
for the equivalences we use; the important point is that we do not separate messages
sent on the same name but with di�erent contents, such as xhyi and xhzi.

Strong barbs may appear on free names as the result of reductions, but once a
strong barb is present, it remains stable through subsequent reductions. This sim-
plifying property is speci�c to the join-calculus; for instance it does not hold for the
�-calculus, as discussed in Section 4.6.1.

The barbs detect only the super�cial behavior of a process; a natural manner to
re�ne them is to require some congruence property.

4.1.3 Contexts and congruence properties

As we study relations among processes, an important property of related processes
is their dependence to the environment. More precisely, we are interested in equiv-
alences that provide a behavioral account of processes: two processes are equivalent
when no external observer can tell the di�erence between the two in any context. In
practice, this congruence property is the key to modular proofs, where separate parts
of protocols can be treated in separate lemmas. Hence, most of our equivalences are
congruences, either by de�nition, or as an important property.

We recall the standard de�nitions of contexts and congruences, and we set a few
notations. These de�nitions apply to each process calculus we consider, but they
depend on each particular syntax and each notion of guarded process.

De�nition 4.3 A context is a function on processes, represented by a term of the
grammar for processes extended with the special placeholder process [�].

The context C[�] maps every process P to the process C[P] obtained by substitut-
ing P for the hole [�].

An evaluation context is a context where the hole [�] occurs exactly once, and not
under a guard.

Evaluation contexts describe environments that can communicate with the process
being observed, can �lter its messages, but can neither replicate the process (as the
context repl [�]) nor prevent its internal reductions (as the context def xhi .[�] in 0).
In the join-calculus, the only guard is the join pattern; evaluation contexts are thus
de�ned by the grammar

E[�] ::= [�] P jE[�] E[�] jP def D in E[�]

We use the notation E for the set of all evaluation contexts in the join-calculus. Since
we usually consider processes up to structural equivalence, we can apply Remark 2.1
after application of a context, and thus restrict our attention to contexts of the form

E[�] � def D inM j[�]

where D ranges over de�nitions and M ranges over parallel compositions of messages.
In CCS and in the �-calculus, evaluation contexts are often named static con-

texts [97]. Notice that parallel composition plus hiding (which is the evaluation con-
text for CCS) would not be enough here, because in P jQ the processes P and Q

104 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

cannot de�ne names that appear in the other process as free variables: with parallel
composition alone, there is no interaction. Later in the chapter (Section 4.8.4, and
speci�cally Lemma 4.39), we show that parallel composition in a single particular con-
text is enough. Besides, parallel composition alone will be shown su�cient in the open
join-calculus presented in the next chapter.

We sometimes use more general contexts (e.g., with several distinct placeholders),
but this makes little di�erence in our case, as generalized contexts preserve equivalence
that are congruence for regular contexts by transitivity.

Application of contexts to processes is naturally lifted to the application of contexts
to relation: for R � P � P, and for a set of contexts C, we let

C [R]
def

=
�
(C[P]; C[Q]) j C 2 C and P R Q

	
Next we use this notation to de�ne congruence properties:

De�nition 4.4 Let C be a given set of contexts. A precongruence is a preorder R
such that C[R] � R. A congruence is a relation that is both a precongruence and an
equivalence.

The congruence of an equivalence relation R is the largest congruence that is in-
cluded in R; this congruence consists of all pairs of processes P;Q 2 P such that for
all C 2 C we have C[P] R C[Q].

For every set of contexts, the congruence operator clearly preserves inclusion of
relations and is idempotent as soon as these contexts contain the identity [�]. This
provides many simple inclusions in our hierarchy of congruences, and this will be useful
in co-inductive de�nitions.

By default, all congruence properties are stated for evaluation contexts only. In
particular, we use the notationR� for the congruence ofR for all C[�] 2 E . Conversely,
we explicitly name �full congruence� a congruence for all contexts.

As the usual equivalences are all congruences, in the following we use plain relation
symbols (', �, �, : : :) for them, and dotted relation symbols for non-congruence
sibling relations (

.
',

.
�,

.
�, : : :).

4.1.4 Weak semantics

We are mostly interested in equivalences that are insensitive to the number of internal
reduction steps�unless, of course, they induce other visible e�ects. We say that a
semantics is weak when it is de�ned only in terms of sequences of reductions !�

instead of single reductions !. We de�ne weak observation predicates accordingly:

De�nition 4.5 The may predicate +x�also known as the (weak) barb on x�detects
whether a process may satisfy the basic observation predicate #x , possibly after per-
forming a sequence of internal reductions.

P +x
def
= 9P 0; P !� P 0 #x

In general, weak barbs may disappear as the result of some internal choice, but
the absence of a weak barb is stable through reduction. For instance, the process
xhi � yhi � 0 has two weak barbs +x and +y .

4.1. REDUCTION-BASED SEMANTICS 105

Weak equivalences are harder to deal with, but they re�ect some natural properties
of distributed asynchronous systems, as it makes little sense to count the number
of local steps of computation in a distributed system. Said otherwise, an observer
should not be given a discriminating power that compares the relative speed of several
implementations, because that would assume the use of a global clock.

Weak equivalences abstract over in�nite sequences of reduction, and thus equate
stable processes and divergent processes. They also raises technical complications
such as the issue of fair computations, even for processes equivalent to processes with
�nite behavior. Hence, weak equivalences are insensitive to termination; again, this
choice is consistent with our setting. Distributed termination is usually considered as
a global property that is hard to achieve [53], and that cannot easily be detected by
an observer. The problem of termination is more relevant for sequential calculi, or for
studying single-machine implementations of process calculi [140].

4.1.5 On barbs and contexts

We conclude our preamble on weak reduction-based semantics by a discussion of al-
ternate de�nitions of observation. So far, we assumed a distinct predicate #x for every
nullary name, but there are other natural choices. We brie�y consider some variations.

In the initial paper on barbed equivalences [101], and in most de�nitions of testing
equivalences, a single predicate is used instead of an indexed family. Either there is a
single observable action !�which would correspond in our case to a single observable
message !hi�or all barbs are collected by an existential predicate. Accordingly, for
every family of observation predicates (e.g., +x), we de�ne an existential observation
predicate that tests any of these predicates (P + def

= 9x:P +x). This in turn induces
existential variants for all our equivalences.

Further choices of tests are also possible. We may wish, for instance, to test for
the presence of messages on n-ary channels, or the simultaneous presence of several
barbs; for instance, the x-and-y barb +x ;y

def

= !� (#x ^ #y) is more demanding than
the conjunction +x ^ +y , as can be seen by comparing the processes xhi � yhi and
xhi � yhi � (xhi j yhi).

It seems that these variations would introduce a variety of unrelated equivalences,
but this is usually not the case for weak congruences. For instance, the congruence
property allows the use of contexts that restrict all free names but one, and thus
recover +x from +, and conversely we have P + if and only if P +x for some x 2 fv[P].
Likewise, simple contexts can be used to transform join predicates into simple barbs:
let J be an arbitrary join-pattern, and let +J be the observation predicate that detects
whether this join-pattern could be triggered in an enclosing de�nition. The context

TJ [�]
def

= def J . thi in [�]

converts this elaborate barb into a single barb on t 2 N0, since for every process P
that does not have t as free variable we have P +J if and only if TJ [P] +t .

That is, the exact form of the barbs seems irrelevant for all weak equivalences
that are congruences at least for evaluation contexts, and provided there is at least
one discriminating predicate. This remark is treated more abstractly by Honda and
Yoshida in [73], where a �soundness� condition precisely ensures that every sound
equivalence separate at least two processes.

106 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

The situation is more controversial when the de�nition of equivalence does not
directly require both the congruence property and the respect of all barbs. With
bisimulations for instance, this may induce signi�cant di�erences. The problem oc-
curs in the original formulation of barbed bisimulation congruence; it is discussed in
Section 4.4.

4.2 Testing semantics

As regards discriminating power alone, it su�ces to test the observation predicates
under all possible contexts. The resulting testing semantics is relevant to many prac-
tical issues in distributed programming; it makes sense from a programming point of
view, when barbs are interpreted as, e.g., print statements. Note that we detect the
presence or the absence of messages after executing the process in context; we are not
interested in intermediate states, or in the internal branching structure of processes.

Testing semantics have a long history; they can be traced back to Morris equiva-
lence for the �-calculus [104], where two �-terms are equivalent when they have normal
forms in the same contexts. Testing semantics have been thoroughly investigated in
concurrency; they have been proposed for CCS in [51, 66, 97], with parallel composi-
tion with arbitrary processes as observers, and with both axiomatic characterizations
and denotational semantics. They have also been extended to the �-calculus in [67, 34],
and more recently to the join-calculus [83].

A testing semantics is usually de�ned as a preorder relation v, the corresponding
equivalence being v \ v�1. The preorder v is commonly interpreted as the �correct
implementation� relation: the implementation can rule out some traces, but not ex-
hibit traces whose behavior is not captured by the speci�cation. Anticipating on the
next sections, this preorder-based de�nition is an advantage of testing equivalences
over bisimulation-based equivalences, where the simulation preorders do not capture
bisimulation equivalences. In order to establish testing equivalences, however, one
must cope with quanti�cation over both contexts and traces, which makes the proofs
particularly di�cult [83].

In general, a test is an observer plus a way of observing; here, the set of observers is
de�ned as the set of all evaluation contexts and the way of observing is de�ned in terms
of the barbs +x . In a non-deterministic setting, we can decompose testing semantics
as the intersection of two coarser equivalences: may testing and must testing. May
testing detects whether there is a successful interaction between the context and the
process. Must testing detects whether all interactions are successful.

De�nition 4.6 The may testing preorder vmay is the largest precongruence that re-
spects the barbs +x ; may testing equivalence 'may is the largest congruence that re-
spects the barbs +x :

P vmay Q
def
= 8C 2 E ; x 2 N0 : C[P] +x implies C[Q] +x

P 'may Q
def
= 8C 2 E ; x 2 N0 : C[P] +x if and only if C[Q] +x

Typical examples of may-testing properties are, for any process P , 0 vmay P (if a
deadlocked process passes a test, then all processes pass this test) and P � 0 'may P

4.3. FAIR TESTING 107

(may-testing is not sensitive to deadlock). Conversely xhui 6'may xhvi because the
test (def xhui . uhi in [�]);+u distinguishes the two messages.

Since an arbitrary substitution can be rendered by a context that entirely consists
of forwarders, the may-testing preorder is clearly preserved by substitution on free
names. Hence, it is straightforward to show that may-testing preorder is a full pre-
congruence. We prove by induction that for all general context C[�], if P vmay Q and
C[P] !�#x using at most n copies of P , then C[Q] +x . If C[P] !� C 0[P; P�] !�+x
where C 0[P; �] is an evaluation context and the last series of derivation triggers at most
n further copies of P , then by induction hypothesis applied to the context C 0[� ; P�],
we have C 0[Q;P�] +x and, since P� vmay Q�, C 0[Q;Q�] +x .

May testing is most useful to prove safety requirements: the speci�cation of a pro-
gram states that bad things should never happen, these bad behaviors are detected by
a family of contexts that test for such behaviors and manifest their presence by emit-
ting speci�c messages, and correctness is captured by may-testing in these contexts.
For example, may testing is adequate to specify security properties in cryptographic
protocols [3, 5, 4]. Note, however, that this negative usage of barbs does not tell much
about the presence of suitable behaviors.

A complementary approach is to look at messages that are always emitted, inde-
pendently of the internal choices. Indeed, another common family of derived obser-
vation predicates discriminates processes according to outputs that appear in every
execution.

De�nition 4.7 The must predicate #�x detects whether all stable derivatives of a
process exhibit the basic observation predicate #x .

P #�x
def
= 8P 0; if P !� P 0 6!; then P 0 #x

The must testing equivalence 'must is the largest congruence that respects the must
predicates:

P 'must Q
def
= 8C 2 E ; x 2 N0 : C[P] #�x i� C[Q] #�x

Must testing is not very interesting in our case, because it is sensitive to the
presence of diverging computations. This is sometimes referred to as the �catastrophic
interpretation� of in�nite computation, as indeed the must predicate does not say
anything about the partial outcome of such computations. For instance, if R is a
diverging process, we immediately have P jR 'must Q jR for all processes P and Q.

A more tempting equivalence would beMorris equivalence 'must\'may, the largest
congruence that respects both may- and must- predicates, but again the treatment of
diverging computations is not very satisfactory.

We refer to [83] for a detailed study of may and must testing in the join-calculus,
including examples and stronger context lemmas.

4.3 Fair testing

In order to capture the positive behavior of processes with potentially in�nite com-
putations, we strengthen the must predicate of the previous section. The resulting
fair-must predicate incorporates a notion of �abstract fairness�, and induces an inter-
esting tier between may-testing and bisimulations.

108 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

De�nition 4.8 The fair-must predicate +�x detects whether a process always retain
the possibility of emitting on x.

P +�x
def
= 8P 0; if P !� P 0; then 9P 00; P 0 !� P 00 #x

This predicate is also if P !� P 0, then P 0 +x , and it entails the stronger statement
if P !� P 0, then P 0 +�x . Thus, the set fx j P +�xg increases as P performs
reductions. This property holds for any ARS, while the similar property for strong
barbs is proper to the join-calculus.

For processes whose computations are all �nite, must predicates and fair-must
predicates coincide; intuitively, the latter predicates can be considered as must-testing
on all fair traces instead of on �nite traces only. We summarize below the relative
strengths of our predicates:

� in general, #x implies +x , and +�x implies both +x and #�x ;

� in the join-calculus, #x also implies +�x and #�x .

As can be expected, fair testing equivalence is the testing semantics induced by
our new observation predicates:

De�nition 4.9 The fair testing preorder vfair and fair testing equivalence 'fair
are the largest precongruence and congruence, respectively, that respect the fair-must
predicates +�x :

P vfair Q
def
= 8C 2 E ; x 2 N0 : C[P] +�x implies C[Q] +�x

P 'fair Q
def
= 8C 2 E ; x 2 N0 : C[P] +�x if and only if C[Q] +�x

The particular notion of fairness embedded in fair testing deserves further expla-
nations: the fair-must predicate does not describe any reduction strategy; it only says
that it is always possible to perform reductions that eventually emit on x. Nonethe-
less, we can interpret the barb +�x as a successful observation �the message xhi is
eventually emitted�. As we do so, we consider only in�nite traces that emit on x and
we discard all other in�nite traces. This is precisely a model of fair traces for a very
strong notion of fairness. For example, we have the fair testing equivalence:

def
thi . xhi

^ thi . thi
in thi 'fair xhi

where the �rst process provides two alternatives in the de�nition of t: either the mes-
sage xhi is emitted, or the message thi is re-emitted, which reverts the process to its
initial state. It is possible to always select the second, stuttering branch of the alterna-
tive, and thus there are in�nite computations that never emit on xhi. Nonetheless, the
possibility of emitting on x always remains, and any fair evaluation strategy should
eventually select the �rst branch.

4.3. FAIR TESTING 109

Related works This approach to fairness has been previously advocated for several
CCS-like process calculi equipped with trace-based semantics [42, 105, 43]. In [42],
Brinksma et al. introduce a similar notion of should-testing, and compare it to their
previous notions of fair testing for CCS. They independently remark that weak bisim-
ulation equivalence incorporates a particular notion of fairness. They identify the
problem of gradual commitment, and in general of sensibility to the branching struc-
ture, as an undesirable property of bisimulation. They discuss in detail the relation
between should-testing and the so-called Koomen's Fair Abstraction Rule found in
axiomatizations of CCS, and they establish that (bisimulation-based) observational
equivalence is strictly �ner than should-testing.

Independently, a fair testing scenario is proposed by Natarajan and Cleaveland
in [105] to deal with divergent behaviors. The authors argue that fairness is crucial
to deal with �distributed, fault-tolerant systems�; in this setting, they model proto-
cols that use a lossy medium. Informally, the medium may lose some messages, but
certainly not all of them. In a join-calculus setting, the lossy medium example is
reformulated into the equation:

def
xhi .R

^ xhi . 0
in repl xhi 'fair repl R

The process on the right�the speci�cation�repeatedly �res copies of process R; the
process on the left�its implementation through a lossy forwarder�attempts to do
the same by repeatedly sending messages xhi to start R, but every such message can
be discarded. There is in fact a much �ner labeled bisimulation relation between the
two processes, whose co-inductive proof is immediate, but nonetheless this equation
is best explained in terms of fairness in the choice of the reaction rule being triggered
whenever a message on x is consumed. The authors also study in detail the well-
known alternating bit protocol in CCS, and they provide several characterizations of
fair equivalence on traces. They �nally provide a simulation-based su�cient condition
to establish fair equivalence (which is hard to establish otherwise), along with the
remark that fair equivalence is strictly coarser than bisimulation-based equivalences.

4.3.1 Fair testing versus may testing

Fair testing is not related to must testing; for instance we have, for every processes
P , Q, and for every diverging process
 with no free variables, P vmust Q j
 because
the latter process passes all tests; the situation is di�erent with fair testing, where

is invisible: in every context, reductions that are internal to
 commute with all other
reductions, and thus Q j
 'fair Q.

Fair testing is seemingly unrelated to may testing, but is actually �ner (vfair �
v�1may); the inclusion is strict, since for instance we have xhi 6vfair xhi � 0. Said
otherwise, fair-must testing and Morris-style testing with abstract fairness coincide:

Lemma 4.10 In the join-calculus, fair testing equivalence is the largest congruence
that re�nes both may predicates and fair-must predicates.

This property also holds in CCS, in the asynchronous �-calculus, and for Actors,
where a more operational fair testing equivalence is proposed as the main semantics

110 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

in [12]. The argument is the same for all these calculi: a family of contexts encodes
the may predicate +x in terms of fair must predicates.

Proof: We �rst prove that there is an evaluation context C[�] such that, for all
processes P , we have P +x i� C[P] 6+�y up to renaming.

For x; y 2 N0, let C[�] be the context de�ned as follows:

C[�]
def

= def rhzi j oncehi . zhi in
�
rhyi j oncehi j def xhi . rhxi in [�]

�
This context binds x and uses non-determinism to transform the presence of a barb +x
on this name into the absence of a barb +�y on another name y. Let P be a process such
that once ; r; y 62 fv[P]. The process C[P] initially contains a single message oncehi,
and never re-emits such messages; thus, the rule rhzi j oncehi . zhi is triggered at most
once. There are two possibilities: either the context consumes its own message rhyi
and exhibits a barb on y, or, inasmuch as some message rhxi is present, the context
consumes rhxi and silently becomes inert.

For every process P , we choose names once ; r; y 62 fv[P]. If P !� P 0 #x , then
C[P]!� C[P 0]!!6+y where the two last reductions �rst receive the message on x and
replace it by rhxi, then synchronize it with oncehi and thus withdraw the possibility
of sending a message on y. Therefore, C[P] 6+�y . Conversely, if P never emits any
message on x, it does not interact with the context; the synchronization rhyi j oncehi
described above always remains enabled until it occurs, and thus +�y .

For a given pair of processes P and Q such that P vfair Q, we now prove that
Q vmay P . Let C 0[�] be an evaluation context and x a name. We have C 0[Q] +x
i� C[C 0[Q]] 6+�x , so C[C 0[P]] 6+�x and C 0[P] +x . We therefore obtain the inclusion
vfair � v

�1
may, and thus 'fair � 'may. �

Overall, fair testing is adequate to deal with distributed systems; it is stronger
than may-testing, detects deadlocks, but remains insensitive to livelocks; in [43], for
instance, other distributed communication protocols are studied using the fair-testing
preorder as an implementation relation.

Note, however, that �abstract fairness� departs from the liveness properties that are
typically guaranteed by implementations (cf. for instance the scheduling policy of our
prototype [59]). From a programming language point of view, a full implementation
of abstract fairness would be able to select a fair trace for any process; in particular, if
P +�x then the execution of P must eventually emit on xhi. Unfortunately, it is easy
to code hard problems as processes that emit the message xhi in case of success, and
it seems that any evaluation strategy that guarantees abstract fairness would have to
explore most�if not all�reduction sequences.

Fair testing su�ers from another drawback: the proofs are di�cult because of the
traces. As we shall see, the redeeming feature of fair testing is that it is coarser than
barbed congruence, which provides practical proof techniques for it. More precisely,
we provide an alternate characterization of fair testing in terms of coupled simulations
in Section 4.5.

4.4 Barbed Congruence

Initially proposed by Park [115] and by Milner for CCS [96] in a labeled setting, bisim-
ulations have somehow become a standard semantics in concurrency theory. Indepen-

4.4. BARBED CONGRUENCE 111

dently of their intrinsic merits, bisimulation-based equivalences o�er several technical
advantages. Foremost, the proofs are simple and elegant; they proceed by identifying
pairs of equivalent states of processes, and a case analysis of their reductions. Hence,
one needs to consider only a few reduction steps instead of whole traces. Accordingly,
automated veri�cation is signi�cantly simpler than for trace-based semantics thanks
to partition-re�nement algorithms [65]. Besides, numerous sophisticated techniques
lead to smaller candidate bisimulations, and to more modular proofs (see, e.g., [131],
and Section 4.7).

The de�nitions are standard; we brie�y recall them. The reader should refer to,
e.g., [97, 101] for discussion and examples.

De�nition 4.11 (Simulation, bisimulation) Let (P;
�
�!) be a LTS, and R be a

relation on processes. R is a strong simulation when for all processes P;Q, for every
label �, if P

�
�! P 0, then for some Q0 we have Q

�
�! Q0 and P 0 R Q0. R is a strong

bisimulation when both R and R�1 are strong simulations.

Let also � be a particular label associated with the transition !, which represents
silent reductions, and let)� be the � -saturated transition system induced by

�
�! (i.e.,

the transition system with silent transitions !�
� and transitions !� ��!!� for every

� 6= �). R is a weak simulation (resp. bisimulation) when it is a strong simulation
(resp. bisimulation) for the � -saturated system (P;)�).

We will consider labeled bisimulations for the join-calculus in the next chapter.
For the time being, we instantiate this de�nition to reduction-based systems (no label
� 6= �). In the whole chapter, simulations and bisimulations are therefore weak
reduction-based relations when left unspeci�ed.

In our quest for natural equivalences, a �rst attempt would be to consider the
largest reduction-based bisimulation, but this notion is degenerate for lack of basic
observations, and relates all pairs of processes. If we also require that the bisimulation
re�ne the barbs, we obtain the classical notion of barbed bisimulation [101], initially
proposed for CCS but easily adapted to many other calculi [111, 16, 73, 130, 109].

De�nition 4.12 (Barbed bisimilarity) Let (P;!; #x) be an ARS and R be a re-
lation on processes. R is a barbed simulation when it is a (reduction-based) simulation
that re�nes the barbs: for all +x , if P R Q and P +x , then Q +x . R is a barbed
bisimulation when both R and R�1 are barbed simulations.

Barbed bisimilarity
.
� is the largest barbed bisimulation.

Strong barbed simulation, bisimulation, and bisimilarity are respectively de�ned
by substituting strong simulation for simulation and strong barbs #x for weak barbs +x
in the above de�nition. Strong barbed bisimilarity is written .

�.
As a reduction-based equivalence, barbed bisimilarity can be used to de�ne sensible

behavioral equivalences on di�erent process calculi; it is usually considered as the best
mix between semantics from functional theory and from concurrency theory. This is
the approach chosen in this dissertation.

In contrast with our previous equivalences, it is well-known that bisimulations
reveal the internal branching structure of processes, and are in general �ner than
testing semantics. Internal choices are revealed only inasmuch as they can be separated

112 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

according to the barbs. For instance, we have xhi � (xhi � yhi)
.
� xhi � yhi, which is

easily proven by checking that the relation�
fxhig; fyhig; fxhi � yhi; xhi � (xhi � yhi)g

	
is a bisimulation and respects the barbs. Conversely, we have xhi � (yhi � zhi) 'fair
(xhi � yhi) � zhi but these processes are not barbed bisimilar, because the choice
between the three outputs is not performed atomically. As in [117], we refer to this
situation as gradual commitment.

Co-inductive de�nitions and testing equivalences are not entirely unrelated, though.
For instance, barbed similarity is the preorder induced by the weak barbs: this pre-
order obviously respects the barbs; it is also a weak simulation because any reduction
is simulated by the absence of reductions on the other side. Therefore, the congruence
of barbed similarity is an alternate characterization of the may testing preorder 'may;
this provides a convenient proof technique for may-testing equivalence.

Barbed bisimilarity also respects the fair predicates +�x . Let us assume that
P and Q are two processes such that P

.
� Q and P +�x . Then every sequence

of reductions Q !� Q0 can be simulated by P !� P 0 � Q0, and for every such
sequence P +�x implies P 0 +x . As P 0

.
� Q0, Q0 also has a barb on x, and thus

Q +�x . Note that we successively used the barbed simulation properties of
.
� in both

directions, which re�ects the alternation of quanti�ers in the de�nition of fair testing.
In Section 4.5, we use a coarser, simulation-based equivalence that still allows this
round trip (Lemma 4.17).

4.4.1 Diagrams

In order to reason about processes and their transitions, it is convenient to visualize
their relations in diagrams, instead of writing formulae with numerous quanti�ers.
The notation is standard.

A diagram consists of nodes that represent processes, linked by labeled edges that
represent relations among processes. Every diagram states a property, with the follow-
ing conventions: solid edges // stand for universally-quanti�ed relations (i.e. the
premises) and dotted edges // stand for existentially-quanti�ed relations (i.e.,
the conclusions). Processes on nodes can be left implicit, can be named for reference,
and can be given a speci�c form.

For instance, the two following diagrams express that the relation R is a (weak,
reduction-based) bisimulation:

�

��

R

�

��R

and

�

��

R

�

��R

4.4.2 About co-inductive de�nitions

Our diagrams can also be read as the de�nition of functionals F on relations among
processes: F(R) is the largest relation such that all diagrams are valid when F(R)

4.4. BARBED CONGRUENCE 113

replaces R on solid edges, and R still appears on dotted edges. Then, it is easy to
check on the shape of the diagrams that F is monotonic, and that R matches the
diagrams i� it is a pre-�xed-point of F (R � F(R)).

Apart from diagram-based properties, the de�nition of an equivalence may also
require congruence properties and observational properties, which can be lifted to the
de�nition of F as well. For congruence properties, we require that C[F(R)] � R;
for predicate-based properties, that F(R) � �, where � is the partition induced by
the predicates under consideration. These properties and their conjunctions still yield
monotonic functionals.

Such monotonic functionals have a greatest �x-point, which is the union of all their
pre-�xed-points. In order to establish that processes are related by this �x-point, it
su�ces to build a relation R and to check that it is a pre-�xed-point of F . For every
bisimulation-based equivalence that we de�ne, this uniformly establishes that the cor-
responding bisimilarity is an equivalence relation�in particular that it is transitive�
and this provides a co-inductive proof technique to establish this bisimilarity. We omit
this general argument in the following.

4.4.3 The two congruences

Barbed bisimilarity alone lacks some discriminating power; for instance, xhui
.
� xhvi

but xhui 6'may xhvi. Some additional congruence property is called for, but a technical
problem arises: there are at least two sensible ways of ensuring congruence:

� we can take the largest congruence
.
�� contained in the largest barbed bisim-

ulation
.
�; this is the two-stage de�nition usually chosen for CCS and for the

�-calculus [101, 130, 16];

� or we can take the largest barbed bisimulation that is also a congruence �; this
is the equivalence chosen for the �-calculus [71, 73, 72] and for the join-cal-
culus [55, 57, 35, 2]

By de�nition, congruences of bisimilarities are coarser than congruence-bisimulations:
we have � �

.
�, hence �� �

.
�� and, since � = �� by de�nition, � �

.
��. In

the opposite direction,
.
�� is a congruence that respects the barbs, and thus the two

relations coincide if and only if
.
�� is a bisimulation, but this is not necessarily the

case in general. The two diagram below emphasize the di�erence between the two
de�nitions. Once the context C[�] has been applied on the left, the stable relation
.
� is a bisimulation, and not a congruence. On the contrary, the bisimulation-and-
congruence relation � on the right retains the congruence property after matching
reductions, and allows further application of contexts after reductions.

P
.
��

Q

C[P]

��

.
�

C[Q]

�

��

T
.
�

T 0

is coarser than P
�

Q

C[P]

��

�
C[Q]

�

��

T
�

T 0

114 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

Fortunately, the two de�nitions yield the same equivalence in our setting. The
proof is surprisingly di�cult; it is detailed in Section 4.8.

Theorem 3 In the join-calculus, we have � =
.
��.

Even as the two congruences semantically coincide, the two de�nitions still provide
two di�erent co-inductive proof techniques. For example, when comparing fragments
of the same calculus

.
�� may be better because the congruence for contexts of the

larger fragment is applied once for all; conversely, � often leads to simpler proofs,
because interaction with the context is more abstract, and can be decomposed into
successive exchanges of messages: after every reduction, the context may change, but
remains in the class of the bisimulation-congruence being established. Besides, this
de�nition is more stable than the other one to variations in the de�nition of barbs.
This proof technique is illustrated at the end of this chapter, and in the next chapters.
In accordance with our preferred proof technique, we choose the following �main�
de�nition of equivalence:

De�nition 4.13 Barbed congruence � is the largest equivalence relation that meets
the following requirements:

1. � is a re�nement of the predicates +x ;

2. � is a congruence;

3. � is a weak bisimulation.

This de�nition corresponds to Honda and Yoshida's de�nition of sound reduction-
based equivalence [73], where soundness is the existential variant of 1., and reduction-
based means the conjunctions of 2. and 3..

The next lemma states that full congruence is not more discriminating than evalua-
tion congruence (in the absence of name-matching). The important property is closure
under substitution on free names; the full congruence property is then guaranteed.

Lemma 4.14 Barbed congruence � is preserved by substitution on free names, and
is a full congruence.

Proof: Let S � N be a �nite set of names, and let � be a substitution from S to
N n S. We use the context

C[�] = def
V
x2S xhevi .(x�)hevi in [�]

and we prove the equivalence P� � C[P].
For all P � Q, and for every substitution �, we let S = fv[P] [fv[Q] and we

apply the result above for two substitutions �1 and �2 such that � = �1�2 and all
intermediate names are fresh. We conclude by transitivity of �.

To prove the second part of the lemma, we establish that � is closed for de�nitions;
we consider the relation

R = f(def J . P ^ D in R; def J .Q ^ D in S) j P � Q and R � Sg

and we establish that R � �. By de�nition, R is a congruence for evaluation contexts.
R preserves the barbs: to exhibit a given barb we use only a �nite number of copies of
the guarded processes. R is a bisimulation: for reductions that do not fork a new P ,
this is obvious; otherwise, we have R jP� � S jQ�. �

4.5. COUPLED SIMULATIONS 115

4.4.4 Single-barbed bisimulation

We study the variant of bisimilarity
.
�9 de�ned as the largest bisimulation that respects

the single barb +. This equivalence turns out to be very coarse; it separates only three
classes of processes.

Lemma 4.15 Single-barbed bisimilarity
.
�9 partitions the processes of the join-cal-

culus into the three classes de�ned by the predicates +�, 6+, and +^ 6+�.
The congruence of single-barbed bisimilarity is fair testing (

.
��9 = 'fair).

The simple model of
.
�9 is depicted below, with reductions between classes and an

example process in each class.

xhi � 0

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

}}zz
zz
zz
zz
zz
zz
zz
zz
zz

xhi 0

This result is in sharp contrast with Theorem 3: the existential barbed congru-
ence �9 is clearly equal to the barbed congruence � (cf. Section 4.1.5). Hence, we
obtain a �rst example where both styles of congruence de�nitions yield distinct rela-
tions: 'fair =

.
��9 6= �9 = �. The situation in the �-calculus is far more exotic; it is

described in Section 4.6.1.

Proof: The three predicates of the lemma induce a partition on join-calculus pro-
cesses; let R be the corresponding equivalence relation.

We prove that R �
.
�9 by showing that R is a single-barbed bisimulation.

R respects the barb + by construction: it re�nes f+,6+g by splitting the �rst class
in two, according to the predicate +�, which always implies +.
R is a weak bisimulation: the two classes +� and 6+ are closed by reduction and

processes in these classes are trivially bisimilar; besides, processes in the upper class
always have series of reductions leading to both lower classes (P + is P !�# and
implies P !�+�; P 6+� is P !� P 0 6+), and thus for every pair of processes P R Q, for
every reduction P !� P 0, we exhibit a Q0 in the same class of P 0 such that Q!� Q0

and P 0 R Q0, for each of the three classes.
Conversely,

.
�9 separates the three classes of R, hence

.
�9 � R.

To obtain the second statement of the lemma, we remark that R� is exactly fair-
must-and may testing, and thus R� = 'fair;9 by Lemma 4.10. The number of barbs
makes no di�erence in the de�nition of fair-testing (cf. 4.1.5), and thus

.
��9 = R� =

'fair;9 = 'fair. �

4.5 Coupled simulations

The ability of discriminating processes according to their internal choice points is a
mixed blessing, because many intuitively correct protocols do not preserve all these
internal choices.

116 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

To address this issue, Parrow and Sjödin introduce coupled simulations, a simula-
tion based equivalence that slightly relaxes the bisimulation clauses to handle these
protocols. We adapt coupled simulations to our reduction-based setting, and we study
its basic properties.

Alternatively, we could study these protocols by backtracking from barbed con-
gruence to the lower tier in our hierarchy, namely fair-testing. This makes the relation
between fair testing and coupled simulation intriguing, especially as these equivalences
have been independently introduced to handle the same issue.

In general, fair testing is coarser than the congruences of coupled simulations,
yet these equivalences can be made to coincide in the join-calculus, which somehow
reconcile testing semantics and bisimulation-based semantics in an intermediate tier
that hosts both kinds of equivalences. Interestingly, we obtain this result by using an
explicit model of coupled simulations.

4.5.1 Internal choice and gradual Commitment

Coupled simulations is a device introduced by Parrow and Sjödin to address the is-
sue of gradual commitment in multi-way synchronization protocols [117]. The main
advantage of this equivalence is that it retains co-inductive proof techniques: quot-
ing the authors, �coupled simulation equivalence can be established by case analysis
over single reduction steps, and yet does not require an exact correspondence between
choice points in computation�. More generally, coupled simulations is presented as
a key equivalence for distributed systems, where atomic steps are implemented as a
negotiation between distributed components. This is exactly what happens in the
encoding of the choice operator presented in [109].

Their setting, however, is quite di�erent from ours; they are mostly interested in
divergence-sensitive equivalences for CCS, with a labeled semantics. They position
coupled simulation strictly between may-testing and observational equivalence. In a
second paper [118], they provide a complete axiomatization as the one for observational
equivalence plus the additional axiom �:(�:P + Q) = �:P + Q (in every context),
which exactly says that internal choices can be �attened, and is still weaker than the
additional axiom for trace equivalence �:P+Q = P+Q. Accommodations for diverging
computations are considered in [118]; they propose a variant named weakly-coupled
equivalences. We adopt its reduction-based counterpart.

De�nition 4.16 A pair of relations 6;1 are coupled simulations when 6 and 1�1

are two simulations that satisfy the following coupling diagrams:

P
6

1

Q

�

��

Q0

P
1

�

��

Q

6

P 0

A relation R is a barbed coupled equivalence when there is a pair of coupled
simulations (6;0) that respect the barbs +x and such that R = 6 \1.

4.5. COUPLED SIMULATIONS 117

The union of all barbed coupled equivalences is named barbed coupled similarity,
and is denoted

.
7; it is also the coupled equivalence obtained from the largest coupled

simulations.

The last statement of the de�nition�in particular the transitivity of
.
7�can be

derived by the argument given in Section 4.4.2.
In the special case where 6 = 1, the coupling diagrams are always veri�ed, and we

recover the de�nition of weak bisimulation. In particular we have
.
� �

.
7. Typically,

the discrepancy between 6 and 1 is most useful to describe processes that are in a
transient state, bisimilar neither to the initial state nor to any �nal state. For instance,
we have the diagram

(P �Q)�R
7

��

P � (Q�R)

��

P �Q

��

6
oooooooooooooo

1

P
7

P

where the dotted relations emphasize the coupling requirement on the simulation be-
tween P �Q and P � (Q�R).

In the initial de�nition of coupled simulations of [117], coupling (6\1) is required
only for pairs of stable processes. Our de�nition is more demanding, since whenever
Q 6! the coupling requirement on P 6 Q becomes P 1 Q, and thus also P

.
7 Q.

The next lemma states that barbed coupled simulations also re�ne fair-must barbs.
Its proof uses simulation in both directions, which somehow re�ects the alternation of
quanti�ers in the de�nition of fair-must barbs,

Lemma 4.17 Let 6;1 be a pair of barbed coupled simulations. For all processes P
and Q, for all x 2 N0, if P 1 Q and P +�x , then Q +�x .

In particular, 1� � vfair, and
.
7
�
� 'fair.

Proof: With the hypotheses of the lemma, if Q !� Q0, these reductions can be
simulated by P !� P 0 1 Q0. By coupling, we also have P 0 !� P 00 6 Q0. By de�nition
of the fair-must predicate +�x , we have P 00 +x . Finally, 6 respects the barbs, and
thus Q0 +x . �

The �upward reduction closure� � is an example of relation that is both a coupled
barbed simulation and a precongruence. More generally, we state a proof technique
that we use later on to reduce the size of candidate coupled simulations as we establish
coupled similarities.

Lemma 4.18 (coupled simulations up to reductions) Let (6;1) be a pair of re-
lations on processes such that

1. if P +x and either P 6 Q or Q 1 P , then Q +x ;

118 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

2. we have
6

�

��

�

��1= � //

and
1

�

��

�

��oo � 6=

Then (�6=;1=!�) is a pair of barbed coupled simulations and we have 6 \ 1 �
.
7.

Proof: as the statement is symmetric, we only check the properties of �6=.

1. the relation � respects weak barbs, and so does 6 by the �rst hypothesis.

2. we separately obtain the coupling diagrams for � and �6. The coupling
from P � Q to P !� Q0 is immediate, because we can use the same series of
reductions to close the diagram for Q0 = P . The coupling from �6 to 1=!�

is the �rst diagram of the lemma.

3. closure by reduction on the left trivially ensures that �6 is a simulation. We
compose reductions on the left, and we perform no reduction on the right. �

4.5.2 The two congruences yield distinct equivalences

As for weak bisimulation, we can either add precongruence requirements to the def-
inition of barbed coupled simulations and thus obtain a barbed coupled-simulations
congruence (denoted 7 in the following), or take the largest congruence that is con-
tained in barbed coupled similarity (denoted

.
7
�
).

By de�nition, we have that 7 �
.
7
�
, but in fact

.
7
�
is not a coupled simulation,

and we have:

Lemma 4.19 7 is strictly �ner than
.
7
�
.

Proof: The di�erence appears as soon as internal choices are spawned between visible
actions. The counter-example is especially simple in asynchronous CCS, where we
compare the processes a:b� a:c and a:(b� c):

a:b� a:c 67 a:(b� c): Let us assume that we had a:b�a:c 7 a:(b� c). The reduction
a:b � a:c ! a:b is simulated by no reduction on the other side, and as the two
processes are stable, they are also coupled: a:b 7 a:(b � c). By applying the
context �ab:(a j[�]), we obtain

�ab:(a j a:b) 7 �ab:(a j a:(b� c))

and this relation is clearly inconsistent: only the process on the right may still
emit on a free name by reducing to c in two steps.

a:b� a:c
.
7
�
a:(b� c): For every particular evaluation context C[�], however, the

visible action is replaced with potential reduction with the context. In this
example, interaction with the context is limited to reception on a; let C[�] be
an evaluation context; this context may interact with our example if and only if
there is another evaluation context C 0[�] such that C[0]!� C 0[a].

4.5. COUPLED SIMULATIONS 119

We establish the equivalence above in a mostly co-inductive style by applying
Lemma 4.18. We let 6;1 be the relations that contain the following pairs of
processes: for every evaluation context C[�],

C[a:b� a:c] 6 \ 1 C[a:(b� c)] (4.1)

and additionally, in case C[0] 6!� C 0[a],

C[a:b] 1 C[a:(b� c)] (4.2)

C[a:c] 1 C[a:(b� c)] (4.3)

In (4.2,4.3) the condition on C[�] makes all related processes behave as C[0] (up
to strong bisimulation). In particular the two requirements of Lemma 4.18 on
barbs and couplings are easily met.

In (4.1), the requirement on barbs can be reformulated as the simple may-testing
equation a:b � a:c 'may a:(b � c), but the requirement on coupling diagrams
requires some more work:

For the �rst diagram, let us assume that C[a:b � a:c] !� T . We distinguish
several cases:

1. the process a:b � a:c does not reduce; hence the enclosing context cannot
interact with this process and for some other context C 0[�] we have C[0]!�

C 0[0] and T � C 0[a:b � a:c]. The same series of reductions applied on the
other side yields the process C 0[a:(b�c)]. These two resulting processes are
still related by (4.1).

2. the process a:b� a:c reduces to, e.g., a:b, and

(a) either the enclosing context does not interact with this a:b, and instead
it reduces to a context that cannot emit on a anymore. For some C 0[�]
that has no reduction C 0[0] !� C 00[a], we have C[0] !� C 0[0] and
T � C 0[a:b]. We perform the same series of reductions from C[�] to
C 0[�] on the other side. The two resulting processes are related by
(4.2).

(b) or the context emits some a that interacts with the resulting process
a:b. In that case, C[a:(b � c)] !� T by using the same series of re-
ductions, except for the internal choice which has to be deferred until
communication on a enables it. The two resulting processes are the
same.

(c) or this interaction does not occur, but the context can still emit on
a. That is, we have T !� T 0 where the series C[a:b � a:c] !� T 0 is
obtained as in case (2b). The two resulting processes T and T 0 are
related by !�.

For the second diagram, we perform a similar case analysis, but the situation is
simpler.

1. the context does not interact with the process (which is inert in isolation);
the two resulting processes are still related by (4.1).

120 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

2. the context provides a message a that is received by the process, and

(a) either the internal choice is reduced in the following reductions. We
anticipate the right choice in the left process, then apply the same
series of reductions and obtain the same processes on both sides.

(b) or the internal choice is not reduced. We select any branch of the choice
in the left process, then perform the same series of reductions. The two
resulting processes are related by the reduction that chooses the same
branch in the right process.

The same counter-example holds in the join-calculus, for the processes

def xhi j ahi . bhi � chi in xhi j yhai

versus def xhui j ahi . uhi in (xhbi � xhci) j yhai

the proof is the same, except that extraneous pairs of processes are required to describe
how yhai provides access to ahi from the context. �

4.5.3 A model of coupled simulations

In the join-calculus, every coupled-barbed simulation that is also a precongruence is
included in 'fair, therefore we have

.
7
�
� 'fair. Surprisingly, these two equivalences

coincide, which places coupled simulations and testing equivalences in the same tier,
and pragmatically provides useful proof techniques to establish fair-testing equiva-
lences.

To show that
.
7
�
= 'fair, we describe coupled simulations in terms of classes

of processes that are entirely de�ned by the barbs +x and #x . We �rst consider a
particular family of processes whose behavior is especially simple. We say that a
process P is committed when, for all x, we have P +x i� P #x . When this is the
case, no internal reduction may a�ect the barbs anymore: let S be the set of names
fx=P #xg = fx=P +xg; for all P 0 such that P !� P 0, P 0 is still committed to S. In a
sense, P has converged to S, which entirely captures its weak behavior.

To every join-calculus process P , we associate the semantics P [2 P(P(N)) that
collects these sets of names for all the committed derivatives of P :

P [
def

=
�
S � N j 9P 0 : P !� P 0 and S = fx jP 0 #xg = fx jP

0 +xg
	

For example, 0[is the singleton f;g and (xhi � yhi)[is the pair
�
fxg; fyg

	
. As is the

case for weak barbs, P [decreases by reduction. Besides, the predicates +x and +�x

are easily recovered from our semantics:

P +x i� x 2
[
P [

P +�x i� x 2
\
P [

Let �[be the preorder de�ned as P �[Q
def

= P [� Q[. By de�nition of may
testing and fair testing, we immediately obtain that �[� � vmay and �[� � v

�1
fair.

Actually, the last two preorders coincide.

Lemma 4.20 In the join-calculus, �[
� = v�1fair.

4.5. COUPLED SIMULATIONS 121

Proof: For all �nite sets of names S and N such that S � N � N n ftg, we de�ne
the context TNS [�] as follows:

TNS [�]
def

= def

oncehi . thi
^ oncehi j(

Q
x2S xhi) . 0

^
^

x2NnS

xhi . thi
in oncehi j[�]

We show that the context TNS [�] fair tests exactly one set of names in our semantics,
that is, for all P such that fv[P] � N , we have TNS [P] +�t if and only if S 62 P [.

The �rst two clauses of the de�nition are competing for the single message oncehi,
hence at most one of the two may be triggered. The clause oncehi . thi can always be
triggered; it releases the message thi. The second clause can preempt this reduction
by consuming a message for every name in S. Independently, the third clause detects
the presence of any barb in N n S.

The predicate TNS [P] +�t is true i� all the derivatives of P keep one of the two
possibilities to emit the message thi, namely either do not have messages on all the
names in S, or otherwise can always provide a message on a name outside of S.

Let P v�1fair Q. We check that P [� Q[: we let N = fv[P][fv[Q]. For every set of

names S � N , we have S 2 P [i� TNS [P] 6+�t , which implies TNS [Q] 6+�t and S 2 Q[.
For every other set of names S, none of P [or Q[may contain S anyway.

Thus, v�1fair � �[, by precongruence property of fair-testing v�1fair � �[
�, and,

since the converse inclusion follows from the above characterization of fair barbs,
�[

� = v�1fair. �

The next remark will be useful to relate �[to
.
7:

Lemma 4.21 The set P [is never empty.

Proof: For every process P , we consider the set that contains all series of derivatives
P = P 00 !

� P 01 !
� � � � !� P 0n such that the set of strong barbs fx=P 0i #xg is strictly

increasing, and we order these series by pre�x inclusion.
For every set of names S, we have S 2 P [i� there is a maximal series of derivatives

whose last process P 0n is such that S = fx=P 0n #xg.
The set of increasing derivations de�ned above is not empty (it contains the se-

ries P) so the length of the series is bounded by the number of free variables in P .
Hence, there is a maximal series of derivation and P [contains at least its associated
set of names. �

The next lemma shows that our semantics re�nes barbed coupled similarity.

Lemma 4.22 (�[;�[) are coupled barbed simulations, and thus �[\ �[�
.
7.

Proof: We successively check that �[preserves the barbs, is a simulation, and meets
the coupling diagram. Let us assume P �[Q

1. the barbs can be recovered from the semantics: P +x i� x 2
S
P [, and if P �[Q

then also x 2
S
Q[and Q +x . hence P +x implies Q +x .

122 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

2. weak simulation trivially holds: by de�nition, P [decreases with reductions, and
is stable i� P [is a singleton; for every reduction P ! P 0, P 0 �[P �[Q, and
thus reductions in P are simulated by the absence of reduction in Q.

3. by Lemma 4.21 P [is not empty. Let S 2 P [. By hypothesis S 2 Q[, and thus
for some process Q0

S we have Q !� Q0
S and Q0

S
[= fSg � P [, which provides

the coupling from �[to �[. �

By combining Lemmas 4.20 and 4.22, we �nally obtain the coincidence of the
congruence of coupled barbed similarity with fair testing. This result is speci�c to the
join-calculus; a counterexample is given for CCS in Section 4.6.1.

Lemma 4.23 In the join-calculus, 'fair =
.
7
9

While it is interesting to have an exact characterization of fair testing both as the
congruence as single-barbed bisimulation and as the congruence of coupled barbed
simulations, it seems that the associated proof techniques are still delicate to use.
Pragmatically, the proof technique associated with 7 seems more convenient, when
available.

4.6 A hierarchy of equivalences

Our main results on equivalences are summarized in Figure 4.1. Each tier gathers
several de�nitions that yield the same equivalence, at least in the join-calculus. We
explicitly mention the existential variants of equivalences only when they di�er from
the equivalences obtained for all barbs. All tiers are distinct�vertical lines represent
strict inclusion of equivalences. The gap between two tiers is brie�y described in terms
of discriminating power. All equivalences are full congruences.

The upper tier anticipates on the results of the next chapter; it contains several
variants of weak labeled bisimulations. These equivalences are strictly �ner than
barbed congruence. In the next chapter, we also study a variant of the join-calculus
with primitive name-matching. Then, the hierarchy is unchanged, except that the
equivalences are congruences only for evaluation contexts, and that the two upper tier
coincide.

4.6.1 The situation in the �-calculus

Next we give a survey of the situation in the �-calculus, which is presented in more
details in [56]. The overall hierarchy is the same, with similar arguments; indeed,
most of the proofs directly carries over the �-calculus. Still, there are a few signi�cant
di�erences that we discuss below.

The properties of equivalences are seemingly not as simple as in the join-calculus,
mostly because strong barbs can be transient. For instance, the process P = xhi j x():0
reduces to 0, and we have P #x , 0 6+x . While the resulting equivalences are less natural
than in the join-calculus, we can still recover our speci�c results, provided that we
alter the basic notion of observation. More precisely, the results obtained for the
join-calculus carry over the asynchronous �-calculus provided that we use �committed
strong barbs� ##x in place of strong barbs #x in every de�nition.

4.6. A HIERARCHY OF EQUIVALENCES 123

labeled bisimulation �l = �a = �l;g

� name matching

barbed congruence � =
.
��

�
internal choice
between visible actions

coupled-barbed congruence 7

�
internal choice
interleaved with visible actions

fair testing 'fair =
.
7
�
=

.
��9

� abstract fairness

may testing 'may

Figure 4.1: A hierarchy of equivalences for the join-calculus.

De�nition 4.24 The predicate ##x�the committed strong barb on x�detects whether

P permanently emits on x: P ##x
def
= 8P 0; P !� P 0; P 0 #x

In the join-calculus, the locality property enforces the identity ##x = #x for all free
names; in the �-calculus, however, the new predicate ##x is strictly stronger than #x ;
for instance we have for the process P above P #x and P 6##x .

As is the case with existential variants in this chapter, the underlying choice be-
tween ##x and #x in the de�nition of �-calculus equivalences induces variants. We
keep the standard notation when transient barbs are used, and index our equivalence
with ## when committed barbs are used instead.

Fortunately, this variation does not a�ect the discriminating power of most equiva-
lences in our hierarchy. When present, the congruence property can be used to encode
weak committed predicates. It su�ces to replace transient barbs with committed barbs
that may grab transient messages and relay this detection without further interaction
with the process. We use the context

Tx[�]
def

= �x:(x():thi j[�])

and for every P such that t 62 fv[P] we have P +x i� Tx[P] ##t .
Discrepancies between the two calculi appear as we de�ne equivalences in two

stages, as the congruence of bisimulation-based equivalences. We survey the few equiv-
alences where committed barbs make a di�erence; all other results apply unchanged
in an asynchronous �-calculus setting. Especially, we retain the important property
� =

.
��, with similar techniques as those of Section 4.8.

Single-barbed bisimilarities

With a single committed barb, weak bisimilarity
.
�9;## separates only three classes

of processes, but with a single transient barb the situation gets more complicated.

124 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

Precisely, the model of existential weak bisimilarity
.
�9 separates the following classes

of processes

...L

��

""E
EE

EE
EE

EE
EE

EE
EE

EE
...L

��

||xx
xx
xx
xx
xx
xx
xx
xx
xL

��

""F
FF

FF
FF

FF
FF

FF
FF

FF

xhi � (xhi j x())

��

||xx
xx
xx
xx
xx
xx
xx
xx

xhi � 0

��

##F
FF

FF
FF

FF
FF

FF
FF

FF

xhi j x()

��

xhi

0

plus a single in�nite-branching class that can reduce to any �nite-branching class
described above. Besides the �obvious� terms T0 = 0, T1 = xhi, we have the term
T2 = xhi j x():0 whose only and peculiar behavior is to rescind its #x -barb to become 0.
From these three terms one can construct a quasi-linear sequence of terms, setting
Ti+3 = Ti � Ti+1. Furthermore, it is possible to construct a context T [�] such that
T [inthni] � Tn along the lines of Lemma 4.33, hence to construct a limit term T! �L

i2N Ti. These Ti span exactly the equivalence classes of
.
��9 :

Proposition 4.25 For any �-calculus term P , there is a unique j 2 N [f!g such
that P

.
��9 Tj.

Proof: We partition �-calculus processes as follows. We have P
.
��9 T0 i� P 6+. By

induction on n 2 N, we show that P
.
��9 Tn+1 i� P + and P !� .��9 Ti for all i < n

but not for i = n. Finally, P
.
��9 T! i� P !� .��9 Tn for all n 2 N, and this covers all

remaining cases. �

The congruence of this bisimilarity yields an hybrid equivalence, in a new tier
between fair-testing and barbed congruence: we have the strict inclusions

'fair �
.
��9 �

.
��

In [56] we re�ne this negative result by showing that, rather surprisingly, existential
barbed congruence is an inductive, or limit, bisimulation.

Fair testing versus coupled simulations

While in general we have the inclusion
.
7
�
� 'fair, the coincidence between these

two equivalences obtained for the join-calculus in Lemma 4.23 speci�cally relies on
committed barbs.

It is tempting to adapt the semantics of Section 4.5.3 to the asynchronous �-cal-
culus, for instance by de�ning committed processes as processes P such that fx j P +xg

4.7. TECHNIQUES OF BISIMULATION �UP TO� 125

equals fx j P +�xg. For instance, the semantics of xhi j !x():yhi j !y():xhi would be the
singleton set ffx; ygg. Let �[be the induced preorder; this preorder does not capture
the weak barbs, but nonetheless we obtain the characterization 6 = �[\ vmay. The
main di�erence is that fair testing is not �ner than the congruence induced by �[; in
particular, the counterpart of Lemma 4.20 fails, because the context we use cannot
test for the presence of several transient messages.

With transient barbs, fair testing is strictly coarser than the congruence of coupled
simulation. We give a counter-example for asynchronous CCS. The two processes a
and a� 0 are fair testing equivalent, while they are separated by coupled simulation
in the context a j[�]. As this is the only direct use of fair testing as a proof technique
in this dissertation, we detail the proofs of these claims:

Proof of a 'fair a� 0: By de�nition of fair testing, we have !� � vfair, and thus
a� 0 vfair a. Conversely, let C[�] be a given evaluation context and x be a nullary
name such that C[a] +�x . Let us also assume that C[a� 0] !� T ; in order to prove
that T +x , we build a series of reductions C[a] !� T 0 such that T has all the weak
barbs of T 0. We distinguish several cases, according to the actual use of a� 0 in the
reductions.

In case a is consumed, we obtain the reductions C[a]!� T simply by deleting the
reduction a� 0! a in context.

Otherwise, the context never interacts with its embedded process, and thus for
some evaluation context C 0[�] we have the reductions C[a]!� C 0[a] where T � C 0[P]
for one of the processes 0, a, or x � 0. For 0, we have a vmay 0; for other processes
T !=� T 0. �

Proof of a j a 6
.
7 a j a� 0: By applying the barbed simulation property for the reduc-

tion a j a� 0! a, for some P we have a j a!� P and P 1 a; however the only strict
derivative of a j a is 0, which doesn't have a barb on a. Thus, P = a j a 1 a.

By applying the coupling condition, we must have either a j a 6 a or 0 6 a, where
the �rst relation actually implies the second one by simulation.

By coupling again�whenever we have P 6 Q and Q 6!, the coupling condition
implies P

.
7 Q�we obtain that 0

.
7 a, which is inconsistent because the two processes

di�er on the barb +a . �

4.7 Techniques of bisimulation �up to�

In order to prove by co-induction that two processes P and Q are related by some
equivalence, a relation R containing the pair (P;Q) is chosen and proved to meet all
the requirements in the de�nition of the equivalence.

The candidate relation R should be as small as possible, since this directly a�ects
the size of the proof obligations. Unfortunately, the functional F() that de�nes the
equivalence often requires that R be quite large. To circumvent this problem, nu-
merous proof techniques show that it su�ces to establish these requirements on much
smaller candidate relations R0 � R. (See, for instance, [137, 131].) Formally, any
coarser monotonous functional F 0() that has the same greatest �x-point as F() can
be preferred in a proof.

126 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

These so-called �up to� techniques are routinely used in most bisimulation proofs.
Nonetheless, small technical variations are often required, and each new combination
of up to techniques has to be carefully established. Soundness can be obtained by
tedious diagram-chasing arguments, but it is quite easy to overlook a case, hence to
attempt a proof on top of unsound techniques.

In this section, we present a method for gluing diagrams in an systematic manner,
and thus automatically derive sound �up-to� techniques. Our approach makes explicit
the connection between bisimulation proofs and general con�uence results developed
for term rewriting systems.

4.7.1 Con�uence by decreasing diagrams

We use a general con�uence theorem of Van Oostrom [112]. From an abstract point of
view, we can consider that processes are related by a arbitrary family of relations !i

indexed by labels i 2 I that contains relations of interest such as reductions !,
equivalences �, and candidate relations R. We then study commutation diagrams
between these relations, and recover bisimulation diagrams as special cases.

We order our relations as follows. We let < be a strict partial order on labels in I.
Intuitively, the inequation R1 < R2 means that R1 is negligible in diagrams when it
appears after R2. We measure sequences of reductions by multisets of labels: to every
string � and multiset S of labels, we associate the multiset [�]S inductively de�ned
as follows:

[�]S
def

= S

[i�]S
def

= if i < j for some j 2 S then [�]S else [�](S [fig)

That is, the multiset collects all labels that are not smaller than labels already col-
lected. We also de�ne our measure on strings of labels as [�]

def

= [�];. For in-
stance, with digits instead of labels, we would have the measures [1512]=f1; 5g and
[16116983]=f1; 6; 6; 9g.

De�nition 4.26 Let �; �0; '; '0 2 I� be strings of labels ; the diagram

��

��

�
'

//

��0

���

'0

//

is decreasing when we have the multiset inclusions ['�0] � ['] [[�] � [�'0].

Decreasing diagrams can be vertically or horizontally glued, which yields larger,
decreasing diagrams; this captures in an abstract manner the use of smaller relations
to close diagrams. We recall the main theorem of [112] with our notations:

Theorem 4 (Van Oostrom) Let (I;<) be a well founded partially ordered set of
labels and (P; (!i)i2I) be a rewriting system.

4.7. TECHNIQUES OF BISIMULATION �UP TO� 127

Let also H;V � I be two subsets of labels, and !h;!v be the relations de�ned as

!h
def
=
S
i2H !i and !v

def
=
S
i2V !i.

If for every pair of labels (i; j) 2 H � V , there exist sequences of labels ('; �) 2
H� � V � such that the �rst diagram below is decreasing

i
//

j

��

� �

��

'
� //

then we have the diagram
�

h
//

�v

��

�v

���

h
//

The reductions !h and !v stand for �horizontal reduction� and �vertical reduc-
tions�, but the corresponding sets H and V are not necessarily disjoint; for instance
the con�uence property is obtained when horizontal and vertical reductions are the
same.

4.7.2 Weak bisimulation up to bisimilarity

Next we apply this technique for establishing several �up to� techniques. We �rst
derive the simple barbed variant of the weak bisimulation up to bisimilarity lemma
presented in [97]. Our horizontal reductions are

.
�, R=, and .

�; our vertical reductions
are plain reductions !. We choose the ordering

.
� <! <

.
� < R=

The premises of Theorem 4 consist of the three decreasing diagrams

.
�

�� ��
.
�

.
�

��

�

��
.
�
.
�
.
�

R=

��

�

��
.
�R=

.
�

The �rst two diagrams hold by de�nition of .� and
.
�; the �rst one is strong simulation;

the second one is subsumed by weak simulation. Only the last diagram depends on R;
moreover, we can substitute R for R= at the top of this diagram.

By applying Theorem 4, we obtain that the relation R0 = (
.
� [R= [

.
�)� com-

mutes with !�, that is, that this relation is a weak simulation. Besides, we obtain
that the inverse relation (R0)�1 is a weak bisimulation by applying Theorem 4 again
after substituting R�1 for R. In the case we also require that R preserve all barbs,
R0 retains this property, thus R0 is a barbed bisimulation. By de�nition of

.
� as the

union of all barbed bisimulations, we have R0 = (
.
� [R [

.
�)� �

.
�, and in particular

R �
.
�. Finally, we discard all the diagrams that do not depend on R, and gather our

su�cient requirements on R as follows:

128 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

Lemma 4.27 R is a weak bisimulation if it respects all barbs and meets the two

diagrams
R

��

�

��
.
�R=

.
�

and
R

�

�� ��
.
�R= .�

.

Conversely, we would not be able to complete our programme if we tried to estab-
lish the spurious �weak-bisimulation up to weak-bisimilarity� proof technique, whose
statement is obtained from the one of Lemma 4.27 by substituting

.
� for .

� at the
bottom of the diagrams. These diagrams are not decreasing anymore for our ordering,
as it would require that

.
� < !. Yet, any other ordering that would contain this

inequation would also require a strong bisimulation diagram for
.
� and !.

This so-called problem of �weak bisimulation up to� is the starting point of [137],
where Milner and Sangiorgi �rst provide a counter-example for the spurious proof
technique�in CCS the processes �:P and 0 are weakly-bisimilar up to weak bisimi-
larity, but usually not weakly-bisimilar�then they propose coarser requirements than
those of Lemma 4.27 that still preserve soundness. To this end, they introduce the
notion of expansions, which we discuss next.

4.7.3 Expansions

In most proofs, we need a �ner, auxiliary expansion relation. This relation was �rst
proposed as a proof technique in [137]. The expansion relation re�nes bisimulations in
an asymmetric manner, which represents the notion of progress, or implementation.

De�nition 4.28 A barbed expansion is a relation R that respects the weak barbs and

meets the two diagrams
R

��

=

��R

and
R

�

�� ��R

.

We let
.
� be the largest expansion, � be the largest expansion that is a precongru-

ence,
.
� be the largest expansion whose inverse is an expansion, and � be the largest

expansion that is a congruence and whose inverse is an expansion.

All these relations are in-between the corresponding weak and strong bisimilarities.
By de�nition, an expansion is a weak bisimulation with an additional, asymmetric
requirement: steps on the �large� side of the expansion must be matched by fewer
steps on the small side. This places � strictly between weak and strong bisimulation.
Remark that

.
� \

.
� is in general coarser than

.
�.

The relation
.
� is an equivalence that is almost as �ne as strong bisimulation, since

only �useless� extraneous reductions are allowed on either side. For instance, we have

 jP � P for any process
 with no free variables, even if this process is diverging.
In practice, this relation is always a coarser alternative to strong bisimilarity in up to
techniques.

4.7. TECHNIQUES OF BISIMULATION �UP TO� 129

The key technical property of expansions is that they can be used to close weak
bisimulation diagrams. Typically, a large proof of weak bisimulation can be made
modular by �rst isolating a few intermediate lemmas that state simpli�cations as ex-
pansion relations, then conducting a main proof of weak bisimulation up to expansion.

As regards barbed congruences, we describe two co-inductive proof techniques,
namely barbed congruence up to expansion and expansion up to expansion. Lem-
mas 4.29 and 4.30 are technical lemmas that state su�cient conditions for relations
to be included in the relations of barbed congruence and expansion, respectively; they
are the basis for many proofs.

Before stating and proving these proof techniques, we discuss how their bisimula-
tion diagrams can be obtained from Theorem 4. Since expansions are asymmetric, we
independently insert pairs of inverse relations

.
�;

.
� and R;R�1 in the strict partial

ordering.

� This induces two additional decreasing diagram requirements as premises of
Theorem 4, for the pairs of labels (

.
�,!) and (

.
�,!). We easily check that these

diagrams are subsumed by those of De�nition 4.28 inasmuch as ! <
.
�. In

contrast, there is no constraint on
.
� so far.

� This also relaxes our proof requirements for the candidate relations R and R�1.
We �rst derive su�cient diagrams to prove that R �

.
�, then to prove that

R � �.

To establish a weak bisimulation requirement for R, we use the re�ned ordering.
� <! <

.
� <

.
� < R and obtain that

��

R

�

��
.
�R=

.
�

su�ces to derive

�

��

(
.
�[R)�

�

��(
.
�[R)�

To establish an expansion bisimulation requirement for R, we use another or-
dering

.
� <

.
� < R <! and obtain that

��

R

=

��
.
�R�

.
�

su�ces to derive

��

(
.
�[R)�

=

��(
.
�[R)�

Next we wrap these diagrammatic requirements with other requirements on barbs
and contexts, to obtain simple proof techniques for later reference.

Lemma 4.29 (barbed congruence up to expansion) To prove that a relation R
is included in barbed congruence (R � �), it su�ces to prove that, for a �xed set of
names N 0 � N with an in�nite number of names of every type, and for all processes
P and Q such that P R Q, we have the following properties:

130 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

1. If P #x then Q +x ; conversely, if Q #x then P +x .

2. C[P] �R� C[Q] for every context C[�] of the form def D in R j[�] where fv[def
D in R] � N 0.

3. We have the diagrams P
R

��

Q

�

���R=�

and P
R

�

��

Q

���R=�

.

Proof: we check that �R� is a barbed bisimulation and a congruence, as in the
proof of the next lemma. �

Lemma 4.30 (expansion up to expansion) To prove that a relation R is included
in expansion (R � �), it su�ces to prove that, for a �xed set of names N 0 � N with
an in�nite number of names of every type, and for all processes P and Q such that
P R Q, we have the following properties:

1. If P #x then Q +x ; conversely, if Q #x then P +x .

2. C[P] �R� C[Q] for every context C[�] of the form def D in R j[�] where fv[def
D in P] � N 0.

3. We have the diagrams P
R

��

Q

=

���R=�

and P
R

�

��

Q

���R=�

.

In the special case where P R Q implies P (!��)� Q, the requirements can be further
weakened: property 1 is true as soon as P #x implies Q +x ; property 3 is always true.

Proof: General case: we prove that the relation �R=� matches all the properties
required in the de�nition of � provided that R matches all the hypotheses of the
lemma. This yields the inclusion (�R=�) � �, and in particular R � �. Let us
assume P � P1 R= Q1 � Q:

� in case P +x , we have for some P 0 P !� P 0 #x . By bisimulation of �, hypoth-
esis 3, and bisimulation of � again, we obtain for some Q0 that Q !� Q0 and
P 0 �R=� Q0. By hypothesis 1 we obtain Q0 +x and thus Q +x . The same
argument applies to obtain P +x in case Q +x , except that we use hypothesis 3
instead of hypothesis 3;

� the composition of congruences is a congruence;

� the two diagrams of De�nition 4.28 are derived from the two diagrams of the
lemma as described above.

4.7. TECHNIQUES OF BISIMULATION �UP TO� 131

Special case: we assume R � (!��)�, and we establish the su�cient properties of
the general case for the relation �R=. Let assume P � P1 R Q and P1(!��)nQ. We
build a derivation P !� P 0 � Q by applying n + 1 times the bisimulation property
of �.

In case Q #x , P !� P 0 +x and thus P +x ; in case Q! Q0, by expansion we have
P 0 !� P 00 � Q0 and thus P !�� Q0; all other properties are immediate. �

Our lemmas mention coarse diagrams that su�ce to apply the con�uence theorem.
In order to establish the requirements of Lemmas 4.29 and 4.30, we can of course use
relations stronger than those mentioned. For instance, since we have � � � � � �
� � �, all proofs can be performed up to structural equivalence and up to strong
equivalence.

4.7.4 Accommodating deterministic reductions

Our last example of bisimulation by decreasing diagram involves another kind of �ver-
tical relation�. It is lengthly, but actually used in Section 6.7 to establish a full
abstraction result.

So far, the only vertical relation was the reduction relation, but in many proofs
this does not su�ce: some families of reductions are intuitively negligible in weak
bisimulation diagrams, for instance when they are deterministic, or when they are
partially con�uent independently of any other reductions.

Let !d be a subset of the reduction relation !. The use of decreasing dia-
grams makes explicit the trade-o� between the additional proof requirements for !d

(new commutation diagrams to establish) and the instances of the �small� reduction
steps !d that are negligible in larger diagrams to establish bisimulation properties.

By analogy with expansions, we use the notation �d for the intermediate asym-
metric relation that counts large steps ! but not small steps !d. We use the sets
of labels H = f!d; d;�d;�;Rg and V = f#d; #g, and the following partial strict
ordering

!d < #d < d < �d < # < � < R

Enumerating the premises of the con�uence theorem, we �rst have a series of simple
diagrams that express the partial con�uence property of !d � !.

d

��

d
//

d =

��

d

= //

d

��

oo
d

d

��oo
d

��

d
//

=

��

d

= // ��

oo
d

��oo
d

Then we obtain the following su�cient diagrams for the intermediate relation �d:

d

��

�d

�

��!�

d
�=
d
$�

d //

and

��

�d

�

��[$d;�d]
�

//

132 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

The diagrams for weak bisimulation � are still valid. Finally, the premises on the
candidate weak simulation R can be written

d

��

R

�

��!�

d
R=[$d;�d;�]

�

//

and

��

R

�

��[�d;$d]
�R=[$d;�d;�]

�

//

4.8 Barbed equivalence versus barbed congruence

In this section we relate the two equivalences that are obtained from barbed bisimula-
tion by requiring the congruence property either as part of the bisimulation de�nition
(�) or after requiring bisimilarity (

.
��), as explained in Section 4.4.3. The two de�ni-

tion styles can lead to signi�cant di�erences, as is the case for the relations
.
��9 6= �9

(Section 4.4.4) and
.
7
�
6= 7 (Section 4.5.2).

In this section, we assume encodings for booleans and for integers à la Church
inside the join-calculus (see, e.g., [99] for explicit encodings in the �-calculus; formally
these encodings use only the deterministic fragment of the join-calculus). To every
integer n 2 N, we associate the representation n; we also assume that our integers
come with operations is_zero(�) : hInti ! hBooli and pred(�) : hInti ! hInti.

4.8.1 Double-barbed bisimulation

We re�ne our de�nition of barbed bisimulation according to the number of barbs that
are required in the de�nition. For n 2 N, we use the notation

.
�n for the bisimilar-

ity that tests for messages on n distinct nullary names, and
.
��n its congruence for

evaluation contexts.
By de�nition, the discriminating power of

.
�n and

.
��n increases with n, and these

relations remain coarser than
.
� and

.
��, respectively. In the join-calculus, we have

.
��0 = P � P ,

.
��1 =

.
��9 (this is easily established using the contexts of Section 4.1.5),

and we are going to show that, for all n > 1,
.
��n = �. To this end, we focus on

.
�2,

and we assume that x; y 2 N0 are the names associated with the two barbs +x , +y
that are part of the de�nition of

.
�2.

We �rst need an additional de�nition and a lemma to build processes that are
non-equivalent and retain this property by reduction. We assume given a canonical
ordering on all processes, and to every �nite set of processes P we associate the internal
sum �(P) def

=
L

P2P P obtained for this ordering. Then, we de�ne an operator S(�)
that maps every �nite set of processes P to the set of its (strict, partial) internal sums:

S(P)
def

=
�
�(P 0) j P 0 � P and P 0 is not a singleton

	
for instance, we have

S(f xhi; yhi; 0 g)
def

= f xhi�yhi�0; xhi�yhi; xhi�0; yhi�0 g

The next lemma uses the S(�) operator to build classes of non-bisimilar processes
in a generic manner:

4.8. BARBED EQUIVALENCE VERSUS BARBED CONGRUENCE 133

Lemma 4.31 Let R be a weak bisimulation such that � � R, and P be a set of
processes such that, if P;Q 2 P and either P !�R Q or P R � Q, then P = Q.
Then we have:

1. the set S(P) retains this property;

2. the union
S
n�0 S

n(P) that contains the iterated results of S(�) only contains
processes that are not related by R.

Proof: By construction the relation (!�R) is closed by strong equivalence, and by
reductions on the right: if P !� P 0 R Q and Q !�� Q0, then by weak simulation
P !� P 0 !� P 00 R Q0. Strong equivalence is required only because summation is a
derived construct in the join-calculus.

Let P , Q be a pair of distinct processes in S(P). We prove that P !�R Q leads
to some contradiction. We successively exclude the relations P !!�R Q and P R Q.

In case P ! P 00 !�R Q, there exists P 0 2 P such that P 0 � P 00, and for all
summands Q0 2 P present in Q we have Q !� Q0. By applying the remark above
P 0 !�R Q0, hence by hypothesis on P we also have P 0 = Q0. This is excluded
because Q has at least two di�erent summands.

In case P R Q, at least one of the sums contains a summand that does not appear
in the other. Let us assume that P ! P 0 and Q 6!� P 0. By weak simulation, we
have either P 0 R Q�and thus P !R Q, which is an instance of the �rst case�or
P 0 R � Q0 Q�which contradicts the hypothesis on P for the P 00; Q00 2 P such
that P 00 � P 0 and Q00 � Q0.

To establish the second part of the lemma, we �rst obtain that all sets of processes
Sn(P) retain the property of P in the lemma by induction on n 2 N. Then for n;m 2 N
we consider two processes P 2 Sn(P) and Q 2 Sn+m(P). In case m = 0, P R Q
implies P = Q. In case m > 0, by construction we have the reductions Q !m� Q0

for some Q0 2 Sn(P) distinct from P . If P could simulate this series of reductions, we
would obtain the relation P !�R Q0 hence the contradictory equality P = Q0. �

Corollary 4.32 The bisimilarity
.
�2 separates an in�nite number of processes.

More explicitly, we build a family of unrelated processes, which will be useful in
the following. We start from the set of processes

P0
def

= f xhi; yhi; 0 g

Processes in P0 have no reduction, and they are separated by
.
�2 because they

di�er on at least one of the predicates +x , +y . The set P0 meets the hypothesis of
Lemma 4.31, as well as all the sets Pn

def

= Sn(P0) for n � 0. Besides, the cardinality
of Pn grows exponentially. Hence, the disjoint union

P
def

=
[
n�0

Pn

contains in�nitely many processes that are not related by
.
�2. Moreover, every process

in P emits at most one message on a free name. The situation is partially described
in the following reduction diagram (most sums are omitted).

134 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

...
...

...

L

�� $$H
HH

HH
HH

HH
HH

L

��zzvv
vv
vv
vv
vv
v

##H
HH

HH
HH

HH
HH

L

��{{vv
vv
vv
vv
vv
v

xhi � 0

��
$$H

HH
HH

HH
HH

HH
H

xhi � 0� yhi

�� ##H
HH

HH
HH

HH
HH

zzvv
vv
vv
vv
vv
v

0� yhi

��
{{vv
vv
vv
vv
vv
vv

xhi 0 yhi

Of course, this construction captures only processes with �nite behaviors (up to
our bisimilarity). The bisimilarity

.
�2 has much more classes than those exhibited

here, such as for instance processes that can reach an in�nite number of classes, as
illustrated below.

Note that the same construction applies for the single-barbed bisimilarity
.
�1,

starting from the set f xhi; 0 g, but this construction produces only a third unrelated
process xhi � 0 at rank 1, then stops.

4.8.2 All integers on two exclusive barbs

The next lemma says that, in some sense, a join-calculus process can communicate any
integer to its environment by using only the two barbs of

.
�2 thanks to the discrimi-

nating power of bisimulation. To every integer, we associate a particular equivalence
class of

.
�2 in the hierarchy of processes P described above, then we write a process

that receives an integer and expresses it by evolving to its characteristic class.

Lemma 4.33 There is an evaluation context N [�] such that, for all integers n and
m, the three statements that follow are equivalent:

1. n = m

2. N [inthni]
.
�2 N [inthmi]

3. N [inthni]!� .�2 N [inthmi]

Moreover, for every process P that has at most int as free variable we have

N [P]!� .�2 N [inthni] i� P !� P 0 j inthni

Intuitively, the context N [�] of the next lemma transforms exclusive integer-
indexed barbs inthni into combinations of the two exclusive barbs +x and +y . The
�rst part of the lemma is required to discriminate processes that may emit several
di�erent integers. The second part makes the relation between integers and barbs
more explicit: it states that integer-encoded barbs inthni are individually tested by
the context N [�] as if they were regular barbs.

4.8. BARBED EQUIVALENCE VERSUS BARBED CONGRUENCE 135

Proof: We de�ne the evaluation context N [�] as follows, and we position the deriva-
tives of N [inthni] in the hierarchy P of the previous section.

N [�]
def

=

def inthni j oncehi .0
BBBB@

def iterhn; x; y; zi .
if is_zero(n) then zhi
else iterhpred(n); z; x; yi � iterhpred(n); y; z; xi in

def zhi . 0 in

iterhn; x; y; zi � iterhn; y; z; xi � iterhn; z; x; yi

1
CCCCA

in [oncehi j �]

In the de�nition above, the name z is used to encode the process 0; hence the three
processes in P0 are made symmetric, and the context N [�] can use permutations of
the names x, y, and z to represent them.

Each integer n is associated with a ternary sum of nested binary sums in the n+1
layer of P: when an encoded integer is received as inthni, a reduction triggers the
de�nition of int and yields the initial ternary sum; at the same time this reduction
consumes the single message oncehi, hence the de�nition of int becomes inert. Let
Pn 2 P be the process such that N [inthni]

.
�2 Pn.

To prove the �rst part of the lemma, we check that 3. always implies 1. In case
N [inthni]!� .�2 N [inthmi], the reductions of N [inthni] are simulated by Pn, and thus
we have Pn !� .�2 Pm.

For every non-empty series of reduction steps Pn !!� P 0, however, the resulting
process P 0 is (strongly equivalent to) a binary sum in P, and by Lemma 4.31 it
cannot be bisimilar to any ternary sum in P such as Pm. Therefore, the relation
N [inthni]

.
�2 Pn above actually is Pn

.
�2 Pm. By Lemma 4.31 we obtain that Pn = Pm,

and �nally that n = m because the layers P(n+1) each contain a single Pn and are
pairwise disjoint by construction.

To establish the second part of the lemma, let P be a process with at most int as
free variable. There is no interaction between P and N [�] except perhaps for some
single message inthmi. Besides, there are no reduction in N [�] before this message is
received.

Whenever we have the series of reductions P !� P 0 j inthni, there is also a reduc-
tion N [P 0 j inthni]! T that jointly consumes the messages inthni and oncehi, and af-
ter structural rearrangement T � Pn jN 0[P 0] where N 0[�] is N [�] without the message
oncehi. In particular N 0[P 0] is inert, we have N 0[P 0] � 0 thus Pn jN 0[P 0]

.
�2 N [inthni],

and we obtain the relation N [P]!� .�2 N [inthni].
Conversely, whenever we have N [P]!� T

.
�2 N [inthni],

� either a message inthmi is received by N [�] in one of the reductions leading to
T , which can be rewritten as

N [P]!� N [P 0 j inthmi]!
.
�2 N [inthmi]!� .�2 N [inthni]

where P !� P 0 j inthmi. Using the �rst part of the lemma, this ensures that
m = n and P !� P 0 j inthni.

� or P and N [�] did not interact, and we have

N [P]!� N [P 0]
.
�2 N [inthni]

136 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

where P !� P 0 and P 0 still has a weak barb on int�otherwise we would have
P 0 � 0, then N [P 0] � N [0] � 0 and we would obtain 0

.
�2 N [inthni]; this is

excluded because for every n 2 N the process N [inthni] has the two barbs +x
and +y .

Therefore we can complete the reductions P !� P 0 with reductions P 0 !�

P 00 j inthmi. By simulation N [P 00 j inthni] !� .�2 N [inthmi], and this reverts to
the �rst case for N [P]!� N [P 00 j inthmi]. �

The next lemma applies this remark to restrict the class of contexts in use in
congruence properties to contexts with at most two free (nullary) variables. In all the
following, we assume given an injective mapping from names to integers, and we use
the notation [[z]] to represent the integer associated with z 2 N .

Corollary 4.34 For every �nite set of names S � N , there is an evaluation context
FS [�] 2 E such that for all processes P and Q with fv[P] [fv[Q] � S we have

1. if N [FS [P]]
.
�2 N [FS [Q]], then P

.
� Q;

2. if N [FS [P]]!� T and T !� .�2 N [FS [Q]], then P !� P 0 and T = N [FS [P
0]].

3. if N [FS [P]]!� .�2 N [inthni], then n 2 f0; 1g [[[S]].

Proof: Without loss of generality, we assume that the names once and int do not
appear in S. We set

FS [�]
def

= def

oncehi . inth0i
^ oncehi . inth1i
^
V
x2S xhi j oncehi . inth[[x]]i

in oncehi j[�]

By construction, the process FS [P] has only int as free variable, and we have for
any process P and name z 2 S the relations

FS [P] !� inth0i

FS [P] !� inth1i

FS [P j zhi] !� inth[[z]]i

Moreover, the �rst reduction that involves the context FS [�] commits the process
FS [P] to a particular integer barb. By applying Lemma 4.33, we use the last above
relation to reformulate the barb +z

P +z i� FS [P]!
� .� inth[[z]]i

i� N [FS [P]]!
� .�2 N [inth[[z]]i]

We prove that the relation R containing all the pairs P;Q of the lemma is a
barbed bisimulation. Let us assume that P R Q, thus in particular that N [FS [P]]

.
�2

N [FS [Q]].

1. P andQ have the same barbs. In case P +z , we haveN [FS [P]]!� .�2 N [inth[[z]]i],
these reductions can be simulated by N [FS [Q]] !� U with U

.
�2 N [inth[[z]]i],

and thus Q +z .

4.8. BARBED EQUIVALENCE VERSUS BARBED CONGRUENCE 137

2. the weak bisimulation property relies on the presence of the two special integer-
indexed barbs inth0i and inth1i. In case P !� P 0, we have N [FS [P]] !

�

N [FS [P
0]] and the bisimulation hypothesis yields some reductions N [FS [Q]]!�

T with N [FS [P
0]]

.
�2 T . By Lemma 4.33, the two processes N [FS [P

0] and T
have the same integer-indexed barbs, and in particular T retains the possibility
of emitting any of the messages inth0i and inth1i. By construction of FS [�],
this ensures that the reductions N [FS [Q]] !� T entirely occur within Q: there
is some process Q0 with Q!� Q0, T = N [FS [Q

0]], and �nally P 0 R Q0. �

4.8.3 A join-calculus interpreter for the join-calculus

We de�ne an interpreter " in the join-calculus that takes as parameters an integer
representation [[P]] 2 N and an evaluation environment � that binds all the free names
fv[P]. Up to barbed congruence, we obtain that the resulting process "h[[P]]; �i behaves
as process P .

We compile every join process P into some integer representation [[P]], to be eval-
uated in some environment � = f[[x]] 7! xg. The internal representations for processes
[[P]], and environment � = f[[x]] 7! xg are omitted; we only specify their interface in
a functional syntax (cf. Section 3.4.3). Both representations rely on the injective rep-
resentation of names as integers [[x]] de�ned above. We assume that [[P]] is an integer
encoding of the abstract syntax trees of the join-calculus processes that uses [[x]] to
encode names and that is equipped with pattern-matching on the syntax. We also as-
sume that � is an association table from integers to names equipped with synchronous
names for lookup �(�) and for overwriting + (written � + [[x]] 7!x). Without loss of
generality, we require that the images of our encodings for processes and names are
disjoint (8P 2 P; x 2 N :[[P]] 6= [[x]]) and that they do not contain the values 0 and 1.

As opposed to most proofs in this chapter, the actual de�nition of the interpreter
is very sensitive to small variations in the calculus, including its type system. We �rst
give an interpreter for join-calculus processes that comply with several limitations,
then we rely on preliminary compilation to extend our interpreter to the join-calculus.

For a �nite maximal arity n 2 N, and for a �nite set of de�nitions D" that only use
names with these arities, we de�ne our join-calculus interpreter D" as the conjunction
of the following clauses.

for each m � n: "h[[xhy1; : : : ; ymi]]; �i . �([[x]])h�([[y1]]); : : : ; �([[yn]])i

for each D 2 D": "h[[def D in Q]]; �i . def [[D]] in
"h[[Q]]; �+]x2dv[D]([[x]] 7!x)i

"h[[P jQ]]; �i . "h[[P]]; �i j "h[[P]]; �i
"h[[0]]; �i . 0

where the notation [[D]] is recursively replaced according to the structure of D:

[[D1 ^ D2]]
def

= [[D1]] ^ [[D2]]

[[J . P]] def

= J . "h[[P]]; �+]x2dv[D]([[x]] 7!x) +]v2rv[J]([[v]] 7!v)i

[[T]] def

= T

138 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

Without loss of generality, we rely on the preliminary use of �-conversion and
structural equivalence to replace every de�nition D in the source process by a de�nition
in D".

The next lemma relates the source process P to the interpretation of its repre-
sentation [[P]]. As long as the interpreter can be �nitely de�ned, the result is not
surprising, since the join-calculus has well enough expressive power; in particular a
similar interpreters should be de�nable for most variants of the join-calculus or the
�-calculus.

Lemma 4.35 (Basic interpreter) Let D" be a �nite set of de�nitions, and � be a
�nite set of simple recursive types closed by decomposition that su�ces to type all de�-
nitions in D". There is a de�nition D� such that For every process P whose de�nitions
are all in D, that can be monomorphically typed using only types in �, and such that
fv[P] \ f�; "g = ;, for every environment � such that 8x 2 fv[P]; �([[x]]) = x, we have
the equivalence

def D" in "h[[P]]; �i �l P

Proof: The translation preserves the structure of the term (same parallel composi-
tions, same binders); the reductions are the same, except for bookkeeping, which is
entirely deterministic and can be handled by expansion.

In order to remain closed for every transition, we extend the interpreter to open
join processes (by adding optional indices on both the representation of de�nitions and
on their interpreter) then we prove that the relation of the lemma is an asynchronous
bisimulation. �

As we try to interpret a richer calculus, we have access to richer constructs in
the target language; for instance, name-comparison can trivially be added to the
interpreter provided that there is a name-comparison construct (cf. Section 5.5), and
that all comparisons are performed on names of the same type. The interpreter is
extended with the clause

"h[[if x = y then P else Q]]; �i . if �(x) = �(y) then "h[[P]]; �i else "h[[Q]]; �i

Nonetheless, the interpreter itself must remain �nite, which induces limitations at
least for our basic approach. For instance, the shapes of join-de�nitions are in�nite,
hence some additional encoding is required to circumvent the need for in�nitely-many
de�nitions in the interpreter. Anticipating on some results that are established in
Chapter 6, we have the compilation scheme:

1. For all monomorphic processes, complex de�ning processes are compiled into
processes that use only single-clause, two-name-join de�nitions, up to labeled
bisimulation �l (Lemma 6.6).

2. For all channel types that do not appear as subtypes of the free names of P , we
can use a type-driven translation that recursively substitutes communication on
channels of some uniform types for communication on channels of these types
(as in Lemma 6.15).

More precisely, we have

4.8. BARBED EQUIVALENCE VERSUS BARBED CONGRUENCE 139

Remark 4.36 Let � be a �nite set of simple recursive types closed by decomposition.
Then there is a �nite set of simple recursive types F (�) such that, for every process P
whose free names have types in �, there is a process P� such that P �l P� and all
names in P� have types in F (�).

Proof: We say that a type is internal to P when it is used internally in P but does
not appear in �. We assume given a recursive representation of lists of arguments,
where an argument is a tuple of synchronous names that each return a value of a given
type, if the argument has this type, or blocks otherwise. The types of arguments range
over � plus the type of argument lists.

We perform a type-directed transformation of every type, emission and reception
in the calculus, where each name whose type does not appear in � is replaced with a
name that conveys a generic list of arguments.

Every communication on names that have been a�ected by the rewriting is in-
ternal to the process; the extraneous encoding and decoding of the argument list is
deterministic, and can be discarded up to labeled expansion. �

By re-de�ning the run-time representation [[P]] as the representation of the com-
piled simpler representative of P , we obtain a universal interpreter:

Corollary 4.37 Let � be a �nite set of simple recursive types closed by decomposition.
There is a de�nition D" such that, for every process P whose interface fv[P] can be
typed using only types in � and such that fv[P] \ f�; "g = ;, for every environment �
such that 8x 2 fv[P]; �([[x]]) = x, we have the equivalence

def D" in "h[[P]]; �i �l P

While our compiler-interpreter may be extended to polymorphic types in the ab-
sence of name comparison, the correspondence surprisingly breaks in the presence of
name comparison. In particular, we have

Remark 4.38 In the polymorphic join-calculus, labeled bisimulation is strictly �ner
than the congruence of barbed bisimilarity (�l �

.
��).

We give a counter-example in the presence of name-testing, in the spirit of Brook's
counter-example between limit bisimulations and bisimilarity. For any n 2 N, we
let Pn be the process that performs a series of tests on a polymorphic functional
name f : 8�:hInt; �i!hh�i!h�ii. The tests check that, for all i; j < n, we have
fhi; 0i = fhj; 0i if and only if i = j. For instance, we can use the process

Pn
def

=

def xhi j yhi . 0 ^ xhi . thi inQ
i;j<n;i6=jif fhi; 0i = fhj; 0i then thi

j
Q
i<n (xhi jif fhi; 0i = fhi; 0i then yhi)

where the indexed parallel compositions can easily be replaced with internal encodings
of loops that takes the representation of n as argument. Moreover, the encoding can
be extended to support in�nite loops (n = !). For any n 2 N, the process Pn can
loose the ability to emit on thi (Pn 6+�t) if and only if f meets its speci�cation at
rank n. Conversely, P! +�t .

140 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

It is straightforward to write a function fn that meets the speci�cation at all
ranks m � n and to embed it in a context C[�]. However, in the case C[Pn] passes the
test, the context C[�], must have n di�erent values to return. Since every value must
be returned twice, these values must be available in f . However, these values cannot
be received in a join pattern that de�nes f , because that would rule out polymorphism
according to our generalization criterion. Hence, all values must already be present
in C[�], and the size of C[�] grows with n.

We now compare the processes S1 =
L

n<! Pn and S2 =
L

n�! Pn.

S1 6�l S2: the reduction S2 ! P! cannot be matched by S1: in the case S1 ! Pn, Pn
has a �nite behavior; we can perform transitions that make Pn loose its barb
on t, and these transitions cannot be simulated by P!. Yet, S1 6�l P! either,
because no reduction S1 !� Pn can be matched by P! for the same reason.

S1
.
�� S2: any given context C[�] can only perform tests at a given depth, hence there

is n 2 N such that for any m � n we have C[Pm]
.
� C[P!].

4.8.4 Reducing contexts to integers

A peculiarity of the join-calculus is that processes in parallel may communicate only if
they share some common enclosing de�nitions. In the least, contexts need to de�ne the
free variables of the processes to be plugged in. However, this can be done in a uniform
manner, using the same common de�nitions around arbitrary processes instead of
arbitrary contexts. The uniform de�nition simply waits for the �environment� process
to send on dx the name x where messages sent on x by the �internal� process should
be forwarded. Let S be a �nite set of names; we de�ne the uniform context RS as
follows:

RS
def

= def
^
x2S

xheui j dxhx0i . x0heui j dxhx0i in [�]

(where we assume that the names dx for all x 2 S are fresh.) Note that the de�nition
of RS assumes given the arity of every name in S; moreover, RS typechecks if and
only if all names in S are given a monomorphic type.

The next lemma uses this particular family of contexts for substituting processes
for evaluation contexts in weak bisimulation statements.

Lemma 4.39 For every �nite set of names S � N and evaluation context C[�] 2 E,
there is a process T such that for all processes P we have

fv[P] � S implies RS[P jT] �l C[P]

Proof: As a �rst attempt, we could use T = C
�Q

x2S dxhxi
�
; unfortunately, the

property of the lemma would not carry over labeled bisimulation, because the process
and the context would use two di�erent names instead of one, which would a�ect the
labels where these names appear. The same problem would occur in barbed congruence
in case we extend the calculus with a name-comparison operator.

We re�ne our de�nition of T accordingly: we set T = C 0
�Q

x2S dxhx
0i
�
where C 0[�]

is obtained from C[�] by substituting every de�ned variable x 2 S that is a binder

4.8. BARBED EQUIVALENCE VERSUS BARBED CONGRUENCE 141

for [�] only in the join-patterns of C[�]. Hence, a free x is used everywhere in both P
and C 0[�], while x0 is only received once then used by the enclosing context to forward
any message sent on x.

We prove that the relation of the lemma is contained in a weak labeled bisimulation
up to expansion and restriction. Without loss of generality, we assume that every
name in S is de�ned and extruded by RS [�] and C[�], respectively. The candidate
bisimulation contain all pairs of processes of the form (RS [C

00[P] j T]; C[P]) where
C 00[P] is obtained from C 0[P] by substituting messages x0hevi for any message xhevi in
evaluation context for x 2 S.

All transitions are in direct correspondence, except for the additional deterministic
reductions on the left to forward new messages xhevi that may appear as the result of
intrusions and internal reductions. �

In particular, we can restrict ourselves in congruence proofs to contexts of this
particular, process-based form: for all P and Q with fv[P] [fv[Q] � S we have

8C 2 E ; C[P]
.
� C[Q] i� 8T 2 P; RS [P j T]

.
� RS [Q jT]

In combination with our compiler, the testing process T can in turn be replaced
with an interpreter running its representation [[T]]:

Lemma 4.40 (Integers instead of Contexts) For every �nite set of names S �
N and evaluation context C[�] 2 E, let � be the environment with bindings [[x]] 7! x
for all x 2 fv[C[�]] and bindings [[dz]] 7! dz for all z 2 S. There is an integer n such
that for all processes P we have

fv[P] � S implies C[P] � RS [P jdef D" in "hn; �i]

Proof: this is the composition of Lemmas 4.39 and 4.37 �

4.8.5 Universal contexts

We are now ready to establish the problematic inclusion
.
��2 � �. The next lemma

is the key of our proof of Theorem 3; it relies on a single context that concentrates
the discriminative power of quanti�cation over all contexts. We call this context a
universal context.

Lemma 4.41 (Universal Context) For every �nite set of names S � N , there is
an evaluation context US [�] such that the relation R de�ned as

R
def
=

�
(P;Q) j fv[P] [fv[Q] � S and US [P]

.
�2 US [Q]

	
has the following properties:

1. Let C[�] be an evaluation context such that for any process R with fv[R] � S we
have fv[C[R]] � fx; yg.

For all processes P and Q, if P R Q, then C[P]
.
�2 C[Q].

2. The union
S
S R is a barbed congruence (R � �).

142 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

Proof: For a given set S � N , we build our universal context as follows:

Pick(n)[�]
def

=

def pickhni . pickhn+ 1i
^ pickhni .[�]
in pickhni

Tn
def

= def D" in "hn; f]z2S([[dz]] 7! dz) + [[x]] 7! x+ [[y]] 7! ygi

In
def

= inthni � Tn

B[�]
def

= N [Fx;y [�]]

US [�]
def

= B[RS [� jPick(4)[In]]]

The context Pick(n)[�] is used to choose a particular integer as the result of some
in�nite internal choice; whenever the �rst clause is used and consumes pickhni, it
gradually commits this internal choice to any m > n; when the second clause is
used, the guarded process is started with the current integer n, while the remains of
Pick(n)[�] become inert.

The process Tn is the interpretation of some integer-encoded process; it is such
that for every evaluation context C[�] and process P that meet the hypotheses of
(1.) we have the bisimulation RS [P j Tn]

.
�2 C[P] for some n 2 N. The process In

either reveals the choice of n (hence of the context C[�]) by exhibiting the integer
barb inthni, or silently reduces to Tn.

The universal context US [�] assembles these components to pick the integer repre-
sentative of any context C[�], then either reveal this choice or behave as C[�]. We let
the contexts K[�] and K 0[�] represent the derivatives of US [�] at these intermediate
stages:

K[�] � B[RS [� j In]]

K 0[�] � B[RS [� jTn]]

Let us assume that P , Q, and C[�] meet the hypotheses of (1.), and let n be the
integer associated with C[�] by Lemma 4.40. For every reduction C[P] !� T , we
prove that C[Q] !� R with T

.
�2 R. We build a series of reductions that embeds

C[P] !� T within US [�], we use the
.
�2 bisimulation in the de�nition of R, then we

extract a series of reductions leading from C[Q] to R. The situation is detailed in the
diagram on the next page.

The upper square of the diagram deals with the internal choice of the particular
integer n that represents C[�]. The top edge holds by de�nition of R. On the left, we
choose reductions US [P]!� K[P] that only consist of

Pick(4)[In]! Pick(5)[In]! � � � ! Pick(n)[In]!� In

in the enclosing context N [Fx;y[RS [�]]]. By weak bisimulation, we obtain a series
of reductions US [Q] !� U 0 with K[P]

.
�2 U

0. By lemma 4.33, the processes K[P]
and U 0 have the same integer barbs. In particular, U 0 has the integer barb inthni and
no integer barb inthn+ 1i. By Lemma 4.34(3), the integer barbs of N [Fx;y[�]] are
disjoint from these barbs, hence the same reductions displayed above must also have
taken place from US [Q] to U 0. Moreover, no reduction from US [Q] to U 0 may have

4.8. BARBED EQUIVALENCE VERSUS BARBED CONGRUENCE 143

involved Tn (which is still guarded), RS [�] (which is blocked until Tn is triggered),
or N [FS [�] (otherwise the reduction K[P] ! K 0[P] would be simulated by some
U 0 !� .�2 N [Fx;y[R]], which contradicts Lemma 4.34(2)). As a result, the reductions
US [Q] !� U 0 only consist of reductions US[Q] !� K[Q] interleaved with reductions
Q!� Q0, which is easily established by induction on the total number of reductions.

US [P]

�

��

.
�2

US [Q]

�

��

C[Q]

�

��

K[P]

��

.
�2

K[Q0]

�

��

C[Q0]

�

��

B[C[P]]

��

.
�2

K 0[P]

�

��

K 0[Q00]

�

��

.
�2

B[C[Q00]]

�

��

C[Q00]

�

��

B[T]
.
�2

B[T 0]
.
�2

B[R0]
.
�2

B[R] R

Next, the reduction K[P] ! K 0[P] discards the integer barb used as a marker
for this particular Tn; by Lemma 4.37, we have B[C[P]]

.
�2 K 0[P], and by weak

simulation in the bottom left square the reductions C[P] !� T in context yields a
series of reductions K 0[P] !� V with B[T]

.
�2 V . Moreover, by Lemma 4.34(2) we

obtain reductions RS [P jTn]!� T 0 such that V = B[T 0].
In the central square of the diagram, the reductions K[P] !� B[T 0] are simu-

lated by some reductions K[Q0]!� W , and one of these reductions must discard the
marker inthni by reducing the internal choice In to Tn. Let U 00 be the process obtained
immediately after performing this reduction. U 00 is of the form K 0[Q00] for some re-
ductions Q0 !� Q00 for the same reasons than for U 0, and thus the reductions starting
from K[Q0] can be decomposed as successive reductions K[Q0]!� K 0[Q00]!� W with
Q0 !� Q00. Moreover, by Lemma 4.342 again, there are reductions RS [Q00 j Tn]!� R0

such thatW = B[R0]. Note, however, that there is no central
.
�2 edge, hence no direct

way at this stage to relate C[P] and C[Q00].
By applying Lemma 4.37 again, we obtain that K 0[Q00]

.
�2 B[C[Q00]] at the top of

the rightmost bisimulation diagram. By weak bisimulation in this diagram, we �rst
transform the series of reductions K 0[Q00]!� B[R0] into a series of reductions starting
from B[C[Q00]], then again we remark that none of these reductions may interact
with B[�], hence that the same reductions applies from C[Q00] to R.

We glue the source reductions on the right of the diagram into C[Q] !� R, and
we apply Lemma 4.34(1) on the bottom line to obtain the simpler relation T

.
�2 R.

In the special case of an empty series of reductions (C[P] = T), we have in particular
C[Q]!� .�2 C[P].

We conclude the proof of the �rst statement by showing that the relation that
contains all pairs (C[P]; C[Q]) is a double-barbed bisimulation up to bisimilarity
(Lemma 4.27). We have just established a su�cient weak bisimulation diagram (if
C[P] !� T , then C[Q]red�R with T

.
�2 R and vice-versa), and the preservation of

144 CHAPTER 4. EQUIVALENCES AND PROOF TECHNIQUES

barbs follows from the special case above (C[P] +z and C[Q] !� .�2 C[P] implies
C[Q] +z).

The proof of the second statement mostly relies on the �rst statement in combi-
nation with speci�c instances of C[�].

1. for the barbs, we choose the context C[�] = B[�]. Thus, P R Q yields in
particular B[P]

.
�2 B[Q]. By applying Lemma 4.34(1), we immediately obtain

P
.
� Q, hence that P and Q have the same barbs.

2. for the congruence property, let us assume that P R Q, and let C 0[�] be an
evaluation context. We use the particular context C[�] = US0 [C 0[�]] where
S0 = S [fv[C 0[�]], and we obtain that C 0[P] RS0 C 0[Q].

3. as regards weak bisimulation, we close the diagram on the left by extracting a
series of reductions Q!� Q0 from the diagram on the right.

P

��

R
Q

�

��

P 0
R

Q0

from the diagram US [P]
.
�2

��

US [Q]

�

��

US[P
0]

.
�2

US [Q
0]

Let us assume that P ! P 0; then US [P]! US[P
0], and by hypothesis this reduc-

tion can be simulated by a series of reductions US[Q]!� T . Speci�cally, US [P 0]
still has all its integer-encoded barbs on n > 4, and so does T by Lemma 4.33.
This ensures that all reduction steps in US [Q]!� T occurred within Q, that is,
that there are reductions Q!� Q0 such that T = US [Q

0] and thus P 0 R Q0. �

Corollary 4.42
.
��2 = �.

Proof: Let R be the union of relations of the previous lemma. By construction ofR,
we immediately obtain that

.
��2 � R. By the previous lemma, we have R � �. By

de�nition, � is a doubled-barbed bisimulation and a congruence, hence � �
.
��2. By

composing these inclusions, we have
.
��2 = �. �

Proof of Theorem 3: We have the circular inclusions � �
.
��2 �

.
�� � �. �

Chapter 5

The Open Join-Calculus

In order to reason about processes in a more extensional manner, we introduce a re�ned
operational model where interaction with the environment is explicitly represented as
labeled transitions, instead of potential interactions in context.

Using this auxiliary model, we supplement our family of reduction-based equiva-
lences with a theory of labeled equivalences in the join-calculus. Starting from the
usual bisimulation of Milner [96], we propose several formulations of equivalences that
enjoy purely co-inductive proof techniques on labeled transitions. All these formula-
tions yield the same equivalence, but they correspond to di�erent proof techniques.
We prove that weak bisimulation is a full congruence, and we insert it at the upper tier
of our hierarchy of equivalences. Labeled bisimulation is strictly coarser than barbed
congruence. If we add a construct for name comparison, however, then we can show
that both relations coincide for all processes.

In chapter 2 we introduced the rcham, an operational semantics where only the
internal evolution of processes is taken into account. In order to shape labeled bisim-
ulation upon the join-calculus, we propose a re�ned chemical machine� the open
rcham�that explicitly models interaction with the environment. Via these interac-
tions, the environment can get acquainted with names de�ned in solution when such
names are exported as the contents of messages on free names, and can later use
these names to inject messages within the solution. We call these two symmetrical
interactions extrusions and intrusions, respectively. Due to the principle of locality,
intrusions and extrusions always occur on disjoint sets of names. To keep track of
the environment's acquaintance with de�ned names, de�nitions are marked with their
extruded names when extrusion occurs for the �rst time, and intrusions are enabled
only on marked names. Hence, the grammar for the resulting open join-calculus fea-
tures processes of the form defS D in P , where S is a set of names de�ned by D and
extruded to the environment. Informally, extruded names are handled as constants in
the input interface of the process.

Let us illustrate what locality means in an open setting. The process

deffxg xhui . P in xhvi

de�nes a name x such that, whenever a message xhui is received, a fresh copy of
process P is started. The name x is marked as extruded; the environment can therefore
send messages on x to trigger copies of process P . However, the environment cannot

145

146 CHAPTER 5. THE OPEN JOIN-CALCULUS

interfere with the de�nition of x; in particular, the message xhvi is invisible from the
environment, and every weak equivalence would identify the two processes

deffxg xhui . P in xhvi and deffxg xhui . P in Pfv=ug

Our notion of weak labeled bisimulation is obtained by applying to the open rcham
the standard de�nition of Milner (cf. De�nition 4.11). This equivalence relation is
closed under renaming, and is a congruence for all contexts of the open calculus.

In the whole chapter, all bisimulations are implicitly weak, labeled bisimulations,
unless mentioned otherwise. In equations, we put an index to indicate the labeled
nature of a relation. For instance �l will denote our (weak, labeled) bisimilarity.

By de�nition, the open rcham allows intrusion of messages on any name that has
been extruded, independently of the contents of the chemical solution. This behavior is
consistent with asynchrony, because intrusion transitions correspond to the emission
of messages toward the solution, and should not be able to detect the reception of
messages. Unfortunately, this behavior induces �useless� intrusions in most states, and
typically leads to an in�nite model. Consequently, and even as the reaction rules and
the current messages that are present in solution entirely determine which intrusions
may a�ect the computation, this information is not directly useful in proofs of weak
bisimulation because the candidate relation must be closed for all intrusions anyway.

To reduce the size of our model, we alter the open rcham and equip it with an
alternative equivalence called asynchronous bisimulation. The new chemical machine
restricts intrusions to sets of messages that immediately trigger a reaction rule; this
technical device signi�cantly augments the blocking capability of processes. Asyn-
chronous bisimulation combines two novel features: it has a delay clause that handles
asynchrony in the spirit of [16]�messages that are intruded need not be used at once;
they can be delayed by putting them in parallel in the simulating process�and it
allows the intrusion of several messages at the same time, instead of single ones. We
prove that weak bisimulation and asynchronous bisimulation coincide, which validates
the use of asynchronous bisimulation in proofs.

We complete our study of labeled equivalences by considering their connection with
the equivalences of Chapter 4. Reduction-based equivalences are easily extended to
open terms, which naturally raises the issue of their coincidence with labeled equiva-
lences. Our last characterization of weak/asynchronous bisimulation is given in terms
of barbed equivalences. The barbed congruence of Section 4.4 is at the upper tier of
our hierarchy so far, but it is still coarser than labeled bisimilarity, because contexts
in barbed congruence have no way to compare names as such, while labels in weak
bisimulations separate distinct names that exhibit the same behavior. This is actually
the only di�erence between the two equivalences. To establish this, we augment the
join-calculus with a name-comparison operator and we show that barbed congruence
coincides with weak bisimulation in the resulting calculus.

Beyond its use as a proof technique, our labeled semantics yields another point
of view on the join-calculus and provides a basis for comparing it with other calculi,
usually equipped with such weak bisimulations, and especially with the asynchronous
�-calculus [37]. In all these calculi, asynchrony means that message outputs have
no continuation, and thus that there is no direct way to detect that a message has
been received. Noticeably, the usual weak bisimulation of the �-calculus has too
much discriminating power, and separates processes with the same behavior (e.g.,

5.1. OPENING THE CALCULUS 147

0 6�l x(u):xhui); several remedies are considered in [71, 16]. Our bisimulations for the
join-calculus make use of similar accommodations, but they yield simpler semantics,
mostly because locality constrains interaction with the environment. This prunes the
number of transitions to consider, and rules out processes such as x(u):xhui where x
is used by the environment both for input and output.

Contents of the chapter

In Section 5.1 we extend our syntax and chemical semantics to obtain an open model of
the join-calculus. In Section 5.2 we recall the de�nition of labeled bisimulation in this
setting and we study its basic properties. In Section 5.3 we introduce asynchronous
bisimulation. In Section 5.4 we carry over our previous reduction-based equivalences
to the open join-calculus, and we compare barbed congruence and labeled bisimula-
tion. In Section 5.5 we supplement our calculus with comparison between names, and
we show that barbed congruence now coincides with both labeled bisimulations. In
Section 5.6 we compare our labeled equivalences to those that equip the asynchronous
�-calculus.

5.1 Opening the calculus

We �rst de�ne the open join-calculus and its operational semantics as extensions of
the join-calculus and the rcham that are introduced in Chapter 2.

5.1.1 Open syntax

We de�ne open processes A;B : : : 2 A by the following grammar, where nested occur-
rences of D, P , J within A denote terms of the grammar for the plain join-calculus
(Figure 2.1 on page 59).

A ::= open process
xhv1; : : : ; vni message

j defS D in A open de�nition
j A jA0 parallel composition
j 0 null process

An open process A is like a regular join-calculus process P , except that its de�-
nitions in evaluation context are decorated with extruded names: the open de�nition
defS D in A exhibits the subset S of names de�ned by D that are visible from the
environment. We may omit the set S when it is empty, and identify open de�nitions
def; D in P with local de�nitions def D in P ; thus open processes formally extend our
previous notion of processes (P � A).

The interface of an open process A consists of two disjoint sets of names: free
names fv[A] used in A to send messages out, and extruded names xv[A] (that collects
all index sets S in A) used by the environment to send messages in. We adapt our
scoping rule to keep track of extruded names as well as de�ned and free names:

De�nition 5.1 Names that appear in terms are partitioned as follows: received names,
de�ned-local names, extruded names, and free names.

148 CHAPTER 5. THE OPEN JOIN-CALCULUS

Visible names consist of free names fv[A] and extruded names xv[A]. Local names
are bound in join-pattern; they consist of received names rv[J] and de�ned names dv[J].
The scoping rules are given in Figure 5.1.

If we compare the scoping rules for the open join-calculus to those for the plain
calculus (Figure 2.2), we easily check that this is indeed a re�nement by replacing
xv[A] by ; everywhere.

The rule for free variables in de�ning processes def D in A restricts all de�ned
names, but some of them are kept visible as extruded names. This has an impact on
the composition of open de�nitions and open processes, as the names that are free in
one component and extruded in another component are extruded�hence not free�in
the compound process.

The above de�nition induces well-formed conditions on terms. As in the join-
calculus, we consider processes modulo �-conversion on bound names, i.e. received
names and de�ned non-extruded names, and still assume that all join-patterns are
linear. In addition, we require that:

1. sets of names extruded by di�erent open sub-processes be pairwise disjoint�
intuitively these names are independently de�ned. This distinction is enforced
by the disjoint union operator] in the de�nition of xv[�];

2. open de�nitions defS D in P de�ne all their extruded names (S � dv[D]).

(The last restriction is rather natural, but is not technically needed: in the case
x 62 dv[D], the open process deffxg[S D in P would trivially be encoded as deffxg[S
D ^ xhevi j yhi . 0 in P where y 62 fv[D] [fv[P], with the same intended behavior: any
message sent on x is inert.)

Next we de�ne a notion of renamings that operate on families of open processes,
in a way that preserves locality. In the following, most renamings operate only on free
variables, and leave extruded variables unchanged.

De�nition 5.2 A global renaming � is a substitution on the interface of open pro-
cesses that is injective on extruded names.

5.1.2 Open chemistry

We introduce the operational semantics of the open calculus through an example that
explains the role played by the index S in open de�nitions. Consider the process
def; xhi . yhi in zhxi. The interface contains no extruded name so far, and two free
names y; z. The message zhxi can be consumed by the environment, thus exporting x.
This yields the transition

def; xhi . yhi in zhxi
fxgzhxi
����! deffxg xhi . yhi in 0

Once x is known from the environment, it cannot be considered local anymore�the
environment can emit on x�, but is not free either�the environment cannot modify
or extend its de�nition. An intrusion transition is enabled:

deffxg xhi . yhi in 0
xhi
��! deffxg xhi . yhi in xhi

5.1. OPENING THE CALCULUS 149

xv[xhv1; : : : ; vni]
def

= ;

xv[defSD inA]
def

= S] xv[A]

xv[A jA0]
def

= xv[A]] xv[A0]

xv[0]
def

= ;

fv[xhv1; : : : ; vni]
def

= fx; v1; : : : ; vng

fv[defS D in A]
def

= (fv[A] [(fv[D] n xv[A])) n dv[D]

fv[A jA0]
def

= (fv[A]nxv[A0]) [(fv[A0]nxv[A])

fv[0]
def

= ;

fv[J . P]
def

= dv[J] [(fv[P]nrv[J])

fv[D ^ D0]
def

= fv[D] [fv[D0]

fv[T]
def

= ;

rv[J], dv[J], and dv[D] are de�ned as in Figure 2.2; fv[P] def

= fv[A]

Figure 5.1: Scopes for the open join-calculus

Str-join `S AjB
 `S A; B
Str-null `S 0
 `S
Str-and D^D0 `S
 D; D0 `S
Str-nodef T `S
 `S
Str-def `S defS0 D in A
 D� `S]S0 A�

Red J . P `S J� �! J . P `S P�

Ext `S xhv1; : : : ; vpi
S0xhv1 ;:::;vpi
��������! `S]S0

Int `S[fxg
xhv1;::: ;vpi
������! `S[fxg xhv1; : : : ; vpi

Side conditions on the reacting solution S = D `S A:

Str-def � replaces dv[D] n S0 with distinct fresh names;
Red � substitutes names for rv(J);
Ext x 2 fv[S], S0 = fv1; : : : ; vpg \ (dv[D] n S);
Int fv1; : : : ; vpg \ dv[D] � S.

Figure 5.2: The open re�exive chemical machine

150 CHAPTER 5. THE OPEN JOIN-CALCULUS

Now the resulting process can input some more messages on x, and independently it
can perform two transitions to trigger the message yhi and pass it to the context:

deffxg xhi . yhi in xhi �! deffxg xhi . yhi in yhi

fgyhi
���! deffxg xhi . yhi in 0

In order to model interactions with the environment, we now extend the rcham
model de�ned in Section 2.3 with two operations: extrusion of de�ned names on free
names, and intrusion of messages sent on previously extruded names. The explicit
bookkeeping of extruded names is performed by suitably augmenting the chemical
solutions.

De�nition 5.3 Open chemical solutions S, T are triples (D; S;A), written D `S A,
where

� A is a multiset of open processes with disjoint sets of extruded names.

� D is a multiset of de�nitions such that dv[D] \ xv[A] = ;

� S is a subset of dv[D].

As in Section 2.3, we lift the functions dv[�]; fv[�]; xv[�] from terms to multisets of
terms, then to chemical solutions component-wise:

fv[D `S A]
def

= (fv[A] [(fv[D] n xv[A])) n dv[D]

xv[D `S A]
def

= S] xv[A]

The chemical rules for the open rcham are given in Figure 5.2; they de�ne families
of transitions between open solutions *, +, �!, �

�! where � ranges over labels xhevi
and Sxhevi for all subsets S of fevg. Since the chemical rules have slightly di�erent
side conditions and operate on more general solutions, we recall the whole chemical
machinery. As usual, each chemical rule mentions only the processes and the de�ni-
tions that take part to the transition, and the rule applies to every chemical solution S
whose multisets contain these processes and de�nitions.

The �rst six rules are those of the rcham: the structural rules that de�ne the
inverse relations * and + are unchanged, except for Rule Str-def that performs
some extra bookkeeping on extruded names; the reduction rule Red is unchanged.

The last two rules model interaction with the context. The extrusion rule Ext
consumes messages sent on free names; these messages can contain de�ned names
not previously known to the environment, thus causing the scope of their de�nitions
to be opened; this is made explicit in the set of extruded names S0 that appears in
front of the transition label. Our rule resembles the Open rule for restriction in the
�-calculus [100], with an important restriction due to locality: for each message xhevi,
either x is free and the message is consumed only by rule Ext, or x is de�ned, and the
message may be consumed only by rule Red. The intrusion rule Int can be viewed as
a disciplined version of one of the Input rule for the asynchronous �-calculus proposed
by Honda and Tokoro [71]: the latter allows intrusion of any message, whereas our
rule allows intrusion of messages only on de�ned-extruded names.

5.1. OPENING THE CALCULUS 151

Formally, the rcham of Section 2.3 is the restriction of the present open rcham
when it operates on chemical solutions with no extruded variables, and once the two
opening rules Ext and Int have been disabled. In particular, we retain the existence
of fully-diluted normal forms of the rcham:

Remark 5.4 Every open chemical solution is structurally equivalent

� to a fully-heated solution that contains only simple reaction rules and messages
(the solution is unique up to �-conversion)

f� � � Jj . Pj ; � � � g `S f� � � xiheuii; � � � g
� and to the corresponding solution that contains a single open process

; `;

n
defS

^
Jj . Pj in

Y
xiheuiio

The multiset of messages can be further partitioned into three multiset of messages
on free names, messages on extruded names, and messages on locally-de�ned names.
Informally, all messages on free names are available to the context, and could be
exported at once.

When applied to open solutions, the structural rules capture the intended meaning
of extruded names: messages sent on extruded names can be moved inside or outside
their de�ning process. Assuming x is an extruded name (x 2 S [S0 [xv[A]), and
modulo �-conversion to avoid clashes with the arguments (fevg\ dv[D] � S0), we have
the structural rearrangement

`S xhevi jdefS0 D in A
� `S defS0 D in (xhevi jA)
Remark 5.5 In Section 2.5, we presented another auxiliary labeled transition system.
The intent, however, was quite di�erent. It was used to give an alternative, syntac-
tic description of chemical reduction steps. In contrast, the open rcham provides an
extensional semantics of the calculus; the labels are largely independent of the de�ni-
tions, and we do not attempt to de�ne silent steps as matching labeled transitions plus
hiding.

We follow the same convention as before: we use open processes and open solutions
interchangeably, and we consider transitions on processes as chemical transitions up to
structural equivalence: �

�! between processes is actually
� �
�!
� between solutions.

5.1.3 Tracking transitions in context

We conclude this section by mentioning technical properties of the open rcham as
regards global renamings and contexts.

We introduce an auxiliary notation: we use a linear restriction operator to represent
the output-only scope of extruded names. Given a set of names S and a fully-heated
solution T = D `S0]S A, the restriction of T on S is written T n S and de�ned as
follows:

(D `S0]S A) n S
def

= D `S0 A

152 CHAPTER 5. THE OPEN JOIN-CALCULUS

By extension, the restriction operator �nS is partially de�ned on all open solutions and
open processes by applying the restriction to the structurally-equivalent fully-heated
open solution, provided that every name in S is extruded by the solution. (Structural
rearrangements may be required in order to gather all the instances of an extruded
name within the scope of its de�nition before restricting it.)

The next lemma relates the transitions in a chemical solution S to the transitions
in the solution S�, where � is a global renaming.

Lemma 5.6 (Transitions through renamings) Let S and T be open solutions, S
be a set of names, and � be a global renaming for S that does not operate or range
over S.

S
� T i� S�
� T � (5.1)

S ! T implies S� ! T � (5.2)

S
xhevi
��! T implies S�

(xhevi)�
����! T � (5.3)

S
Sxhevi
���! T implies either �(x) 2 xv[S�]; or

Sx�hev�i
�����! T � (5.4)

S� ! T implies S
� S1x1hev1i
�����!

y1hev1i
���! � � �

Snxnhevni
������!

ynhevni
����!
�! S 0 (5.5)

with n � 0;8i � n:�(xi) = �(yi); T

� S 0 n (

[
i=1:::n

Si)

S�
yh ewi
���! T implies S

xhevi
��! S 0 (5.6)

with (xhevi)� = yh ewi; S 0� = T

S�
Syh ewi
���! T implies S

(S)xhevi
����! S 0 (5.7)

with (xhevi)� = yh ewi; S 0� = T

The statements in the above lemma are natural, except perhaps for statement 5.5
with n > 0. This case occurs when an internal step consumes messages on extruded
names �(xi) where xi are free names in the initial solution S. For every such message
that is consumed in the internal step, this is mimicked as an extrusion on xi followed
by an intrusion on yi.

Proof: 5.1 Each structural rule obviously commutes with the global renaming, ex-
cept perhaps for the rule Str-def, because its side condition requires that the
de�ned-local names be disjoint from the visible names. We use preliminary �-
conversion to prevent any clash.

5.2, 5.3, 5.6, 5.7 The transition commutes with the renaming by de�nition.

5.4 The extrusion remains enabled inasmuch as �(x) is free.

5.5 Let M� be the multiset of emissions that is consumed by the reaction rule used
for this silent move. After reordering the messages and performing �-conversion
to preclude name-clashes, we assume that

M = x1hev1i j � � � j xnhevni j xn+1hevn+1i j � � � jxmhevmi
where the names xi; i � n are free and the names xj; j > n are de�ned. In
particular we can extrude the �rst n messages at any time using Rule Ext. For

5.2. WEAK BISIMULATION 153

every i = 1 : : : n, the possibility of the silent move after substitution ensures
that �(x) is an extruded name. This is possible only inasmuch as ��1(�(x))
contains exactly one extruded name yi, which can be used before substitution to
re-intrude the same arguments on a di�erent name. Once these 2n transitions
have been completed, we use structural equivalence to re-assemble a multiset of
messages

M 0 = y1hev1i j � � � j ynhevni j xn+1hevn+1i j � � � j xmhevmi
By construction we have M 0� = M� and, since � is injective on the extruded
names yi M 0, M 0 matches the join-pattern of the same reaction rule before
substitution. Once the reaction has occurred, we apply � and obtain the same
multisets of processes and de�nitions in S 0� than in T . However, the transmitted
names in each set Si � evi have been unduly extruded to the context in the round
trip, thus the solution S 0 is more open than T . �

Remark 5.7 (Transitions through parallel composition) Let A and B be two
open processes such that A jB is well-formed. Let us assume that we have A jB ! T ,
and that this reduction uses a join-pattern in B. Then for some integer n � 0 there
are sets of disjoint fresh names S1; : : : ; Sn and series of transitions

A
S1x1hey1i
�����! � � �

Snxnheyni
������! A0

B
x1hev1i
����! � � �

xnhevni
����! B0 ! B00

such that the reduction can be rewritten

A jB
� (A0 jB0) n
n[
i=1

Si ! (A0 jB00) n
n[
i=1

Si

� T

Proof: We collect the received messages x1hey1i; : : : ; xnheyni that are in evaluation
context in A. For each message, we have xi 2 xv[A] \ fv[B]. Using �-conversion, we
repeatedly rename all local variables in eyi to fresh names, then perform an extrusion.
On the other side, intrusions are always enabled, and yield no further renaming. �

5.2 Weak bisimulation

Our main motivation for opening the join-calculus is to develop labeled proof tech-
niques. We now de�ne labeled bisimulation for open join processes and investigate its
basic properties.

The next de�nition specializes our de�nition of bisimulation (De�nition 4.11) to
the open join-calculus.

De�nition 5.8 A relation R over open processes is a weak simulation if, for all open
processes A and B such that A R B, we have

1. if A! A0 then B !� B0 with A0 R B0;

2. if A
xhevi
��! A0 then B !� xhevi

��!!� B0 with A0 R B0;

3. if A
Sxhevi
���! A0 and S \ fv[B] = ;, then B !� Sxhevi

���!!� B0 with A0 R B0.

154 CHAPTER 5. THE OPEN JOIN-CALCULUS

R is a weak bisimulation when both R and R�1 are weak simulations. Weak bisimi-
larity �l is the largest weak bisimulation.

We omit the formal de�nition of labeled strong bisimulation �l and labeled ex-
pansions �l, �l, which are obtained by restricting the number of internal steps on
the right-hand-side of the above requirements (in 1., by replacing !� by ! and !=

respectively; in 2.,3., by removing!�). The proof techniques developed in Section 4.7
also apply to labeled diagrams. Typically, labeled transitions would be placed above
all other relations in the relation ordering to retain the bene�t of proofs of weak
bisimulations up to expansion.

As usual with mobile calculi, the simulation clause for extrusion (3) does not
consider labels Sxhevi in which some of the names extruded in S are free in fv[B].
Without this condition, the extrusion of names on one side that are already in the
interface on the other side could not be simulated. This standard technicality does not
a�ect the intuitive discriminating power of bisimulation, because we consider terms
up to �-conversion.

Weak bisimilarity is a precise equivalence relation which discriminates processes
without the need for additional congruence requirements: we can tell whether two
processes are bisimilar by reasoning about their synchronization tree. For example,
xhui 6�l xhvi because the two processes perform emissions with di�erent labels. Like-
wise, xhyi 6�l def zhui . yhui in xhzi because the �rst process emits a free name
(label xhyi) while the latter emits a local name that gets extruded (label fzgxhzi).
Positive examples of processes that are indeed weakly bisimilar are presented in the
next chapter; for the time being, we focus on the basic properties of weak bisimilarity.

Weak bisimulation is sensitive to the set of extruded names xv[A] because the
input-interface of the open process A entirely determines the use of rule Int:

Remark 5.9 A �l B implies xv[A] = xv[B].

Proof: To check this property, we consider the partition of open rchams induced
by xv[�]. The resulting classes are closed for all chemical rules except Ext, and in
particular, any solution is structurally equivalent to a fully-heated solution with the
same extruded variables. By de�nition of Int, a fully-heated solution can perform a
transition with label xhevi if and only if x 2 xv[S]. �

Conversely, rule Ext de�nes the only transitions that can separate solutions with
the same extruded names. Obviously, open solutions whose derivatives never perform
Ext are bisimilar if and only if they have the same extruded names to begin with, and
this provides some �garbage-collection� properties such as fv[P] = ; implies P �l 0,
much in the same manner as in the previous chapter where all processes with no barbs
were equated.

5.2.1 Renaming and congruence properties

The rest of the section is devoted to the proof that weak bisimulation is a congruence.
This is most useful to position weak bisimulation on top of our hierarchy of congruence
relations. From the experience of the �-calculus, the congruence property is not really
a surprise because our calculus has no operator for external choice. Nevertheless the
proof is not completely standard and some interesting properties are required.

5.2. WEAK BISIMULATION 155

As explained in Section 4.7, it is usually more e�cient to prove that processes are
bisimilar using relations much smaller than bisimulations, and a whole range of �up to
proof techniques� are available to reduce the size of the relation in use. Accordingly, we
establish that our de�nition of weak bisimulation is robust with respect to reasonings
up to structural equivalence, restriction of the input interface, global renamings, and
weak bisimulation on the right. We derive the de�nitions of �weak bisimulation up
to� from the de�nition of weak bisimulation and use the resulting de�nitions as proof
techniques.

Lemma 5.10 Let R be a relation that satis�es De�nition 5.8 where the requirements
A0 R B0 in the three clauses of the de�nition has been replaced with one of the following
weaker requirements.

1. A0
�R
� B0

2. A0 R�l B
0

3. There is a set of names S such that A0 = A00nS, B0 = B00nS, and A00 �l B
00.

4. There is a global renaming � such that A0 = A00�, B0 = B00�, and A00 �l B
00.

Then we have R � �l.

Proof: In each case, we exhibit a weak bisimulation that contains R:

1. The relation
�R
� is a weak bisimulation, because weak bisimilarity already
takes into account structural rearrangements.

2. The relation �lR�l is a weak bisimulation; this directly follows from the tran-
sitivity of �l, or from the orderings of relations of Section 4.7.

3. The following relation

R n S
def

= f(AnS;BnS) j A �l B and both restrictions are de�nedg

is a weak bisimulation. All transitions after restriction are allowed before, and
thus the bisimulation properties after restriction are direct consequences of the
same properties before restriction.

4. The following relation

�(R)
def

= f(A�;B�) j A R B and � global renamingg

is a weak bisimulation up to restriction. The proof relies on our case analysis of
the e�ect of each kind of renaming on every chemical rule. We show in detail
only the case of internal reduction, as the other cases are much easier.

Let A�
�!
� A0�. By Lemma 5.6(5.5) we obtain a series of extrusion-
intrusion pairs followed by a silent move

A
S1x1hev1i
�����!

y1hev1i
���! � � �

Snxnhevni
������!

ynhevni
����!! A00

156 CHAPTER 5. THE OPEN JOIN-CALCULUS

We apply the bisimulation property to every transition in turn, and thus we
obtain a derivation leading to some B00 such that A00 R B00:

B !� S1x1hev1i�����! B1 !
� B0

1
y1hev1i
���! B00

1 !
� � � � !� B0

n
ynhevni
����! B00

n !
� B00

To re�ect this series of transitions after applying the global renaming �, we study
the action of � on each transition. Silent steps remain silent, but the extrusions
cannot be performed anymore, so we keep the message in solution. We use the
auxiliary notation Bi[M] to represent the process Bi with one extra message M
in evaluation context. For instance we have B00

i = B0
i[yihevii].

Let S def

=
S
Si. The transitions after renaming become,

B� !� (B1[x1hev1i])�nS1 !� (B0
1[x1hev1i])�nS1

= (B0
1[y1hev1i])�nS1

= B00
1� !

� � � � !� (B0
n[xnhevni])�nS

= (B0
n[ynhevni])�nS

= B00
n�nS !

� B00�nS

that is, after aggregating the internal moves, B� !� B00� n S. We thus have
A0 = A00� n S, B0 = B00� n S, and (A00�;B00�) 2 �(R). �

In particular, if we take R = �l we directly obtain that weak bisimulation is
preserved by structural equivalence, restriction and global renaming.

Corollary 5.11 Let A;B 2 A with A �l B. For every global renaming �, for every
set of names S � N , we have A� n S �l B� n S when both processes are de�ned.

The next lemma recalls a standard proof technique to derive the full congruence
property from closure under name substitution. The notion of �bisimilarity� is left
unspeci�ed; formally we take � = �l, and we recheck the proof for any other notion
of bisimilarity.

Lemma 5.12 Let � be a bisimilarity that is a congruence for all evaluation contexts
and that is closed by substitution. Then � is a full congruence.

Proof: We prove that � is a congruence for guarded processes in de�nitions, that
is, for all C[�] = def D ^ J .[�] in A, if P � Q then C[P] � C[Q]. We then conclude
by induction on the structure of an arbitrary context.

For a given pair of processes P � Q, we let R relate the pairs of processes
(C[P]; C[Q]) for all D and A. We prove thatR is a �-bisimulation up to �-bisimilarity
on the right (Lemma 5.10(2)).

All transitions are identical on both sides of R, and lead to processes related by R
for some updated D and A, except for the reduction steps that consume messages J�
to trigger the reaction rule J .Q and J .R, respectively. For that case, we use the
double-context notation E(� 1)[� 2]

def

= def D ^ J .[� 1] in [� 2] and we establish the

5.2. WEAK BISIMULATION 157

diagram

EP [A j J�]
R

��

EQ[A j J�]

��

EP [A jP�]
R EQ[A jP�]

� EQ[A jQ�]

where the R relation holds for some updated context C[�] with P� instead of J�,
and where the � relation is obtained from P � Q in two steps, by applying closure
through the substitution �, then congruence for the evaluation context EQ[�]. �

The congruence property essentially relies on this proposition; its proof is standard.

Lemma 5.13 Weak bisimulation is a congruence for evaluation contexts (�l = �l
�).

Proof: We �rst establish that for all open processes, A;B;E 2 A such that A jE
and B jE are well-formed, if A �l B then A jE �l B jE.

Let R be the relation containing all such pairs (A jE;B jE). We show that R is
a weak bisimulation up to restriction and structural rearrangement.

Any transition that involves only E is clearly the same on both sides, and yields
a new pair of related processes. Likewise, any transition that does not involve E is
simulated on the other side by hypothesis and yields new related processes. This leaves
us with two cases

� an internal reductions in E consumes messages of A,B

By Remark 5.7�and with the same notations�we have series of transitions

A
S1x1hey1i
�����! � � �

Snxnheyni
������! A0

E
x1hev1i
����! � � �

xnhevni
����! E0 ! E00

the �rst series of transitions can be simulated by B, hence for some B with
A0 �l B

0 we have

B !� S1x1hey1i
�����! � � � !� Snxnheyni

������!!� B0

We obtain A0 jE00 R B0 jE00, and a diagram of bisimulation up to restriction for
the internal reductions A jE ! (A0 jE00) n S and B jE !� (B0 jE00) n S.

� an internal reduction of A,B consumes messages of E.

By Remark 5.7 again, we have series of transitions

A
x1hev1i
����! � � �

xnhevni
����! A0 ! A00

E
S1x1hey1i
�����! � � �

Snxnheyni
������! E0

the �rst series of reductions can be simulated by B as

B !� x1hey1i����! � � � !� xnheyni
����!!� B00

and again we obtain a diagram of weak bisimulation up to restriction.

158 CHAPTER 5. THE OPEN JOIN-CALCULUS

We easily extend the congruence property from open parallel composition to any
evaluation context. Let C[�]

def

= defS D in [�]. For any pair of processes A;B such
that C[A] and C[B] are well-formed, we let S0 = (dv[D] \ (fv[A] [fv[B])) n S, E =
defS[S0 D in M , and by structural rearrangement we obtain C[A] = (E jA) n S0 and
C[B] = (E jB) n S0. If A �l B, then we have E jA �l E jB and, by Lemma 5.10(3),
(E jA) n S0 �l (E jB) n S0, hence C[A] �l C[B]. �

Theorem 5 Weak bisimulation is a full congruence.

Proof: We combine the lemmas 5.13 and 5.12 to extend the congruence property
from evaluation contexts to all contexts of the open join-calculus. �

5.3 Asynchronous bisimulation

In order to prove that two chemical solutions are bisimilar, one has to consider a large
number of multiset con�gurations, which may contrast with the intuitive behavior of
the solution; for example, a process with an extruded name already has an in�nite set
of con�gurations, even if no �real� computation is ever performed. For instance, the
two processes below are obviously equivalent

deffxg xhuijyhvi . P in 0 �l deffxg xhui j yhvi .Q in 0

(the processes P and Q cannot be triggered, so their contents is irrelevant). Nonethe-
less, one is confronted to in�nite models because the rule Int is enabled on both sides;
hence, a candidate bisimulation that relates the two processes above would have to
relate at least all pairs of processes obtained by replacing the null process 0 above by
identical multisets of messages on x. This is unfortunate, because we introduced open
semantics to get rid of quanti�cation over all contexts, and we must still deal with
quanti�cation over all intruded messages. This �aw in our de�nition of open chemical
semantics motivates the following alternative formulation.

We re�ne the open rcham by allowing intrusions only when they trigger some
guarded process. For instance, the two processes above become inert, and trivially
bisimilar.

If we directly apply our re�nement with the same intrusion labels xhevi as before,
we obtain a dubious result. The process deffx;yg xhijyhijzhi . P in zhi triggers the
guarded process P inasmuch as it �rst inputs the two messages xhi and yhi, then
performs a silent step that jointly consumes them together with the local message zhi.
Yet, neither of the messages xhi and yhi alone can trigger P , and therefore this solution
would becomes inert with our proposed re�nement. This suggests the use of join-inputs
on x and y in new, larger transition steps such as

xhi j yhi j zhi . P `fx;yg zhi
xhi j yhi
����! xhi j yhi j zhi . P `fx;yg P

On the other hand, if we remove the message zhi from the previous example, the
resulting process deffx;yg xhijyhijzhi . P in 0 is truly inert; in this case, join-inputs
have a greater blocking ability than atomic inputs, and our re�nement suppresses all
input transitions.

5.3. ASYNCHRONOUS BISIMULATION 159

Rules Str-(join,null,and,nodef,def) and Ext are as in Figure 5.2;

Int-J J . P `S M 0 M
��! J . P `S P�

Side condition: J�
� M jM 0, Dom(�) = rv[J],
dv[M] � S, rv[M] free, fresh or extruded.

Figure 5.3: The j-open rcham

5.3.1 The j-open rcham

The j-open rcham is de�ned in Figure 5.3, as a replacement of the intrusion rule.
Unlike the previous rule Int, the new rule Int-J permits intrusion of messages only
if they are immediately used to trigger a process in a de�nition. This is formalized by
allowing labelsM that represent multisets of messages, and by handling them as partial
join-patterns: if the solution can supply a complementary parallel composition of
messages M 0 such that the combination M jM 0 matches the join-pattern in a reaction
rule, then the transition occurs and triggers this reaction rule. As for the rule Int, we
restrict intrusions in M to messages on extruded names. The side condition J�
�

M jM 0 makes explicit the commutative-associative property of our join-patterns; it
uses only the rules Str-join and Str-null. Note that rule Red is now subsumed
by rule Int-J in the case M = 0; nonetheless, we maintain an informal distinction
between internal moves and proper input moves in the following discussion.

The same chemical solution now has two di�erent models: for instance, the solution
xhijyhi . P `fxg has no transition in the j-open rcham, while it has in�nitely many
transitions in the open rcham:

xhijyhi . P `fxg
xhi
��!

xhi
��!

xhi
��! � � �

In the sequel, we shall keep the symbol �
�! for the open rcham and use �

�!J for the
j-open rcham; the subscript J is dropped whenever no ambiguity can arise.

As a direct consequence of the de�nitions of the j-open semantics, we have the
following relation between our two models:

Proposition 5.14 The intrusions of the j-open rcham and those of the open rcham
are related as follows:

1. S
x1hev1i j��� jxnhevni
����������!J S 0 implies S

x1hev1i
����! � � �

xnhevni
����!
�! S 0.

2. For any A, if A j xheui
� M
�!J

� B, then

either A
� M
�!J

� A0 with A0 jxheui
� B,

or for some M 0 we have M 0
� M jxheui and A
� M
0

��!J

� B.

All other transitions are common to both chemical machines.

Proof: 1. The side conditions on names that may appear on intrusion labels are
the same for both machines; thus we can use rule Int to intrude each message

160 CHAPTER 5. THE OPEN JOIN-CALCULUS

xihevii one at a time. Once this is done, we use structural equivalence to assemble
a complete join-pattern, and we perform a Red transition on the reaction rule
that is used by the j-open rcham to perform the Int-J transition, which yield
the same chemical solution.

2. The choice between the two possibilities is directed by the extra internal messages
that are consumed by the Int-J transition. We check that if the message in not
used, then the �rst statement hold, and that otherwise it must be part of the
extra messages (within M in the de�nition of Rule Int-J). �

Intrusions and extrusions are naturally dual rules and could be used to de�ne a
transition system up to the structural rules of the chemical machine and �-conversion.
This approach would suggest the use of �join-extrusions� that aggregate join-patterns
on the extrusions labels, as opposites to join-intrusions. Should we adopt multiple
extrusions as a proof technique, a special treatment of extrusions would be required
because there should be no visible synchronization between components of a multiple
extrusion. Also, we would have to deal with labels of arbitrary size, with possibly
several messages sent on the same name, or several copies of the same message. As
an advantage, this would abstract over the ordering of the extrusions�which is su-
per�cially complicated because only the �rst message that sends a local name outside
extrudes this name.

5.3.2 Asynchronous bisimulation

We now try to shape the de�nition of weak bisimulation (De�nition 5.8) to the new
j-open rcham. Consider for instance the two processes

P
def

= def xhi . ahi ^ ahi j yhi .R in zhx; yi

Q
def

= def xhi j yhi .R in zhx; yi

(where a 62 fv[R]). Using the underlying model of the open rcham, P and Q are
weakly bisimilar, but with the new j-open rcham this is not true anymore, because
after emitting on z, P can input on xhi while Q cannot. If we equip the j-open rcham
with the weak bisimulation of Section 5.2, Q becomes inert after the extrusion on z
because join inputs are not considered. But if we consider the weak bisimulation that
uses join-input labels instead of single ones, Q can input on xhijyhi while P cannot,
and P and Q are still separated. It turns out that weak bisimulation discriminates
too much in the j-open rcham.

In order to avoid detection of the structure of join patterns, weak bisimulation
must be weakened further on. At least, we must consider that a process simulates
another one even if it does not immediately consume all the messages of a join input.

Next we adapt our de�nition of weak bisimulation by adding a delay clause, in the
spirit of [16].

De�nition 5.15 A relation R over j-open rchams is a (weak) asynchronous simu-
lation if, for all processes A and B such that A R B we have

1. xv[A] = xv[B]

5.3. ASYNCHRONOUS BISIMULATION 161

2. if A
M
�! A0, then B jM !� B0 with A0 R B0;

3. if A
Sxhevi
���! A0 and S \ fv[B] = ; then B !� Sxhevi���!!� B0 with A0 R B0.

R is a asynchronous bisimulation when both R and R�1 are asynchronous simulations.
Asynchronous bisimilarity �a is the largest asynchronous bisimulation.

The relation �a is an equivalence by the general argument of Section 4.4.2. In
the de�nition of asynchronous bisimulation, the restriction on S in the output clause
plays the same role as in De�nition 5.8. We explicitly require that related solutions
have the same extruded names, because otherwise Remark 5.9 would not carry over
asynchronous bisimulation. For instance the open deadlocked solution xhijyhi . P `fyg
would be equivalent to the empty solution `;.

Let us show the equality P �a Q, where P and Q are the processes at the beginning
of this section. Both P and Q perform the same emission, therefore it su�ces to prove
that

A = deffx;yg xhi . ahi ^ ahijyhi .R in 0 �a B = deffx;yg xhijyhi .R in 0

We observe A
xhi
��! A0, while B 6

xhi
��!. Nevertheless, it is possible to prove that

A0 �a deffx;yg xhi j yhi .R in xhi. Conversely, there is B0 such that B
xhi j yhi
����! B0

and this move cannot be mimicked by A, but it is possible to prove that B0 �a
deffx;yg xhi . ahi ^ ahi j yhi .R in R, which is a derivative of A j xhi j yhi, and the
process R can be discarded up to context. All other transitions are the same, hence
we can conclude that P �a Q.

The next lemma establishes some basic congruence property for asynchronous
bisimulation.

Lemma 5.16 A �a B implies A j xhevi �a B j xhevi.
Proof: Let R be the relation de�ned as follows.

R
def

= �a [f(A j xhevi; B jxhevi) such that A �a Bg

We prove that R is an asynchronous bisimulation. We only consider the case of
intrusions, all other cases being immediate. Let A j xhevi M

�!J A
0. By Proposition 5.14,

one of the following holds:

1. A M
�!J A00 with A0 = A00 j xhevi. If A �a B, then we have B jM !� B0 with

A0 �a B0, thus B jM jxhevi !� B0 j xhevi with A00 j xhevi R B0 j xhevi.
2. A

M jxhevi
�����!J A

0. If A �a B, then we have B jM jxhevi !� B0 with A0 �a B0, and
in particular A0 R B0. �

Our next result states that the two bisimilarities �l over open rchams and �a
over j-open rchams coincide:

Theorem 6 �a = �l.

162 CHAPTER 5. THE OPEN JOIN-CALCULUS

Proof: This is a direct consequence of Proposition 5.14. We prove the inclusions
�l � �a and �a � �l; we detail only the intrusions, as all other transitions are
identical.

Weak bisimilarity is an asynchronous bisimulation. For every intrusion tran-
sition A

M
�! A0 with M = x1hev1i j : : : j xnhevni in the j-open machine, we can

apply Proposition 5.14(1) and obtain a series of transitions that leads to the
same process A0 in the open machine:

A
x1hev1i
����! � � �

xnhevni
����!! A0

Assume A �l B. By applying weak bisimulation for each intrusion, we obtain a
series of transitions that alternates internal moves and the same single intrusions:

B !� x1hev1i
����!!� � � � !� xnhevni

����!!� B0

In the open machine, however, we can always perform intrusions before internal
reductions. After reordering the transitions, we obtain

B
x1hev1i
����! � � �

xnhevni
����! B jM !� B0

and thus B0 meets all the requirements 5.15(3.) in the de�nition of asynchronous
bisimulation.

Asynchronous bisimulation is a weak bisimulation. For every intrusion transi-

tion A
xhevi
��! A0, we have x 2 xv[S] and A0 = A j xhevi by de�nition of Rule Int.

In the case A �a B, since xv[A] = xv[B] we have x 2 xv[B] and B
xhevi
��! B jxhevi.

We conclude by Proposition 5.16. �

Remark 5.17 Another choice for De�nition 5.15 would require that every intrusion be
matched by a sequence of join-intrusions on the right-hand-side, followed by a parallel
composition with the remaining messages, instead of a parallel composition followed by
internal reductions. The alternative clause would be:

3 0. if A
M
�! A0, then for some B, p � 0, M1, : : : ,Mp,M

0,

we have M
� M1 j � � � jMp jM 0, B
M1��! � � �

Mp
��! B0, and A0 R B0 jM 0.

This alternate characterization is easily proven equivalent to the previous one, and
it is slightly better for automated proofs, because it does not consider unrelated silent
moves after join-intrusions. It is necessary to allow several intrusion steps; otherwise
the equivalence becomes strictly �ner.

5.3.3 Ground bisimulations

As �rst observed in the �-calculus, asynchrony brings another interesting property as
regards the number of reductions to consider: the ground variants of bisimulations
coincide with the basic ones. In early-style semantics, ground bisimulation is obtained
by restricting the intrusions to labels that convey fresh, pairwise-distinct variables.
This signi�cantly reduces the size of the models, because these variables can be treated

5.4. REDUCTION-BASED EQUIVALENCES ON OPEN TERMS 163

as constants�which explains the name �ground bisimulation�. We refer to [16] for a
thorough discussion in a �-calculus setting.

This property carries over the join-calculus, thus providing enhanced proof tech-
niques where, for every chemical solution, there is exactly one intrusion message per
extruded name when using weak bisimulation, and one intrusion message per active
partial join-pattern when using asynchronous bisimulation.

Proposition 5.18 Let �l;g and �a;g be the bisimilarities obtained by restricting in-
trusion labels xhevi in the de�nition of �l (De�nition 5.8) and join-intrusion labels
x1h ev1i j � � � jxmhfvmi in the de�nition of �a (De�nition 5.15) by requiring that all names
in ev, evi be pairwise distinct fresh names. We have:

�l;g = �l = �a = �a;g

Proof: This is an easy corollary of the closure of transitions through global renaming
(Lemma 5.6); we prove �l;g = �l, and we obtain �l;g = �a;g with the same proof
than for Theorem 6. By de�nition �l � �l;g. To establish the converse inclusion, we
show that �l;g is a weak bisimulation up to renaming.

Let us assume A �l;g B. The problematic transition is the intrusion A
xh ewi
���! A0,

where ew may contain free names and extruded names. The de�nition of �l;g tells noth-
ing about such intrusions. Nonetheless, the label can be written xhev�i where the vi's
are distinct, fresh names. The intrusion labeled xhevi is enabled in A; by applying

ground bisimulation, we obtain a series of ground transitions B !� xhevi��!!� B0 with
A00 �l;g B

0 and A0 = A00�. All these transitions commute with the substitution �, so

we also have B�!� xh ewi���!!� B0�. We conclude by Lemma 5.10(4). �

Remark 5.19 Another variant of bisimulation named branching bisimulation has
been advocated for process calculi [62], mostly because it yields more e�cient partition-
re�nement algorithms for automated veri�cation. Branching bisimulation allows addi-
tional reduction steps in bisimulation diagrams only inasmuch as these steps preserve
the bisimulation. In the join-calculus, branching bisimulation and weak bisimulation
coincide.

5.4 Reduction-based equivalences on open terms

Intuitively, the extension of chemical machines with intrusion and extrusion should
not a�ect purely reduction-based equivalences. Indeed, our de�nitions and results of
Chapter 4 easily carries over to the open join-calculus. We brie�y discuss the interest
of extruded names for dealing with reduction-based equivalences, and establish that
open processes enable simple statements and proofs, but do not provide genuinely new
reduction-based equivalences.

5.4.1 Observation

As can be expected, the basic observation predicates #x , and thus all the derived
notions of observation can easily be de�ned in terms of extrusion labels:

164 CHAPTER 5. THE OPEN JOIN-CALCULUS

Remark 5.20 (labels versus barbs) For every open process A, for every name x
that is not extruded by A, we have

A #x i� 9ev;9S such that A
� Sxhevi
���!

A +x i� 9ev;9S such that A *)�!
� Sxhevi���!

The above remark de�nes barbs for all free names, but not for extruded names x 2
xv[A]. This is consistent with our asynchronous approach, where the intrusion capa-
bilities cannot be detected by the emitter.

5.4.2 Extruded names and congruence properties

As regards the congruence property, the well-formed conditions on open terms con-
strain the application of contexts. Especially, evaluation contexts cannot bind ex-
truded names. This may be counter-intuitive, as the mere possibility of applying a
context seems to reveal the extruded names of an open process, while reduction-based
congruences remain entirely insensitive to it. As we try to extend a given reduction-
based equivalence � for all processes of the open calculus, we therefore have two
choices: we can either entirely forget about extruded names, or also require their ex-
act correspondence for every pair of related open processes (i.e., that � re�ne the
partition induced by xv[�]). This is a minor di�erence, because the extruded names
cannot vary through reductions. For instance, the technical di�erence appears for
equations of the form

xhi � deffxg xhi . 0 in 0

We adopt the second, stricter point of view and always assume in the following
that related processes have the same extrusion interface, because it makes little sense
to compare open processes with di�erent sets of extruded names, and because it is
technically convenient in order to compare reduction-based equivalences and labeled
equivalences. (Alternatively, we could use a coarser intrusion rule that tolerates intru-
sions on fresh names.)

Despite this subtlety, the congruence requirements in the open join-calculus can
be signi�cantly simpli�ed by structural rearrangements. More precisely,

Remark 5.21 For any process of the form C[A] where C[�] is an open evaluation
context, there is an open process B such that

(B jA) n S
� C[A]

Remark 5.22 Let � be a reduction-based equivalence that re�nes structural congru-
ence (
� � �). For any open processes A and B, for any set of names S such that
S � xv[A] \ xv[B], we have

A � B implies AnS � BnS

Hence, in the open join-calculus the parallel composition accounts for every eval-
uation context, and we can simplify our congruence requirements accordingly. Going
in the other direction, quanti�cation over open evaluation contexts and quanti�cation
over evaluation contexts with no extruded names yield the same congruence.

5.4. REDUCTION-BASED EQUIVALENCES ON OPEN TERMS 165

5.4.3 Plug-in's versus extruded names

Besides enabling the use of labeled equivalences, open processes provide an useful
notation to deal with reduction-based equivalences; in particular, it is convenient to
specify some parts of a protocol with extruded names. Then, simple parallel com-
position with a �xed interface can be used instead of using a single �at process�or
fully-diluted chemical soup�with numerous side conditions that enforce the conditions
induced by the interface.

In the absence of extruded names, the same approach actually applies, except
that the interface must be explicitly encoded by additional, initialization messages
sent on conventional names. We call such messages plug-in's, as they are meant to
establish the connections between the processes and their environment before the
actual computation begins.

The next lemma relates di�erent formulations of reduction-based equivalence re-
lations. It shows that, in some sense, plug-in messages are the poor man's extruded
names.

Lemma 5.23 Let � be one of the relations �, �, and �. Let X be a set of names,eX be a set of tuples whose contents partition the names in X, fplug
ex j ex 2 eXg be a

family of names indexed by eX, and P
eX
abbreviate the process

Q
ex2 eX plugexhexi.

For all processes P1, P2 and de�nitions D1, D2 where none of the names plug
ex

occur free and such that X � dv[D1] \ dv[D2], the three following statements are
equivalent:

1. defX D1 in P1 � defX D2 in P2

2. def D1 in P1 jP eX � def D2 in P2 jP eX

3. for all D and P such that fv[def D in P] \ (dv[D1] [dv[D2]) � X and dv[D] \
(dv[D1] [dv[D2]) = ;,

def D ^ D1 in P jP1 � def D ^ D2 in P jP2

The �rst formulation is the most compact; it relies on open terms. The second
formulation makes explicit the communication of extruded names to the environment;
the third formulation is stable by application of evaluation contexts, and is used in
direct proofs of reduction-based equivalences that are congruences. We refer to [2] for
a detailed application of the last two formulations of the lemma, in a slightly extended
calculus.

Proof: (1) implies (2): We obtain (2) from (1) by congruence property for the
context P

eX j[�], followed by structural rearrangement and restriction (Remark 5.22).
(3) implies (2): We obtain (2) as an instance of (3) by letting P = P

eX
and D = T.

(2) implies (3): Since � is a congruence for all evaluation contexts, the third
statement only makes explicit a part of a context.

In case � is �, we use the congruence property of R with the particular context:

C[�]
def

= def
zhexi . P

^ D + �hexi in def P
eX
. zhexi j �hexi in [�]

166 CHAPTER 5. THE OPEN JOIN-CALCULUS

where � and z are fresh names, where ex is a single tuple that carries all the names
in X, and where D + �hexi is inductively de�ned as follows:

(D ^ D0) + �hexi def

= (D + �hexi) ^ (D0 + �hexi)
(J .P) + �hexi def

= J j �hexi . P j �hexi
D + �hexi def

= D in all other cases

For all P , Pi, D, and Di that meet the requirements of the lemma, we have the
relations

C
�
def Di in Pi jP eX

�
�� C 0

h
def Di in Pi jP

0
eX

i
(5.8)

� C 0 [def Di in P jPi j �hexi] (5.9)

� def D + �hexi ^ Di in P jPi j �hexi (5.10)

� def D ^ Di in P jPi (5.11)

The structural equivalence (5.8) performs �-conversion; C 0, P 0
eX
are C, P

eX
after sub-

stituting names that do not occur in D,Di,P ,Pi for the names plug
ex with ex 2 eX. Next

the expansion relation (5.9) is obtained by two successive reduction steps that use the
rule P 0

eX
. zhexi j �hexi then the rule zhexi . P . The expansion relation holds because these

two reductions are deterministic�they are enabled until performed, no matter of any
other reduction. Afterward, the two reaction rules are inert; they can be discarded
up to strong equivalence (5.10). The strong equivalence (5.11) is easily established:
the message �hexi always remains present, a join-pattern in the de�nition D + �hexi is
matched if and only if the corresponding join-pattern in D is matched, and all other
reductions are una�ected.

By applying C[�] to statement (2) of the lemma, we have

C
�
def D1 in P1 jP eX

�
� C

�
def D2 in P2 jP eX

�
We apply twice the series of relations 5.8�5.11 and, since all these relations are �ner
than �, we conclude by transitivity of �.

In case R is � or �, we apply the same method with the re�ned context:

C[�]
def

= def

zhexi . P
^ zhexi . thi
^ D + �hexi in def P

eX . zhexi j �hexi in [�]

where t, z, and � are fresh names, and where D+ �hexi is de�ned as before. Again, we
apply C[�] to statement (2) of the lemma; the resulting processes Qi

def

= C[def Di in

Pi jP eX] behave as before, except that the additional reaction rule zhexi . thi provides
visible, indirect information about the reduction that consumes the message zhexi and
triggers P .

As above, each process Qi may perform two reduction steps that use the �rst rule
of C[�] and yield a process Q0

i that is strongly bisimilar to def D ^ Di in P jPi. Since
Q1 R Q2, there must be a way for Q2 to match the two reduction steps Q1 !! Q0

1

(in either exactly two steps or at most two steps), yielding a process Q00
2 such that

Q0
1 R Q00

2. Since Q2 +t and not Q0
1 +t , the only possible way is with the reductions

5.4. REDUCTION-BASED EQUIVALENCES ON OPEN TERMS 167

Q2 !! Q0
2, so Q

00
2 � Q0

2 and Q0
1 R Q0

2. Therefore, def D ^ D1 in P jP1 �R� def

D ^ D2 in P jP2, and hence def D ^ D1 in P jP1 R def D ^ D2 in P jP2.
(3) and (2) implies (1): We prove that the relation that contains all processes

related by (1) when the two other properties hold is a �-bisimulation. Since (3) and
(2) are equivalent, we only need to prove that one of them is preserved by reduction and
by congruence. By using (2), this relation is a bisimulation and respects all barbs. By
using (3), this relation meets the congruence property for enough evaluation contexts:
for every evaluation context def D in P j[�] that can be applied to (1), the �rst
requirement of (3) holds after �-conversion on the names de�ned in D1 and D2 and
not extruded in X; the second requirement is guaranteed by the locality property of
extruded names. �

5.4.4 Weak bisimulation versus barbed congruence

In calculi where both reduction-based equivalences and labeled-based equivalences are
de�ned, the problem of their coincidence naturally arise. Here, we focus on the relation
between barbed congruence and weak bisimulation.

Provided that (1) labeled bisimulation is a congruence for all contexts under
consideration�usually �static contexts�, or evaluation contexts in our case�and that
(2) the barbs +x can be deduced from the labeled transitions, we obtain the two well-
known inclusions �l � � and �l �

.
��. In the asynchronous �-calculus, for instance,

we have P #x if and only if P
xhi
��!, and the congruence for all evaluation contexts is

established in [16].
In our setting, by combining the requirement on reductions and extrusions in the

de�nition of labeled bisimulation (De�nition 5.8) with the reformulation of weak barbs
(Remark 5.20), we obtain that weak bisimulation is a barbed bisimulation, and thus
the inclusion �l �

.
�. Moreover, weak bisimulation is also a congruence. Therefore

we have the expected inclusion

Remark 5.24 In the join-calculus, �l � �.

This remark is technically important, because proofs of labeled bisimulations are
easier to conduct than proofs of barbed congruence, where the closure under every
possible evaluation context must be explicitly handled in each co-inductive proof.
Unfortunately, the gap between the two equivalences is pragmatically quite large. To
see that the inclusion is strict, it su�ces to consider the paradigmatic example of
barbed congruence in the join-calculus:

Remark 5.25 (Silent relay)

xhzi �b def uhvi . zhvi in xhui

That is, emitting a free name z is the same as emitting a bound name u that forwards
all the messages it receives to z; the two processes are indistinguishable, despite an
extra internal move for every use of z. However, these two processes are distinguished
by weak bisimulation because their respective extrusion labels reveal that z is free
and u is extruded.

168 CHAPTER 5. THE OPEN JOIN-CALCULUS

5.5 The discriminating power of name comparison

Our comparison with barbed congruence shows that weak bisimulation is more discrim-
inating than barbed congruence because of name comparison. Nevertheless, barbed
congruence can easily be equipped with such a discriminating power. In this sec-
tion, we attempt to reconcile the two equivalences by enriching the class of evaluation
contexts that are considered in barbed congruence.

5.5.1 Should the join-calculus provide name comparison?

So far, we carefully avoided the use of any join-calculus construct that would enable
the direct comparison of names. While such name-testing capabilities are commonly
found in process calculi, we believe that it is a mixed blessing, at least in our setting.

The comparison of names is a standard trick to obtain context-based character-
izations of labeled-based equivalences, but it also induces technical complications.
For instance, most equivalences are not closed anymore by global renaming. Also,
name comparison unveils subtle distinctions in the de�nition of equivalences, such
as, concerning bisimulations in the �-calculus, the early-, late-, ground- and open-
variants [134].

From the programmer's point of view, comparison is a common feature for basic
values such as integers, but it is seldom available for channels, functions, and abstract
types in general, probably because it is delicate to implement and often reveals too
much about the implementation, thus hindering common optimizations. When the
comparison of functions is available, for instance, it does not usually correspond to
the comparison of function names in the source program, but more likely to the identity
of their run-time representations.

5.5.2 The join-calculus with name-matching

We extend the syntax of the join-calculus with a new construct equivalent to the
standard name-matching pre�x of [100].

A
def

= : : : jif x=y then A P
def

= : : : jif x=y then P

Accordingly, we extend our chemical machines with a new reduction rule.

Match ` if x=x then A �! ` A

The comparison pre�x is of course not an evaluation context. (Alternatively, we could
introduce the comparison of names by removing the linearity constraint on received
names in join-patterns. While this equivalent approach would induce minimal changes,
we choose instead to emphasize the presence of comparison with an explicit construct.)

We de�ne some syntactic sugar for conjunctions of tests as follows. For a �nite set
of pairs S = f(xi; yi) j i = 1 : : : ng we let

if
^

(x;y)2S

x = y then P
def

= if x1 = y1 then if x2 = y2 then : : : if xn = yn then P

As expected, global renamings don't preserve weak bisimulation anymore: Corol-
lary 5.11 is false in the extended calculus. For instance we have 0 �l if x=y then xhi

5.5. THE DISCRIMINATING POWER OF NAME COMPARISON 169

while after applying the renaming fx=yg, 0 6�l if x = x then xhi. Accordingly,
bisimulation is not a full congruence anymore; it is easy to check that the context
C[�]

def

= def zhx; yi .[�] in zhu; ui separates the two processes above.
The next lemma expresses that weak bisimilarity retains the congruence property

for all evaluation contexts:

Lemma 5.26 In the presence of name matching, weak bisimilarity is a congruence
for all evaluation contexts (�l = �l

�).

Proof: the proof of Lemma 5.13 applies unchanged. �

Weak bisimulation is not a congruence for all contexts, however. In order to obtain
the full congruence property, we can consider the coarsest equivalence contained into�l
and closed under renaming. By applying Lemma 5.12, we obtain that this equivalence
is a full congruence. However, this equivalence cannot be a bisimulation.

5.5.3 Barbed congruence is a weak bisimulation

We resume our comparison between weak bisimulation and barbed congruence in the
calculus extended with name comparison. Observe that barbed congruence can now
use a comparison in the context C[�] = def xhyi .if y= z then ahi in [�] to separate
the processes xhzi and def uhvi . zhvi in xhui.

More generally, with name comparison in the syntax each particular label can be
tested by a particular context that performs a series of comparisons, and thus one
would expect that barbed congruence coincides with (some variant of) weak labeled
bisimulation. Still, this coincidence is far from obvious; this is left as an open problem
by Milner and Sangiorgi in a similar setting [101]:

In the �-calculus with matching, early bisimulation and barbed congruence (
.
��) do

coincide, but all direct proofs are di�cult. To our knowledge, the only proof of this re-
sult appears in Sangiorgi's dissertation, for both CCS and the monadic �-calculus [130];
the technique consists of building contexts that test all possible behaviors of a process
under bisimulation, and exhibit di�erent barbs accordingly; this is problematic because
such contexts are in�nite: in particular, they have in�nite numbers of free names and
of recursive constants. Arguably, these contexts correspond to very demanding tests.
Such contexts are otherwise never considered in congruence requirements, and cannot
be expressed using constructs such as guarded replication instead of parameterized
recursive constants.

In other works, approximate results are obtained for variants of the calculus (the
asynchronous �-calculus in [16], the open join-calculus in [35]). The proof technique is
similar, but it does not rely on this heavy machinery, which is not available anymore in
these variants. This has a cost, though, as the coincidence of barbed congruence with
labeled bisimulation is established only for pairs of processes that are image �nite,
and can thus be tested using only �nite contexts.

A process is image �nite when it has a �nite number of derivatives for every labeled
transition (for each label �, fP 0 j P �

�! P 0g is �nite). This restriction is reasonable for
strong bisimulations because transition systems are usually not in�nite branching, but
it is more questionable for weak bisimulations, where in particular fP 0 j P !� P 0g
has to be �nite too. Many common diverging processes do not have this property.

170 CHAPTER 5. THE OPEN JOIN-CALCULUS

For instance, a process that makes use of replication is usually not image-�nite (e.g.,
!�:P !� � !�:P j �:P j : : : j �:P). In the join-calculus, where inputs are all implicitly
replicated, the problem is all the more serious.

We may adapt Sangiorgi's proof by replacing all the messages on free variables by a
few messages that encode all barbs as integers, in the spirit of the proofs in Section 4.8.
In combination with Lemma 4.33, this should probably yield a �nite encoding of his
in�nite contexts. Actually, there is a much simpler proof at hand. In Section 4.4.3
we presented two notions of barbed congruence noted � and

.
��, and devoted some

e�orts to the proof that they actually coincide (Theorem 3) with or without name-
testing. No matter of the choice between � and

.
�� as the �main� barbed congruence,

this suggests an alternative, bisimulation-and-congruence proof that focuses on the
missing inclusion � � �l.

Our next result states that with the comparison of names, barbed congruence and
labeled bisimulation yield the same equivalence.

Theorem 7 In the open join-calculus with comparison, we have � = �l.

The following proof is relatively simple because we can apply a new evaluation
context before every reduction step. Hence, it su�ces to have a context that �grabs�
one label, then disappears up to barbed congruence. The corresponding �-calculus
lemmas appear in [56], and it seems that our technique can be adapted to other
calculi�the existence of tests that discriminate every single label is necessary anyway.
The inclusion � � �l is already stated and proved by Honda and Yoshida for the �-
calculus�a variant of the asynchronous �-calculus [73]. Their proof is more intricate
than ours because remnants of applied contexts always remain present.

The problematic case is extrusion, because a context of the join-calculus must
de�ne a name in order to detect a label that emits on that name; this case is handled
by creating a permanent relay for all other messages on that name. Without additional
care, however, this relay can be detected through the comparison of names.

To tackle this problem, we use a family of contexts that separates two aspects of
a name. For every name x 2 N , we let

Rx[�]
def

= def xheyi . x0heyi in vxhxi j[�]
where the length of ey matches the arity of x. For every name x that is free in P ,
Rx[P] uses x0 as a free name instead of x, and forwards all messages from x to x0.
The context must still be able to discriminate whether the process sends the name x
or not; this extra capability is supplied by an auxiliary message on vx.

Informally, the contexts Rx above will be the residuals of contexts that test for
labels such as fxgyhxi where the name x is extruded. The next lemma captures the
essential property of Rx[�]:

Lemma 5.27 (Accommodating the extrusions) In the join-calculus with or with-
out name-matching, for all processes P;Q such that x0; vx 62 fv[P] [fv[Q], we have

P � Q i� Rx[P] � Rx[Q]

Proof: If P � Q, then the congruence property of � yields Rx[P] � Rx[Q].

5.5. THE DISCRIMINATING POWER OF NAME COMPARISON 171

To prove the converse implication, we let R be the relation that contains all pairs
of processes (P 0; Q0) obtained from the pairs (P;Q) that meets the conditions of the
lemma by replacing every message xheyi in evaluation context by the message x0heyi.
Since P !� P 0 and Q!� Q0 use only deterministic reductions, we still have Rx[P 0] �
Rx[Q

0].
We prove that R is a barbed bisimulation congruence up to the expansion that

forwards messages from x to x0 in Rx[�].

1. R is a weak bisimulation for reductions up to expansion; if P 0 ! P 00, then
Rx[P

0]! Rx[P
00] and, since we have Rx[P 0] � Rx[Q0], this reduction is simulated

by some reductions Rx[Q0]!� T . By de�nition of Rx[�], T is of the form Rx[Q
00]

where Q0 !� Q00. The resulting processes P 00 and Q00 may have messages on x
in evaluation context, but still we have P 00 �R� Q00.

2. R re�nes all barbs: for all processes P 0, the barbs of Rx[P 0] and those of P 0 are
closely related: we have Rx[P] 6+x , Rx[P] +vx , Rx[P] +x 0 i� P +x or P +x 0 , and
for all y 62 fx; x0; vxg, Rx[P] +y i� P +y . If P 0 R Q0, then Rx[P

0] and Rx[Q
0]

have the same barbs, and thus P 0 and Q0 have the same barbs.

3. R is a congruence: let C[�] be an evaluation context. We show that

Rx[P] � Rx[Q] implies Rx[C[P]] � Rx[C[Q]]

by translating C[�] to another context [[C]][�] that binds vx, receives x on vx,
uses x everywhere except for the de�nition of x0, and re-applies Rx on the outside:
we assume that C[�] � def D in M j[�], and we distinguish two cases according
to the scope of x:

� in case C binds x (x 2 dv[D]), we use the translation

[[C]][�] def

= Rx[0] jdef D
0 + �hxi ^ vxhxi . �hxi jM in [�]

where D0 is D with x0 instead of x in every top-level join-pattern.

� otherwise, we use the translation

[[C]][�] def

=
def wxheyi . vxheyi in
def D + �hxi ^ vxhxi . �hxi jwxhxi jM in [�]

(where D + �hxi is de�ned as in the proof of Lemma 5.23). In each case, we
establish the labeled expansion [[C]][Rx[P]] �l Rx[C[P]]. To conclude, we apply
the congruence property for [[C]][�] to the hypothesis Rx[P] � Rx[Q], and obtain
C[P] R C[Q] by transitivity. �

Proof of Theorem 7: The inclusion �l � � is a corollary of Lemma 5.26; its proof
does not depend on name comparison, and is the same as in Section 5.4.4.

We prove the converse inclusion � � �l by establishing that � is a labeled bisim-
ulation. Let us assume that A � B. For every kind of transition A

�
�! A0 we use

a context that speci�cally consumes this transition, then behaves as the trivial con-
text [�] possibly using Rx[�] and the above lemma.

172 CHAPTER 5. THE OPEN JOIN-CALCULUS

internal step ! This is subsumed by the weak bisimulation property of �.

intrusion
xheyi
��! Independently of the values ey, intrusion is enabled on x i� x 2 xv[A],

and then we have A
xheyi
��! A0 = A j xheyi. We simply use the congruence property

of � for the context [�] j xheyi.
extrusion

Sxhy1;:::;yni
�������! Let m 2 0 : : : n be the cardinal of S. Without loss of general-

ity, we assume that the freshly extruded names in S are the �rst arguments of
the message (S = fy1; : : : ; ymg). We also assume that S \ (fv[A] [fv[B]) = ;.
We use the congruence property for the context

T
def

= f(yi; zi) j m < i � ng
[f(zi; zj) j 0 � i < j � m and yi = yjg

F
def

= (fv[A] [fv[B] [xv[A] [xv[B])� S
[f(zi; zj) j 0 � i; j � m and yi 6= yjg

V
def

= if
^

(y;z)2T

y = z then donehi j
Y

(y;z)2F

(if y = z then testhi)

E[�]
def

=

def xhezi j grabhi . V
^ xhezi j donehi . x0hezi j donehi
^ oncehi . testhi
^ oncehi j donehi . donehi
in oncehi j grabhi j vxhxi j[�]

where the names grab, once , done , test , and vx are fresh. Informally, E[�]
grabs a message on x, binds its arguments to the variables ez, checks that these
arguments meet all the requirements of the expected label using the process V ,
then behaves like Rx[�]. The �nite set T � N � N gathers all pairs of names
that must coincide: previously-known names and repeated fresh names. The
�nite set F � N �N gathers all pairs of names that must be di�erent from one
another: freshly-extruded names are distinct from any previously visible name,
and pairwise distinct unless syntactically the same on the label.

� if A
Sxhy1;:::;yni
�������! A0, then E[A]!�� Rx[A0].

We use the series of n�m+2 reductions that consumes xheyi j grabhi, passes
the series of positive tests T in V�which releases the message donehi�then
consumes oncehi j donehi�which erases the barb +test . Using structural
rearrangement, the remains of the context can be written

E0[�]
def

= def xhezi j donehi . x0hezi j donehi ^ D in

donehi j vxhxi j[�] j
Q

(y;z)2F (if y = zi then testhi)

where D and
Q

(y;z)2F (if y = zi then testhi) are inert. Thus, we have the
strong equivalence E0[A0] � Rx[A0] for any A0 where the names grab, once,
done , and vx are fresh.

5.6. RELATED EQUIVALENCES IN THE �-CALCULUS 173

� if E[B]!� U 6+test , then B !� Sxhy1;:::;yni
�������! B0 with Rx[B0] � U .

The series of derivation detailed above in the only way to emit the message
donehi, hence to get rid of the barb +test . Let xhezi be the �rst message
received by E[�]. We decompose the reductions leading to U as follows.
Before the �rst reception on x, all reductions are internal to B; after this
receptions, all reductions are either internal steps in the derivative of B,
internal steps to E[�] exactly as described above, or further receptions
on x in E[�]. These receptions are deterministic; they preserve barbed
congruence.
Since the barb +test disappears, every comparison in the series on the �rst
line of V has succeeded, which ensures yi = zi for i = m+1 : : : n. Besides, no
comparison in the parallel composition on the second line of V may succeed,
as this would reintroduce a testhi message, hence the names z1; : : : ; zm are
all fresh names and we can perform �-conversion before the reduction to
enforce yi = zi for i = 1 : : : m.
We write B !� C[xheyi] for the series of reductions internal to B, and we

choose B0 such that C[xheyi] Sxhy1;:::;yni
�������! B0.

Let us assume A � B and A
Sxhy1;:::;yni
�������! A0. By congruence property E[A] �

E[B]. By weak reduction-based bisimulation, the reductions E[A] !� E0[A0]
must be simulated by some reductions E[B] !� U with E0[A0] � U . Since
E0[A] 6+test , U 6+test and thus Rx[A0] � Rx[B

0]. By Lemma 5.27, this entails
A0 � B0, which closes the required bisimulation diagram for extrusions. �

5.6 Related equivalences in the �-calculus

As discussed in Chapter 2, the join-calculus can be seen as a disciplined variant of
the asynchronous �-calculus, in which locality is enforced by the syntax. Both calculi
have a lot in common, and our labeled semantics largely draw upon the bisimulations
developed for the �-calculus [100, 101, 137, 71, 16]. In this section, we relate our de�-
nitions of labeled equivalences to previous proposals in the literature, and we compare
the equivalences obtained by applying similar de�nitions to both the join-calculus and
the �-calculus. We refer to Section 6.6.1 for a more general comparison of the two
calculi, and in particular for the grammar of �-calculus processes that we use here.

The treatment of names in the asynchronous �-calculus and the join-calculus are
quite di�erent. In the open join-calculus, the visible names of a process are partitioned
into names for extrusions (free names), which do not have a local de�nition, and names
for intrusions and internal reduction (extruded names), which do have a local de�nition.
This structured interface restricts interaction with the environment, and in particular
signi�cantly reduces the number of transitions to consider, both for weak bisimulation
and asynchronous bisimulation.

In the �-calculus, on the contrary, every free name can be used for intrusion, extru-
sion and internal reduction. Furthermore, a received name can be used to create new
input guards, as in x(y):y(z):P . In this respect, the barbed congruence of Remark 5.25
is illuminating. If we try to translate this equation in the asynchronous �-calculus, we
obtain the two processes xhzi and �u:(!u(v):zhvi j xhui), but these processes are not

174 CHAPTER 5. THE OPEN JOIN-CALCULUS

barbed equivalent. For example, let C[�] be the evaluation context

C[�] = �x:�z:(x(a):a(u):uhi j zhbi j[�])

We have C[xhzi] +b and C[�u:(!u(v):zhvi j xhui)] 6+b , hence the two translated pro-
cesses are not even may-testing equivalent. The context C[�] invalidates our locality
property, as it receives messages on a received name. As could be expected, locality
does restricts the discriminating power of observers.

Let us compare the observational semantics for the open join calculus to previous
proposals for the asynchronous �-calculus, notably [71] and [16]. Both proposals adapt
the semantics inherited from the standard �-calculus [100] to asynchrony. As message-
output is not a pre�x anymore, emitters in contexts cannot detect whether a message
is actually read. Technically, this leads to a special treatment of input actions, either
in the de�nition of transitions or in the de�nition of bisimulation.

In [71], Honda and Tokoro retain the standard notion of weak bisimulation. As a
consequence, they are forced to change the intensional semantics. Take for instance
the two �-calculus processes 0 and x(u): xhui. The process x(u): xhui consumes a mes-
sage xhvi, then immediately releases the same message; in an asynchronous setting,
this operation is invisible from the context. Intuitively, 0 can simulate the same behav-
ior by doing nothing, hence the two processes are barbed congruent. Unfortunately,
the standard labeled bisimulation obviously discriminates between 0 and x(u): xhui.
To cope with this problem, Honda and Tokoro adopt an operational model where asyn-
chrony of communication with the environment is rendered as the total receptiveness
of the process: the intrusion of any message is always enabled, which can be rendered
by using extended structural equivalence in combination with the rule:

Input 0
xhvi
��! xhvi

According to this semantics, both processes 0 and x(u): xhui can input then output
any message, and in particular the message xhyi.

The intrusion rule of the open rcham is reminiscent of this kind of operational se-
mantics, with two important di�erences: (1) Our rule Int is enabled only for extruded
names, and there are �nitely many of them; conversely, their input rule immediately
yields an in�nite transition system; and (2) intruded messages are not observable from
the join-calculus environment; for instance, if communication on an extruded name
becomes stuck, then extraneous messages that have been introduced in the solution
by the rule Int can be simply discarded; conversely, �-calculus contexts may attempt
to read back their emissions.

In [16], Amadio et al. take the opposite approach. They keep the standard syn-
chronous semantics, and they modify the notion of bisimulation. For two processes to
be bisimilar, they do not require that every input on one side be necessarily simulated
by an input of the other side. Rather, they introduce a delay clause in bisimulation,
by which the input of a message can be simulated by adding this message in paral-
lel on the other side instead of consuming it immediately. Hence, 0 cannot input a
message xhyi, but can simulate this input by putting this message in parallel. Their
resulting asynchronous bisimulation o�ers three advantages: it eliminates the need
for total receptiveness, it is consistent with external sum, and it relies on a standard
labeled semantics.

5.6. RELATED EQUIVALENCES IN THE �-CALCULUS 175

Our asynchronous bisimulation presented in Section 5.3 relies on similar moti-
vations (handling asynchrony in the de�nition of bisimulation with a relaxed clause
for intrusions rather than in the operational semantics) but our clause for input is
di�erent from theirs: we deal with multiple intrusions, and we allow the simulat-
ing process to perform arbitrary internal moves after parallel composition with the
intruded messages�in their terminology, this would place our equivalence between
1-bisimulation and asynchronous bisimulation. Besides, the j-open rcham is not
meant to be a standard semantics, but rather a technical device to reduce the branch-
ing of the underlying transition system. Arguably, the open rcham gives a more
intuitive meaning to extruded names.

It is worth mentioning that the clause they use for intrusions in asynchronous
bisimulation does not suitably carry over to the join-calculus. In our syntax, this
clause would be

if P
� xheui
��!
� P 0 then either Q *)�!

� xheui
��! *)�!

� Q0 and P 0 R Q0

or Q *)�!
� Q0 and P 0 R (Q0 j xheui)

If we extend it to our j-open rcham model by allowing join-intrusions of several
messages, a problem arises when only some of the messages are needed on the right-
hand-side to perform internal reductions. Let us consider for instance the equivalence:

deffx;yg xhzi j yhi . zhi in xhai

�l deffx;yg xhzi j y
0hi . zhi ^ yhi . y0hi in xhai

The two processes are weakly bisimilar, but the latter cannot simulate a double intru-
sion xhbi j yhi that would commit on emitting the message bhi and not ahi.

From a technical point of view, we often discuss the same, standard properties (clo-
sure through renaming, congruence, relation with barbed bisimulation); as we compare
our work to the formal treatment of bisimulation in the �-calculus, we observe that
locality makes most proofs simpler: it forbids the detection of messages carried on
de�ned names, and reduces the number of cases to consider in the interaction between
transitions and global renamings. Noticeably, it also rules out the subtle problems of
input and output occurring on the same name. Most complications stem from closure
of equivalence under global renamings, because renamings can create new redexes. In
the synchronous �-calculus, bisimulations are not closed under substitutions, unless
it is directly taken as part of the de�nition [134]; in the asynchronous �-calculus, the
property holds because silent steps can always be split in two opposite transitions. In
the join-calculus, global renamings may create new reductions only by substituting ex-
truded variables for free variables, which cannot occur for plain (non-open) processes.

Weak bisimulation and asynchronous bisimulation coincide in the open join-cal-
culus for simple reasons. In contrast, the correspondence between the bisimulations
of [71] and those of [16], discussed in details in the latter, is a delicate issue; it is
unclear, for instance, whether both approaches yield the same relation in the weak
case.

More generally, other devices have been proposed to reduce the number of tran-
sitions to consider when comparing processes. For example, typed bisimulations can
lead to smaller synchronization trees. It may also be possible to dynamically prune the
synchronization tree from families of useless transitions according to some conservative
property [102].

176 CHAPTER 5. THE OPEN JOIN-CALCULUS

Chapter 6

Encodings

In this chapter, we complete our study of the join-calculus by a series of encodings.
We explore several variants of the join-calculus, and relate them to the asynchronous
�-calculus. We obtain a family portrait of asynchronous process calculi centered on the
join-calculus presented in Chapter 2, with a detailed account of its speci�c features.
Along the way, we state and prove several correctness properties, which illustrates the
equivalences and the proof techniques developed in Chapters 4 and 5.

In concurrency, it is customary to introduce variants of existing calculi� or even to
design speci�c process calculi�instead of relying on other, better established but less
adequate formalisms. For the �-calculus, for instance, there is a tremendous number
of variations, and their connections are rather loose. Each formal result is stated
and proven for a speci�c calculus, and does not automatically carry over to other
variants, even when intuitively these variants should make little di�erence. For the
join-calculus, the same problem arises: while we mostly deal with the calculus de�ned
in Chapter 2, some results are sensitive to small variations, such as the addition of
name comparison. Besides, some choices in the design of the �main� join-calculus are
arbitrary, so it is worth reconsidering them, and assessing their actual impact on the
calculus. Finally, the join-calculus is a variant of the asynchronous �-calculus [71, 37],
and their connection deserves a formal investigation.

In Chapter 2, we de�ned a calculus that is convenient as the kernel of a program-
ming language. Nonetheless, it is possible to reduce it further to simpler primitives. To
this end, we successively remove recursive scope, de�nitions with several clauses, join-
patterns with more than two messages, and messages with several transmitted values.
We replace them by internal encodings, prove that these encodings are fully abstract,
and eventually obtain a �minimalist� core join-calculus stripped from any construct
that is not essential, and still retaining the expressive power of the join-calculus.

The join-calculus is closely related to the �-calculus; it can be seen as a con-
strained �-calculus where scope restriction, input, and replicated input are merged
into a single (join) input de�nition. More precisely, our main theorem states that
the asynchronous �-calculus and the join-calculus have the same expressive power up
to barbed congruence; it is obtained by exhibiting fully abstract encodings in each
direction. However, subtle di�erences between the two calculi make the correct en-
codings surprisingly complex. We present both simple and accurate encodings and
discuss their characteristics, which give some precise insight on the distance between
the join-calculus and the �-calculus.

177

178 CHAPTER 6. ENCODINGS

E�ciency is not a primary concern in these encodings�in our implementation,
most of the encoded constructs are directly supported in a more e�cient manner.
Rather, we are interested in theoretical results expressed as weak equivalences; in
particular, some encodings induce a large number of bookkeeping reductions, or even
diverging computations.

Contents of the chapter

In Section 6.1 we de�ne some terminology and methods for encodings among process
calculi. In Section 6.2 we present the �core� join-calculus that is the target of our
internal encodings. In Section 6.3 we study the structure of de�nitions, we give some
equivalences on the shape of join-patterns, and we strip the join-calculus of complex
de�nitions. In Section 6.4 we develop auxiliary ��rewall� encodings to protect our
translations. In Section 6.5 we further strip the join-calculus from communication on
polyadic messages. In Section 6.6, we compare the core join-calculus and the asyn-
chronous �-calculus. The last section is devoted to the proofs of the full abstraction
result between the �-calculus and the join-calculus.

6.1 On encodings

A standard manner of understanding a new formalism is to reduce it to more familiar
or better established formalisms. Since an explicit correspondence is better than the
mere intuition that similar notions are involved, it is natural to design cross-encodings
and to study their properties.

From a more detached point of view, this correspondence often points out what are
the essential di�erences between these formalism. Ideally, the best encodings would
tell only about these di�erences, and although it is delicate to argue that there are
no better encodings, this approach gives some idea of the distance between the two
formalisms.

Even if we restrict our attention to name-passing process calculi, there exists a vast
body of literature about encodings. We merely survey a few themes; we refer to [106]
for a more detailed overview. (We have also discussed encodings of the �-calculus and
of objects in Sections 3.4 and 3.5, respectively.)

There are numerous examples of internal encodings of some operators or features
of a given process calculus into a fragment of the calculus that does not contain them.
In the �-calculus for instance, in [116] all processes can be encoded into processes with
simpler, uniform guards; in [109, 107] guarded choice can be explicitly encoded in a
calculus without primitive choice operator.

In the same spirit, the basic communication patterns can be restricted, by replacing
the more complex communications by runs of explicit communication protocols. In
the �-calculus, for instance, polyadic communication can be divided into series of
monadic communications [99, 153]; in the �-I-calculus the name-passing mechanism
can be limited to internal mobility where only fresh names are communicated [33];
in the asynchronous �-calculus output guards can be ruled out, which renders the
reception of a message invisible [37, 71, 114]; in this chapter, and in recent works
on the �-calculus [94], the general channel-based communication can be reduced to

6.1. ON ENCODINGS 179

simpler communications where all receivers are static, and only output capabilities are
exchanged.

Last but not least, encodings from a �speci�cation calculus� to an �implementation
calculus� yield a precise account of compilation and implementation issues, because
full abstraction results can be interpreted in terms of actual guarantees at run-time [1].
For example, an optimization is correct when it preserves an equivalence �ner than
observation in the implementation. This approach also enables simpler reasoning
about implementations by �lifting� properties of interest to the source calculus. In [2]
for instance, security in an open distributed environment is speci�ed in terms of join-
calculus behaviors, but it is implemented by using classical cryptographic primitives
instead of abstract channels; still, full abstraction results guarantee that security in
the implementation is the same as security in the source calculus.

6.1.1 Formal properties of translations

While informal translations may provide useful examples, the mere existence of a
translation is not very informative, and some notion of correctness is called for.

We set some terminology. An encoding, or a translation, is a function from terms in
the source calculus�or high-level language�to terms in the implementation calculus�
or low-level language. We use variants of the notation [[�]] to denote translation
functions.

When the translation is internal to a given calculus equipped with some notion of
equivalence, correctness with regards to that equivalence is the most natural notion:

De�nition 6.1 Let (P;�) be a process calculus equipped with a relation �. A trans-
lation [[�]] : P 7! P is correct up to � when, for all processes P 2 P, we have
P � [[P]].

When the translation maps processes from one calculus to another, each calculus
has its own de�nition of equivalence. We must therefore combine some coarser direct
relations between the source and the translation with indirect, full abstraction proper-
ties that transport equivalences from pairs of source processes to pairs of translations.

A key technical lemma expresses some operational correspondence between a source
process and its translation, possibly up to some equivalence: in essence, it states how
the translation works. For instance, a translation preserves source weak reductions up
to � when for all processes P , if P !� P 0, then [[P]]!�� [[P 0]]; a translation re�ects
reduction steps in the implementation back to the source calculus up to expansion
when for all P , if [[P]]! T , then for some P 0 we have P != P 0 and T � [[P]].

Other properties state what the translation reveals or hides, as compared with the
source process. Especially, they are sensitive to the low-level interactions that are not
in operational correspondence with high-level interactions, and vice-versa. We recall
the de�nition of full abstraction:

De�nition 6.2 Let (P1;�1) and (P2;�2) be two process calculi equipped with relations
�1 and �2. A translation [[�]] : P1 7! P2 is fully abstract when, for all processes P;Q 2
P1, we have

P �1 Q i� [[P]] �2 [[Q]]

180 CHAPTER 6. ENCODINGS

Such properties systematically transport results from a calculus to another, at least
for these particular equivalences. As opposed to correctness, however, full abstraction
for a given pair of equivalences says nothing about coarser equivalences.

In the whole chapter, we assess the relative expressive power of miscellaneous
calculi from the existence of fully abstract encodings between them. We say that
(P2;�2) is more expressive than (P1;�1) when there is an fully abstract encoding
from P1 to P2; we say that the two process calculi (P1;�1) and (P2;�2) have the
same expressive power when there is a pair of fully abstract encodings between the
two. We typically use two instances of the same notion of equivalence at a given tier
in the hierarchy described in Chapter 4. Most full abstraction results are stated in
terms of barbed congruence, that is, observation of barbs and internal choices in any
context.

Overall, we present for each encoding a combination of such properties on some
variations of the encoding, with a trade-o� between the complexity of the encoding and
the precision of its properties. From that point of view, our hierarchy of equivalences
paves the way, and enables a variety of results of graded precision.

6.1.2 Contexts and compositionality

We detail the relation between correctness and full abstraction in the case of an internal
encoding, e.g., an encoding [[�]] from a calculus to one of its syntactic fragments.

The issue is complicated when the equivalences are congruences: while correctness
assumes quanti�cation over the same contexts for the source process and its trans-
lation, full abstraction for two instances of a congruence may use di�erent family of
contexts. Using the notation �0 for the congruence over the contexts of the fragment,
we may have the correctness property (and thus [[P]] � [[Q]] implies P � Q) but still
not the full abstraction property ([[P]] �0 [[Q]] implies P � Q). Also, correctness may
not hold simply because the interfaces of P and [[P]] are not the same. When this is
the case, it is often useful to relate P to C[[[P]]] for some context C[�] that somehow
inverts the interfaces, but even when a translation has an inverse up to equivalence,
full abstraction remains weaker than correctness.

Another issue that pops up for several encodings has to do with the congruence
property in the low-level calculus. Contexts in the low-level calculus are naturally more
discriminative than contexts in the high-level calculus, because translations of contexts
in the high-level calculus always comply with the protocols of the low-level interface,
while low-level contexts may use this interface in any other way. This suggests that
we protect the encoding from �hostile� context, by taking adequate counter-measures
in the encoding. In several of our encodings, these techniques yield full abstraction
after all, at the cost of some additional complexity in the encoding. By analogy with
the security mechanisms that �lter messages and force them to comply with a given
security policy, we name these extensions of our encodings ��rewalls�. We refer to [2]
for another instance of this problem, in an actual security setting, and postpone to
future work a general study of �rewall techniques and their interaction with type
systems.

6.2. THE CORE JOIN-CALCULUS 181

6.2 The core join-calculus

The core (recursive) join-calculus is a restriction of the full calculus with simpler
de�nitions, join patterns, and messages. Its syntax is given by the grammar:

P ::= core processes
xhui message carrying a single name

j P1 jP2 parallel composition
j def xhui j yhvi . P1 in P2 local de�nition of a single two-way rule

If we use the scoping rules of the join-calculus, the scope of u; v is P1, whereas
the scope of x; y extends to the whole de�nition (P1 and P2). Alternatively, we can
de�ne a non-recursive core join-calculus where the scope of x; y only extends to the
main process P2. Also, open variants of the join-calculus are easily adapted to the
core join-calculus by opening the syntax of restricted de�nitions.

The core calculus has much simpler de�nitions than the full calculus; each de�nition
has a single clause that joins exactly two names. Also, the core calculus is monadic, in
the sense that every message carries exactly one name. More generally, the monadic
variant of any join-calculus is the subset of this calculus where all names have the
unique, recursive type ��:h�i.

In combination, the following results state that the core join-calculus has the same
expressive power as the full join-calculus. In particular, there is a fully abstract en-
coding [[�]]0 from the full calculus to the core calculus.

Theorem 8 The core join-calculus retains the expressive power of the join-calculus
up to both barbed congruence and labeled bisimulation.

Proof: Anticipating on the next sections, we compose full abstraction results on
successive encodings to get rid of redundant features. The simpli�cation is organized
as follows:

1. we �rst remove recursion by Lemma 6.3;

2. then we remove complex de�nitions by Lemma 6.6;

3. we remove communication on polyadic messages either by Lemma 6.15 for �l,
or by Lemma 6.19 for �.

4. we �nally easily replace every single-message rule by a two-message rule, again
by Lemma 6.3. �

If we remove other features from the core join-calculus, then the resulting cal-
culi seem to loose expressiveness. For instance, if we remove the join operator in
patterns, all reductions commute with one another, and we obtain a calculus that
is deterministic. In the resulting calculus, polyadic messages make a big di�erence:
the call-by-name �-calculus can still be encoded by using messages conveying at most
two names, while even branching cannot be expressed in the monadic deterministic
fragment of the calculus.

182 CHAPTER 6. ENCODINGS

6.3 Simpler de�nitions

Using structural rearrangements, any process can be rewritten into a �at de�ning
process with only messages in evaluation contexts (Remark 2.1). This makes apparent
that the nesting of messages and de�nitions is irrelevant after �-conversion. The
internal structure of rules in de�nitions deserves a closer examination.

We begin with a series of examples that suggest that the shape of join-patterns
is rather �exible; de�nitions can be simpli�ed and rearranged without a�ecting our
notions of equivalence. We then apply these remarks more systematically to encode
complex de�nitions into simpler two-way de�nitions.

6.3.1 Binders and internal state

Several programming examples already suggest the use of local messages to convey
the internal state of an encoding. Informally, these messages are sent on locally fresh
names that are never communicated hence they never interfere with other parts of the
calculus.

Lemma 6.3 We have the strong labeled bisimulation:

defS J . P ^ D in A �l defS J jshevi . P jshevi ^ D in Ajshevi
whenever s is a fresh name and fevg \ rv[J] = ;.

Proof: The proof is simplistic. Since the name s does not appear elsewhere, it always
conveys the same, single message shevi that is initially present in the process on the
right; moreover, the additional arguments are received in the same scope as this initial
message.

We show that the relation R that contains all the processes of the lemma is a
strong labeled bisimulation. Let us assume that P1 R P2. All transitions are in exact
correspondence on both sides of R and the resulting processes are still related by R for
some updated A. We detail the internal reductions that use the di�ering rules. Such
a reduction may consume the messages M in P1 i� another reduction may consume
the messages M j shevi in P2. Moreover, these transitions replace A with the same A0

on both sides of R. �

This strong equivalence su�ces to prove interesting properties with regards to our
scoping rules:

1. If we take ev = s, and in the case J simply is xheui, we derive the obvious
correctness of the encoding from a calculus with at most two names in join-
patterns to a calculus with exactly two names in join-patterns.

2. If we take fevg = dv[J] [fsg, then all occurrences of names of dv[J j shevi] that
appear in P�we call them recursive occurrences�are now bound as received
variables. Up to bisimulation, we can therefore eliminate recursion from every
de�nition.

6.3. SIMPLER DEFINITIONS 183

3. If we take fevg = (fv[P] [fsg) n rv[J], then all the free names of P are bound as
received variables, which is reminiscent of �-lifting in the �-calculus. This vali-
dates a compilation scheme for the join-calculus that would replace every process
by an equivalent process with simpler binders (either receptions or immediate
de�nitions).

6.3.2 Rearranging synchronization patterns

We �rst mention several easy �garbage collection� rules that are used to simplify pro-
grams on the �y in most other proofs, possibly using relevant up to techniques.

In Section 2.4.2 we say that a join-pattern is inert when it cannot be triggered
anymore, and we remark that such join patterns are �invisible�. We now rephrase
these properties in terms of equivalences. For example, a join pattern J is inert as
soon as there is a name in dv[J] that is not extruded and that does not appear anymore
within the de�ning process (except perhaps under the J .[�] guard). The clause can
be simply removed from the de�nition, provided that, whenever we remove the last
occurrence of a de�ned name in a pattern, an additional rule is provided to discard
further messages. For instance, if x 62 fv[D][fv[P], y 2 dv[D], and z 62 dv[D] we have

def xhui j yhi j zhv; wi . Q ^ D in P �l def zhv; wi . 0 ^ D in P (6.1)

Independently, messages sent on join-patterns that are all either stuck or guarding an
empty process can be discarded. For instance we have

def xhevi . 0 in C[xheui] �l def xhevi . 0 in C[0] (6.2)

(Provided, of course, that C[�] does not bind x.) In the same manner, we can simplify
redundant de�nitions that contain several times the same clause, or the composition
of the same clauses:

defS D ^ D
0 in A �l defS D ^ D ^ D

0 in A (6.3)

defS J .P ^ J 0 .P 0

^ D0 in A
�l

defS J . P ^ J 0 .P 0

^ J jJ 0 .P jP 0 ^ D0 in A
(6.4)

Weak bisimulation is insensitive to bu�ering, as one can expect from an asyn-
chronous semantics [139]. We have the simple but important property

Lemma 6.4 (Relays in de�nitions) Let defS D in A be an open process and x,x0

be two names such that x 2 dv[D] and x0 fresh. Let also D0 be the de�nition obtained
from D by substituting x0 for x in de�ned-name position in every join-pattern of D.
We have the labeled expansion

defS xheui . x0heui ^ D0 in A �l defS D in A

Proof: The relation that contains all pairs of processes related by the lemma is a
weak labeled expansion up to the deterministic reductions that relay messages from x
to x0. �

184 CHAPTER 6. ENCODINGS

The lemma describes the presence of relays before synchronization, but it is also
possible to relay messages after synchronization, by using a continuation. For instance,
we also have

defS J . xhevi ^ xhevi . P ^ D in A �l defS J .P ^ D in A (6.5)

where x is a fresh name and ev is a tuple that conveys all the name received in J
(fevg = rv[J]). While we can add bu�ers before or after synchronization, the bu�ering
of partial join-patterns does not usually preserve bisimulation, because of the usual
problem of gradual commitment. For instance, the commitment to one message on x
separates the following processes.

def xhuijyhijzhvi . printhu+ vi in Q
6�l def xhuijyhi . thui ^ thuijzhvi . printhu+ vi in Q

as can be seen for, e.g., Q = xh0i j xh2i j yhi j zh1i j zh2i. The two processes have the
same output traces f1; 2; 3; 4g, but the former process performs the choice atomically,
while the latter one can perform a gradual choice �rst between xh0i and xh2i, then
between zh1i and zh2i, with an intermediate state with possible output f1; 2g.

As discussed in Section 4.5, coupled barbed simulations are adequate to identify
such de�nitions. We have the following result:

Lemma 6.5 For every join-pattern J1 j J2, set of names S � dv[J1 j J2] and processes
P and A, we have

defS

J1 . x1hev1i
^ J2 . x2hev2i
^ x1hev1i j x2hev2i . P in A

.
7
�

defS J1 j J2 . P in A

where x1; x2 are fresh names, fev1g = rv[J1], and fev2g = rv[J2].

Proof: Without loss of generality, we assume that S = dv[J1] [dv[J2], we let

Q[�]
def

= defS

J1 . x1hev1i
^ J2 . x2hev2i
^ x1hev1i j x2hev2i . xhev1; ev2i in [�]

R[�]
def

= defS J1 j J2 . xhev1; ev2i in [�]

and we prove that Q[0]
.
7
�
R[0], which entails the result of the lemma after structural

rearrangement and removal of a relay from x to the continuation P (cf. equation 6.5).
Our candidate coupled simulations contain more processes than those above; they

relate all pairs of processes (A jQ[M]; A jR[N]) where M is a parallel composition
of messages sent on S [fx; x1; x2g, N is a parallel composition of messages sent on
S [fxg, and we have M � N for the partial order on processes de�ned by the clauses

1. xihevii � Ji for i = 1; 2;

2. xihevii � Ji for i = 1; 2, when messages on xi are stuck;

3. x1hev1i j x2hev2i � xhev1; ev2i;

6.3. SIMPLER DEFINITIONS 185

4. � and � are closed by parallel composition with identical messages on both
sides, and by structural equivalence.

Note that the notion of �being stuck� is a global property that depends on the context
A and on other messages inM . As in the proof of Lemma 4.19, we check that the pair
of simulations induced by our ordering of messages form coupled barbed simulations.

�

This result does not hold for labeled coupled simulations, or for barbed coupled
simulation-congruence 7, for the same reasons as in Section 4.5.2: without prior
knowledge of the context, there is no uniform derivation to overrun partial joins.

While the lemma is easily extended to n-way partial synchronizations, it does not
carry over to de�nitions with additional clauses on the same names, because a partial
commitment to an inert join-pattern may prevent some other synchronizations. If
we go down to may-testing equivalence, however, we can decompose synchronization
further for any de�nition. For instance, we have the coarse equivalence:

defS D ^ J . 0 in A 'may defS D in A

for all processes defS D in A and join-patterns J as soon as dv[J] � dv[D].
Besides, it is possible to trade bisimilarity for divergence. Weak bisimulation is

insensitive to divergence, hence the previous partial synchronization of Lemma 6.5 can
be made invisible up to labeled bisimulation. It su�ces to add extra rules that can
roll back their e�ect at any time. For instance, we can temporarily grab arbitrary
messages J within a de�nition D:

defS D in A �l defS J . xhevi ^ xhevi . J ^ D in A

provided that dv[J] � dv[D], x is fresh, and fevg = rv[J].

6.3.3 Encoding complex de�nitions

We now compile every complex de�nition, which may contain n-way join patterns
and multiple clauses connected by ^, into several simpler one-pattern two-message
de�nitions. For that purpose, we implement an invisible layer between the emitters
and the guarded processes of the de�nition that makes explicit an automaton that
matches messages and patterns.

Emissions are translated into internal actions for the automaton and sent on a
conventional name. The automaton joins actions with its current state, detects pat-
terns, then re-emits its new state. When a pattern is found, it also sends a message
containing all the received names to a join-continuation. The only pitfall has to do
with partial commitment to some messages as the encoding attempt to assemble join-
patterns. As discussed above, these partial synchronizations are correct as long as
they are reversible.

We encode a generic de�nition D = J1 . P1 ^ : : : Jn . Pn. After performing a global
renaming, we assume that dv[D] = fx1; : : : ; xmg, and that every join-pattern Jk in D
joins formal messages xihevii with the same received variables evi = vi;1; : : : ; vi;li in all
occurrences of the message. For each join-pattern Jk, we let fsJk � f1; : : : ;mg be the
set of indices of the names in dv[Jk]. For the sake of clarity, we use the syntactic sugar

186 CHAPTER 6. ENCODINGS

developed for continuations to present the encoding (cf. Section 3.4.3). We also omit
the easy encoding of subsets of f1; : : : ;mg and of v1; : : : ; evmg as �at tuples es and ev,
respectively; we use the notation eo for the tuple ev with no value so far. With these
conventions, the translation of a de�ning process is

[[defS
n̂

k=1

J . P in A]] def

=

def get() j sethes; evi .reply es; ev to get in
deffx1g\S D1 in
...
deffxmg\S Dm in

seth;; eoi jQn
k=1Rk j [[A]]

where the names get and set are fresh, and where the m rules Di for each name xi in
dv[D] and the n processes Rk for each clause Jk . Pk of D are respectively de�ned as

Di
def

= xiheui . let es; ev = get() in

sethes [fig; evfeu=
evigi jif i 2 es then xihevii

Rk
def

= repl

�
let es; ev = get() in
if fsJk � es then [[Pk]] j sethes n fsJk ; evi else sethes; evi

�

The translation essentially consists of a single two-way-join de�nition that matches
internal actions to an internal state hes; evi that �caches� the current pending messages
on each of the de�ned names xi of D: es collects the indices for all the names that have
pending messages, and ev collects the pending values for one of these messages, if any.

For each Jk, the auxiliary process Rk repeatedly checks whether the current state s
contains all the de�ned variables sk of Jk, and triggers the guarded process Pk when
successful.

For each xi, the auxiliary de�nition Di inserts the values of pending messages in
the current state. Notice that if another message is already present, it is removed
from the cache and re-sent on xi; this makes sure that the choice of messages that
are present in the cache ev can freely be reconsidered until this choice is committed by
a Pk that consumes a few messages.

We extend our encoding [[�]] from de�ning processes to any process, by simple
structural induction. The encoding is well-typed in the case the source process is
typable with monomorphic types. The next lemma states that our implementation is
correct up to labeled expansion:

Lemma 6.6 In the join-calculus with monomorphic types, for all open processes A
we have the labeled expansion [[A]] �l A.

Proof: We conduct the proof for a single complex de�ning process where all de�ned
names have been extruded (A = defdv[D] D in 0). To this end, we consider the variant
of our encoding that does not encode guarded processes: Pk is substituted for [[Pk]]
in Rk.

We check that, for every set of messages, and for every internal state that can be
reached from them, the join-patterns that can be chosen are exactly the same as in
the source de�nition. Except for the access to the state guarded by the join-pattern
get() j sethes; evi all reductions of the encoding are deterministic.

6.3. SIMPLER DEFINITIONS 187

We let M;M 0 range over parallel compositions of messages sent on dv[D], and, in
case M contains at most one message on each name of dv[D], we let C(M) be the
open process obtained from the translation [[A]] by substituting the message sethes; evi
that caches the arguments of all messages in M for the initial message seth;; eoi. For
all xi 2 dv[D], for all M with no message on xi, we have the series of reductions

xihevii jC(M) !��l C(xihevii jM) (6.6)

xih ewii jC(xihevii jM) !��l xihevii jC(xih ewii jM) (6.7)

The reductions 6.6 cache a message on xi for the �rst time; the reductions 6.7 swap
the contents of a message being cached on xi; in both cases, the series consists of a
deterministic reduction to trigger the de�nition of xi, a join reduction to grab the
state, and a few deterministic reductions to test and update the state. As regards the
active join-patterns, we have the series of reductions

C(Jk� jM) !��l Pk� jC(M) (6.8)

for all M with no message on dv[Jk]; again, all reductions are deterministic except for
the one that joins the continuation of get() with the current state of the cache.

Let R be the relation that contains all pairs of processes

M jC(M 0); M jM 0 jA

where M 0 contains at most one message for each name in dv[D], and let !d denote
all reductions of the encoding that unfold the loop, consumes a message on xi, or
perform some operation on the tuples. We prove that R is a labeled expansion up to
deterministic reductions !d and parallel composition.

Intrusions are the same on both sides, and lead to an extended multiset M . There
is no extrusion. Internal reductions on the left are either deterministic reductions,
or reductions that extend the cache (6.6), or reductions that start a swap (6.7)�all
these cases are simulated by no reduction on the other side�, or reductions that
join a request from Rk with a state M 0 = Jk� jM

00 that has enough messages to
successfully trigger a process Pk� (6.8)�in this case, the real messages in M 0 on the
right-hand-side are jointly received in one step. Conversely, internal reductions on the
right may consume messages in both M and M 0; for each message in M , we use one
of the two series of reductions 6.6 or 6.7 to obtain a join-pattern entirely in M 0, then
we perform 6.8. On both sides, we have the same additional process Pk� in parallel
composition with processes that are related by R with M 00 instead ofM 0 in the cache;
the process Pk� is discarded up to parallel composition.

We remark that the encoding commutes with every global renaming, and obtain
the general case by repeatedly applying the above expansion in context for every join-
de�nition of an arbitrary open process A. �

Formally, Lemma 6.6 is very precise because the encoding is entirely local to the
translated de�nition. Yet, the relation �l does not re�ect the absence of diverging
computations (on the left). On the contrary, in�nite computations immediately appear
for two reasons: opposite swaps as soon as two messages xihevi and xih ewi are available
on the same name, and free replication in each Rk. As in the preliminary discussion,
we could get rid of diverging computations by enabling the reception of a message

188 CHAPTER 6. ENCODINGS

on xi only when there is no cached message on xi so far, with a simple �signal�
message in the join-pattern that de�nes xi, and by triggering the unfolding of each
replicated process Rk with another signal message only when a new message on xi 2
dv[Jk] is cached. This clearly re-introduce gradual commitment to the messages being
cached, but it seems possible to obtain a coupled-simulations congruence relation that
generalizes Lemma 6.5.

Remark 6.7 (Non-linear join-patterns) In this dissertation we always require that
a de�ned name occur at most once in every join-pattern; nonetheless, the same encod-
ing shows that this natural limitation could easily be relaxed. For instance, an explicit
encoding of the de�nition

deffxg xhui j xhvi . P in 0

in the spirit of the more general translation above would be

deffxg xhui j geth�i . �hui in
def �0hui .

def �1hvi . geth�0i j(P � (xhui j xhvi)) in
geth�1i in

geth�0i

6.4 Relays everywhere

We now present general techniques to simplify the interface of a process. The resulting
translations are useful to assemble more complex encodings, and illustrate the use of
�rewalls to protect these encodings from families of transitions that would invalidate
some invariant.

The next lemma states that synchronization in join-patterns and reception of mes-
sages from the environment can be separated in two successive stages.

Lemma 6.8 There is a compositional encoding [�]� such that for all open processes
A we have

1. A� �l A;

2. if A� (
�
�!)� B and x is extruded (x 2 xv[B]), then x is de�ned by a single rule

of the form xheui . x0heui.
The lemma is not a�ected by the presence of comparison in the join-calculus.

Proof: We use the compositional translation that adds a relay for every de�ned
name, as described in Lemma 6.4.

The �rst property is obtained by structural induction on the syntax of A. In the
case of a de�ning process, we repeatedly apply Lemma 6.4 on each de�ned name. In
the case of a guard (in the presence of name comparison) we check that the relation
is preserved by substitution�the translation does not operate on free names�and
apply. All other cases immediately follow from the pre-congruence property of �l.

The image of the translation � � is closed by all transitions; the second property is
thus obtained by checking that all names in xv[A] are de�ned as relays. �

6.4. RELAYS EVERYWHERE 189

This �rst level of encoding has the advantage of separating syntactically the issues
of communication and synchronization. It is not unduly expensive, as twice as many
reductions are needed to translate a series of reduction steps, in the worst case.

We can constrain some more the structure of output labels by requiring that each
de�ned name be sent on a free name at most once�that is, that each name commu-
nicated to the outside be a newly-extruded name.

Lemma 6.9 In the join-calculus with monomorphic types and no comparison, there
is an encoding [�]�� such that for all open processes A we have

1. A�� � A in the absence of name comparisons;

2. if A�� (
�
�!)� B and x is extruded (x 2 xv[B]), then x is de�ned by a single rule

of the form xheui . P ;
3. if A��(

�
�!)�

Sxhevi
���!, then S = fevg.

This second layer of encoding is more demanding: in the worst case, it may cause
a quadratic increase of the number of reduction steps. Also, this result does not carry
over to labeled equivalences, or to a calculus with name comparison. The encoding
is type-directed, which induces restrictions on the types in use in the calculus�they
have to be monomorphic.

We explicitly de�ne the encoding [�]�� and prove its properties by using recursive
�rewalls that provide de�nitions that �lters every communication on names in the
interface of A:

De�nition 6.10 A �rewall context F�
X;F [�] is parameterized by two partial functions

on names X and F with �nite domains and by a �nite set of types � that meet the
following requirements:

1. The intrusion and extrusion parts of the �rewall do not mix, i.e.,

dom (X) \ dom (F) = ;, dom (X) \ ran (X) = ;, dom (F) \ ran (F) = ;

2. the partial function X [F is cycle-free.

3. The set of types � is closed by decomposition, i.e,

if h�1; : : : ; �ni 2 �, then also �1; : : : ; �n 2 �.

4. At least the types of all names in dom (X) [dom (F) are included in �.

It is de�ned as an evaluation context

F�
X;F [�]

def
= def D� in defdom (X)

^
X

D�
x7!x0 ^

^
F

D�
x0 7!x in [�]

where the de�nitions D�
x0 7!x and D� stand for

D
h�1;:::;�ni
x0 7!x

def
= x0hv1; : : : ; vni . let v01 = r�1(v1) in

...
let v0n = r�n(vn) in
xhv01; : : : ; v

0
ni

D�
def
=

^
�2�

r�(x) .def D
�
x0 7!x in reply x0 to r�

190 CHAPTER 6. ENCODINGS

In the special case of a monadic calculus, two single rules su�ce to build the
�rewall; moreover, the communication of pairs is purely internal to the �rewall, and
can be internally encoded as described in the next section.

By construction, if x0 7! x is in F and x 62 dom (X), then we have the series of
relations

F�
X;F

�
x0hv1; : : : ; vni

�
! (!!�l)

n fw1;:::;wngxhw1;:::;wni
��������������! F�

X]fw1 7!v1;:::;wn 7!vng;F
[0] (6.9)

for any choice of fresh names w1; : : : ; wn. Besides, all the internal steps before the
extrusion are deterministic, and the strong equivalence is used only to get rid of the
de�nition of continuations that are passed to each call to r�h�i, once the call has
returned. We also have the symmetric �ltering of incoming messages. If x 7! x0 in X,
then

F�
X;F [0]

xhv1;:::;vni
������!! (!!�l)

n F�
X;F]fw1 7!v1;:::;wn 7!vng;F

�
x0hw1; : : : ; wni

�
(6.10)

While the �ltering is actually the same for incoming and outcoming messages, the
distinction between X and F will be useful to preserve invariants later on.

For all messages sent on names de�ned in a �rewall, all reductions that consume
these messages and unfold new components in the �rewall are deterministic. Besides,
the conditions on X and F guarantee that the rewriting terminates. In the follow-
ing, we use the notation !d for these reductions; in the proofs, we usually normalize
processes by immediately performing these reductions, but we retain the original nota-
tion. (Formally, we would de�ne an auxiliary translation that translates all messages
in evaluation contexts to the result of their reception in the �rewall.)

In the following, we assume given a bijection on names x 7! x0 that we use to
rename the interface of processes within �rewalls. For all processes A, we let A0 be the
process obtained by replacing all names x in fv[A][xv[A] by names x0, and also F and
X be the partial functions de�ned as fx0 7! x j x 2 fv[A]g and fx 7! x0 j x 2 xv[A]g.
We de�ne the encoding A�� as F�(X;F)

X;F [A0] n xv[A0]. As an example, the translation of
xhxi requires a �rewall with a signature � that contains the monadic recursive type
��:h�i, an empty function X, and a function F = fx0 7! xg. We have the �rewall
unfolding steps

F�
;;fx0 7!xg

�
x0hx0i

�
!�
d�l F

�
fy 7!x0g;fx0 7!xg[xhyi]

We establish the properties claimed in Lemma 6.9. We begin with an explicit the
correspondence between the transitions of a process and the transitions of the same
process placed within a �rewall.

Lemma 6.11 (Operational correspondence) Let A be a process in the open join-
calculus and F�

X;F [A
0] n xv[A0] be its encoding.

For all processes in �rewalls, we assume that every relay has been unfolded (i.e.,
there is no more immediate !d step). We have:

6.4. RELAYS EVERYWHERE 191

Internal step If A! B, then F�
X;F [A

0]!!�
d�l F

�
X;F [B

0].

If F�
X;F [A

0]! T , then A! B with T !�
d�l F

�
X;F [B

0].

(The source reduction A ! B may have released messages on free names in
evaluation context, and there is a new entry in the extrusion part of the �rewall
for each argument of each such new messages. With our convention on !d,
these relays are kept implicit hence X is not updated.)

Extrusion If A
Sxhevi
���! B, then for every tuple of fresh names ew, for the partial

function Y de�ned as fŵ 7! vg, we have F�
X;F [A]

f ewgxh ewi
�����! F�

X]Y;F [B].

If F�
X;F [A]

Sxh ewi
���! T , then S = f ewg, x0 7! x 2 X, and for the partial function

Y = fv̂ 7! wg we have A
Sxhevi
���! B and T !�

d�l F
�
X]Y;F [B].

(All extruded names are actually already relays, we can �-convert these names
before performing the extrusion and registering them in X.)

Ground intrusion If A
xhevi
��! B and the names ev are all fresh and distinct, then for

the partial function G
def
= fev0 7! evg we have F�

X;F [A
0]

xhevi
��! F�

X;F]G[B
0].

If F�
X;F [A]

xh ewi
���! T then x 2 dom X and for all distinct fresh names ev, for the

partial function G
def
= fev0 7! ewg, we have A

xhevi
��! B and T = F�

X;F]G[B
0].

In particular, the family of open processes protected by a �rewall as de�ned in the
above lemma is closed for all ground transitions up to deterministic reductions and
strong equivalence.

The next lemma states that protection by a �rewall cannot be observed, up to
barbed expansion.

Lemma 6.12 (Correctness) Let A be an open process with monomorphic types. We
have the expansion relation A�� � A.

Proof: We conduct the proof on join-calculus processes, by distinguishing between
external and internal parts. The result of the lemma is then obtained by applying
Lemma 5.23. Let R be the relation that contains the pairs of processes

def D� in def
^
X;F

Dx7!y ^ Di ^ De in Pi jPe R def Di� ^ De� in Pi� jPe�

that meet the following conditions:

1. the set of types � contains at least the types of all names in dom (X) and dom (F).

2. the �nite sets of names dom (F), dom (X), dv[De], and dv[Di] are pairwise dis-
joint.

3. fv[def Di in Pi] � dom (F) and fv[def De in Pe] \ (dv[Di] [dom (F)) = ;.

4. ran (F) \ dv[Di] = ; and ran (X) � dom (F) [dv[Di].

192 CHAPTER 6. ENCODINGS

5. the partial function X [F is cycle-free, and � is the substitution that maps
every name in dom (X)[dom (F) to its �nal image obtained by iterating X and
F .

and let R0 � R be the relation that meets the additional condition:

6. Pi is a parallel composition of messages sent on names de�ned in Di; Pe = P 0e jP
00
e

where P 0e is a parallel composition of messages sent on free names and P 00e is a
parallel composition of messages sent on names de�ned in De.

We �rst establish that R � �!�
d�lR

0�. By using structural rearrangement, we
have Pi � def D0

i in Mi and Pe � def D0
e in Me where all names in dv[D0

i] and dv[D0
e]

are fresh�and in particular not a�ected by �. Starting from a pair of processes related
by R, we thus have

def D� in def
^
X;F

Dx7!y ^ (Di ^ D
0
i) ^ (De ^ D

0
e) inMi jMe

R def (Di ^ D
0
i ^ De ^ D

0
e)� inMi� jMe�

Further, every message xhevi in Mi is sent on a name x that is either de�ned in
dv[Di ^ D0

i] or in dom (F). In the latter case, a series of relations as 6.9 applies to the
�rewalled process, which extends dom (X) with ŵ 7! v for some fresh names ew and
replaces xhevi by F (x)h ewi. This messages meets the conditions to be placed inMe. On
the other side of R, we have for the extended � that (F (x)h ewi)� = xhevi�, hence the
message is just moved from Mi to Me using structural equivalence. In a symmetric
manner, every message in Me that is sent on a name in dom (X) can be transported
to Mi by unfolding the �rewall on the left and structural rearrangement on the right.
While the same message may be shifted from external to internal and back a few times,
condition 5 guarantees that the rewriting terminates. The resulting pairs of processes
are related by R0.

We are now ready to prove that R0 (hence R) are included in barbed expansion
by Lemma 4.30. Let us assume that Q R0 R.

� The strong barbs of Q and R are the same; they correspond to messages sent on
free names in Me and these names are not a�ected by �.

� The congruence property is immediate: after applying �-conversion to avoid
name clashes, the context is not a�ected by �, hence it can be applied to Pe
only by using structural rearrangement; the resulting pair of processes is still in
R.

� The two bisimulation diagrams of R0 are easily established, as in fact there is
a strong bisimulation diagram from R0 to R. By construction of R0 there is no
message sent to the �rewall in evaluation context, hence every reduction either
uses a rule in Di or in De. The situation is symmetric; assuming the rule is
in Di, by de�nition of R0 the reduction consumes only messages in Pi, triggers a
new process that meets all the conditions of R to be placed in Pi, and since the
substitution � does not operates on names in dv[Di] the same reduction applies
on the other side of R0. �

6.5. POLYADIC MESSAGES 193

The next lemma shows that the �rewall encoding [�]�� protects a process from
name-comparison on its extrusions�anyway all extruded names are pairwise di�erent
in the image of the encoding�and thus reconciles barbed congruence and labeled
bisimulation.

Lemma 6.13 The encoding [�]�� from the open join-calculus with monomorphic types
equipped with barbed congruence, to the same calculus equipped with labeled bisimula-
tion:

A�� �l B
�� i� A � B

Proof: We already have �l � � (Lemma 5.13), hence if A�� �l B�� then by the
previous lemma we obtain A � A�� � B�� � B and simply A � B.

Conversely, if A � B then by congruence property A�� � B��, hence it su�ces to
prove that the relation R that contains all pairs of processes A��; B�� with A�� � B��

is a ground labeled bisimulation.
We apply the same proof technique as in the presence of name comparison (The-

orem 7), except that the contexts for extrusion are much simpler: by de�nition of the
�rewall, every argument of an extrusion is a freshly extruded name, hence no name
comparison is necessary in the context that tests for the extrusion. �

6.5 Polyadic messages

In this dissertation we usually consider a polyadic variant of the join-calculus: a
message can carry an arbitrary number of values, whereas a type system ensures that
the arity of every channel is �xed. In contrast, a message in the core join-calculus
always carries exactly one name, and the additional structure of types and arities has
disappeared. The same variation arises in other settings; for instance in the �-calculus,
most theoretical development are conducted on monadic variants of the calculus, while
most applications, type systems, and examples are given in polyadic variants of the
calculus [145].

In [99], Milner introduces the polyadic �-calculus as a convenient setting, in par-
ticular, to describe application examples and to discuss encodings of the �-calculus.
He also proposes a simple encoding that allocates and sends a private channel to emit
a series of monadic messages instead of a single polyadic message. The translation of
polyadic output is:

[[xhy1; : : : ; yni]]
def

= �z:xhzi:zhy1i: � � � :zhyni

The encoding owes its simplicity to the symmetric use of input and output guards,
but some variants carry over to the asynchronous �-calculus and, as we shall see, to
the join-calculus.

To our knowledge, however, little is known about the formal properties of such
encodings. The type information is discarded in the translation of a polyadic process,
hence valid monadic contexts can be the translations of ill-typed polyadic contexts;
in particular, such contexts can invalidate properties that were enforced by typing�
for instance, that two names with incompatible types are di�erent�and thus reveal

194 CHAPTER 6. ENCODINGS

di�erences between the translations of equivalent source processes. The only full ab-
straction results are given by Yoshida in [153]. The author develops a sophisticated
type system for the monadic �-calculus in order to re�ect there the typing assumptions
of the polyadic calculus. Her monadic type system expresses dynamic properties of
linear transmission protocols as graph types. Hence, well-typed monadic contexts are
essentially translations of well-typed polyadic contexts.

Our intent here is to consider the plain, untyped monadic join-calculus as a target
language, and to obtain precise full abstraction results only through re�ned encodings.
We believe that a similar study may be conducted in the �-calculus, but that the
locality property of the join-calculus makes the situation signi�cantly simpler.

More generally, the encoding of polyadic communication into monadic communica-
tion is a good example of the use of some alternative communication protocol between
processes, and of techniques to achieve full abstraction. More involved communication
protocols are described in [2] and in the next section.

6.5.1 Communicating pairs and lists

As in the �-calculus, we communicate tuples of names over auxiliary private names;
we �rst describe the protocol for pairs: the process Ethu; vi serves the pair u; v at the
name t; the context Rthu; vi[P] extracts a pair u; v from the name t, then executes P .
On the sending side, a local message whzi conveys the next value to be returned to t.
As above, we rely on the syntactic sugar of Section 3.4 to hide local continuations.

Ethu; vi
def

= def whzi j r() .reply z to r in

whui j defftg t() =

�
let z = r() in
whvi jreply z to t

�
in 0

Rthu; vi[P]
def

= let u = t() in
let v = t() in
P

In these terms, asynchronous names have one argument, synchronous names have
no argument, thus the terms above are monadic (as soon as u and v are) and non-
recursive. Provided that t 62 fv[P] we have the operational correspondence

(Ethu; vi jR
thu; vi[P]) n t !8�l P (6.11)

where each of the two calls t() uses four reduction steps and returns �rst u, then v, and
where strong bisimilarity �l is used to get rid of the continuations and the de�nitions
in Ethu; vi.

It is straightforward to encode tuples of arbitrary lengths hv1; v2; : : : ; vni into nested
pairs hv1; hv2; h� � � hvn�1; vniiii. We omit the details, and we let Ethevi and Rthevi[�]
be the extensions of the two terms above from pairs to tuples of �xed lengths. In
particular, we can generalize 6.11 into the labeled expansion

(Ethevi jRtheui[P]) n t �l Pffu=vg (6.12)

6.5.2 Compositional translation

Intuitively, our translation from the well-typed polyadic join-calculus to the monadic
join-calculus replaces every emission of a polyadic message by a run of the emission

6.5. POLYADIC MESSAGES 195

protocol and every reception of a polyadic message by the reception of a name t that
encodes the tuple, followed by a run of the reception protocol.

The translation of well-typed polyadic processes is de�ned inductively on processes
and de�nitions, from the two basic translations for messages in open processes and
reaction rules in open de�nitions:

[[xhevi]] def

= (xhti jEthevi) n t
[[x1hev1i j : : : jxnhevni . P]] def

= x1ht1i j : : : jxnhtni .R
t1hev1i[: : : [Rtnhevni[[[P]]]]]

where the names t, ti and other names in the underlying communication protocols are
fresh names.

The next lemma relates reductions in the source polyadic process to reductions in
the translated monadic process

Lemma 6.14 (Operational correspondence) For every open process A,

1. if A! A0 then [[A]]!�l [[A0]];

2. conversely, if [[A]]!n T then A!m A0 with T �l [[A0]], for some m � n.

Proof: The initial reductions occur on join-patterns whose de�ned names are in
syntactic correspondence in the source process and in its translation.

(1.) In the translation, the names ti that encode tuples of arguments each appear in
the translation of a single emission, hence after the �rst reduction step these names ti
can be restricted to the triggered process of the translation Rt1hev1i[: : : [Rtnhevni[[[P]]]]]
along with the n emission protocols. We then repeatedly apply the labeled expan-
sion (6.12) for each received ti, which eventually triggers the translation of the guarded
process P where the formal arguments have been replaced with the received ones.

(2.) By induction on n, we prove that if [[A]]!n T then A!m A0 with T � [[A0]]
and m � n. The base case n = 0 is immediate. For the inductive case, we trace
the �rst reduction in [[A]] ! T1 !n T back to the polyadic calculus, and obtain a
source reduction A! A01. Moreover, (1.) yields T1 � [[A01]]. By gluing n instances of
the simulation diagram in the de�nition of expansion, we have [[A01]] (!

=)n T 01 with
T 0 �l T

0
1. By induction hypothesis, A01 !

m A0 with m � n, T 0 �l T 01 �l [[A
0]], and

A!(m+1) A0. �

6.5.3 Full abstraction

The translation of well-typed polyadic processes is performed in two steps: �rst we
perform the translation of Lemma 6.8 to ensure that every name that is communicated
to the context is de�ned as a relay, then we use the compositional protocol described
above for communicating tuples. We obtain full abstraction up to labeled bisimulation:

Lemma 6.15 The encoding [[� �]] is fully abstract up to �l.

The two converse implications of the lemma are separately established in Lem-
mas 6.17 and 6.18. The systematic use of relays in the encoding may appear redun-
dant, as it forces every pair to be encoded and decoded twice! However, this double
encoding guarantees that only valid pairs are involved in reductions that correspond

196 CHAPTER 6. ENCODINGS

to the source join synchronizations. With only one level of encoding, contexts that do
not comply with our protocol may interfere, as is the case for the following processes

A
def

= defx xhu; vi j yhi . zhi in xha; ai j yhi

B
def

= defx xhu; vi . 0 in zhi

We have A � B but [[A]] 6� [[B]]; for instance, a context around the translation [[A]]
may send the name t de�ned as t() . 0 instead of a name that encodes a pair, hence
cause a deadlock as the translation attempts to decode this pair after synchronizing
it with the unique message yhi. On the contrary, the translation [[B]] always emit the
message zhi no matter of the context. Other subtle di�erences would appear in the
case the context triggers several times the continuations of receiving processes.

Lemma 6.16 if [[A]] � [[B]], then A � B.

Proof: Let R be the relation that contains all pairs of processes (A;B) such that
[[A]] � [[B]]. We apply Lemma 4.29 to establish the inclusion R � �.

1. The strong barbs are preserved by the translation, even if the arities of messages
on free names are changed.

2. The translation [[�]] is compositional; hence, if A R B, and C[�] is an evaluation
context, we have [[A]] � [[B]], and, by applying the congruence property in the
monadic calculus for the evaluation context [[C]][�],

[[C[A]]] = [[C]][[[A]]] � [[C]][[[B]]] = [[C[B]]]

3. Let us assume A! A0 and A R B. Applying Lemma 6.14(1) we have [[A]]!�
[[A0]]. By weak bisimulation in the monadic calculus, [[B]] !n T with T ��
[[A0]] where n � 0 is the length of the simulating reduction sequence. By
Lemma 6.14(2) we obtain for some B0 that B !� B0 and T � [[B0]], hence
[[A0]] ��� [[B0]] and thus A0 R B0. �

Since our proof does not depend on the presence of name-matching, we obtain by
Theorem 7 the �rst half of full abstraction.

Corollary 6.17 if [[A]] �l [[B]], then A �l B.

Lemma 6.18 For all open processes A and B with relays, if A �l B, then [[A]] �l [[B]].

Proof: We supplement our translation with representations of processes that are
receiving tuples from the context. The translation of A is extended into a multi-hole
context whose holes are indexed by x 2 xv[A] and appear within the translation, in
parallel with the de�nition of the relay on x. A receiving session on a relay from
x 2 xv[A] to x0 is an open process whose free names are either fresh, or in xv[A],
or are x0 in a translation [[x0hevi]] that appear under a guard. We let [[A]][Rx] be the
extended translation, in which Rx is a family of receiving sessions indexed by x 2 xv[A].

We let R be the relation that contains all pairs of open processes

([[A]][Rx]; [[B]][Rx]) such that A �l B

and we prove that R is a labeled bisimulation up to expansion and evaluation context.
Transitions are partitioned as follows:

6.5. POLYADIC MESSAGES 197

1. Extrusion, intrusion or internal reduction in a receiving session Rx
�
�! R0x: these

transitions are the same on both sides, and always yield a new valid receiving
session, unless the transition triggers a guarded process [[x0hevi]]. In that case,
the messages x0hevi are put in parallel with A and B, and by the congruence
property of �l we obtain two new processes related by R.

2. Extrusion [[A]]
fugxhui
�����!. This transition corresponds to a source transition of the

form A
Sxhevi
���! A0, where we have A � (A0 j xhev) n S; we write the �rst extrusion

of the protocol [[xhevi]] fugxhui
�����! [[xhevi]]u

This source transition is simulated by B !� Sxhevi
���! B0 on the other side. Hence

we have by Lemma 6.14(1)

[[A]][R]
fugxhui
�����! ([[A0]][R] j [[xhevi]]u) n S

[[B]][R] !��l
fugxhui
�����! ([[B0]][R] j [[xhevi]]u) n S

and, since [[A0]][R] R [[B0]][R], this closes our bisimulation diagram up to the
particular restricted context ([�] j [[xhevi]]u) n S.

3. Intrusion on a name x 2 xv[A] (thus x 2 xv[B]). We have

[[A]][R]
xhti
��!!d [[A]][R0]

[[B]][R]
xhti
��!!d [[B]][R0]

where the deterministic reduction triggers the process Rx;t = Rthevi[[[x0hev]]] of the
translated relay on x, and where R0 is obtained from R by substituting Rx jRx;t
for the previous receiving session Rx. The two resulting processes are still related
by R.

4. Reduction internal to [[A]]. From [[A]] ! T , we obtain by Lemma 6.14(2) that
A!= A0 �l T , then by weak bisimulation in the polyadic calculus B !� B0 �l
A0 and by Lemma 6.14(1) [[B]] !��l [[B0]]. The presence of receiving sessions
does not a�ect these relations, hence we close the diagram with the relation
�lR�l. �

We actually do not have full abstraction yet for barbed congruence, as illustrated
by the relay equation in the source calculus:

xhyi � def zhi . yhi in xhzi

While this barbed congruence is immediate in the polyadic calculus, it is not pre-
served by the translation [[� �]] because the two translated processes can be separated
by a context def xhzi . [[zh1i]] in [�] that attempts to use another arity for the transla-
tion of the free name y, while the relay on z works only for nullary message.

Our next result states that, if we rule out messages that re-exports free names to
the context by applying the internal encoding � �� of Lemma 6.9, we still have a fully
abstract translation.

198 CHAPTER 6. ENCODINGS

Lemma 6.19 In the join-calculus with monomorphic types, and in the absence of
name comparison, the encoding [[� ��]] is fully abstract for �.

Its proof is the combination of Lemma 6.16 and of the next result:

Lemma 6.20 For all processes P and Q that never extrude free names, if P � Q
then [[P]] � [[Q]].

Proof: We use a larger relation R that is closed by reduction up to expansion, and
we prove that this relation is a barbed congruence up to expansion. We assume that
monadic names are partitioned in two in�nite subsets X and F , we let

Qi
def

= def [[Di]] ^ Dc�i in [[Pi]] jPc�i

Ri
def

= def Di in Pi j plughez�ii
and we let R relate all pairs of monadic processes (Q1; Q2) such that we have

1. R1 � R2 (in the polyadic join-calculus);

2. dv[Di] � X, dv[Dc] � F ;

3. def Di in Pi is a polyadic process that only extrudes names on fresh relays;

4. �i is a substitution de�ned on X \ fv[def Dc in Pc] that ranges over dv[Di];

5. names x 2 X whose de�nition is not deterministic only appear as [[xhevi]] with
the same arity as in the de�nition of x�i.

We use Lemma 4.29 to establish that R � �.

� R is a congruence for all contexts that do not have names in X as free vari-
ables, up to structural equivalence. Each context is merged into enlarged Dc�i
and Pc�i; by hypothesis the substitutions do not a�ect the names in the new
components. We check that every de�ning properties of R is preserved.

� R respects all strong barbs.

� R is a weak bisimulation. Without loss of generality, we �rst rearrange the
terms using structural equivalence to obtain simpler Pi and Pc that consist of
messages only, then we prove the weak simulation diagram by a case analysis on
the reduction Q1 ! Q0

1.

reduction using a join-pattern [[J .P]] in [[D1]]: this reduction consumes
messages that can be traced back to [[M1]] in [[P1]] and messages [[Mc�1]] from Pc,
and this reduction triggers a process [[P�]] that can be added to P1.

We consider the processes C[Ri] for the polyadic context

C[�]
def

= def plughezi .Mc j plug
0hezi in [�]

then use bisimulation in the source process for the two reductions C[R1]!! R01
that consume the plugging message, then triggers the same polyadic process P�
by consuming the source messages Mc�1 jM1. This yields a series of reductions

6.6. CROSS-ENCODINGS WITH THE �-CALCULUS 199

C[R2]!
� R02 with R

0
1 � R

0
2. We discard the reduction that enables the messages

Mc�2, and we use Lemma 6.14(1) to report the resulting series of derivations
into Q2 !�� Q0

2 with the required properties.

reduction using a join-pattern in Dc�1: by hypothesis, the rule in Dc�1 is
of the form J . P�1, and the reduction consumes some messages [[M1]] from [[P1]]
and some messages Mc�1 from Pc.

Messages received from Pi may be di�erent on both sides; all these names are
in X, however, so we can expand the substitutions �i to accommodate this
di�erence between the new processes in R.

Again, we use a speci�c context in the source, polyadic calculus to extract mes-
sages from R2 on the same names as those used in Q1. Let eu be a tuple of names
in X n (dv[D1][dv[D2]) and M be a parallel composition of messages on names
in F such that feug = rv[M]. Let also �01 be an extension of �1 on eu such that
M�01 =M1. We use the context

C[�]
def

= def

�
plughezi jM . plug 0hez; eui

^ plughezi . thi
�

in [�]

(where the disappearance of the barb on the fresh name t indicates that the
messages have been grasped.) We have the relation

C[def D1 in P 01 jM1 j plughez�1i] !� def D1 in P 01 j plug
0h(ez; eu)�01i = R01

and we obtain by weak bisimulation

C[def D2 in P2 j plughez�2i] !�� R02

with the transitions R2 !� def D2 in P 02 jM2 j plughez�2i of the required form.
Thus we obtain a new pair of related processes, whose corresponding source
processes extrude a potentially larger set of names. �

6.6 Cross-encodings with the �-calculus

Despite their syntactic di�erences, the join-calculus can be considered as an o�spring
of the �-calculus, in the asynchronous branch of the family. The latter was introduced
independently in [37] as the (mini) asynchronous �-calculus, and in [70] as the �-
calculus. Both authors suppress the guards on emission, and compare the result
to the original �-calculus. Going further in that direction, the join-calculus is an
asynchronous �-calculus with the strong restrictions:

1. the three binders (scope restriction, reception, replicated reception) are syntac-
tically merged into a single construct: the de�nition;

2. communication occurs only on de�ned names;

3. for every name, there is exactly one receiving de�nition.

200 CHAPTER 6. ENCODINGS

There are several reasons to be interested in a formal comparison between the
two calculi: the �-calculus has been thoroughly studied; it is a reference calculus in
concurrency theory, and many results relate other formalisms or implementations to
it, as for instance in [17, 98, 143, 148]. Therefore, it is appealing to �translate� such
results automatically to the join-calculus. On the other hand, some issues are best ad-
dressed in the join-calculus, as for instance locality, programming and implementation
purposes, and distribution.

Our most precise encodings are complex, yet their underlying ideas are simple.
In particular, much simpler encodings can be obtained in less general settings, or for
coarser equivalence properties. For instance, most programming examples written in
PICT [122] can be translated to the join-calculus language with almost no change in
the source syntax.

Applying the results of Section 6.14, we consider the recursive, polyadic join-cal-
culus with at most two-way-join de�nitions as the target calculus to encode the �-cal-
culus, and its monadic variant for the reverse encoding.

We �rst recall the particular syntax of the �-calculus in use here, then we encode
the �-calculus in the join-calculus. The �rst, naive encoding replaces each channel
of the �-calculus by a two-way de�nition; however, some more work is needed to
achieve full abstraction. We present our approach based on ��rewalls� in detail, but
we defer the presentation of the proof to Section 6.7. In the same manner, we encode
the join-calculus in the �-calculus using a simple translation of de�nitions into scope-
restriction and replicated reception. Again, full abstraction requires a re�nement of the
basic encoding, which relies on the �rewall we developed for the encoding of polyadic
communication.

6.6.1 The asynchronous �-calculus

We de�ne the variant of the asynchronous �-calculus in use in this dissertation. We
use the syntax of Milner in [99], but consider only monadic communication Without
loss of generality, we allow only monadic messages, and replicated input instead of
more general recursion.

P ::= processes
xhui message

j P jP parallel composition
j �u:P scope restriction
j x(u):P input
j !x(u):P replicated input
j 0 null process

We omit the presentation of a reduction-based semantics for this calculus�we refer
to [37] for a formal semantics. We simply recall the basic reduction step, which matches
pairs of complementary emission and reception, and substitutes actual names for the
formal variables in receiving processes:

xhvi j x(y):Q �! Qfv=yg

We de�ne the (output-only) barbs #x as the presence of a message on x in evaluation
context; we write +x for the weak barbs !�#x We equip the �-calculus with barbed

6.6. CROSS-ENCODINGS WITH THE �-CALCULUS 201

congruence, as de�ned in Section 4.4. Our de�nition is not the one that usually
appears in the literature, but the resulting equivalence coincides with the congruence
of barbed output-only bisimilarity as de�ned in [101, 16]. This result is the �-calculus
counterpart of Theorem 7; it is exposed in [56].

De�nition 6.21 Barbed congruence in the asynchronous �-calculus (��) is the largest
weak bisimulation on �-calculus processes that is a congruence for evaluation contexts
and respects the output barbs +x .

The next statement summarizes our comparison between this variant of the �-cal-
culus and the join-calculus; the remainder of this chapter is devoted to its constructive
proof.

Theorem 9 The join-calculus and the asynchronous �-calculus have the same expres-
sive power up to their respective barbed congruences.

6.6.2 Asynchrony, relays, and equators

Our encodings essentially rely on the properties of asynchrony in process calculi with-
out name testing, as �rst discussed in [71, 73] for the �-calculus and in Chapters 4
and 5 for the join-calculus. We brie�y recall the situation in the �-calculus.

As in the join-calculus, the emitter cannot directly observe whether its message is
received. The situation is less clear-cut, because a context that emits a message can
try to get its message back by attempting reception on its own, hence seemingly detect
whether its message has been received by some other process. In case of success, how-
ever, the message may have been received, then re-emitted in-between. For instance
we have x(u):xhui �� 0. More generally it is not possible to distinguish between two
di�erent names that have the same external behavior. We illustrate this property with
the de�nition of equators between names, in Honda and Yoshida's terminology [73]:

M�
x;y

def

= !x(u):yhui j!y(v):xhvi

This process repeatedly receives values from x and forwards them to y and vice-
versa, so that no matter which name x or y is used to send a value, it can always be
made available for reception on the other name in one internal reduction. As a result,
the names x and y become synonyms, hence the equators are somehow the �-calculus
counterpart for the relays in the join-calculus.

Remark 6.22 For all �-processes P;Q where z is fresh, we have

Pfz=x;
z=yg �� Qfz=x;

z=yg implies M�
x;y jP �� M�

x;y jQ

Proof (sketch): The congruence property is immediate for parallel composition; all
strong barbs are the same, except on x and y; barbs on x and y always coincide, and
are equivalent to barbs on z after substitution; every reduction is simulated either
by no reduction whenever it occurs in the equator M�

x;y, or by the reduction after
substitution otherwise; only reductions on z may require an additional reduction step
to be simulated before substitution. �

202 CHAPTER 6. ENCODINGS

6.6.3 Encoding the �-calculus

As opposed to the join-calculus, a channel name x of the �-calculus conveys two
communications capabilities xh � i for output and x(�) for input. Accordingly, we
associate to every �-calculus channel x two join-calculus names xo for output, xi for
input, and an enclosing de�nition that joins outputs and inputs. The emitter simply
sends values on xo; the receiver de�nes a name for its continuation, and sends it as a
reception o�er on xi.

We give below the structural translation of the �-calculus based on this simple
encoding applied to every �-calculus channel. Later on, we explain why it is not fully
abstract and how it can be re�ned.

De�nition 6.23 (Basic structural translation) To every process P in the �-cal-
culus we associate the process [[P]]� in the join-calculus inductively de�ned on the
syntax as follows

[[xhvi]]�
def
= xohvo; vii

[[P jQ]]�
def
= [[P]]� j [[Q]]�

[[�x:P]]�
def
= def xohvo; vii j xih�i . �hvo; vii in [[P]]�

[[x(v):P]]�
def
= def �hvo; vii . [[P]]� in xih�i

[[!x(v):P]]�
def
= def �hvo; vii . xih�i j [[P]]� in xih�i

[[0]]�
def
= 0

The translation above uses explicit continuations � to represent reception o�ers; it
translates monadic �-calculus channels to tuples with recursive types � = h h�i; hh�ii i;
it could also be exposed in a more functional style, e.g.,

[[x(v):P]]� = let v = xi() in [[P]]�

As an example of operational correspondence, we consider a source reduction be-
tween two �-calculus processes and we re�ect this reduction as relations between their
translations in the join-calculus:

�x:(xhai j xhbi j x(u):yhui) ! �x:(xhai j yhbi)

gets translated into

def xohvo; vii j xih�i . �hvo; vii in

xohao; aii j xohbo; bii jdef �huo; uii . yohuo; uii in xih�i

! def xohvo; vii j xih�i . �hvo; vii in

xohao; aii jdef �huo; uii . yohuo; uii in �hbo; bii

!� def xohvo; vii j xih�i . �hvo; vii in

xohao; aii j yohbo; bii

The �rst reduction joins xohbo; bii and xih�i, and performs the same internal choice as
in the �-calculus. The second reduction is deterministic, and triggers the translation

6.6. CROSS-ENCODINGS WITH THE �-CALCULUS 203

of the guarded process yhbi. The strong equivalence gets rid of the de�nition of �
once its unique message has been consumed. The resulting join-calculus process is the
translation of the resulting �-calculus process above.

In the same manner, any reduction on a bound name in the �-calculus can be
simulated by a join-reduction followed by a deterministic reduction in the join-cal-
culus, and conversely any reduction in a join-calculus translation falls in either of
these two cases, and can be simulated in at most one reduction in the �-calculus. The
next lemma directly relates a �-calculus process to its translation.

Lemma 6.24 (Operational correspondence) The hybrid relation

��j
def
= f(P;Q) j P � [[Q]]� and Q has no input barbg

has the following properties

1. ��j is an expansion with regards to reduction steps

2. ��j respects the barbs (P ��j Q implies P +xo i� Q +x);

3. if P ��j Q and C[Q] has no input barb, then [[C]]�[P] �
�
j C[Q]

(We say that Q has an input barb on x when Q !� C[x(ev):Q] where C[�] is an
evaluation context that does not bind x.) The �no input barb� condition rules out
communication on free names; unfortunately, it does not hold in general in the �-
calculus, even if it can be automatically guaranteed in subsets of the �-calculus, for
instance by using a type system with input-output polarities.

Proof: We easily check each of the properties above on De�nition 6.23:

1. We prove the two expansion diagrams up to expansion. Each source reduction
implies an input and an output on some channel x in the �-calculus. By hypoth-
esis on input barbs, there must be an enclosing �x: binder; we use its translation
to e�ect the translated reduction in two steps as described above. Conversely,
each reduction in the translation can be traced back to the translation of a �x:
binder, and the trailing deterministic reduction is absorbed by the candidate
expansion.

2. We have the correspondence on strong barbs #xo and #x , which entails the cor-
respondence of weak barbs by gluing the above diagrams.

3. By de�nition 6.23 we have [[C]]�[[[Q]]�] = [[C[Q]]]�. �

Toward a fully abstract translation The encoding [[�]]� does not re�ect the
behavior of processes of the �-calculus when placed in an arbitrary join-calculus con-
text: the protocol speci�cally relies on the presence of the translation of a �x binder
for every channel x, while the context may de�ne the names xo; xi in some other way
when x is free in the source process.

For instance, if we remove the binder �x from our example above, the resulting
translation [[xhai j xhbi j x(u):yhui]]� has no reduction in the join-calculus, because there
is no de�nition of xo and xi. Besides, the translation [[x(u):xhui]]� exhibits a barb

204 CHAPTER 6. ENCODINGS

on xi that reveals the presence of an input for x, and allows a join-calculus context to
distinguish this process from [[0]]�, while a �-calculus context would not able to do so.

This suggests that we strengthen our encoding to ensure that there is a correct
de�nition of xo; xi for every translated free name x. Unfortunately, name mobility
makes this invariant di�cult to maintain. For example, a �-calculus context may send
a new free name x to a process that receives on some free names; hence the translation
must also be able to receive a new pair xo; xi created by the context. Yet, nothing
ensures that a join-calculus context sends such pairs only when they are correctly
de�ned. A malicious context such as

C[�]
def

= def zhvo; vii . 0 ^ th�i . xhi in xohz; ti j[�]

is able to �forge� a message xohz; ti from some of its own names z; t with arbitrary
de�nitions; here the context C[�] transforms input messages on t into barbs on x,
thus revealing the input requests of the translation. Other contexts could also trigger
several times the same continuation. Such observations are excluded by the operational
semantics of the �-calculus.

To protect the translation from hostile contexts, the names resulting from the
free channels of the �-term must be protected by a �rewall context that enforces
the protocol, in the spirit of Section 6.4. We re�ne our �rst idea: each channel x
is now represented as several pairs xo; xi from the basic encoding that cannot be
distinguished from the outside. Two pairs can be merged up to barbed congruence
by repeatedly communicating their pending messages to one another, which can be
achieved by (translations of) equators. New pairs are dynamically created according
to the following secure protocol:

� Whenever a pair of names is received from the outside, the �rewall de�nes a
new, correct proxy pair, merges it to the external pair, and transmits the new
pair to the translation.

� Whenever a pair of names is sent to the outside, a new �lter is inserted to set
up proxies for future incoming messages on this pair.

As a result, the translation and the context never exchange names from a syntactic
point of view. We use the following contexts to build the �rewall on top of the naive
translation:

Px[�]
def

= def xlhvo; vii j xih�i . �hvo; vii in def xohvo; vii . phvo; vi; xli in [�]

Ex[�]
def

= Px[xehxo; xii j[�]]

M[�]
def

= def p(xo; xi; �) .Py[�hyo; yii j [[M�
x;y]]�] in [�]

For every free name x, Px[�] encodes the creation of a new proxy for its output.
Ex[�] does the same, and also exports the proxy on a conventional free name xe (as plug
in Section 5.23). Finally, M[�] recursively de�nes the proxy creator p for the whole
translation. We introduce more concise notations that gather the previous components
in a single wrapper. For a given set of names S = fx1; : : : ; xng in the �-calculus, we
write

Efx1;:::;xng[�]
def

= M
h
Ex1
�
: : : Exn [�] : : :

�i
Pfx1;:::;xng[�]

def

= M
h
Px1
�
: : :Pxn [�] : : :

�i

6.6. CROSS-ENCODINGS WITH THE �-CALCULUS 205

The ordering of the names in S is irrelevant up to structural rearrangement. Intuitively,
S is the set of names free in [�] and �ltered by the �rewall, for which the translation
guarantees a correct �ltering de�nition. As communication occurs, new names may
cross the �rewall and lead to a larger set S.

Theorem 10 Let S be a �nite set of names in the �-calculus. For all �-calculus
processes Q and R such that fv[Q] [fv[R] � S, we have

Q �� R if and only if ES [[[Q]]�] � ES [[[R]]�]

Due to the presence of a �wrapper� at the top level of the translation, our trans-
lation is not entirely compositional. In the proof, however, we also give an auxiliary
translation that is strictly compositional.

6.6.4 Encoding the join-calculus

The reverse translation is simpler because the join-calculus is somehow the �-calculus
with restrictions on communication patterns. However, a careful encoding is still
required to prevent contexts of the �-calculus from reading messages on the names
they receive from the translation.

De�nition 6.25 (Basic structural translation) To every open process A in the
core join-calculus that extrude only names de�ned in single-name rules, we associate
the process [[A]]j in the �-calculus inductively de�ned as

[[A jB]]j
def
= [[A]]j j [[B]]j

[[xhevi]]j def
= xhevi

[[defS xheui . P in A]]j
def
= �(fxgnS):(!x(eu):[[P]]j j [[A]]j)

[[def xheui j yhevi . P in A]]j
def
= �x; y:(!x(eu):y(ev):[[P]]j j [[A]]j)

The limitation on extruded names simpli�es the analysis of the encoding; for trans-
lating all processes, we can apply the pre-encoding [�]� that adds relays for all de�ned
names (cf. Lemma 6.8).

With this restriction, in the translation of the join-pattern xhui j yhvi the �rst re-
ception of a message x(u) is a deterministic reduction because the replicated receiving
process introduced by the translation is the only reception on x; the second recep-
tion of a message y(v) simulates to the two-way synchronization in the join-calculus.
Syntactically, we break the symmetry between x and y and the atomicity of their
join-reduction, but it does not matter, because scope restriction and [[�]]j guarantee
that these details cannot be observed. Note, however, that the same trick would not
apply for three-way joins or more complex de�nitions, because we could not associate
the commitment of a source communication to the last reception in the �-calculus;
this is yet another instance of the gradual commitment problem.

As an example of operational correspondence, the source relations

def xhui j oncehi . zhui in xh1i j xh2i j oncehi !� zh1i

206 CHAPTER 6. ENCODINGS

can be rendered in the �-calculus with the relations

�x; once:(!x(u):once():zhui j xh1i j xh2i j oncehi)

!! �x; once:(!x(u):once():zhui j once():zh1i j once():zh2i j oncehi)

!� zh1i

The �rst two reduction steps may occur at any time because these reductions are deter-
ministic; they trigger two alternative receiving processes on once for synchronization
with the oncehi message. The third reduction actually corresponds to synchronization
in the source process. Strong equivalences in both calculi get rid of the now-deadlocked
de�nition.

More generally, we let !1 gather all reduction steps in the �-calculus that use the
replicated reception of a �rst message in the translation of a two-way join-pattern. We
retain the notation [[�]]j, but we assume that all such reductions have been performed
for messages in evaluation contexts.

With this assumption, we have the following operational correspondence lemma
for our translation:

Lemma 6.26 For all open join-calculus processes A that extrude only single-de�ned
names, we have

1. If A! B, then [[A]]j !!
�
1 [[B]]j

2. If A
xhevi
��! B, then [[A]]j

xhevi
��! [[B]]j.

3. If A
Sxhevi
���! B, then [[A]]j

Sxhevi
���! [[B]]j.

4. If [[A]]j ! T then A! B and T !�
1 [[B]]j.

5. If [[A]]j
xhevi
��! T and x 2 fv[A] then A

xhevi
��! B and T = [[B]]j.

6. If [[A]]j
Sxhevi
���! T and x 2 xv[A] then A

Sxhevi
���! B and T = [[B]]j.

Proof: As in the proof of Lemma 6.24 we easily check each of these assertions on
the de�nition of the translation. �

In particular, we can summarize this lemma as a �labeled hybrid expansion� be-
tween translations and source processes, for the respective labels of the �-calculus and
the join-calculus.

Toward full abstraction While the translation is simpler in this direction, we are
still facing the same di�culties to achieve full abstraction: the encoding of a name of
the join-calculus reveals too much about the source process. For instance a context
of the �-calculus could start reading values on names extruded by the translation of
de�nitions, thus breaking the locality principle that is guaranteed in the join-calculus
semantics. Technically, the problem is revealed by the need for side conditions on the
interface of the translated process for intrusion and extrusion in the translation, in the
clauses 5 and 6 of the above lemma. Note that if we were translating the join-calculus

6.6. CROSS-ENCODINGS WITH THE �-CALCULUS 207

into an asynchronous �-calculus extended with a type system with polarities [120], we
could specify write-only types for every channel that is exchanged with the translation,
and the (typed) previous encoding would already be fully abstract. This fact is also
mentioned in [94] in a similar setting.

As is the case for the converse encoding, we rely on a �rewall to achieve full abstrac-
tion without imposing constraints on the contexts of the target calculus. Fortunately,
we can reuse the �rewall translation [�]�� presented in Section 6.4. Intuitively, inter-
action between the translation of a �rewalled process and its �-calculus context occurs
only on relays of the �rewall, hence on distinct names for input and output. As regards
input, for instance, once incoming messages have been received by the �rewall they
become invisible from the context, and until this occurs, they do not interact with the
translation.

We have the following full-abstraction result for the reverse translation:

Theorem 11 For all open processes A and B that have monomorphic types, we have

A � B i� [[A��]]j �� [[B
��]]j

Its proof mostly relies on the stability of the �rewalled processes A�� through all
ground transitions, in combination with the above operational correspondence:

Lemma 6.27 If A�� �l B
��, then [[A��]] ��l [[B��]]

Proof: We prove that the two translations are related by ground asynchronous bisim-
ulation instead of weak labeled bisimulation. These two relations and their coincidence
are studied in [16]�in our case, the delay clause is never used because all receivers
are replicated relays.

Let R be the relation that contains all pairs of �-processes of the lemma. We
prove that R is a ground asynchronous bisimulation in the �-calculus. As before, we
assume that all messages sent to the �rewall have been unfolded, but we retain the
basic notation for the resulting processes. Note that as long as these messages are
not extruded to the �-calculus environment we can freely rename the contents of all
messages after they cross the �rewall.

We perform a case analysis on the transitions [[A��]]j
�
�! T in the �-calculus,

and use the composition of the operational correspondence for the two stages of the
encoding (�rewall and translation).

Extrusion If [[A��]]j
Sxhevi
���! T , by construction of the �rewall we must have x 2

ran (F), and by Lemma 6.26(6) we have a source extrusion A��
Sxhevi
���!, and by

Lemma 6.11 we further have that S = ev and that all the names in ev are distinct.
By labeled bisimulation in the join-calculus, the source extrusion is simulated

by internal steps followed by the same source extrusion !� Sxhevi
���!. By applying

Lemma 6.11 in the converse direction, we obtain another process of the form
B0�� such that

B�� !� Sxhevi
���!�l B

0��

208 CHAPTER 6. ENCODINGS

(Where the strong bisimulation only gets rid of inert de�nitions of continuations.)
By Lemma 6.26(1,3), this series of transitions can be carried over to the �-cal-
culus translation [[B��]]j , which closes the labeled bisimulation forR up to strong
labeled equivalence.

Intrusion An intrusion in the �-calculus becomes an intrusion in the join-calculus
(even if intrusion in �-calculus implies a communication, while intrusion in join-
calculus is asynchronous).

The intrusion necessarily occurs on a incoming relay of the �rewall; the same
intrusion applies on both sides, commutes with [�]�� up to �d,

Internal reduction this is the composition of the two operational correspondences.
�

We establish that the composition of the two encodings also re�ects barbed bisim-
ulation:

Lemma 6.28 If [[A��]] ��l [[B��]] and xv[A] = xv[B], then A�� � B��.

Proof: Let R be the relation in the open join-calculus that contains all pairs of
processes (F�

X;F [A];F
�
X;F [B]) such that the �rewall captures the interfaces of A and B,

xv[A] = dom (X) = xv[B], and [[F�
X;F [A]]]j ��l [[F

�
X;F [B]]]j.

The translation A�� di�ers from F�
X;F [A] only in their respective output interface.

The domain of F contains at least fv[A], but may also contain names that are fresh
in A. Nonetheless, this additional part of the �rewall cannot be accessed from A, and
is thus inert. The two processes are therefore strongly equivalent in the join-calculus,
and their translations are strongly equivalent in the �-calculus.

We show that R is a labeled bisimulation by a case analysis on source transitions.
We detail only the case of intrusion�the cases of internal step and of extrusion are
handled in the same manner, except that they involve di�erent clauses of the oper-
ational correspondence lemmas. We let xhevi be the intrusion label, and F 0 be the
partial function that extends F with fŵ 7! vg for some fresh names ew. We have

F�
X;F [A]

xhevi
��! F�

X;F [A] jxhevi !�
d�d F

�
X;F 0 [A j xh ewi]

These transitions can be reported by operational correspondence of the translation
[[�]]j into �-calculus transitions by Lemma 6.26(2,1):

[[F�
X;F [A]]]j

xhevi
��!!���l [[F�

X;F 0 [A j xh ewi]]]j
(The equivalence ��l is used to discard translations of continuations after use, it is
easily established as a strong labeled �-calculus bisimulation.) By de�nition of R,
these transitions can be weakly simulated in the �-calculus by some transitions

[[F�
X;F [B]]]j !

� xhevi
��!!� T

with [[F�
X;F 0 [A j xh ewi]]]j ��l T . Applying the operational correspondence from the

translation to the source calculus we have by Lemma 6.26(4,5)

F�
X;F [B] !� xhevi

��!!��l U

6.7. PROOF OF THEOREM 10 209

for some open process U such that [[U]]j = T , then by operational correspondence of
the �rewall (Lemma 6.11,

B !� xh ewi
���!!� B0

for some process B0 such that F�
X;F 0 [A j xh ew] R F�

X;F 0 [B0] �

Proof of Theorem 11: We obtain that the composition of encodings [[� ��]]j pre-
serves barbed congruence by composing Lemmas 6.13 and 6.27, and that it re�ects
barbed congruence by composing Lemmas 6.28 and the counterpart of Lemma 6.13 in
the �-calculus. �

6.7 Proof of Theorem 10

We now present the detailed proofs of our full abstraction result between the �-calculus
and the join-calculus. We rely on the techniques of bisimulation �up to� developed in
Section 4.7.

We �rst prove the direct implication: Q �� R implies ES [[Q]]� � ES [[R]]�. To this
end, we study how the re�ned translation interacts with an arbitrary join-calculus
context. We begin with a few auxiliary de�nitions.

We consider translations in contexts of the form PS [�] where S ranges over �nite
sets of names. We say that a join-calculus process E is valid with regards to S when,
for every name x 2 S, the name xl occurs in E only in evaluation context, in messages
of the form xlhyo; yii for some y 2 S.

We use an auxiliary translation [[�]] that is very similar to [[�]]��Lemma 6.33
says that the two translations are equivalent�but that yields terms with a simpler
behavior: every initial reduction in the translation can be associated with a source
reduction in the �-process. The translation [[�]] maps �-processes to join-processes
using the same clauses as [[�]]� in De�nition 6.23, except for scope restriction (so that
communication always leads to the creation of a new proxy pair, even if it uses a local
channel), and for outputs in evaluation contexts (where the deterministic de�nitions
of xo and p are unfolded):

[[�x:P]] def

= Px[[[P]]]

[[xhvi]] def

= Pz
�
xlhzo; zii j [[M�

v;z]]�
�

(in evaluation context)

In the following deterministic reductions!d refer to reductions of messages emitted
on p, xl or � in the translation, and hybrid term are join-calculus processes of the form
PS [E j [[Q]]] where E is valid and fv[Q] � S (hence [[Q]] is also valid). The key technical
property of hybrid terms is that they are closed by reduction up to deterministic
reduction and �, and also closed by application of an evaluation context that does not
use the names bound in PS [�] as free names. In particular, the processes ES [[[Q]]�]
that appear in the theorem are hybrid terms for E =

Q
x2S xehxo; xii.

The next lemma makes explicit the reductions that transform a message xohs; ti
into a message xlhzo; zii after unfolding new relays between the name represented by
the pair s; t and a new, correct encoding of a �-calculus name z.

210 CHAPTER 6. ENCODINGS

Lemma 6.29 Let S be a set of names, z be a fresh name, and E[xohs; ti] be a valid
process where E[�] is an evaluation context that does not bind the names xo, xl, xi,
zo, zl, zi, and p. We have the deterministic reductions

PS
h
E
�
xohs; ti

�i
!d PS

h
E
�
phs; t; xli

�i
!d PS

h
E
�
Pz[xlhzo; zii j [[M�

y;z]]f
s=yo ;

t=yig]
�i

� PS]fzg
�
xlhzo; zii jE[[[M�

y;z]]f
s=yo ;

t=yig]
�

Proof: we simply unfold the de�nitions of xo and p in PS [�]. �

Since the process [[M�
y;z]]f

s=yo ;
t=yig is valid with regards to S] fzg and has no

message in evaluation context, we can iterate Lemma 6.29 to obtain deterministic
reductions PS [E] !�

d� PS0 [E0] for some set S0 that contains S and some process E0

that is valid with regards to S0, and that has no more message on names xo for x 2 S0

in evaluation context.
The next lemma relates hybrid terms that di�er only in the number of unfoldings

of synonyms in the context PS [�]. This technical lemma is essential to fold back
extraneous relays �on the �y� in the proofs that follow.

Lemma 6.30 Let S be a set of names with x 2 S and y 62 S, and let E be a valid
process with regards to S] fyg. We have the expansion up to deterministic reductions

PS]fyg[E j [[M
�
x;y]]] �d PS [Ef

xl=yl ;
xo=yo ;

xi=yig]

Proof: We exhibit a relation R that is closed by reduction up to deterministic re-
ductions and that contains all pairs of processes that appear in the lemma. Due to
the recursive behavior of the context PS]fyg[�], the candidate relation R is actually
much larger: we let R contain all pairs of processes

P1 = PS
h
E j

Y
(y;z)2�

[[M�
y;z]]
i
; P2 = PS�

h
E�]

i

for all S, E, �, �], and � that meet the following requirements:

1. E is a valid join-calculus process with regards to S;

2. � is an idempotent substitution on S

3. �] substitutes the names yl, yo, and yi for xl, xo, and xi whenever y = x�.

4. � is a minimal relation on S such that for all x 2 S we have x� �� x;

Intuitively, the covering relation � describes the spanning tree of relays that have
been unfolded so far out of the initial context PS�[�]; the minimality of � is irrelevant
in this proof. Also, note that [[P�]] = [[P]]�]. For all pairs of processes (P1; P2) for
which the lemma claims an expansion up to deterministic reductions, we have P1 R P2
for the set S] fyg, the substitution � = fx=yg and the relation � = f(x; y)g.

We apply the proof technique of Section 4.7.4 to prove that R is an expansion
up to deterministic reductions. The strong barbs are the same on both sides of R,

6.7. PROOF OF THEOREM 10 211

because the translations [[M�
y;z]] have no barbs and the substitution �] only operate

on names that are bound in the enclosing contexts PS [�], PS�[�]. The congruence
property is immediate for all contexts that do not have names de�ned in PS [�] as free
variables.

To establish the bisimulation diagrams for R, we partition reductions P1 ! P 01
and P2 ! P 02 as follows: reductions inside E; reductions using the de�nition of xo in
PS [�] or xo�] in PS�[�]; reductions in P1 using the de�nition of xi; xl in PS [�] (with xi
either in a relay or in E); reductions in P2 using the de�nition of xi�]; yl�] in PS�
when x� = y�.

Reductions internal to E: these reductions use names that are not a�ected by the
substitution �]; they commute with �] and the resulting processes are related by R.

Reductions using the de�nition of xo in PS [�] or xo�
] in PS�[�]: these reduc-

tions are the �rst deterministic reductions of Lemma 6.29; we apply the two determin-
istic reductions and the structural equivalence of Lemma 6.29 on both P1 and P2. Let
P 001 and P 002 be the resulting processes, and let z be the fresh name introduced by the
lemma. We check that P 001 R P 002 for an updated set S0 = S [fzg, an updated valid
process E0, and for the same � and �. Both expansion diagrams can thus be closed
by the relations

P1 !d P
0
1 !d�R� d P

0
2 d P2

Reductions between ylhxo; xii and [[M�
y;z]] in P1: these reductions correspond to

message-passing between synonyms, and they cause a new relay to be unfolded in P1
only. We have the series of relations

P1 � PS

2
4E0 j ylhxo; xii j

Y
(y;z)2�

[[M�
y;z]]

3
5

�!!d PS

2
4E0 j zohxo; xii j

Y
(y;z)2�

[[M�
y;z]]

3
5

!d!d� PS]fx0g

2
4E0 j

�
zlhx

0
o; x

0
ii j [[M

�
x;x0]]

�
j
Y

(y;z)2�

[[M�
y;z]]

3
5

= PS0

2
4E0 j zlhx

0
o; x

0
ii j

Y
(y;z)2�0

[[M�
y;z]]

3
5 R P2

The �rst reduction step of (6.13) is the reduction P1 ! P 01; it joins the message
ylhxo; xii with the message yih�i present in the replicated receiver !y(u):zhui within the
relays. Then, the deterministic reduction consumes the continuation �hxo; xii, which
puts back the relay in its initial state, and also releases the message zohxo; xii. Next
the relations (6.13) are obtained by applying Lemma 6.29 on the message zohxo; xii.

The identity (6.13) holds for the updated components S0 = S] fx0g, E00 =
E0 j zlhx

0
o; x

0
ii, �

0 = � � fx�=x0g, and �0 = � [f(x; x0)g. The resulting process meets all
the invariants. Moreover, this process is still related to P2: we have by construction

212 CHAPTER 6. ENCODINGS

(x; x0) 2 �, and, since there is a relay from y to z in P1, either (y; z) 2 � or (z; y) 2 �.
That is, x�0 = x0�0, y�0 = y�, and �nally (E0 j yhxo; xii)�

0] = (E0 j zhx0o; x
0
ii)�

0]. The
reduction P1 ! P 01 is therefore simulated by the absence of reduction in P2:

P1 ! P 01 !d!d!d�R P2

Reductions joining ylhxo; xii and yih�i within P1: these reductions commute with
the application of �]; they are in direct correspondence with reductions P2 ! P 02, and
yield pairs of processes P 01 R P 02 for some updated valid E.

Reductions joining (ylhxo; xii)�
] and (zih�i)�

] within P2: we necessarily have
y� = z�, but the names y and z may be di�erent. By de�nition of �, however, we have
the relations y (��1)� y�=z� �� z. Hence, there is a chain of relays that can forward
the message from yl to zl, which unfolds a new relay for every relay that is crossed on
the way. Starting from P1, we successively apply the series of relations (6.13�6.13) for
each relay of the chain. This leads to a process P 01 R P2 for some larger S, � and �,
and a message zlhx0o; x

0
ii with x� = x0� in place of the original message ylhxo; xii in E.

After these preliminary steps, we are back to the previous case for the pair P 01 R P2,
with a direct correspondence between the reduction P 01 ! P 001 that consumes the two
messages on zl; zi and the reduction P2 ! P 02 that consumes their image by �]. We
close the diagram with the relations

P1
�
! (!d!d!d�)

��
!R P 02 P2

�

The next lemma is a variation of Lemma 6.24; it states that reductions in the
�-calculus can be transported on their translations in hybrid terms.

Lemma 6.31 Let S be a set of names, Q be a �-calculus process with fv[Q] � S,
and E be a valid join-calculus process.

if Q! Q0; then PS [E j [[Q]]]! (!�
d��d)

�PS
�
E j [[Q0]]

�
Proof: There are two cases, depending on whether the receiver is replicated or not.
We detail only the case of a non-replicated receiver. Using structural equivalence, we
rewrite the source reduction as

Q � �ez:(xhvi j x(u):G j T) ! Q0 � �ez:(Gfv=ug j T)
where the names in ez and their translations are fresh in the hybrid term PS [E]. In
the join-calculus, we have the relations

PS [E j [[Q]]] � PS]fezg[E j [[xhvi]] j [[x(u):G j T]]] (6.13)

� PS]fezg]fv0g[E jxlhv
0
o; v

0
ii j [[M

�
v;v0]] j [[x(u):G]] j [[T]]] (6.14)

!!d� PS]fezg]fv0g[E jE
0 j [[M�

v;v0]] j [[T]]] (6.15)

(!d!d�)
� PS]fezg]fv0g[E j [[Gf

v0=ug]] j [[M�
v;v0]] j [[T]]] (6.16)

�d PS]fezg[E j [[(Gf
v0=ug)f

v=v0g]] j [[T]]] (6.17)

� PS [E j [[Q0]]] (6.18)

6.7. PROOF OF THEOREM 10 213

(where the name v0 is fresh). The second structural equivalence (6.14) is the same
as in Lemma 6.29. The series !!d� (6.15) �rst consumes the pair of messages
xlhv

0
o; v

0
ii and xih�i, then the continuation message �hv0o; v

0
ii, and �nally it discards the

de�nition of �. The resulting subprocess E0 is the translation [[Gfv
0

=ug]] except for the
presence of messages yohzo; zii instead of [[yhzi]] for every �-calculus message of Gfv=ug
in evaluation context. The series (!d!d�)

� (6.16) repeatedly applies Lemma 6.29
for every such message, thus �xing the di�erence. The expansion up to deterministic
reductions (6.17) is obtained by applying Lemma 6.30; it folds back the new synonym v0

of v; since v0 appears only inGfv
0

=ug, the substitution fv=v0g] a�ects only the translation
of this term. The �nal structural equivalence (6.18) restores the initial structure of
the term by restricting the scopes of the names ez and their translations.

The case of a replicated receiver is almost the same; the main di�erence is that
we use structural equivalence to restore the initial replicated receiver instead of strong
equivalence to discard the de�nition of the continuation. �

We are now ready to establish the soundness of the modi�ed encoding [[�]].

Lemma 6.32 For all sets of names S, valid join-calculus processes E, and pairs of
�-calculus processes Q and R with fv[Q] [fv[R] � S,

if Q �� R; then PS [E j [[Q]]] � PS [E j [[R]]]

Proof: Let R be the relation that contains all pairs of processes (PQ; PR) for which
the lemma claims PQ � PR. Let also R0 � R be the auxiliary relation that con-
tains only the pairs (PQ; PR) that meet the additional requirement: there is no mes-
sage xohs; ti in evaluation contexts in E0 (8x 2 S0; E0 6#xo).

We easily obtain the inclusion R � !�
d�R

0� �
d: let PQ R PR. By applying

Lemma 6.29 for every message xohs; ti in evaluation context in E, we have the relations
PQ !�

d P
0
Q R P 0R

�
d PR where the new related processes are obtained for a larger

set S and an updated valid process E that meets the additional requirement.
Thus it su�ces to prove that R0 � �, and moreover we can close bisimulation

diagrams by using R instead of R0. We apply the proof technique of Section 4.7.4
(barbed congruence up to expansion and deterministic reductions).

The barb property of R0 is easily checked, because processes related by R0 have
strong barbs on the same names: by hypothesis fv[Q] [fv[R] � S, hence all the
free names of the translations [[Q]] and [[R]] are bound in the context PS [�]. That
is, messages on free names may only appear in the valid process E, and they are
syntactically the same on both sides of R0.

The congruence property of R0 is immediate for all evaluation contexts C[�] of the
join-calculus with no free names that are bound in PS [�] C[PS [E jX]] � PS [C[E] jX]
for all X with fv[PS [X]] = ;.

The weak bisimulation properties of R0 are established by a detailed analysis of
reductions. We partition the reductions and, for each family of reductions, we close the
required bisimulation diagram �up to�. Since R0 is symmetric, we focus on the reduc-
tions PQ ! P 0Q, which are partitioned as follows: reductions internal to E; reductions
internal to the translation [[Q]]; reductions using a rule xlhyo; yii j xih�i . �hyo; yii de-
�ned within PS [�] for some x 2 S. The message on xi represents �input�; the message
on xl represents �output�. This latter family of reductions is split into four subcases,

214 CHAPTER 6. ENCODINGS

according to the position of the input and output messages being consumed, in E or
in [[Q]].

Reduction internal to E; input and output both in E: The same reduction
occurs on both sides, in di�erent contexts, and leads to an updated E0 that is still
valid. The two resulting processes are related byR. We close the bisimulation diagram
by using the inclusion R � !�

d�R
0� �

d.

Reduction internal to [[Q]] (reduction on a bound name in Q): This reduction
uses the translation of a binder �x in the source process, and joins two messages
xohvo; vii and xih�i that are translations of an emission and a reception in the �-cal-
culus, respectively. The corresponding reduction in the �-calculus is of the form:

Q � �ez; x:(xhvi j x(u):G jQ00) ! Q0 � �ez; x:(Gfv=ug jQ00)

(or a similar form in case of replicated reception.) By de�nition ofR0 we have Q �� R,
and thus the source reduction in Q can be simulated by a series of reductions starting
from R:

Q

��

��
R

n

��

Q0 ��

R0

We apply Lemma 6.31 for every reduction that appears in the source diagram above,
once on the left where the initial reduction in the join-calculus is precisely PQ ! P 0Q,
and n times on the right, where n is the length of the derivation.

PQ ! P 0Q (!�
d��d)

� PS [E j [[Q0]]]

PR
�
! (!�

d��d)
�
�n
PS [E j [[R0]]]

and we close the bisimulation diagram in the join-calculus as follows:

PQ
R0

��

PR

�
!(!�

d
��d)

�

�n

P 0Q
(!�

d
��d)

�

PS [E j [[Q0]]] R0

PS [E j [[R0]]]

Input and output in [[Q]] (reduction on a free name in Q): This case is handled
exactly as the above case, except that there is no binder for x in Q. Again, we
report a simple �-calculus bisimulation diagram using Lemma 6.31 to obtain the same
bisimulation diagram as above.

Input in E, output in [[Q]] (extrusion from Q): The translation [[Q]] contains a
message xlhyo; yii, which correspond to an emission on x in the source process. Using

6.7. PROOF OF THEOREM 10 215

structural rearrangement, we have Q � �u:(Q0 jxhyi) where the pre�x �u is either
nothing or �y, according to the scope of the transmitted channel y.

We extract from the process R a message xhy0i that is equivalent to xhyi in this
context. To this end, we apply the congruence property in the �-calculus to Q �� R,
for the particular context

O[�]
def

= thti j x(y):t(t):M�
yz j [�]

where t is a �-calculus names that does not appear in Q or R. Intuitively, this context
grabs a single message xhyi and equates its contents to the name z; the progress
can be detected thanks to the barb on t, which disappears inasmuch as the context
successfully grabs a message.

By bisimilarity in this context, we have the source diagram

O [�u:(Q00 j xhyi)]
��

2

��

O [R]

n+2

��

n

��

Q0 = �u:(Q00 jM�
yz)

��

R0

where the two reductions on the left consist of the two receptions in O[�]. We infer
the length of the derivation R!� R0 and the shape of R0: since the resulting process
has lost its barb on t, these two reductions must also occur on the right; moreover,
these two reductions commute with any subsequent reduction on the right�except for
relaying reductions which are reversible�hence we can reorder the n + 2 reductions
on the right so that they appear last. Finally, the n �rst reductions do not depend
on O[�], so we have for some R00 in the �-calculus

R !� �u0:(R00 j xhy0i)

R0 � �u0:(R00 jM�
y0z)

(where again �u0 may be empty). We report these n �-calculus reductions to the join-
calculus by using Lemma 6.31, then we glue the result with the join-calculus reduction
that receives the message xlhzo; zii in E and yields the same updated process E0 on
both sides. The two resulting processes are in R0 for the source processes Q0 and R0.
We obtain the diagram:

PS [E[xih�i] j [[Q]]]

�

R0

PS [E[xih�i] j [[R]]]�
!(!�

d
��d)

�

�n
PS [E[xih�i] j [[�u0:(R00 jxhy0i)]]]

�

PS]fzg [E[xih�i] j xlhzo; zii j [[Q0]]]

��

PS]fzg [E[xih�i] j xlhzo; zii j [[R0]]]

��

PS]fzg [E[�hzo; zii] j [[Q0]]] R0

PS]fzg [E[�hzo; zii] j [[R0]]]

216 CHAPTER 6. ENCODINGS

Input in [[Q]], output xlhzo; zii in E (intrusion in Q): Let us assume that Q �
�eu:(x(u):G jQ00) where the translation of the subprocess x(u):G contains the message
on xi being consumed in the reduction. We use bisimilarity in the �-calculus for the
context xhzi j[�]; we obtain the source diagram

xhzi j �eu:(x(u):G jQ00)

��

��
xhzi jR

�

��

Q0 = �ez; x:(Gfz=ug jQ00)
��

R0

and we report its reductions in the join-calculus. On the left, we have

PQ = PS [E jxlhzo; zii j [[�eu:(x(u):G jQ00)]]]

! P 0Q !d� (!d!d�)
� PS [E j [[Q0]]]

where the relations are obtained as in the proof of lemma 6.31. Note that we do not
remove a relay on z as in that lemma, because z may be relayed to a pair of names
that are not indexed by S.

On the right, we �rst apply Lemma 6.31 to every reduction step in the series
starting from xhzi jR. We obtain

PR = PS [E j [[xhzi jR]]
�
! (!�

d��d)
�
��
PS [E j [[R0]]

and, sinceQ0 �� R0, we have a pair of processes inR0 for these two �-calculus processes
and for an updated E where the message on z has been removed.

Note, however, that [[xhzi]] 6� xlhzo; zii, even as x; z 2 S. Before gluing the trans-
lated relations on the right, we �rst apply Lemma 6.30 in the �expanding� direction,
to unfold a relay around xlhzo; zii:

PR = PS [E jxlhzo; zi j [[R]]] �d PS
h
E j Pz0

�
xlhz

0
o; z

0
i j [[M

�
z;z0]]

�
j [[R]]

i
� PS [E j [[xhzi jR]]]

We �nally close the diagram

PQ

��

R0

PR
�d PS [E j [[xhzi jR]]]

�
!(!�

d
��d)

�

�
�

P 0Q
!d�(!d!d�)

� R0

�

Next we use previous results to relate the auxiliary translation [[�]] used in this
proof to the original translation that appears in the theorem.

6.7. PROOF OF THEOREM 10 217

Lemma 6.33 Let S be a �nite set of names and Q be a process of the �-calculus such
that fv[Q] � S. We have the barbed expansion up to deterministic reductions

ES [[[Q]]] �d ES [[[Q]]�]

Proof: LetR be the relation that contains all pairs of join-calculus processes (P1; P2)
of the form

P1 = PS [E j [[Q]]]; P2 = PS [E j [[Q]]�]

where S is a �nite set of names, Q is a �-calculus process with fv[Q] � S, and E
is valid with regards to S. We obtain the statement of the lemma in the case E =Q
x2S xehxo; xii.
We work up to deterministic reductions: we assume that all reductions on xo

de�ned in a Px (either for x 2 S or for a local x in [[Q]]) have been performed by
repeatedly applying Lemma 6.29. However, we retain the notation [[�]]� to denote
these processes.

We use Lemma 4.7.4 (expansion up to deterministic reductions) to prove the in-
clusion R � �d. The requirements on barbs and contexts are easily checked, as above.
The case analysis on reductions is simple because we have the same source process on
both sides. Almost all reductions are in direct correspondence in P1 and in P2, and
the resulting processes are still in R, possibly after performing a few deterministic
reductions: reductions that trigger relays in [[Q]] and in E are followed by a deter-
ministic reduction step using the de�nition of p, then structural rearrangement; other
reductions in E are the same and remain in R; reductions using a de�nition of xo
and xi for x 2 S are followed by a few deterministic steps plus strong equivalence on
both sides.

The only family of reductions that di�er are reductions that use the de�nitions of
xl; xo; xi for some name x that is bound in Q. After rearranging the source process in
the �-calculus, let us assume that Q � �ez:(xhvi j x(u):G jR) where the translations of
the names ez, u do not appear in PS [E].

Let Pi !!�
d� P 0i for i = 1; 2 be the two reductions that consume the corre-

sponding messages in the translations, followed by the deterministic reduction that
triggers the continuation and the strong equivalence that discards the de�nition of the
continuation. The processes P 0i are the translations of two updated, distinct source
processes Q0

i, in the same context (with identical S and E):

Q0
1 � �ez:(�w:(Gfw=ug jM�

vw) jR)

Q0
2 � �ez:(Gfv=ug jR)

(where w is a fresh name in P1 and P2). However, we can use structural equivalence in
the resulting process to lift the translation of the binders ez; w at top-level, then apply
Lemma 6.30:

P 01 � PS]fez;wg[E j [[Gf
w=ug jR]] j [[M�

vw]]]

�d P(S]fez;w)fv=wg[(E j [[Gf
w=ug jR]])fv=wg j]

= PS]fezg[E j [[Gf
v=ug jR]]]

� PS [E j [[Q0
2]]] = lP 02

218 CHAPTER 6. ENCODINGS

we close the two bisimulation diagrams for expansion up to deterministic reductions
by using the relations

P1 ! (!�
d��dR�

�
d) P2

�

Proof of soundness: For a given S, we apply Lemma 6.32 for the process E =Q
x2S xehxo; xii, which is clearly valid, then substitute the translation [[�]]� of the

theorem for the auxiliary translation [[�]] of the lemma by applying Lemma 6.33 on
both sides of the barbed congruence. �

We now prove that the translation re�ects barbed congruence; we de�ne yet an-
other auxiliary translation [[[�]]] that is fully compositional. At each step of the new
structural de�nition, each term is wrapped in a protective context that prevents any
sharing of translated names; instead, these distinct names in use in each subterm are
made synonyms.

De�nition 6.34 The translation [[[�]]] maps �-calculus processes to join-calculus pro-
cesses, and (implicitly) collects free names. It is de�ned on the structure of �-calculus
processes as follows:

[[[P jQ]]]
def
= Efv[P][fv[Q]

�
Ifv[P][[[[P]]]] j Ifv[Q][[[[Q]]]]

�
[[[�x:P]]] def

= Nx[[[[P]]]]

[[[xhvi]]]
def
= Efx;vg [xohvo; vii]

[[[x(v):P]]]
def
= Efv[P][fxg

�
def �hvo; vii . Ifv[P][[[[P]]]] in xih�i

�
[[[!x(v):P]]]

def
= Efv[P][fxg

�
def �hvo; vii . xih�i j Ifv[P][[[[P]]]] in xih�i

�
where the contexts IS and Nx are de�ned by

IS [�]
def
= def

^
x2S

xehyo; yii . [[M�
x;y]]� in [�]

Nx [�]
def
= def xehyo; yii . 0 in [�]

Intuitively, IS [�] catches exported names for channels in the scope of the con-
text and equates them to names in the context immediately above; N[�] catches and
discards exported names, thus providing scope restriction.

The next lemma relates our two auxiliary encodings.

Lemma 6.35 For all processes Q in the �-calculus, we have [[[Q]]] � Efv[Q][[Q]].

Proof: The wrappers E and I are somehow inverse up to expansion: for all valid
processes P and Q, nested wrappers can be simpli�ed as follows

Efxg [P j Ix[Ex [Q]]] � Efxg

h
P j Ix0Ex0

h
Qfx

0

=xg
ii

!d� Pfx;x0g

h
xehxo; xii jM

�
x;x0 jP jQf

x0=xg
i

�d Pfxg [xehxo; xii jP jQ] � Efxg[P jQ]

6.7. PROOF OF THEOREM 10 219

(where x0 is a fresh name used to avoid name-clashes in the internal de�nition of
xo; xl; xi.) The expansion up to deterministic reductions is obtained by Lemma 6.30.

We prove the lemma by structural induction on the �-calculus process Q. In each
case of the grammar, we repeatedly use variants of this simpli�cation. We omit the
indices when they are clear from the context.

[[[P jQ]]] def

= E::: [I:::[[[P]]] j I:::[[[Q]]]]

� E::: [I:::E:::[[P]] j I:::E:::[[Q]]]

� E:::[[P jQ]]

[[[�x:P]]] def

= Nx[[[P]]]

� NxEfv[P][[[P]]]

� Efv[P]nfxgNxEx [[[P]]]

!d� Efv[P]nfxgPx [[[P]]]

� Efv[�x:P] [[[�x:P]]]

[[[xhvi]]] def

= Efx;vg [[[xhvi]]]

[[[x(v):P]]] def

= E::: [def �hvo; vii . I:::[[[[P]]]] in xih�i]

� E [def �hvo; vii . I:::E [[[P]]] in xih�i]

� E [def �hvo; vii = [[P]] in xih�i]

[[[!x(v):P]]] def

= E::: [def �hvo; vii . xih�i j I:::[[[[P]]]] in xih�i]

� E [def �hvo; vii . xih�i j I:::E [[[P]]] in xih�i]

� E [def �hvo; vii . xih�i j [[P]] in xih�i]

�

The next lemma show that the auxiliary encoding encoding [[�]] re�ects all equiv-
alences in the join-calculus.

Lemma 6.36 Let S be a �nite set of names. For all �-calculus processes Q and R,
if ES [[Q]] � ES [[R]], then Q �� R.

Proof: Let R be the relation that contains all pairs of processes (Q;R) such that,
for some set S, we have ES [[[Q]]] � ES [[[R]]]. It is not necessary to require that all free
variables of the source processes be present in S, because we can always apply the
congruence property in the join-calculus to extend S. Conversely, if a name occurs
in S but not in Q, R, then the weak bisimulation also holds for S n fxg.

We prove that R � �� by establishing that R is a barbed congruence in the
�-calculus.

1. the congruence for all evaluation contexts is a combination of Lemma 6.35 and
of the congruence property of �. Up to strong bisimilarity, we can assume that
fv[Q] = fv[R]. Let C[�] be an evaluation context in the �-calculus. We have

Efv[C[Q]]

�
[[C [Q]]]

�
� [[[C [Q]]]] = ([[[C]]]) [[[[Q]]]] � ([[[C]]])

�
Efv[Q][[Q]]

�

220 CHAPTER 6. ENCODINGS

where the two barbed congruence are obtained by Lemma 6.35. We conclude
by applying the congruence property of � in the join-calculus for the context
([[[C]]])[�].

2. every weak output barb +x of the �-calculus can be tested on ES [[Q]] as soon as
x 2 S. We use the context

Cx[�]
def

= def �hi . thi ^ xehxo; xii . xih�i in [�]

(where t is fresh) with the property Cx[ES [P]] +t i� P +x .

3. weak bisimulation is obtained by �decompiling� reductions in the join-calculus:
let S be a set such that fv[Q] [fv[R] � S, and let us assume that Q ! Q0. By
Lemma 6.31, we have ES[Q] ! P 0Q �d ES [Q

0], and, by weak bisimulation in the
join-calculus,

ES[[Q]]
�

�

��

ES[[R]]

�

��

with R

�

��

ES [[Q0]]
�d P 0Q

�
P 0R

�d
ES[[R0]] R0

on the right-hand-side of the diagram, we obtain the source derivation R!� R0

and the relation P 0R �d ES [[R
0]] by induction on the length of the join-calculus

reductions ES [[R]] !n P 0R; every initial reduction ES [[R]] ! T1 corresponds to a
source reduction R! R1; moreover, we have by Lemma 6.31 that ES [[R1]] �d T1,
hence ES [[R1]]!m�d P

0
R for some m < n. �

Chapter 7

Locality, Migration, and Failures

While distributed programming is our primary subject, the actual distribution of re-
sources has hitherto been kept implicit. We introduced and studied the join-calculus,
and argued that this calculus has built-in locality, hence that the miscellaneous com-
ponents in a chemical solution could be partitioned into di�erent units executed on
di�erent machines. Moreover, we claimed that this re�nement would preserve a fairly
transparent correspondence between the model and its implementation.

This chapter gives a more explicit account of distributed programming. We con-
sider computations distributed on several machines�or sites�that can communicate
over an asynchronous network; parts of the computation can migrate from a site to
another, while some sites may fail during the computation.

Our model is a re�nement of the join-calculus and the rcham, and bene�ts from
the techniques we developed so far. In general, it is not easy to match concurrency the-
ory and distributed systems, and indeed the distributed join-calculus that we present
here is signi�cantly more complex than the plain join-calculus. We extend the join-
calculus with locations and primitives for mobility. The resulting distributed join-cal-
culus allows us to express mobile agents that can move between physical sites. Agents
are not only programs but core images of running processes with their communication
capabilities and their internal state. We also describe the subtleties of modeling dis-
tributed asynchronous communication among fallible machines, in a precise and yet
relatively simple manner.

The novelty of the distributed join-calculus is the introduction of locations to reify
locality information. Intuitively, a location resides on a physical site, and contains
a group of processes and de�nitions. We can move atomically a location to another
site. We represent mobile agents by locations. Agents can contain mobile sub-agents
represented by nested locations. Agents move as a whole with all their current sub-
agents, thereby locations have a dynamic tree structure. Our calculus treats location
names as �rst class values with lexical scopes, as is the case for channel names, and
the scope of every name may extend over several locations and several machines.
A location controls its own moves, and can move towards another location only by
providing the name of the target location, which would typically be communicated
only to selected processes. While more elaborate primitives may be required in a
programming language, this already provides a starting point for static analysis and
for secure mobility.

Our calculus provides a simple model of failure. The crash of a physical site causes

221

222 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

the permanent failure of all its locations. More generally, any location can halt, with
all its sublocations. The failure of a location can be detected at any other running loca-
tion, allowing programmable error recovery. Other approaches are possible; we brie�y
suggest how they can be modeled in the join-calculus and discuss their relationship.

Our calculus can express distributed con�gurations with several machines, which
may or may not fail according to a variety of conditions. In the absence of failure,
however, the execution of processes is independent of distribution. This location trans-
parency simpli�es the design of mobile agents, and is very helpful for checking their
properties.

Since we use the distributed join-calculus as the core of a distributed programming
language, ease of implementation is a key design issue. More precisely, the de�nition of
atomic reduction steps becomes critical, since it de�nes the balance between abstract
features and realistic concerns. Except for the reliable detection of physical failures,
the re�ned operational semantics has been fully implemented in a distributed setting
with failures [59]. In this chapter, however, we only make a few comments on the
implementation, and postpone a more systematic account to future work.

This chapter contains numerous examples of distributed processes with mobility
and some failure recovery. Most of these examples are extracted from the suite of
programs that is part of our distributed implementation of the model. We begin with
standard patterns of distributed programming, such as remote procedure calls, and
dynamic loading of remote applications�or applets. Unlike Java applets, we download
a process with its current state, including its communication capabilities, simply by
moving its location. More elaborate examples of agent-based mobility may involve a
large number of machines. One of them extends the traditional client-server model
with migratory agents to provide a better use of network bandwidth and additional
guarantees in case of failure; other examples span a large data structures, or a complex
computation, on an arbitrary number of machines. For most of the examples, we also
provide some basic protection against partial failures.

Contents of the chapter

In Section 7.1 and 7.2 we gradually extend the join-calculus with explicit distribu-
tion. At the same time, we present a series of examples of increasing complexity. In
Section 7.1, we introduce our location model as a re�nement of the re�exive chemical
model and present a �rst set of new primitives aimed at expressing location manage-
ment and migration. In Section 7.2, we give our �nal calculus that copes with partial
failure and failure recovery, and discuss various semantical models for failure. In Sec-
tion 7.3 we explore the formal properties of the distributed join-calculus, apply some
of the equivalences introduced in previous chapters, and prove a few equations. In
Section 7.4 we �nally review related work on distributed mobile programming.

7.1 Computing with locations

We re�ne the re�exive cham to model distributed systems. First, we partition pro-
cesses and de�nitions into several local solutions. This �at model su�ces for repre-
senting both local computation on di�erent sites and global communication between
them. Then, we introduce some more structure to account for the creation and the

7.1. COMPUTING WITH LOCATIONS 223

migration of local solutions: we attach location names to solutions, and we organize
them as a tree of nested locations

The complete formal de�nition of the distributed semantics is deferred until Sec-
tion 7.2 (�gures 7.1, 7.2, and 7.3), once all the new constructs have been added to the
join-calculus.

7.1.1 Distributed solutions

We �rst present a �at and static view of distribution. Processes and de�nitions are
grouped in locations. Informally, every location is mapped to a physical machine;
in our implementation, each machine executes a program that hosts one or several
locations running in parallel.

We re�ne our chemical framework accordingly. A distributed re�exive chemical
machine (drcham) is a multiset of rchams; instead of using nested multiset notations,
we write the global state of a drcham as several solutions D `� P separated by a
commutative-associative operator k that represents global composition. Each local
solution is annotated with a distinct label � for reference in the text�in the next
section we will describe in more details the role of these labels.

Each solution D `� P within a drcham can evolve internally by using the same
chemical rules as for the plain join-calculus of Chapter 2 (cf. Figure 2.3), both for
structural rearrangements and for reduction steps. Technically, the chemical context
law is extended to enable computation in any local solution. As usual, inactive parts
of the contexts are kept implicit; hence the same chemical rules apply unchanged.
Of course, the side condition in Str-def now requires that globally fresh names be
substituted for de�ned names.

Local solutions can also interact with one another by using a new chemical reduc-
tion rule that operates on pairs of solutions:

Comm `' xhevi k J . P ` �! `' k J .P ` xhevi (when x 2 dv[J])

This rule models global communication; it states that a message emitted in a given
solution ' on a port name x that is remotely de�ned can be forwarded to the solution
that contains the de�nition of x. Later on, this message can be used within to
assemble a parallel composition of messages that matches J , then consumed by using
the familiar Red rule. The two-step decomposition of communication re�ects what
happens at run-time in actual implementations, where message transport and message
processing are distinct operations. As we shall see in Section 7.2, this design choice is
essential in the presence of failures.

In the following, we consider only well-formed drchams, where every name is de-
�ned in at most one local solution. Since the rule Str-def a�ects only local solutions,
this condition is clearly closed by chemical reductions; it enforces the locality property
discussed in Section 2.2 in our re�ned semantics. With this condition, the transport
(Comm) is deterministic, static, and point-to-point.

The routing of messages is kept implicit in the calculus. Formally, there is a partial
(meta) function that maps every name to its de�ning local solution�in the follow-
ing this mapping from port names to locations will not be a�ected by any reduction.
In the text, we use the notation loc(x) to refer to the location of x. In the imple-
mentation, each name is represented by a pointer to a data structure that is either a

224 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

closure for locally-de�ned names or a proxy data structure that contains shared rout-
ing information. (Later on, as the de�nitions of names migrate to a remote site, their
associated closures are changed in-place to such proxies. This technique is standard
in distributed object systems.)

In contrast, some recent formalisms that address distributed programming force
the explicit routing of messages in the calculus [68, 49, 46]. From a language design
viewpoint, we believe that the bookkeeping of routing information is tedious and error-
prone, and is best handled at the implementation level. At least in the distributed
join-calculus, the locality property makes routing information simple enough to be
safely omitted from the language. In short, our computational model hides the details
of message routing, and focuses on those of synchronization. A re�ned implementa-
tion model would explicitly attach a location name to each name, and maintain the
mapping from locations to machines.

We now give a few basic examples of distributed computations.

Remote message passing As a �rst example that involve several local solutions,
we revisit the print spooler example of Chapter 2 (cf. page 56).

We now assume that there are three machines: a server machine s that hosts the
spooler, a laser printer p that registers to the server, and a user machine u where some
print request has been issued. As in Chapter 2 we let

D
def

= readyhprinter i j jobh�lei . printer h�lei

and let P represent the printer code. We have the series of chemical steps:

D `s k laserhfi . P `p readyhlaser i k `u jobh1 i
Comm
! D `s jobh1 i k laserhfi . P `p readyhlaser i k `u

Comm
! D `s jobh1 i; ready hlaser i k laserhfi . P `p k `u

Join,Red
+! D `s laser h1 i k laserhfi . P `p k `u
Comm
! D `s k laserhfi . P `p laser h1 i k `u

The �rst step forwards the message jobh1 i from the user machine u to the unique
machine that de�nes job, here the spooler s. Likewise, the second step forwards the
message readyhlaser i to the spooler. Next, synchronization occurs within the spooler
between these two messages as a local reduction step. As a result, a new message on
the spooler is sent to the laser printer, where it can be forwarded, then received.

This example also illustrates the notion of global lexical scope; assuming that the
name laser is initially known only on the printer machine p, a preliminary local,
structural step on machine p may be

`p def laser hfi . P in readyhlaser i
Str-def

 laser hfi . P `p readyhlaser i

Then, the second Comm step in the series above e�ectively extends the scope of laser
to the server, hence the server gains the ability to send messages to the printer as the
result of further print requests.

7.1. COMPUTING WITH LOCATIONS 225

Remote procedure call (RPC) We can easily model the classical RPC primitive
by composing the previous example with the syntactic sugar for sequential control and
for synchronous names that we introduced in Section 3.4.

For instance, we may assume a synchronous name �job� instead of the asynchronous
one above. Along with the �le to be printed, an implicit continuation is also passed
to the printer, then triggered there upon completion of the job. A new user machine
such as `u job(1); job(2); : : : may now print a series of �les.

Each synchronous call to a remote name is implemented as (at least) four chemical
reductions: a Comm step that routes the message jobh1; �i to the spooler, some steps
on the spooler or elsewhere that eventually issue the message �hi, another Comm step
that routes the message �hi back to the user machine, and a local step on the user
machine that triggers the continuation process�here job(2); : : : . Again, we rely on
network transparency and global lexical scope to make the continuation available for
remote invocation.

As is the case for RPCs in distributed systems, the interface of the function�here
the CPS encoding of the sequence�does not depend on whether the function is local
or remote; this property, however, has an impact on the implementation mechanism
that is used at run-time.

Usually, the libraries that implement RPCs also re�ne the standard function call
mechanism to allow some primitive error recovery. We present a re�ned RPC protocol
with an abstraction of timeouts: in case the remote computation takes too long, an
error recovery function is triggered. As a starting point, the plain RPC described
above can be abstracted into a call to the local library as follows:

`u def rpc(f; x) .reply f(x) to rpc in : : : rpc(job; part1) : : :

The name job has a global scope, but the name rpc is local to u, and can be considered
as part of its communication library. We can also use a more elaborate de�nition of
rpc that handles timeouts:

def rpc(f; x; error) .
def in_call hi j donehri .reply r to rpc
^ in_callhi j timeouthi . error hi
in in_callhi j donehf(x)i j start_timerhtimeout ; 3i

in : : : rpc(job; part1 ; error_handler) : : :

The in_call message guarantees mutual exclusion between the normal return from
the remote call and the timeout error message, whichever occurs �rst. Note that the
timeout is externally de�ned, as it makes little sense to de�ne timeouts in the join-cal-
culus: in an asynchronous setting, timeouts are just silent reductions that may occur
at any time.

Remark 7.1 (The name-server) In the examples, we usually assume that the scope
of a few names that are de�ned in a local solution extends over several other local
solutions�intuitively several machines. Formally, we rely on the global parallel com-
position operator, but we have explained neither how locations could be created, nor
how these names could be initially communicated from one machine to another.

In the implementation, programs that are executed on di�erent machines are closed,
so there is no such magical mechanism for assembling distributed computations, and

226 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

local computations should not be able to interact. Instead, we use an ad hoc �name-
server� library that provides an interface to register and look up a few names by key.
The interface of the name-server library is connected to any machine that joins a
computation by using the IP address of the particular machine that hosts the state of
the name server.

Once a few initial names have been exchanged, the whole computation proceeds
without relying on the name server anymore, and uses instead the implicit global scope
extrusion mechanism.

Remark 7.2 (Global scope and open syntax) The open calculus of Chapter 5
could be used to emphasize the �global� interface of each local solution: names that
are de�ned in a local solution and that appear free in another solution are marked
as �extruded� in the former solution; the rule Str-def then applies more liberally to
rearrange their de�nitions; the rule Comm performs the same bookkeeping than the
extrusion rule Ext. The restrictions on extruded names in the composition of open
terms then coincide with the well-formed condition on distributed chemical solutions
that enforce locality.

7.1.2 Should locations be nested?

Assuming that every location is mapped to some host machine, agent migration is
naturally represented by dynamic changes in the mapping from locations to machines.
In order to save network bandwidth, for instance, a location that contains the run-
ning code of a mobile agent may migrate to the machine that hosts another location
providing a particular service, in preparation to an intense exchange of messages with
this location. In the distributed join-calculus, the migration can be expressed using
the process go(a) where a is the name of the target location.

Our model of locations is hierarchical, locations being attached to parent loca-
tions instead of machines. We �rst motivate this choice, and explain why a �at ma-
chine/location structure is not satisfactory.

Technically, a hierarchical model of locations allows us to represent machines them-
selves as locations, and to treat uniformly partial failures and migrations. Moreover,
this model provides enough expressiveness to describe distributed con�gurations of
machines, without introducing new constructs for them.

As regards distributed programming, there are many situations where several levels
of moving resources are useful. For instance, the server itself may, from time to time,
move from one machine to another to continue the service while a machine goes down.
Also, some agents naturally make use of sub-agents, e.g., to spawn some parts of the
computation to other machines. Finally, the termination of a machine and of all its
locations can then be modeled using the same mechanisms as a migration. When
a mobile agent returns to its client machine, for instance, it may contain running
processes and other resources; logically, the contents of the agent should be integrated
with the client: later on, if the client moves, or fails, this contents should be carried
away or discarded accordingly.

From the implementor's viewpoint, the hierarchical model can be implemented as
e�ciently as the �at model, because each machine only has to know its own local
hierarchy of locations. Nonetheless, the model provides additional expressiveness to
the programmer, who can assemble groups of resources that move from one machine

7.1. COMPUTING WITH LOCATIONS 227

to another as a whole. This may explain why most implementations of distributed
mobile objects provide a rich dynamic structure for controlling migration, for instance
by allowing objects to be temporarily attached to one another (cf. [77, 79, 78]).

Let us illustrate the need for nested agents in the case several migrations occur
in some distributed computation. We describe the general situation of a client that
just created an agent to go and get some information on a server. In the next array,
two migrations occur in parallel: the agent goes to the server, while the server goes
to another machine. We give an execution trace t1; t2; t3, and use the symbol ; to
emphasize potential migrations.

Machine 1 Machine 2 Machine 3

t1
`client
`agent go(server) ;

`server go(3) ;

t2
`client `server go(3) ;

`agent

t3
`client

`agent

`server

With a �at location structure, the migration from the client to the server must be
dynamically replaced with a migration to a particular machine, for instance to the
machine that currently hosts the server. In the case the server moves before the agent
and the client's machine is aware of that move, then the agent arrives on the same
machine as the server (machine 3). However, if the server moves just after the arrival of
the agent, as detailed in the above trace, the agent is left behind. That is, the mapping
from locations to machines depends on the scheduling of the di�erent migrations, and
the migration to the server yields no guarantee of being on the same machine as the
server. For instance, machine 2 may crash after t3, which makes the agent disappear
while both the client and the server stay alive; this may be troublesome for the agent
programmer, especially if she ignores the migratory behavior of the server.

The problem is delicate to �x. The server could maintain a list of its current
sublocations, and ask each sublocation to move along as it moves from one machine to
another. Nonetheless, this is cumbersome to program, and still this does not guarantee
natural atomicity properties, since machine 2 may crash before a sublocation has a
chance to catch up the server.

7.1.3 The location tree

In order to compute with locations, we represent them both as syntactic de�nitions
(when they migrate or fail) and as local chemical solutions (when they interact with
one another).

We use location names to relate the two structures. We assume given a countable
set of location names L. We use the letters a; b; : : : 2 L to denote location names, and
'; ; � : : : 2 L� to denote �nite strings of location names. We extend the type systems
of Chapter 3 with a basic type for locations. In the following we always require that
all processes be well-typed.

228 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

Location names are �rst-class values that statically identify a location. Like port
names, they can be created locally, sent and received in messages, and they obey
the lexical scoping discipline. To introduce new locations, we extend the syntax of
de�nitions with a new location constructor:

D
def

= : : : j a
�
D0 : P

�

where D0 gathers all the de�nitions of the location that are visible outside the location,
where P is the running code of the location, and where a is a de�ned name that
uniquely identi�es the location. Informally, the de�nition a [D0 : P] corresponds to
the local solution fD0g `'a fPg. (As usual, we use explicit singleton multisets to
stress that there is no other components in the local solution.)

We de�ne the sublocation relation as: `' is a sublocation of ` when is a pre�x
of '. In the following, drchams are multisets of labeled solutions whose labels ' are
all distinct, pre�x-closed, and uniquely identi�ed by their rightmost location name, if
any. These conditions ensures that solutions ordered by the sublocation relation form
a tree.

This association is represented by new structural rules as follows. In the heating
direction, the semantics of this new de�nition constructor is to create a sublocation of
the current location that initially contains a single de�nition D and a single running
process P . We have a new structural rule:

Str-loc a [D : P] `'
 `' k fDg `'a fPg (a frozen)

where the side condition �a frozen� requires that there is no solution of the form ` a�
in the implicit chemical context for any ; � in L�. The de�nition D can contain frozen
sublocation de�nitions. The side condition guarantees that D syntactically captures
the whole subtree of sublocations in location a.

In the cooling direction, Str-loc has thus a freezing e�ect on location a and all
its sublocations, which will be useful later for controlling atomicity during migration.
Note that the rule Str-def and its side condition now also apply to de�ned location
names, which guarantees in the heating direction that newly-de�ned locations are
given fresh names, and in the cooling direction that locations that are folded back into
de�ning processes are entirely frozen.

In well-formed drchams, we have required that all reaction rules de�ning one
port name belong to a single local solution, and that all local solutions have distinct
labels. With the addition of frozen locations in solution, we also require that frozen
locations in solution all have distinct location names that do not appear in the labels
of local solutions. We constrain the syntax of de�nitions accordingly: in a well-formed
de�nition, for all conjunctions D ^ D0, we require that dv[D]\dv[D0] contain only port
names that are not de�ned in a sublocation of D or D0. For instance, the de�nitions
a [T : 0] ^ a [T : 0] and a [xhi . P ^ b [xhi .Q : 0] : 0] are ruled out.

As a �rst example of nested locations, we describe a series of structural rearrange-
ments that enable some actual reduction steps:

7.1. COMPUTING WITH LOCATIONS 229

` def c
�
xhui .Q ^ a [Da : Pa] : Pc

�
in yhc; xi j xhai

Str-def
* c

�
xhui .Q ^ a [Da : Pa] : Pc

�
` yhc; xi j xhai

Str-loc
* xhui .Q ^ a [Da : Pa] `c Pc ` yhc; xi j xhai

Str-def,join
** xhui .Q; a [Da : Pa] `c Pc ` yhc; xi; xhai

Str-loc
* Da `ca Pa xhui .Q `c Pc ` yhc; xi; xhai

Comm
! Da `ca Pa xhui .Q `c Pc; xhai ` yhc; xi

Red
! Da `ca Pa xhui .Q `c Pc; Qf

a=ug ` yhc; xi

+� ` def c
�
xhui .Q : Pc jdef a [Da : Pa] in Qf

a=ug
�
in yhc; xi

(where we assume that a does not occur in Pc or Q.) From this example, it should be
clear that it is more convenient to work on a location structure that is fully diluted,
at least for the reduction rules we have seen so far. Technically, all reductions occur
on fully-diluted terms�except for the joins of messages that are assembled by the
cooling rule Str-join�and to each distributed solution we can associate a unique
fully-diluted solution up to the renaming of de�ned names, as in Remarks 2.1 and 5.4.

7.1.4 Moving locations

Now that the bookkeeping of the location tree has been relegated to structural rear-
rangement, we can naturally express migration as relocation of branches in the location
tree by using the frozen location de�nition a [D : P].

We extend the syntax of processes with a new primitive for migration:

P
def

= : : : j gohb; �i

along with a new reduction rule that operates on two chemical solutions:

Go a [D : P j gohb; �i] `' k ` b �! `' k a [D : P j�hi] ` b

Informally, the location a moves from its current position 'a in the tree to a new
position ba just under the location name b given as argument. The target solution
` b is identi�ed by its relative name b. Once a arrives, the continuation �hi is released,
and typically triggers further local computations. In case the rule Str-loc has been
used beforehand to cool down location a into a de�nition, its side condition (a frozen)
forces all the sublocations of a to migrate at the same time, as a whole. As we shall see,
this su�ces to rule out spurious migration from a location to one of its sublocations.

In the whole chapter, we use the same notation for port names and for primitives
like goh�; �i. We extend the synchronous call convention of Section 3.4 accordingly for
go(�). Notice, however, that primitives are not �rst-class names: they cannot be sent
as values in messages, and their e�ect depends on the enclosing location.

7.1.5 Examples of agent-based protocols

We give a series of examples that involve migratory agents.

230 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

Anonymous locations The syntax of the distributed join-calculus represents loca-
tions as de�nitions because locations bind names; however, some locations can also be
represented as processes. In particular, in numerous cases the name of the location
does not appear within the scope of the location�we call such locations anonymous
locations�and in such cases a lighter syntax is preferable. In the following, we use
the syntactic sugar

fPg
def

= def b [T : P] in 0

(for some b 2 L n fv[P]) to represent a process P in its own anonymous location.

Objective moves versus subjective moves In [46] Cardelli and Gordon distin-
guish two kinds of process migration; objective moves remotely spawn some explicit
process at some other location, while subjective moves change the localization of the
enclosing computation, including other processes running in parallel. Our migration
primitive is very subjective, as it encompasses the whole current location that executes
a go primitive�including any process, de�nition and sublocation.

In a setting in which new locations can be freely created, subjective moves are
more expressive than objective move, because it is possible to create a new, wrapping
location that encodes a subjective move into an objective move; the converse encoding
may be much harder. In the distributed join-calculus we de�ne a derived objective
move operator named �Spawn� as follows: we let

Spawn(a; P)
def

= fgohai;Pg

and we can compose chemical steps to obtain a derived reduction rule

Spawn `' Spawn(a; P) k ` a
Def
*

Loc
*

Go
! � `' k ` a fPg

(Where the expansion relation � de�ned in Section 4.7.3 abstracts over the deter-
ministic reduction that triggers the implicit continuation and the garbage-collection
of the continuation's de�nition.) The side condition on rule Str-loc holds because
the new location name does not appear anywhere else after applying rule Str-def.
In Section 7.3, we will provide su�cient conditions on P so that fPg and P are
equivalent.

While other primitives have been proposed for achieving agent migration, the go
primitive and its use to de�ne spawn correspond to our idea of a distributed imple-
mentation: while it is possible�and even cheap�to create locally a new sublocation,
the migration of the new sublocation to another location must be a computation step,
since for instance it is hard to guarantee that a process atomically spawns two processes
on two di�erent machines.

�Ping� As a direct application of the spawn construct, we can de�ne a ping construct
that performs a round trip between the current location and another location given as
an argument, which may be useful to test the status of the latter location. The example
is similar to the RPC example, except that the name of the location is provided instead
of the name of a port in this location. We use the rule

ping(a) . Spawn(a; reply to ping)

7.1. COMPUTING WITH LOCATIONS 231

Applets A basic pattern of network-based programming is to download a piece of
code from a code server à la Java for the computation to take place on the local site.
(In Java, this pattern does not change the model of distributed computation, which
relies on other, traditional mechanisms such as sockets to the server or remote method
invocation. In principle, however, the code can be generated on demand, instead of
being statically compiled before the computation begins.)

In our example, we consider an applet whose interface consist of a single syn-
chronous name f. Further, we write the code of the applet as an expression E that
evaluates to f (cf. Section 3.4). E typically contains a few de�nitions; for instance, we
can let E = def f(y) . print(x+ 1); reply to f in f.

The applet function is wrapped within a new location whenever a client asks for its
local copy of the function. Such requests for downloads are sent to the name loader,
which can be de�ned as follows:

Dapplet
def

= loader(a) . def b [T : go(a); reply E to loader] in 0

where b is a fresh name, or simply, with our new abbreviations,

Dapplet
def

= loader(a) . Spawn(a; reply E to loader)

The applet can be downloaded, then locally used on a client machine c; the applet
server machine s is left unchanged. For instance, with the applet E de�ned above, we
have

Dapplet `s k `c let f = loader(c) in f(1); f(2); : : :
!�� Dapplet `s k `c def b [f(y) . print(x+ 1); reply to f : 0] in f(1); f(2); : : :

(where the equivalence � discards the de�nition of an implicit continuation.)
Assuming that the applet code E does not include another go primitive, the applet

location b remains attached to the client location c and the program behaves as if a
fresh copy of the applet had been de�ned at location c. Later on, we will show that
for all processes Q such that b 62 fv[Q] we have

def b [f(y) . print(x+ 1); reply to f : 0] in Q

� def f(y) . print(x+ 1); reply to f in Q

The client-agent-server architecture (CASA) The opposite of retrieving code
is sending computation to a remote server. The client de�nes the request; the request
goes to the server, runs there, and sends the result back to the client. This can be
expressed on the client side by the process

def f(x; s) . fgo(s); reply : : : to fg in : : : f(3; server) : : :

In the code above, f is a synchronous name, hence the remote computation returns a
tuple of values. In general, however, the result might contain arbitrary data allocated
during the computation, or even active data (processes with internal state). In the
generic CASA, the server cannot just return a pointer to the data; it must also move
the data and the code back to the client location. To illustrate this, we consider an

232 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

agent that allocates and uses a reference cell; new_cell is an applet server that creates
a fresh cell and returns its two methods set for updates and get for access.

def c[f(x; s).
def a[T : go(s);

let set; get = new_cell(a)
in set(computation(x)); go(c); reply get to f]

in : : : : 0]
in : : : f(3; server) : : :

The reference cell is allocated within the agent at location a, during its stay on the
server; it can be modi�ed as part of the agent's computation. When this computation
terminates, the agent brings back the data structure to the client by using the go(c)
primitive call.

This pattern is most useful when the client needs to build its result state after
questioning several servers. An equivalent, RPC-based program would force a central-
ized communication between the client and each server and a pre-allocation of the data
structures, while the CASA protocol enables us to send an agent that has recorded all
the operations it needs to perform and all the sites it needs to visit.

Located data structure and iteration A located data structure is a piece of data
along with its location; the piece of data is represented by its abstract interface,
typically a set of access and update methods. The location is used as an anchor
to write agents that �follow the data�, typically migrating towards the data before
accessing or mutating it. For instance, in the case the data is protected by a lock, this
guarantees the absence of deadlocks due to the failure of a remote machine.

In the following example, we consider an uniform data structure whose interface
consists of a single �iterator� functional that traverses the data structure and iterates
a given function on each component of the structure.

The basic structure simply is an array or a list at a given location, with a local
iterator such as list:iter or array:iter in our implementation. More interestingly,
we can write a generic merge function that assembles two located data structures into
a single larger one:

merge(a1; f1; a2; f2) .
def a[f(g) . go(a1); f1(g); go(a2); f2(g); reply to f : 0] in
reply a; f to merge

The new location a represents the compound data structure, but it does not contains
the locations of its components. On the contrary, it becomes a sublocation of each of
its subcomponents in turn, carrying with it the location of the agent that accesses the
distributed data structure.

On the caller's side of the iterator, we illustrate the traversal of such data structures
by a mobile agent that collects statistics on the distributed data structure.

def statistics(there ;map) .8<
:

statehn; s; s2i j item(x) . statehn+ 1; s+ x; s2 + x � xi jreply to item
^ statehn; s; s2i j donehi .reply n; s; s2 to statistics in
gohtherei; (stateh0; 0; 0i jmap(item); done())

9=
;

7.1. COMPUTING WITH LOCATIONS 233

In that case, the result consists only of a tuple of values; for other agents, we may
also consider moving back to the original location after collecting all statistical data.

7.1.6 Circular migration

It is possible to write locations that attempt to migrate to one of their sublocation.
We name such attempts �circular migrations�. For instance, the process

R
def

= def a [b [T : 0] : go(b);P] in 0

attempts to move the location a inside its sublocation b, which naively would create
a cycle between a and b detached from the location tree. Another, simpler example is
def a [T : go(a);P] in 0.

Chemically, we use the same conventions for representing contexts as in the de�-
nition of the drcham, and we say that a process (or a chemical solution) attempts a
circular migration when it is structurally equivalent to a drcham in which one of the
two following predicates holds:

Circle-0 `'a goha; �i
Circle `'a gohb; �i k `' b

Intuitively, we consider attempts to perform circular migrations as programming
errors. In the implementation, circularities can only be created locally, so it is straight-
forward to add an occur-check and to report circular migrations as run-time errors.
Also, there are simple disciplines of programming with migrations that rule out the
possibility of circular migrations, e.g., migrations of anonymous locations cannot cre-
ate cycles, and more generally if there is a static ordering of location variables such
that migration always occur towards a �larger� location then cycles are excluded. Such
disciplines may be enforced by a static analysis.

Formally, the distributed rcham blocks circular migrations, because it is not pos-
sible to use the cooling structural rule Str-loc to meet the requirements of rule Go.
Still, this kind of migration is troublesome, because it may introduce non-determinacy
in series of migrations, which are otherwise con�uent. For instance, for all processes
P and Q in the join-calculus, for all fresh location names a; b in L, we easily establish
the equation

def a [T : go(b);P] ^ b [T : go(a);Q] in 0 � P �Q

because the �rst migration triggers either P or Q and blocks the other one.
In the absence of potential circular migrations (and later, of failures), we obtain

the simple property that we mentioned at the beginning of this section: all migrations
that occur in parallel but in di�erent locations are con�uent, hence the �nal location
tree does not depend on their interleaving.

7.1.7 Erasing locality information

So far, we have explained how to keep track of locality information during a distributed
run of a program, but the location of a particular resource did not a�ect the result of
the computation. Later, we give some observational semantics to locality by modeling

234 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

partial failure of the computation. In the absence of failure, though, we can remove
the location boundaries.

To this end, we explain how locality information can be erased, and state a simple
theorem that expresses this notion of network transparency.

For de�nitions, we erase the location boundaries. We collect de�nitions and pro-
cesses running in locations using two distinct translations [[�]]d and [[�]]p:

[[J .P]]d def

= J . [[P]]

[[D ^ D0]]d def

= [[D]]d ^ [[D0]]d

[[T]]d def

= T

[[a [D : P]]]d def

= ahi . 0 ^ [[D]]d

[[J . P]]p def

= 0

[[D ^ D0]]p def

= [[D]]p j [[D0]]p

[[T]]p def

= 0

[[a [D : P]]]p def

= [[P]]

For processes, we simply erase the migration primitives, and immediately trigger
their continuation.

[[goha; �i]] def

= �hi

[[def D in P]] def

= def [[D]]d in [[D]]p j [[P]]

Other cases are omitted; they simply propagate the encoding. The dummy new rule
ahi = 0 maintains the same scope for a as before. Alternatively, we could entirely
remove this binder and all parts of messages that convey location names in a type-
directed translation, at least in a monomorphic calculus.

Formally, we let the failure-free distributed join-calculus be the fragment of the
(full) distributed join-calculus de�ned in Figures 7.1 and 7.2 that do not contain the
forthcoming constructs for failures (halt , fail , and
). In this failure-free fragment, we
let �d be the largest barbed bisimulation that is a congruence for all evaluation con-
texts of the join-calculus�thus excluding contexts that create or manipulate locations.
In the join-calculus � is the barbed congruence of Chapter 4.

Theorem 12 (Location transparency) Let P and Q be two processes in the failure-
free distributed calculus such that

1. P and Q never attempt circular migrations in any join-calculus context;

2. (fv[P] [fv[Q]) \ L = ;

Then the erasing translation is fully abstract: P �d Q i� [[P]] � [[Q]].

The two conditions of the theorem guarantee that every migration succeeds, no
matter of the context. Without condition 1 some circular migrations may cause dead-
locks; without condition 2 migrations that takes a free name as target location would
be deadlocked.

7.1. COMPUTING WITH LOCATIONS 235

Proof: The translation [[�]] maps only distributed processes to plain processes, but
naturally induces a translation from drchams to rchams that is also denoted [[�]],
and that is used for establishing the bisimulation properties by a case analysis on
chemical reductions that operate on diluted solutions.

Structural steps before and after the translation are in simple correspondence:
the Str-loc steps are deleted; all other steps in distributed solutions yield equivalent
steps in the translated solution, possibly after �-conversion on location names. Con-
versely, additional folding steps are available in the translation but they do not lead
to additional reduction steps.

We have the following operational correspondence properties for all distributed

solution S. If S Comm! S 0 or S Go! S 0, then [[S]] = [[S 0]]. If S Red! S 0, then [[S]] !
[[S 0]]. Conversely, if [[S]] ! T , then for some distributed solution S 0 we have that

S
�

 [

Comm
! [

Go
!
��

Red
! S 0 with [[S 0]] = T .

In particular, we obtain the simple correspondence between the barbs before and

after the translation: [[P]] #x i� P
�
Comm
! [

Go
!
��
#x .

� P �d Q implies [[P]] � [[Q]]. Let R be the relation that contains all translations
[[S]]; [[T]] of equivalent fully-diluted distributed solutions S �d T . We prove that
R is a barbed bisimulation and a congruence in the join-calculus, up to structural
rearrangement.

R respects the strong barbs in the join-calculus.

We assume that [[S]] R [[T]], and check that each Red step [[S]] ! [[S 0]] can be
simulated from [[T]]. To this end, we apply the operational correspondence on
reductions above, �rst from the translation to the distributed calculus to obtain
a series of arbitrary reductions, then from the distributed calculus to the plain
join-calculus to discard all non-Red steps.

All contexts of the plain join-calculus are left unchanged by the translation, and
their applications preserve the two conditions on P and Q in the lemma, hence
we obtain the congruence property of R from te congruence property of �d in
the distributed calculus.

� [[P]] � [[Q]] implies P �d Q. Let R be the relation that contains all distributed
solutions S;T whose translations are equivalent ([[S]] � [[T]]). We prove that
R is a barbed bisimulation in the distributed calculus and a congruence for all
join-calculus contexts.

Let us assume that S R T . If S #x , then [[S]] #x , by hypothesis [[T]] !�#x , and
by operational correspondence T !�#x .

R is a weak bisimulation property: Comm and Go steps are simulated by the
absence of reduction. Other steps are simulated by applying the two operational
correspondences above.

Finally, the encoding is compositional, hence if P R Q and C[�] meets the
restrictions on contexts, then [[C[P]]] = [[C]][[[P]]] � [[C]][[[Q]]] = [[C[Q]]], thus
C[P] R C[Q]. �

236 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

7.2 Failure and recovery

In an asynchronous calculus, the routing of messages is invisible�it is just another
layer of bu�ering [139]�hence the locality information is purely descriptive as soon
as we adopt implicit message routing.

Indeed, Theorem 12 states that locations have little semantic importance in the
distributed join-calculus, as long as there is no failures or ciruclar migrations.

As noted by Amadio in [17] for a variant of the �-calculus, a simple model of failure
su�ces to re�ne the semantics and make it very sensitive to locality information.

In a completely reliable (or completely unreliable) setting, localization is not very
important; while it may dramatically a�ect the overall performance, the asynchronous
semantics would be the same than for the non-distributed calculus. All the prob-
lems come from partial failures, as we still expect results from the surviving parts of
the system. As a result, we consider that failures are essential to model distributed
systems.

Modeling failures yields some observational meaning to distributed computation
formalism, because the physical failures are imposed from the outside, and tend to
reveal many details about the computation. It turns out that the resulting equivalences
are very discriminative, as already suggested in previous treatment of (explicit) locality
information for labeled semantics, in a CCS setting [40, 41, 47]

In this section we present our failure model, we introduce two primitives for failure
management, we show their use in examples, and �nally we discuss the choice of our
failure model. Equivalence properties in the presence of failures are treated in the
next section.

7.2.1 The fail-stop model

What does failure mean in a distributed computation? There are numerous answers
that describe a large variety of situations. For instance, the �Byzantine� model of
failures makes almost no assumption on the behavior of failed machines, which may
emit spurious messages. This is the notion of failure found in works on security, where
it is assumed that the failed machine�renamed the attacker�may attempt a large
variety of attacks to confuse the correct parts of the computation [2].

In this work, we make simplifying assumptions on failures. We adopt the �fail-stop�
model, where every machine works correctly until failure, then becomes permanently
inert�in practice, when a machine fails, then restarts, it may re-enter the distributed
computation only under a new logical identity. This assumption is reasonably easy to
implement for a network of friendly machines that may crash from time to time.

In order to trigger error recovery, we also assume that all failures can be reliably
detected by all other machines. Without additional hypotheses, it is not possible to
guarantee that all failed machines be detected in a purely asynchronous setting. In
theory, though, it is possible to achieve a similar e�ect with slightly more demanding
hypotheses on unreliable detectors [48]. In practice, also, at least some de�nite failure
information is available�for instance when a machine restarts after a crash, it can
tell for sure that the previous runtime has stopped�and more e�cient algorithms can
take advantage of timed properties to implement failure detection. The speci�cation
and the study of such algorithms is beyond the scope of this dissertation.

7.2. FAILURE AND RECOVERY 237

P ::= processes
xhv1; : : : ; vni message

j def D in P local de�nition
j P jQ parallel composition
j 0 null process
j goha; �i migration of current location
j halthi termination of current location
j failha; �i detection of location failure

D ::= de�nitions
J . P reaction rule

j D ^ D0 conjunction of de�nitions
j T null de�nition
j a [D : P] sub-location
j
a [D : P] dead sub-location

J ::= join-pattern
xhy1; : : : ; yni message pattern

j J jJ 0 join of patterns

Figure 7.1: Syntax for the distributed-join-calculus

There are several ways to de�ne the semantics of failures and failure recovery. We
present our proposal, which we call the �asynchronous strong� model of failures, then
we relate it to other possibilities.

7.2.2 Representing failures

We complete the presentation of the distributed re�exive chemical machine, in the
presence of failure and failure detection. The syntax, the scopes, and the full chemical
machinery are described in Figures 7.1, 7.2 and 7.3, respectively.

We supplement the location tree with partial failure information. To this end, we
use a special marker
 62 L [N to tag failed locations. For every a 2 L, "a denotes
either a or
a, and '; denote �nite strings of such "a's. In the drcham,
 appears
in the location string ' of failed locations `'. We say that ' is dead if it contains
one or several markers
, and alive otherwise; the positions of the markers record
where the failures were triggered. We extend our well-formed condition accordingly,
and require that every distributed solution be consistently marked�for every location
name a, either all or none of the occurrences of a in labels are
-marked. In the
syntax of de�nitions, failed locations are frozen as marked de�nitions
a [D : P]; thus
the general shape of a location de�nition now is "a [D : P].

In accordance to our interpretation of structural rearrangement as �computation
free� chemical steps, our structural rules should not depend on the live/failed status
of locations and local solutions, and should remain entirely reversible. Hence, the
structural rules in Figure 7.3 are almost unchanged from Chapter 2 and Section 7.1,
except for the obvious generalization of Str-loc to the failed location syntax. In

238 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

For processes:

fv[xhv1; : : : ; vni]
def

= fx; v1; : : : ; vng

fv[def D in P]
def

= (fv[P] [fv[D]) n dv[D]

fv[P jP 0]
def

= fv[P] [fv[P 0]

fv[0]
def

= ;

fv[goha; �i]
def

= fa; �g

fv[halthi]
def

= ;

fv[failha; �i]
def

= fa; �g

For de�nitions:

fv[J . P]
def

= dv[J] [(fv[P] n rv[J])

fv[D ^ D0]
def

= fv[D] [fv[D0]

fv[T]
def

= ;

fv["a [D : P]]
def

= fag [fv[D] [fv[P]

dv[J . P]
def

= dv[J]

dv[D ^ D0]
def

= dv[D] [dv[D0]

dv[T]
def

= ;

dv["a [D : P]]
def

= fag] dv[D]

dv[a [D : P]]
def

= fag] dv[D]

For join patterns:

dv[xhy1; : : : ; yni]
def

= fxg

rv[xhy1; : : : ; yni]
def

= fy1; : : : ; yng

dv[J jJ 0]
def

= dv[J]] dv[J 0]

rv[J jJ 0]
def

= rv[J]] rv[J 0]

Well formed conditions for every de�nitions D:

- each location name is de�ned at most once
- each channel name is de�ned by join-patterns that all

appear in the same location (cf. 2.2,7.1.3)

Figure 7.2: Scopes for the distributed-join-calculus

7.2. FAILURE AND RECOVERY 239

Str-join ` P1 jP2
 ` P1; P2
Str-null ` 0
 `
Str-and D1 ^ D2 `
 D1;D2 `
Str-nodef T `
 `
Str-def ` def D in P
 D�dv ` P�dv

Str-loc "a [D : P] `'
 `' k fDg `'"a fPg

Red J .P `' J�rv �! J . P `' P�rv

Comm `' xhevi k J . P ` �! `' k J . P ` xhevi
Go a [D : P j gohb; �i] `' k ` "b �! `' k a [D : P j �hi] ` "b
Halt a [D : P j halthi] `' �!
a [D : P] `'
Detect `' failha; �i k ` "a �! `' �hi k ` "a

side conditions (S is the distributed solution on the left-hand-side)

Str-def �dv instantiates variables in dv[D] to distinct, fresh
names: Dom(�dv) \ fv[S] = ;.

Str-loc a is frozen: the name a does not occur in the indices
 of any local solution of S.

Red �rv substitutes values for the received variables rv[J].
Comm x 2 dv[J].
Detect a is dead: the string "a contains a marker
.
Red, Comm, Go

Halt, Detect

o
' is alive: the string ' contains no marker
.

Figure 7.3: The distributed re�exive chemical machine

240 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

particular, the scope of the names de�ned in a given location is independent of its
liveness status.

Naturally, reduction steps are strongly a�ected by failures. We model the failure
of a location by prohibiting reactions inside this location and any of its sublocations.
More precisely, in Figure 7.3 we have added a side condition to Red, Comm, and Go,
that prevents these rules from taking messages (or handling goh�; �i primitives) in a
solution with a dead label. Note, however, that we do not prevent messages or even
locations from moving to a failed location, as such deadly moves are unavoidable in
an asynchronous distributed setting.

7.2.3 Primitives for failure and recovery

We introduce two new primitives halthi and failh�; �i, with two speci�c chemical reduc-
tions rules, as de�ned in �gure 7.3.

The process halthi at location a can make this location permanently inert (rule
Halt in Figure 7.3), while the process failha; �i in a live location triggers �hi after
it detects that a has failed, i.e. that a or one of its parent locations has halted (rule
Detect). Note that the (' alive) side condition in rules Go and Comm su�ces to
prevent any output from a dead location; it is also attached to the rules Red, Halt,
and Detect only for uniformity.

A simple example of a fallible location is fhalthi jPg, which describes an anony-
mous location that may fail at any time, and that executes the process P until failure
occurs. We have the simple equation

fhalthi jPg
Halt
�! � 0

(Where � is the strong barbed congruence for all evaluation contexts.)
We can now precisely relate failure to the migration to a failed location. If C[�] is

a context that binds a to a dead location, and in the absence of circular migrations,
we have the strong bisimulation

C[goha; �i] � C[halthi]

That is, moving to a dead location or halting have the same visible e�ect, namely to
make the moving branch of the location tree permanently inert.

The halthi process can be triggered only from within the halting location, which
statically identi�es the sources of failure in the location tree. Nonetheless, it is pos-
sible to provide a relay that enables external processes to trigger the failure by an
asynchronous message. For instance, halthi can be used to encode a �kill� operation
that can terminate the code of the applet example of Section 7.1:

def sandbox [killhi . halthi : start_timer hkill ; 5i] in
let f = loader(sandbox) in f(3); killhi

The suspicious applet user creates a sublocation sandbox that hosts the applet, uses
the applet, then discards the applet by sending the killhi message. In parallel, it sends
a message on start_timer to start monitoring the applet execution and eventually

7.2. FAILURE AND RECOVERY 241

terminates it if it takes too long. A fail guard would be needed to guarantee that the
applet is halted. We can wrap the resulting safe protocol in a single de�nition

run(loader; n) . def sandbox [killhi . halthi : 0] in
let f = loader(sandbox) in
let r = f(n) in
killhi j fail(sandbox); reply r to run

More generally, for many patterns of site failure, it is possible to build a distributed
join-calculus context that models the pattern. For instance, we may use internal
choice to specify a distributed setting where a single arbitrary machine may fail non-
deterministically, and use this setting to validate protocols that should resist only this
particular class of failures.

7.2.4 Fault-tolerant protocols

Quite often, agent-based mobility turns out to be useful for writing programs that
can resist the partial failure of some machines. Informally, migrations allow one to
create larger, simpler units of failures; for instance, two machines that need to interact
through a complex protocol may describe their part of the protocol as agents, then
agree to run the protocol on a given machine. There, the two agents can interact with-
out special care for partial failures, as long as these two locations do not communicate
with the outside. If the machine fails, then the two locations are stopped at the same
time, and the whole run of the protocol is invisible from the outside. Independently,
each machine that sends its agent may monitor the failure of that agent.

We describe the use of the fail primitive, which provides a natural guard for error
recovery. This failure-detection primitive gives the certainty of failure.

In some programs, this information is necessary for safety, or most useful for e�-
ciency, because some protocols can then be cancelled and restarted. When detected,
an asynchronous failure provides some useful information:

1. No message can be caused from further messages sent to the failed location, even
indirectly.

2. All present and future live fail guards on that failure will be triggered.

Conversely, a message can still arrive from a location that is known to have failed,
provided that this message was routed by a Comm step before the failure.

In some other programs, this information is less relevant: a classical model of
silent crashes with timeout su�ces, and is much easier to implement. Indeed, for
RPC-like interactions without side e�ects, a simpler timeout may be used instead of
a fail check. Even if the same RPC is issued several times, the caller can �lter the
answers, delivering the �rst one and discarding other late answers.

As de�ned, failure detection is di�cult to implement e�ciently: the latter property
above provides in particular a reliable multicast primitive with guaranteed atomicity�
either none or all fail guards on a given name are eventually triggered. In the discus-
sion, we provide another de�nition that is simpler to implement. Our implementation
does not currently support the full model of failure detection. A practical approach
would provide failure detection only for some machines, and would centralize some of

242 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

the failure information on presumably robust machines, or achieve the same robustness
properties by using external protocols.

We illustrate these points on two examples, a simple extension of the CASA pro-
tocol, and a large distributed computation.

Building a robust CASA protocol We can make the CASA more robust by
testing against the possible failure of the server location s, in which case a new agent
is sent to another server s0. The client code now is:

f(x; s) .def a[: : :] in
�
fail(a); reply f(x; s0) to f

�
Let us consider the impact of a failure on s during a call to f:

� If the fail guard is triggered, then the server s must have failed while hosting
agent a. As the �rst agent cannot return to the server, a new agent is created
and sent to another server s0.

� Otherwise, the agent eventually migrates back to the client location, then re-
turns. At that point, the agent can fail only if the client itself fails, hence the
fail guard in the client is permanently disabled.

Anyway, we are assured that there is at most one agent at large, and that its action is
only completed once (which might be quite important, e.g., if the action is �get a plane
ticket�). This would still be true if the client did not know the server location, and
the agent went through several intermediate sites before reaching the server location.
Such properties would be hard to obtain with timeouts only.

Distributed computation on fallible machines Our �nal example models a sim-
ple CPU-intensive computation that can be partitioned into a series of independent
jobs, in a data-parallel manner. These chunks can then be distributed over a net-
work of machines willing to participate to the computation�the �clients�. The client
machines have no prior knowledge of the code to run, and they have poor reliability,
so the termination of the computation should not be a�ected by the failure of some
clients. The typical client can simply be written

let join = name_server:lookup(�party�) in
def worker [T : 0] in joinhworker i

(Where name_server:lookup(�party�) is a primitive call to the name-server, used to
obtain the name join from a remote machine.) This code would be executed on a
number of fallible machines, i.e., in contexts of the form fhalthi j[�]g.

The supervision of the computation is kept central, presumably on a reliable ma-
chine. Its code is written

7.2. FAILURE AND RECOVERY 243

def joinhtherei .
f go(there);

def f(i) . reply E to f in
enroll(f; there)g

^ jobhii j enroll hf; therei .
def oncehi j donehsi . updatehsi j enrollhf; therei
^ oncehi j failedhi . jobhii in
oncehi j donehf(i)i j fail(there); failed hi

^ statushn; si j updatehdsi .
let s0 = merge(s; ds) in
if n > 0 then statushn� 1; s0i else concludehsi

in

name_server :register h�party� ; joini
j statushchunks� 1; 0i
j for i = 0 to chunks� 1 do job(i) done

and the following names parameterize the computation:

chunks : Int describes the number of chunks that must be processed to complete
the computation;

merge : ha; ai!hai is an associative�commutative function that describes how partial
results can be combined;

f : hInti!hai represents some arbitrary computation that evaluates a given chunk
and (presumably) does not perform any side e�ect; and

conclude : hai makes the �nal result available to the context.

For each location name there received on join, a fresh location is created that contains
the code of the computation. This location migrates with its code to there , registers
as an active participant using the enroll message, then awaits for chunks to compute
on f.

The remaining chunks to be processed are represented as messages jobhii; they
are dynamically attributed to the available participants by the join synchronization
jobhii j enrollhf; therei. Whenever a chunk has been delegated to a participant, the
supervisor waits for two events: either the partial computation completes and sends
its result back�then this result is asynchronously merged to the global result while
the participant enrolls for another chunk�or the host machine fails�then the message
jobhii is re-issued. These two events are made mutually exclusive by the single message
oncehi.

The �nal part of the supervisor code simply aggregates the results as they arrive,
using a counter to detect the termination of the global computation.

Provided that the central machine does not fail and that, from time to time, a
machine remains alive for long enough to complete a chunk of the computation, it

244 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

should be easy to establish that the computation eventually sends the �nal result on
conclude.

Using the same model as for the lossy medium of Section 4.3, the supervision code
in parallel with a process P that replicates fallible client machines is bisimular to the
completed computation in parallel with the same process P , because at any point
there is a sequence of reductions that unfold new clients, make them complete their
chunk, and ship the results to the supervisor.

7.2.5 Other models for failure

We now relate our model of partial failure and failure detection�which we name the
asynchronous strong model�to a few alternatives. For each alternative, we sketch a
chemical semantics, and we discuss measures for failure recovery.

Loss of messages and timeouts The most conservative model of failure, in our
message-passing setting, is that when a location fails, some messages to, at, or from
the location are lost. This is for instance the usual assumption for low-level communi-
cation protocols such as IP or UDP, and also for object-oriented distributed systems.
Unfortunately, this provides little support for developing reliable programs, as for
nearly every message the application programmer must �gure out what to do if the
message is lost. Practical solutions usually involve the replication of messages, and an
explicit bookkeeping of acknowledgments.

In our setting, it is straightforward to model the loss of messages in transit. Along
with the rule Comm, we would add a similar rule Forget that discards the mes-
sage instead of forwarding it. According to the details of failures, this rule would be
enabled when either the emitting machine or the receiving machine have failed, thus
distinguishing between reliable and unreliable communication. As expected, unreli-
able communication creates some non-determinism for the routing of each message,
and even simple protocols become complicated to study. Technically, it also seems that
abstract fairness is inadequate for these failures, as it guarantees that replicated mes-
sages on failed machine eventually cross the network (cf. Section 4.10), which suggests
of coarser equivalences.

Unfortunately, the detection of such failures is not very informative. It can be used
to make another attempt, with no guarantees about the previous, dubious one. It can
also re�ect �ner, non-asynchronous information that is present in the implementation,
such as timeouts with good heuristics, and lead to more e�cient programs.

Synchronous failure Going in the other direction, the synchronous model of failures
is much simpler to deal with. When a location fails in this model, all the messages that
the location emitted and that have not been received yet are immediately discarded
on every machine.

In the distributed join-calculus, synchronous failures can be modeled by merging
the two rules Comm and Red into a single, global rule Global-red that consumes
in one step all the messages in the join-pattern, directly from their emitting locations.
Hence, messages emitted in one location remain in this location until they are con-
sumed; routing and synchronization are performed all at once, which explain the name
of the model.

7.2. FAILURE AND RECOVERY 245

Assuming that all messages from a failed agent are discarded makes programming
much easier. Unfortunately this strong model is not compatible theComm rule and our
asynchronous, distributed setting. It would require that the system track and delete
all messages issued by a failing location, which cannot be e�ciently implemented on
top of an asynchronous network.

Independently of the implementation issue, this choice of a synchronous model of
failures for an asynchronous calculus is awkward, because the e�ect of a synchronous
failures depends on the structure of the receiving de�nitions, which invalidates many
properties of de�nitions (cf. Section 6.3). For instance, even relays on reliable machines
could then be detected.

Nevertheless, the asynchronous detection of such failures would provide us more
information about what cannot happen anymore than in our asynchronous model, and
would thus lead to easier error recovery. Let us consider the process

P0
def

= def xhi j yhi . testhi ^ a [T : halthi j xhi] in fail(a); yhi

The message xhi is available only before the failure, while the message yhi is available
only after the failure, hence the join synchronization is impossible, and the message
testhi cannot be emitted. In the synchronous model, we would thus obtain P0 � 0. In
the asynchronous model, however, the message xhi can be routed before the failure,
and used after the failure, hence we obtain P0 � 0� testhi.

To illustrate what separates synchronous and asynchronous models of failure, we
describe a global encoding of synchronous communication in our distributed join-cal-
culus. It is possible to recover the synchronous semantics for a given join-pattern as
long as the names of the originating locations are communicated as an extra argument
in every message. After (local) synchronization occurs, if for each received message the
emitting machine answers a ping request, then both messages were emitted on a live
location when the join-synchronization occurred, and the guard can be safely triggered.
On the other hand, if one of the emitting machines fails before all machines answer
the pings, then all other messages must be re-emitted with the same original location
information. For instance, the strong encoding of the rule xhui j yhvi . P would be

xhu; ai j yhv; bi .
def oncehi j x0hi j y0hi . P
^ oncehi j failed hi . xhu; ai j yhv; bi in
oncehi j ping(a);x0hi j ping(b); y0hi j fail(a); failed hi j fail(b); failed hi

Except for the problem of gradual commitment to a particular synchronization, the
encoding accurately implements the synchronous model in the strong asynchronous
model with failure detection.

Besides, (1) the treatment of partial failure could be re�ned to avoid the re-emission
of messages whose originator has failed, and (2) the fail primitives that guard the mes-
sage failed hi could be removed; the resulting variant would provide an accurate encod-
ing of the strong model in the weaker, timeout model, but also introduces divergence
computations, since each synchronization attempt would becomes reversible.

Asynchronous, weak We �nally describe a model that is slightly weaker than the
one of the distributed join-calculus, but closer to our implementation strategy.

246 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

In practice, it is hard to guarantee that a machine has actually stopped, but it is
possible to ignore its subsequent messages. In the asynchronous weak model of failure,
a failed location is a location that cannot be a�ected by a live location. This does not
prevent the failed location sending messages to other machines, which may or may not
discard them. Chemically, this can be modeled by modifying the side conditions on the
rules Comm and Go, so that communication may succeed only towards a live location,
and that migration toward a dead location is replaced with halting. In addition, we
may provide a rule Forget that can discard messages and migrations when they are
issued on a failed machine.

The relation between the strong and weak models of asynchronous failures is in-
triguing. On one hand, the change of model does not preserve bisimulation because the
internal choices are not interleaved with the same visible interactions. For instance,
the process a [T : halthi j xhi j xhi] reduces to
a [T : xhi] in the weak semantics, in a
state where at most one xhi is emitted to the outside, and this partial commitment
cannot be mimicked in the strong asynchronous semantics. Fair testing is also broken
because the abstract fairness requirement would demand that replicated messages in
failed location always be routed to the outside.

On the other hand, the traces are clearly the same. For instance, may testing
coincides in the weak asynchronous model and the strong one, at least for processes
that have no initially-failed locations: strong execution traces are valid weak execution
traces, and conversely weak execution traces can be turned into strong execution traces
by delaying the failures until all the required Comm and Go have been performed.
In particular, we are justi�ed in using the stricter, simpler model in the calculus, but
only implementing the weaker one.

7.3 Proofs for mobile protocols

We lift our hierarchy of equivalences to the distributed join-calculus, and present a
few typical equations and properties in the presence of failures.

The primary purpose of our calculus is to provide a foundation for a core language
that is expressive enough for distributed and mobile programming. But locations with
their primitives can also be used to model fallible distributed environments, as speci�c
contexts within the calculus. As a result, we can use our observational equivalence to
relate precisely the distributed implementations with their speci�cation (i.e. simpler
programs and contexts without failures or distribution). In combination with the proof
methods developed in Chapters 4 and 5, this provide a framework for the design and
the proof of distributed programs under realistic assumptions.

We �rst adapt the de�nitions of contexts (De�nition 4.3) and output barbs to the
distributed calculus.

De�nition 7.3 An evaluation context is a linear context whose hole is not situated
under a join-pattern guard. A live context is an evaluation context whose hole is in a
live location. A process P has a strong barb on x 2 N (written P #x) when we have
P � C[xhi] for some live context C[�] that does not bind x.

In the following, we use the instances of the equivalences de�ned in Chapter 4
obtained for these de�nitions of observation and context, and for the distributed join-
calculus of Section 7.2. We also use the same notations; for instance, the equivalence

7.3. PROOFS FOR MOBILE PROTOCOLS 247

relation � is the barbed congruence de�ned in Section 4.4 applied to distributed
processes and contexts.

Since by de�nition failure can occur only in a named location, the top-level so-
lution ` provides a �safe haven� where pervasive de�nitions, such as encodings of
functions or data structures, may be put�in a distributed implementation, such im-
mutable components can be e�ciently implemented with the same semantics guar-
antees by using replication. This suggests the use of di�erent notions of congruence
properties; for instance, we may distinguish a �static equivalence� that is a congruence
for all but the "a [� : �] constructor, and retain most of the properties of equivalences
in the plain join-calculus, and a �mobile equivalence� that is a congruence for the full
calculus, as studied here.

As suggested in the previous section, contexts that use location constructors and
halt (or go to fallible locations) increase the discriminative power of our equivalences,
because the possibility of performing internal reduction steps disappear in case of
failure, which renders such reductions partially visible. For instance, the relay equation
of the plain calculus is broken when the relay can be put in a fallible location:

xhyi 6� def zhi . yhi in xhzi

These two processes can be separated in the context

C[�]
def

= def xhui . uhi j vhi in fhalt hi j[�]g

because only C[def zhi . yhi in xhzi] may reduce to a state with a barb on v and no
barb on u:

C[def zhi . yhi in xhzi] !!! def xhui . uhi j vhi ^
a [zhi . yhi : zhi] in vhi

7.3.1 A few simplifying equations

The notion of dead location is invariant through reduction; this enables us to discard
the contents of dead locations. We �rst state several �garbage collection� laws which
are useful for simplifying processes when some parts of the computation have failed.

Lemma 7.4 Let C[�] be an evaluation context that binds a to a dead location. Under
the context C[�], we can rewrite terms up to barbed congruence as follows:

1. substitute 0 for all processes in the dead location a;

2. simplify the de�nitions D in the failed location a as in Section 6.3.2, leaving only
empty rules xheui . 0 for every port name x 2 dv[D] and empty locations b [T : 0]
for every sublocation name b 2 dv[D], in the case these names still appear in a
live location.

3. delete any message sent on a name de�ned in the dead location a;

4. substitute �hi for all processes failha; �i;

5. substitute halthi for all processes goha; �i.

248 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

Each of these simpli�cations is easily established by a case analysis on reductions, on
fully-diluted distributed solutions. For instance we have for all processes P , Q, and R

def
a [xhui j yhvi . P : Q] in fzhxi j go(a);Rg j fail(a); (thi j yh5i)

� def
a [xhui . 0 : 0] in fzhxi j halthig j thi

� def xhui . 0 in fzhxi j halthig j thi

Second, some basic laws hold for the goh�; �i, failh�; �i, and halthi primitives, inde-
pendently of the tree structure. For instance, we have for failure detection

fail(a); fail(b);P � fail(b); fail(a);P (7.1)

fail(a); fail(a);P � fail(a);P (7.2)

fail(a);P j fail(a);Q � fail(a); (P jQ) (7.3)

fail(a); ping(a);P � 0 (7.4)

These primitives are strictly static, thus it is immediate to check whether a location
may ever move or halt on its own. Besides, the analysis of the local usage of these
primitives may yield simpli�cations of the location tree. The following results show,
for instance, how to get rid of a location once it has reached its �nal destination; they
can be applied to most of our examples with mobile agents.

Lemma 7.5 Let a; b 2 L. Let D,D0,D00 and P ,P 0,P 00 be respectively de�nitions and
processes in the distributed join-calculus such that all occurrences of the primitives
goh�; �i and halthi in D;D0 and P; P 0 occur only in (strict) sublocations, and such that
dv[D] \ dv[D0] = ;.

1. For all evaluation contexts for de�nitions C[�] such that the �rst process below
is well-formed, we have the barbed congruence

C
h
"a
�
b
�
D ^ D0 : P jP 0

�
^ D00 : P 00

�i
� C

h
"a
�
b [D : P] ^ D0 ^ D00 : P 0 jP 00

�i
2. Let � = fa=bg, C[�] be an evaluation context for de�nitions such that the �rst

process below is well-formed, C 0[�] be the context obtained from C[�] by applying
� from within C[�]. We have

C
h
"a
�
b [D : P] ^ D00 : P 00

�i
� C 0

h
"a
�
D� ^ D00� : P� ^ P 00�

�i
The �rst part of the lemma states that any component within a location that does

not move or fail of its own can be relocated at the enclosing location, up to barbed
congruence. The second part states that, when a location is empty, migrations and
failure-detections using its name b or its parent's name a cannot be distinguished.
The substitution fa=bg makes explicit that a can be used instead of b for migration or
failure-detection. In particular, these equations show that, after a spawn of a plain
join-calculus process, the boundaries of the moving location can be erased up to barbed
congruence.

7.3. PROOFS FOR MOBILE PROTOCOLS 249

Proof: Let R be the relation that contains all pairs of processes (P1; P2) of the �rst
statement of the lemma. We prove that R is a congruence and a barbed bisimulation
up to structural rearrangements

1. The relation R is closed by application of any evaluation context.

2. The strong barbs are the same on both sides of R. In particular, if the message
xhi is in P 0 or D0, then we remark that a and b are either both dead or both
alive. Otherwise, the barb is syntactically the same.

3. To establish the weak bisimulation requirement, we perform a case analysis on
the chemical reduction rule being used. All reductions that involve only the
context are in direct correspondence. Otherwise, let P1 R P2;

Comm Let xheui be the message being routed. In a few speci�c cases, no routing
is required on the other side of R to remain in the relation. This is the
case when (1) x 2 dv[D0] and the message is routed from D00 or P 00 in P1,
or from D or P in P2; (2) x 2 dv[D00] and the message is routed from D0

or P 0 is P1; (3) x 2 dv[D] and the message is routed from D0 or P 0 in P2.
In all other cases the Comm step are in bijection and lead to processes in
R.

Red Let J .R be the rule used for the reduction. By de�nition of R, a and b
have the same liveness status, hence the rules in D0 and P 0 can be used on
both sides of R.
In a few speci�c cases, the reduction uses messages that have not been
routed yet on the other side of R. This is the case when (1) the rule is
in D and uses messages from D0, P 0 in P1; (2) the rule is in D0, and uses
messages from D, P in P1, or from D00, P 00 in P2; (3) the rule is in D00 and
uses messages from D0, P 0 in P2. For all these cases, we have

P2
Red
! P 02 implies P1

Comm
!

�
Red
! P 01 R

0 P 02

(and vice-versa when P2
Red
! P 02). All other reductions are in direct corre-

spondence, and remain in R.

Go By hypothesis, the reduction is not triggered from D;D0 or P; P 0, and a
and b have the same liveness status. When a migrates to another location
(go in P 00) , we remain in the relation for another context C[�]. When a
location migrates to a or b, it is added to D00 or D, respectively, hence in
all cases a Go on the other side leads to a pair of processes in R.

Halt By hypothesis the halting location cannot be b. The same location thus
halts on both sides, and lead to related processes (including the special case
of an halthi in P 00, by replacing "a by
a in P1 and P2.)

Detect Locations in P1 and P2 all have the same status, hence the same fails
may reduce on both sides of R.

The second part of the lemma can be established by a similar case analysis on
each chemical reduction rule. Again, some Comm steps that are necessary before
substitution disappear after substitution. Moreover, the absence of go in P rules out
migration to a that would become circular migrations. �

250 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

7.3.2 Failures and atomicity

We provide a few examples that illustrate how partial failures can reveal non-atomic
steps, and also how locations can be used to recover atomicity.

The distributed join-calculus provides two separate mechanisms for global inter-
action: global communication and agent-based migration. While these mechanisms
are very di�erent in our implementation, global communication would almost be sub-
sumed by agent migration if routing were made explicit: we could use a spawn for each
message, and restrict the rule Comm to messages that are in a location immediately
under the de�ning location.

The following equation states this property by substituting a Go step for a Comm
step for routing the message xhevi. Provided that the name x is de�ned in location a,
we have

fgohai;xhevig � xhevi
Although another Comm step is still needed after the migration to exit the anonymous
location, this step cannot be prevented by any partial failure, as long as the receiving
de�nition remains alive.

For more general processes, however, the explicit �spawn� form gives additional
guarantee about atomicity. for instance

fgohai;Pg jfgohai;Qg 6� fgohai; (P jQ)g

The process on the right is more e�cient, and has simpler properties, because P
and Q cannot fail independently of one another. This suggests a constructive usage
of migration to build atomicity, for instance to ensures that a few related messages
be either all reliably sent or all discarded, and also that objective moves have much
simpler properties than subjective ones; for example, we have the barbed congruence
relation

def a [Da : Pa] ^ D
0 in ffgohai;Pg j halthig jP 0

� def a [Da : Pa j(fPg � 0)] ^ D0 in P 0

no matter of the interaction that occurs later between P and Da; Pa. Of, course, this
would not the case if another process was running in parallel with the halthi.

When a process is executed in a fallible location, messages in parallel composi-
tion are routed independently; unless the messages are local, there is no atomicity in
xhi j yhi and an enclosing failure may cause any or both of the messages to get lost. Let
us investigate the behavior of parallel composition of such messages in more details.
For all sets S of messages, we let PS be the process fhalt hi j

Q
M2SMg.

The bisimulation-based behavior of PS is quite complicated, because there are
many intermediate stages in which some messages have been successfully routed while
the others are still subject to immediate failures. Precisely, for S = fM1; : : : ;Mng, we
have the strong barbed congruence

PS � 0� (M1 jPSnM1
)� � � � � (Mn jPSnMn

)

and by induction we can unfold a synchronization tree with an exponential number of
states that are all separated by the weak barbed congruence �.

7.4. RELATED WORK 251

Fortunately, coupled simulations�and a fortiori fair testing� yields a much sim-
pler model that does not discriminate according to the possibility of losing all the
messages in a single step. In the same setting, we have

PS 7
Y
M2S

(M � 0)

and in particular, if S and T are two disjoint sets of messages, we have

fPS j halthig jfPT j halthig 7 fPS[T j halthig

7.4 Related work

The �eld of mobile computation is new, multiform, and it evolves quickly. We do not
attempt to give a comprehensive survey of the area, but rather provide a few points
of comparison.

Our calculus aims at simplicity, and focuses on a particular model of distributed
communication and partial failures. It does not address numerous important issues
often found in more complex designs for distributed systems. For instance, our model
is not adequate to deal with replication-based techniques, mobile computing, or inter-
mittent connectivity.

Also, the terms mobility and locality already have other meanings, in particular
in process calculi. Mobility in the �-calculus refers to the communication of channel
names on channels [99], whereas locality has been used as a tool to capture spatial
dependencies among processes in non-interleaving semantics [41, 133].

7.4.1 Applets in Java

Since the beginning of this work, the Java programming language and its widespread
implementation in web browsers have popularized the idea of mobile code that can be
downloaded from a server on demand.

While code mobility is usually a prerequisite for agent-based mobility, the latter
is more general and more expressive. In Java, the computation is mostly local, even
if the code is dynamically assembled. Besides, the distributed aspects of the com-
putation rely on standard techniques, such as sockets for data exchange between the
client machine and the applet server or, more recently, libraries for remote method
invocation [150].

On the contrary, locations�and most other forms of mobile agents�can carry
running processes, local state, and active communication capabilities from one machine
to another. As expected, most of the interesting problems raised by applets in Java,
e.g., security, are all the more serious in our setting.

7.4.2 Migration as a programming language feature

Migration has been investigated mostly for object-oriented languages. Initially used in
distributed systems to achieve a better load-balancing, migration evolves to a language
feature in the Emerald programming language [77, 79, 78, 125]. Objects can be moved
from one machine to another. Emerald objects also have a nested structures as regards

252 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

their migratory behavior: objects can be attached to one another, an object carrying its
attached objects as it moves. At the language level, numerous novel calling conventions
such as call-by-move re�ect these capabilities, and the use of migration for safety
purposes is already advocated.

As a system programming project, the emphasis is on e�ciency on local-area-
networks, rather than on the precise semantics of distributed objects. Remote method
invocation may be silently discarded, and, when a machine stops, it is entirely respon-
sible for error recovery when it restarts; in between, no failure noti�cation is available
to the programmer. Also, the localization of objects at run-time can be hard to trace,
because numerous migrations may occur as side e�ects of method calls and object
attachments.

7.4.3 Migration as a programming paradigm

The Telescript programming language [149] is entirely based on mobile agents for all
the distributed aspects of the computation. Agents carry some code and resources;
they control their own migration, and dynamically gain access to the local environment
of their transient host machine. The language designers advocate the use of mobile
agents instead of the traditional client-server architecture, and also suggest that some
�meeting hall� machines be used to hosts the di�erent components of a protocol, in
a neutral and reliable environment. The system apparently guarantees the correct
execution of the distributed computation by check-pointing agents as they move from
one site to another; there is no built-in mechanism for failure detection.

7.4.4 Agent-based mobility and network transparency

Independently. several languages have been proposed for large-scale distributed pro-
gramming, with some support for mobile agents. For instance, Obliq [44] encodes
migration as a combination of remote cloning and aliasing, in an object-oriented lan-
guage with both network transparency and global distributed scope. Examples of
applications with large-grain mobility in Obliq can be found in [31].

In a functional setting, FACILE [60] provides process mobility from site to site, as
the communication of higher-order values. As in this dissertation, the design choices
are discussed in a chemical framework [90]. Implementations issues and numerous
examples of high-level agent-based programs can be found in Knabe's dissertation [81].

7.4.5 Locality and failures

In order to model the properties of FACILE, Amadio and Prasad [17] developed a
process calculus with locality and failure. Their representation of failures in a re�ned
�-calculus setting with localities is closely related to our distributed join-calculus.

In the �l-calculus, the authors extend the syntax of the �-calculus with localities.
Channels are statically located; a location can fail, preventing further communication
on its channels; location status can be tested in the language. Locations in the �l-
calculus have a �at and static structure, which su�ces to study failure and failure
recovery in the absence of migrations. Observation in the presence of failures becomes
quite di�erent from the usual observation, but the authors provide an explicit encoding
of the �l-calculus in the �-calculus and prove its adequacy.

7.4. RELATED WORK 253

7.4.6 Modeling heterogeneous networks

More recently, several languages and calculi have addressed some aspects of distributed
computation in a more explicit manner. In particular, network transparency is ruled
out. On the contrary, global interaction is highly constrained, in order to re�ect the
limitations found in heterogeneous networks of machines [45].

For example, the Ambient calculus of Cardelli and Gordon [46] exposes the details
of routing. Ambients and locations are both organized as a tree of named multisets
of terms meant to models the physical distribution of resources. However, the bound-
aries of Ambients are mostly opaque, while the boundaries of locations are mostly
transparent.

For instance, our Comm and Go rules may implicitly cause a message�or even
an agent�to exit several locations and enter several others, in a single reduction step.
Conversely, an ambient that wish to migrate from one enclosing ambient to a remote
ambient must explicitly exit a series of nested Ambients, then enter another series
of nested Ambients. Moreover, the moving ambient must precisely know the route,
including the names of all the intermediate Ambients, and requires the cooperation of
each intermediate ambient.

Likewise, Hennessy and Riely provide a much re�ned account of global, channel-
based communication in a typed �-calculus, with a precise control of the capabilities
being exchanged [68]. Type information provides a sound basis for specifying security
properties. In [129], they also present a simple model of failures similar to ours, and
propose symbolic, labeled-based proof techniques to study the properties of �-calculus
processes in the presence of failures.

These approaches seem complementary to ours; in particular, these calculi are
mostly used for speci�cation purposes�not for general purpose distributed program-
ming. Besides, their underlying communication mechanisms provide strong guarantees
of atomicity, which render their distributed implementation at least as di�cult as for
the �-calculus.

254 CHAPTER 7. LOCALITY, MIGRATION, AND FAILURES

Conclusions

In this dissertation, we developed a formalism that �ts the needs of distributed pro-
gramming, explored its use as the core of a programming language, and studied some
of its formal properties. Our approach departs from traditional studies of process cal-
culi, which are more interested in speci�cations of protocols than in actual programs
and implementations.

While our initial goal was to obtain a simple core language whose distributed
implementation would be straightforward, our formalism turns out to be adequate
also for writing general-purpose parallel programs. The join-calculus can be presented
as a natural extension of functional languages, and we believe that this is of pragmatic
importance for the programmer.

The join-calculus inherits most of the properties of the asynchronous �-calculus.
The essential di�erence between the two is that in the join-calculus all the receivers at
a given channel name are statically known. The synchronization behavior of names is
entirely declared as join-patterns when the names are introduced in a de�ning process,
compiled as a whole, and mapped to a single machine at run-time. This so-called
locality property provides a lot of static information. It can be used to implement
routing in a deterministic manner, to analyze these name de�nitions, and to optimize
their representation. It also facilitates the transfer of techniques developed for other
languages. For instance, we could equip the join-calculus with an implicit polymorphic
type system, and rely on local data structures similar to those of ML in our prototype
implementation.

We validated our model in practice by developing a prototype distributed im-
plementation, and this experiment had a major impact on the join-calculus. Many
programming examples are already available, yet more experience is required to as-
sess the merits of the primitives for migration and failures. Also, there is still a gap
between what happens in the distributed chemical machine and in its implementation
as a series of machines executing the local runtime. Since the underlying protocols are
rather delicate, it would be worthwhile to study them in more details, for instance as a
chemical re�nement that describes runtime representations hidden in the distributed
rcham.

As we introduced yet another process calculus, there is an obvious drawback:
in order to tackle formally the properties of programs written in the join-calculus
we �rst had to build its meta-theory. Our initial plan was to apply known results
of concurrency theory, but to our surprise we often had to develop our own tools
and techniques to deal with equivalences in the join-calculus, especially as regards
observational equivalences and asynchrony. Fortunately, most of these developments
are also relevant to other asynchronous calculi. Yet, a fundamental issue is to build

255

256 Conclusions

a more general framework where such common properties could be established once
for all. More speci�cally, the formal analysis of protocols with migrations and partial
failures is far from complete, and probably requires tools more convenient than barbed
bisimulation congruences.

From a more general point of view, many recent works on process calculi attempt
to bring such formalisms closer to the programming practice�in particular, to the
distributed aspects of computation�without compromising precise and simple foun-
dations. Interestingly, some of these models explore more radical choices as regards
distributed programming; for instance they substitute lower-level, more dynamic com-
munication behavior to location transparency. Our hope is that the join-calculus con-
tributes to this trend toward practicality, and leads to a better understanding between
concurrency theoreticians and distributed programmers.

Bibliography

[1] Martín Abadi. Protection in programming-language translations. In Larsen
et al. [84], pages 868�883. Also Digital SRC Research Report 154, April 1998.

[2] Martín Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation
of channel abstractions. In LICS '98 [75], pages 105�116.

[3] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. In Proceedings of the Fourth ACM Conference on Computer
and Communications Security, pages 36�47, April 1997.

[4] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Technical Report 414, University of Cambridge Computer
Laboratory, January 1997. Extended version of both [3] and [5].

[5] Martín Abadi and Andrew D. Gordon. Reasoning about cryptographic protocols
in the spi calculus. In Mazurkiewicz and Winkowski [93], pages 59�73.

[6] ACM. Conference record of the 22th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '95), January 1995.

[7] ACM. Conference record of the 23th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '96), January 1996.

[8] ACM. Proceedings of the 1996 ACM SIGPLAN International Conference on
Functional Programming, Philadelphia, Pennsylvania, May 1996.

[9] ACM. Conference record of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '97), January 1997.

[10] ACM. Conference record of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '98), January 1998.

[11] Gul Agha and C. Hewitt. Concurrent programming using actors. In A. Yonezawa
and M. Tokoro, editors, Object-Oriented Concurrent Programming, pages 37�53.
MIT Press, 1987.

[12] Gul Agha, Ian Mason, Scott Smith, and Carolyn L. Talcott. A foundation
for actor computation. Journal of Functional Programming, 7(1):1�72, January
1997.

257

258 BIBLIOGRAPHY

[13] Roberto M. Amadio. An asynchronous model of locality, failure, and process
mobility. In COORDINATION'97, volume 1282 of Lecture Notes in Computer
Science. Springer-Verlag, 1997. also Rapport Interne LIM February 1997, and
INRIA Rapport de recherche 3109.

[14] Roberto M. Amadio. On modelling mobility. To appear in Theoretical Computer
Science, 1998.

[15] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans-
actions on Programming Languages and Systems, 15(4):575�631, 1993.

[16] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations
for the asynchronous �-calculus. Theoretical Computer Science, 195(2):291�324,
1998. Also INRIA Rapport de recherche 2913, June 1996. An extended abstract
appeared in [103].

[17] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. In P.S. Thi-
agarajan, editor, Proceedings of the 14th Foundations of Software Technology
and Theoretical Computer Science Conference (FST-TCS '94), volume 880 of
Lecture Notes in Computer Science, pages 205�216. Springer-Verlag, 1994.

[18] Jean-Marc Andreoli, Lone Leth, Remo Pareschi, and Bent Thomsen. On the
chemistry of broadcasting. ECRC, Munich, 1992.

[19] Jean-Marc Andreoli, Lone Leth, Remo Pareschi, and Bent Thomsen. True con-
currency semantics for a linear logic programming language with broadcast com-
munication. In Proceedings TAPSOFT '93, Lecture Notes in Computer Science.
Springer-Verlag, 1993.

[20] Jean-Marc Andreoli and Remo Pareschi. Communication as fair distribution of
knowledge. In Proceedings OOPSLA '91, ACM SIGPLAN Notices, volume 26,
pages 212�229, November 1991.

[21] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[22] Andrea Asperti and Nadia Busi. Mobile petri nets. Technical report, Department
of Computer Science, University of Bologna, May 1996.

[23] Jean-Pierre Banâtre, Michel Banâtre, and Florimond Ployette. Distributed sys-
tem structuring using multi-functions. Rapport de recherche 694, Institut Na-
tional de Recherche en Informatique et Automatisme Rennes, June 1987.

[24] Jean-Pierre Banâtre, A. Coutant, and Daniel Le Métayer. A parallel machine for
multiset transformation an its programming style. Future Generation Computing
Systems, 4:133�144, 1988.

[25] Jean-Pierre Banâtre and Daniel Le Métayer. The Gamma model and its disci-
pline of programming. Science of Computer Programming, 15:55�77, 1990.

[26] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset trans-
formation. Communications of the ACM, 36:98�111, 1993.

BIBLIOGRAPHY 259

[27] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the chemical reaction
model: ten years after. Rapport de recherche 984, Institut de Recherche en
Informatique et Systèmes Aléatoires, Rennes, February 1996.

[28] Gérard Berry and Gérard Boudol. The chemical abstract machine. In Proceedings
POPL '90, pages 81�94, San Francisco, January 1990.

[29] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96:217�248, 1992.

[30] Eike Best, editor. Proceedings of the 4th International Conference on Concur-
rency Theory (CONCUR '93), volume 715 of Lecture Notes in Computer Science,
Hildesheim, Germany, 1993. Springer-Verlag.

[31] Krishna A. Bharat and Luca Cardelli. Migratory applications. Research Report
138, Digital SRC, February 1996.

[32] Andrew Birell, Greg Nelson, Susan Owicki, and Edward Wobber. Network ob-
jects. Research Report 115, Digital SRC, 1994.

[33] Michele Boreale. On the expressiveness of internal mobility in name-passing cal-
culi. Theoretical Computer Science, 195(2):205�226, 1998. An extended abstract
appeared in [103], pages 163�178.

[34] Michele Boreale and Rocco De Nicola. Testing equivalence for mobile processes.
Information and Computation, 120(2):279�303, August 1995.

[35] Michele Boreale, Cédric Fournet, and Cosimo Laneve. Bisimulations in the join-
calculus. In Proceedings of PROCOMET '98. IFIP, Chapman and Hall, June
1998. To appear.

[36] Michele Boreale and Davide Sangiorgi. Bisimulation in name-passing calculi
without matching. In LICS '98 [75], pages 165�175.

[37] Gérard Boudol. Asynchrony and the �-calculus (note). Rapport de recherche
1702, INRIA Sophia-Antipolis, May 1992.

[38] Gérard Boudol. Some chemical abstract machines. In J. W. de Bakker, W.-P.
de Roever, and Grzegorz Rozenberg, editors, A Decade of concurrency: re�ec-
tions and perspectives: REX school/symposium, Noordwijkerhout, the Nether-
lands, June 1�4, 1993: proceedings, volume 803 of Lecture Notes in Computer
Science, pages 92�123. Springer-Verlag, 1994.

[39] Gérard Boudol. The �-calculus in direct style. In POPL '97 [9], pages 228�241.

[40] Gérard Boudol, Ilaria Castellani, Matthew Hennessy, and Astrid Kiehn. Ob-
serving localities. Theoretical Computer Science, 114, 1993.

[41] Gérard Boudol, Ilaria Castellani, Matthew Hennessy, and Astrid Kiehn. A theory
of processes with localities. Formal Aspects of Computing, 6:165�200, 1994.
A shorter version appeared in Proceedings of CONCUR '92, Lecture Notes in
Computer Science 630, pages 108�123.

260 BIBLIOGRAPHY

[42] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In Lee and
Smolka [89], pages 313�327.

[43] Ed Brinksma, Arend Rensink, and Walter Vogler. Applications of fair testing.
In R. Gotzhein and J. Bredereke, editors, Formal Description Techniques IX:
Theory, Applications and Tools, volume IX. Chapman and Hall, 1996.

[44] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27�
59, January 1995. A preliminary version appeared in [6].

[45] Luca Cardelli. Global computation. ACM Sigplan Notices, 32:1:66�68, 1997.

[46] Luca Cardelli and Andrew Gordon. Mobile ambients. In Proceedings of the First
International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS '98), Held as Part of the Joint European Conferences on
Theory and Practice of Software (ETAPS'98), volume 1378 of Lecture Notes in
Computer Science, pages 140�155. Springer-Verlag, 1998.

[47] Ilaria Castellani. Observing distribution in processes: Static and dynamic local-
ities. International Journal of Foundations of Computer Science, 6(4):353�393,
1995.

[48] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225�267, March 1996.

[49] Silvano Dal-Zilio. Quiet and bouncing objects: Two migration abstractions in
a simple distributed blue calculus. In Hans Hüttel and Uwe Nestmann, editors,
Proceedings of the Worshop on Semantics of Objects as Proceedings (SOAP '98),
Aalborg, Denmark, number NS-98-5 in BRICS Notes Series, pages 35�42, June
1998.

[50] L. Damas and Robin Milner. Principal type schemes for functional programs. In
Proceedings on Principles of Programmining Languages, pages 207�212, 1982.

[51] Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34:83�133, 1984.

[52] Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, edi-
tors. 24th Colloquium on Automata, Languages and Programming (ICALP '97),
volume 1256 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[53] Edsger W. Dijkstra and C. S. Scholten. Termination detection for di�using
computations. Information Processing Letters, 11(1):1�4, August 1980.

[54] Cormac Flanagan and Rishiyur S. Nikhil. pHluid: The design of a parallel
functional language. In ICFP '96 [8], pages 169�179.

[55] Cédric Fournet and Georges Gonthier. The re�exive chemical abstract machine
and the join-calculus. In POPL '96 [7], pages 372�385.

[56] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asyn-
chronous calculi (extended abstract). In Larsen et al. [84], pages 844�855.

BIBLIOGRAPHY 261

[57] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In Montanari and Sassone [103], pages 406�
421.

[58] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Implicit
typing à la ML for the join-calculus. In Mazurkiewicz and Winkowski [93],
pages 196�212.

[59] Cédric Fournet and Luc Maranget. The join-calculus language (version 1.03
beta). Source distribution and documentation available from http://join.

inria.fr/, June 1997.

[60] A. Giacalone, P. Mishra, and Sanjiva Prasad. FACILE: A symmetric integra-
tion of concurrent and functional programming. International Journal of Par-
allel Programming, 18(2):121�160, 1989. Also in TAPSOFT '89, pages 184-209,
Springer-Verlag, Lecture Notes in Computer Science 352 (1989).

[61] Rob J. van Glabbeek. The linear time�branching time spectrum II; the
semantics of sequential systems with silent moves (extended abstract). In
Best [30], pages 66�81. Also Manuscript, preliminary version available at
ftp://Boole.stanford.edu/pub/spectrum.ps.gz.

[62] Rob J. van Glabbeek and Peter Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555�600, May 1996.

[63] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: reduction
and typing. In Nestmann and Pierce [110]. To appear.

[64] James Gosling, Bill Joy, and Guy Steele. Java language speci�cation, version
1.0. August 1996.

[65] David Harel, Orna Kupferman, and Moshe Vardi. On the complexity of verifying
concurrent transition systems. In Degano et al. [52].

[66] Matthew Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[67] Matthew Hennessy. A model for the pi-calculus. Computer Science Technical
Report 91:08, COGS, University of Sussex, 1991. To appear in Acta Informatica.

[68] Matthew Hennessy and James Riely. A typed language for distributed mobile
processes. In POPL '98 [10], pages 378�390.

[69] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-
tional, 1985.

[70] Kohei Honda and Mario Tokoro. An object calculus for asynchronous commu-
nication. In P. America, editor, Proceedings ECOOP '91, volume 512 of Lecture
Notes in Computer Science, pages 133�147, Geneva, Switzerland, July 1991.
Springer-Verlag.

262 BIBLIOGRAPHY

[71] Kohei Honda and Mario Tokoro. On asynchronous communication semantics.
In P. Wegner, M. Tokoro, and O. Nierstrasz, editors, Proceedings of the ECOOP
'91 Workshop on Object-Based Concurrent Computing, volume 612 of Lecture
Notes in Computer Science, pages 21�51. Springer-Verlag, 1992.

[72] Kohei Honda and Nobuko Yoshida. Combinatory representation of mobile pro-
cesses. In Proceedings POPL '94, pages 348�360, 1994.

[73] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. The-
oretical Computer Science, 152(2):437�486, 1995.

[74] Hans Hüttel and Josva Kleist. Objects as mobile processes. Research Series
RS-96-38, BRICS, October 1996. Presented at MFPS '96.

[75] IEEE. Thirteenth Symposium on Logic in Computer Science (LICS '98, Indi-
anapolis), June 1998.

[76] Cli� B. Jones. A pi-calculus semantics for an object-based design notation. In
Best [30], pages 158�172.

[77] Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis,
University of Washington, Computer Science Department, December 1988.

[78] Eric Jul. Migration of light-weight processes in emerald. IEEE Operating Sys.
Technical Committee Newsletter, Special Issue on Process Migration, 3(1):20,
1989.

[79] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the emerald system. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles, pages 62�74, November 1987.

[80] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the emerald system. ACM Transactions on Computer Systems,
6(1):109�133, February 1988.

[81] Frederick Colville Knabe. Language Support for Mobile Agents. PhD thesis,
School of Computer Science, Carnegie Mellon University, December 1995. CMU-
CS-95-223; also published as Technical Report ECRC-95-36.

[82] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the
pi-calculus. In POPL '96 [7], pages 358�371.

[83] Cosimo Laneve. May and must testing in the join-calculus. Technical Report
UBLCS 96-04, University of Bologna, March 1996. Revised: May 1996.

[84] Kim Larsen, Sven Skyum, and Glynn Winskel, editors. Proceedings of the 25th
International Colloquium on Automata, Languages and Programming (ICALP
'98), volume 1443 of Lecture Notes in Computer Science, Aalborg, Denmark,
July 1998. Springer-Verlag.

[85] Konstantin Läufer and Martin Odersky. An extension of ML with �rst-class
abstract types. In Proceedings of the ACM SIGPLAN Workshop on ML and its
Applications, 1992.

BIBLIOGRAPHY 263

[86] Fabrice Le Fessant. The JoCAML system prototype. Software and documenta-
tion available from http://pauillac.inria.fr/jocaml, 1998.

[87] Fabrice Le Fessant and Luc Maranget. Compiling join-patterns. In Nestmann
and Pierce [110]. To appear.

[88] Fabrice Le Fessant, Ian Piumarta, and Marc Shapiro. An implementation of com-
plete, asynchronous, distributed garbage collection. In Conference on Program-
ming Language Design and Implementation (PLDI '98), Montreal (Canada),
June 1998. ACM SIGPLAN.

[89] Insup Lee and Scott A. Smolka, editors. Proceedings of the 6th International
Conference on Concurrency Theory (CONCUR '95, Philadelphia), volume 962
of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[90] Lone Leth and Bent Thomsen. Some facile chemistry. Technical Report ECRC-
92-14, European Computer-Industry Research Centre, Munich, May 1992.

[91] Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul.
Thèse d'état, Université Paris VII, January 1978.

[92] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. In Gul Agha, Peter Weg-
ner, and Akinori Yonezawa, editors, Research Directions in Concurrent Object-
Oriented Programming, chapter 4, pages 107�150. The MIT Press, 1993.

[93] Antoni Mazurkiewicz and Jòzef Winkowski, editors. Proceedings of the 8th In-
ternational Conference on Concurrency Theory, volume 1243 of Lecture Notes
in Computer Science, Warsaw, Poland, July 1997. Springer-Verlag.

[94] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi.
In Larsen et al. [84], pages 856�867.

[95] Daniel Le Métayer. Higher-order multiset programming. In Proceedings of the
DIMACS worshop on speci�cation of parallel algorithms, volume 18 of Dimacs
series on Discrete Mathematics. AMS, 1994.

[96] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[97] Robin Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[98] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119�141, 1992. Preliminary versions appeared in ICALP '90, Lec-
ture Notes in Computer Science 443, pages 167�180, and as INRIA Rapport de
recherche 1154, 1990.

[99] Robin Milner. The polyadic �-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Speci�cation. Springer-
Verlag, 1993. Also appeared as technical report ECS�LFCS�91�180, University
of Edinburgh, UK, 1991.

264 BIBLIOGRAPHY

[100] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, parts I and II. Information and Computation, 100:1�40 and 41�77,
September 1992.

[101] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proceedings of ICALP '92, volume 623 of Lecture Notes in Computer Science,
pages 685�695, Vienna, 1992. Springer-Verlag.

[102] Ugo Montanari and Marco Pistore. Checking bisimilarity for �nitary �-calculus.
In Lee and Smolka [89], pages 42�56.

[103] Ugo Montanari and Vladimiro Sassone, editors. Proceedings of the 7th Inter-
national Conference on Concurrency Theory (CONCUR '96), volume 1119 of
Lecture Notes in Computer Science, Pisa, Italy, August 1996. Springer-Verlag.

[104] James H. Morris, Jr. Lambda-Calculus Models of Programming Languages.
Ph. D. dissertation, MIT, December 1968. Report No. MAC�TR�57.

[105] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Proceedings
of ICALP '95, volume 944 of Lecture Notes in Computer Science. Springer-
Verlag, 1995.

[106] Uwe Nestmann. On Determinacy and Nondeterminacy in Concurrent Program-
ming. PhD thesis, Technische Fakultät, Universität Erlangen, November 1996.
Arbeitsbericht IMMD-29(14).

[107] Uwe Nestmann. What is a `good' encoding of guarded choice? In Catuscia
Palamidessi and Joachim Parrow, editors, Proceedings of EXPRESS '97, vol-
ume 7 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1997. Full version as report BRICS-RS-97-45, Universities of Aal-
borg and Århus, Denmark, 1997.

[108] Uwe Nestmann. On the expressive power of joint input. To appear, 1998.

[109] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. In Monta-
nari and Sassone [103], pages 179�194. Revised full version as report ERCIM-
10/97-R051, European Research Consortium for Informatics and Mathematics,
1997.

[110] Uwe Nestmann and Benjamin C. Pierce, editors. HLCL '98: High-Level Con-
current Languages, volume 16(3) of Electronic Notes in Theoretical Computer
Science, Nice, France, September 1998. Elsevier Science Publishers. To appear.

[111] Martin Odersky. Applying �: Towards a basis for concurrent imperative pro-
gramming. In Proc. 2nd ACM SIGPLAN Workshop on State in Programming
Languages, pages 95�108, January 1995.

[112] Vincent van Oostrom. Con�uence by decreasing diagrams. Theoretical Computer
Science, 126:259�280, 1994.

[113] Luca Padovani. The Bologna join system., 1997. Software and documentation
(in italian) available electronically at ftp://ftp.cs.unibo.it/pub/asperti/

jcb01.tar.gz.

BIBLIOGRAPHY 265

[114] Catuscia Palamidessi. Comparing the expressive power of the synchronous and
the asynchronous �-calculus. In POPL '97 [9], pages 256�265.

[115] D. M. R. Park. Concurrency and Automata on In�nite Sequences, volume 104
of Lecture Notes in Computer Science. Springer-Verlag, 1980.

[116] Joachim Parrow. Trios in concert. In Plotkin et al. [123]. To appear.

[117] Joachim Parrow and Peter Sjödin. Multiway synchronization veri�ed with cou-
pled simulation. In Rance Cleaveland, editor, Third International Conference on
Concurrency Theory (CONCUR '92), volume 630 of Lecture Notes in Computer
Science, pages 518�533. Springer-Verlag, 1992.

[118] Joachim Parrow and Peter Sjödin. The complete axiomatization of cs-
congruence. In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editors, STACS
'94, volume 775 of Lecture Notes in Computer Science, pages 557�568. Springer-
Verlag, 1994.

[119] Benjamin C. Pierce, Didier Rémy, and David N. Turner. A typed higher-order
programming language based on the pi-calculus. In Workshop on Type Theory
and its Application to Computer Systems, Kyoto University, July 1993.

[120] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5):409�453, October
1996. A summary was presented at LICS '93, pages 187�215.

[121] Benjamin C. Pierce and David N. Turner. Concurrent objects in a process
calculus. In Takayasu Ito and Akinori Yonezawa, editors, Theory and Practice
of Parallel Programming (TPPP), Sendai, Japan (Nov. 1994), volume 907 of
Lecture Notes in Computer Science, pages 187�215. Springer-Verlag, April 1995.

[122] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. In Plotkin et al. [123]. To appear.

[123] Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors. Proof, Language
and Interaction: Essays in Honour of Robin Milner, 1998. To appear.

[124] Sanjiva Prasad, A. Giacalone, and P. Mishra. Operational and algebraic se-
mantics of facile: A symmetric integration of concurrent and functional pro-
gramming. In Proceedings of the 17th International Colloquium on Automata,
Languages and Programming (ICALP'90), volume 443 of Lecture Notes in Com-
puter Science, pages 765�780. Springer-Verlag, July 1990.

[125] R. Raj, E. Tempero, H. Levy, Andrew Black, N. Hutchinson, and Eric Jul.
EMERALD: A general-purpose programming language. Software Practice and
Experience, 21(1), January 1991.

[126] Didier Rémy. Programming objects with ML-ART: An extension to ML with
abstract and record types. In Masami Hagiya and John C. Mitchell, editors, The-
oretical Aspects of Computer Software, volume 789 of Lecture Notes in Computer
Science, pages 321�346. Springer-Verlag, April 1994.

266 BIBLIOGRAPHY

[127] Didier Rémy and Jerôme Vouillon. Objective ML: A simple object-oriented
extension to ML. In POPL '97 [9], pages 40�53.

[128] John H. Reppy. Concurrent ML: Design, application and semantics. In Pro-
gramming, Concurrency, Simulation and Automated Reasoning, volume 693 of
Lecture Notes in Computer Science, pages 165�198. Springer-Verlag, 1992.

[129] James Riely and Matthew Hennessy. Distributed processes and location failures.
In Degano et al. [52], pages 471�481. Also Report 2/97, University of Sussex,
Brighton, April 1997.

[130] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. Ph.D. thesis, University of Edinburgh, May 1993.
Available as Technical Report CST�99�93, Computer Science Department, Uni-
versity of Edinburgh.

[131] Davide Sangiorgi. On the bisimulation proof method. Revised version of Tech-
nical Report ECS�LFCS�94�299, University of Edinburgh, 1994. An extended
abstract appears in the Proceedings of MFCS'95, LNCS 969, 1994.

[132] Davide Sangiorgi. Lazy functions and mobile processes. Rapport de recherche
2515, INRIA Sophia-Antipolis, 1995.

[133] Davide Sangiorgi. Locality and non-interleaving semantics in calculi for mo-
bile processes. Theoretical Computer Science, 155, 1996. Also Report ECS�
LFCS�94�282, University of Edinburgh, 1994. An extended abstract appeared
in Proceedings of TACS'94, Lecture Notes in Computer Science 789.

[134] Davide Sangiorgi. A theory of bisimulation for the �-calculus. Acta Informatica,
33:69�97, 1996. Earlier version published as Report ECS-LFCS-93-270, Univer-
sity of Edinburgh. An extended abstract appeared in [30].

[135] Davide Sangiorgi. The name discipline of uniform receptiveness. In Degano et al.
[52], pages 303�313. Also INRIA Rapport de recherche, December 1996.

[136] Davide Sangiorgi. An interpretation of typed objects into typed �-calculus.
Information and Computation, 143(1):34�73, 1998. Also INRIA Rapport de
recherche 3000, 1996.

[137] Davide Sangiorgi and Robin Milner. The problem of �weak bisimulation up to�.
In W. R. Cleaveland, editor, Proceedings of CONCUR'92, volume 630 of Lecture
Notes in Computer Science, pages 32�46. Springer-Verlag, 1992.

[138] Peter Selinger. A compiler for the join-calculus. Available electronically at
http://www.math.lsa.umich.edu/~selinger/join.html, 1996.

[139] Peter Selinger. First-order axioms for asynchrony. In Mazurkiewicz and
Winkowski [93], pages 376�390.

[140] Peter Sewell. On implementations and semantics of a concurrent programming
language. In Mazurkiewicz and Winkowski [93], pages 391�405.

BIBLIOGRAPHY 267

[141] Peter Sewell. From rewrite rules to bisimulation congruences. In Robert De
Simone and Davide Sangiorgi, editors, Proceedings of the 9th International Con-
ference on Concurrency Theory, volume 1466 of Lecture Notes in Computer
Science, pages 269�284, Nice, France, September 1998. Springer-Verlag.

[142] Peter Sewell. Global/local subtyping and capability inference for a distributed
�-calculus. In Larsen et al. [84], pages 695�706. Full version as Technical Report
435, Computer Laboratory, University of Cambridge.

[143] Gert Smolka. A foundation for higher-order concurrent constraint programming.
In Jean-Pierre Jouannaud, editor, 1st International Conference on Constraints
in Computational Logics, volume 845 of Lecture Notes in Computer Science,
pages 50�72, Munchen, Germany, September 1994. Springer-Verlag.

[144] Bent Thomsen. Polymorphic sorts and types for concurrent functional programs.
Technical Report ECRC-93-10, European Computer-Industry Research Center,
Munich, Germany, 1993.

[145] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, Laboratory for Foundations of Computer Science, Department of
Computer Science, University of Edinburgh, UK, 1995.

[146] Vasco T. Vasconcelos. Predicative polymorphism in the �-calculus. In Pro-
ceedings of 5th Conference on Parallel Architectures and Languages, Europe
(PARLE'94), volume 917 of Lecture Notes in Computer Science, pages 425�437.
Springer-Verlag, 1994.

[147] Vasco T. Vasconcelos. Typed concurrent objects. In Proceedings of the Eighth
European Conference on Object-Oriented Programming (ECOOP), volume 821 of
Lecture Notes in Computer Science, pages 100�117. Springer-Verlag, July 1994.

[148] David J. Walker. Objects in the pi-calculus. Information and Computation,
116(2):253�271, 1995.

[149] J.E. White. Telescript technology: the foundation for the electronic marketplace.
Technical report, General Magic, 1994.

[150] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the
Java system. Computing Systems, 9(4):265�290, Fall 1996.

[151] Andrew K. Wright. Polymorphism for imperative languages without imperative
types. Technical Report 93-200, Rice University, February 1993.

[152] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38�94, 1994.

[153] Nobuko Yoshida. Graph types for monadic mobile processes. In V. Chandru
and V. Vinay, editors, Foundations of Software Technology and Theoretical Com-
puter Science (Hyderabad, India, December 18�20, 1996), volume 1180 of Lecture
Notes in Computer Science, pages 371�386. Springer-Verlag, 1996. Full version
as Technical Report ECS-LFCS-96-350, University of Edinburgh.

