
A Formal Implementation of Value Commitment

Cédric Fournet2,1, Nataliya Guts1, and Francesco Zappa Nardelli3,1

1 MSR-INRIA Joint Centre
2 Microsoft Research

3 INRIA

Abstract. In an optimistic approach to security, one can often simplify protocol
design by relying on audit logs, which can be analyzed a posteriori. Such auditing
is widely used in practice, but no formal studies guarantee that the log informa-
tion suffices to reconstruct past runs of the protocol, in order to reliably detect
(and provide evidence of) any cheating. We formalize audit logs for a sample op-
timistic scheme, the value commitment. It is specified in a pi calculus extended
with committable locations, and compiled using standard cryptography to imple-
ment secure logs. We show that our distributed implementation either respects
the abstract semantics of commitments or, using information stored in the logs,
detects cheating by a hostile environment.

1 A cautiously optimistic approach to security

Mutual distrust in distributed computing makes enforcing system-wide security assur-
ances particularly challenging. Common protocols perform an important number of
mandatory runtime checks and allow only legal computations to progress: in session-
establishment protocols, for instance, a strong security invariant is usually enforced at
every step of the run of the protocol. These runtime checks have a cost, in terms of
cryptographic and networking operations; they may also conflict with other goals of the
protocol, such as confidentiality.

A different approach, which we call optimistic, presumes instead that all involved
principals are honest and well-behaved, and thus omits some runtime checks. Traces of
protocol runs are stored in a secure log and can be used a posteriori to verify the compli-
ance of each principal to its role: principals who attempt non-compliant actions will be
blamed using the logged evidence. The security invariant is weaker than those achieved
by more conservative protocols, but adequate for many non-critical applications.

Some protocols inherently rely on logs to establish their security properties. These
protocols are often based on a commitment scheme. A principal commits to a value
kept hidden; other principals of a system cannot read this value, but have a procedure
to detect any change to the value after the commitment. Distant coin flipping is a sim-
ple protocol that illustrates commitments: suppose that A and B are not physically at
the same place and want to toss a coin. Both A and B flip their own coin, exchange
commitments on their results, then reveal and compare these results; A wins the toss
if the two results are the same. For fairness, A’s commitment should neither reveal any
information to B, nor enable A to change her committed result after receiving B’s.

Commitment is a building block for many protocols such as mental poker [3], sealed
bid auctions, e-voting [6, 5], and online games [12]. For instance, mental poker relies

on commitment to build a fair shuffling of the deck, then gradually reveal cards as the
game proceeds. At the end of the game, the deck permutations used by each player can
be revealed for auditing purposes.

Secure logging is not only an essential component of optimistic schemes, but is also
widely used in standard practice. Much research effort has been devoted to techniques
for implementing logs so as to guarantee properties such as correctness, forward in-
tegrity, and forward secrecy [15, 18, 17]. Still, which data should be logged? and why?
Between general recommendations such as “an audit trail should include sufficient in-
formation to establish what events occurred and who (or what) caused them” [14, 11]
and efficient implementation techniques, we are not aware of any formal studies that
characterize and verify the security properties achieved by protocols relying of logs.

In this paper, we give a formal answer to this question for the commitment scheme.
We extend a simple distributed language, the applied pi calculus [1], with commitment
datatypes and primitives, and we illustrate this extension by programming an online
game. To abstract away from the possible misbehaviors of the environment, we propose
a trustful and strong operational semantics for our commitment primitives. We show
that our language can be compiled to the applied pi calculus, using standard crypto-
graphic primitives, with adequate protection against an arbitrary, possibly hostile envi-
ronment. We obtain an important security property stating that, for any source systems,
our distributed implementation either respects the semantics of commitments or, using
information stored in the logs, detects (and proves) cheating by a hostile environment.

Related work Value commitments appear in formal models of protocols (e.g. [13]) and
implementations of language abstractions (e.g. [19]). More closely related to our work,
Etalle et al. [10, 4] advocate the usage of logs for optimistic security enforcement. They
formalize audit-based discretionary access control in collaborative work environments,
and develop a logical framework for user accountability; they also design cryptographic
support for communication evidence in a decentralized setting [8].

Contents Section 2 presents our source language with value commitment. Section 3
illustrates the use of commitment for programming online games. Section 4 describes
the language implementation, as a cryptographic translation to the applied pi calculus.
Section 5 develops a labelled semantics and an extended translation to keep track of
source-program invariants. Section 6 states our main results. Section 7 reports on our
prototype implementation. Section 8 discusses future work.

Additional details appear online, at http://www.msr-inria.inria.fr/projects/sec/logs,
including complete definitions for the source and target semantics and all proofs.

2 A language with value commitment

The applied pi calculus is a process language parameterized by an equational theory on
terms, which provides flexible support for modelling symbolic cryptographic primitives
and data structures. We refer to [1] for a general presentation of its semantics.

To express the value commitment scheme, we extend an instance of applied pi with
committable cells. The grammar for terms (M,V), processes (P), and systems (A) is
given below. Our extensions to the standard syntax appear in grey boxes .

M , V ::=
| u

| func (fM)

| u.Idu
| u.Idc(p)

| u.Rd(p M)

P ::=
| 0
| P1 |P2

| ν c .P
| u?(x).P
| u!〈M 〉.P
| if M = M ′ thenP elseP ′

| replP

| newloc (x , y).P

| commitM u (x).P

A ::=
| 0
| A1 | A2

| ν u .A
| {M / x }
| p[P]

| u.(p)

| u.(p M)

Terms are built from variables (denoted x, y, . . .), names (denoted c, l, s, . . .), func-
tion applications, and capabilities (described below). We assume that functions include
at least a pairing function, denoted +, with associated projections +1,+2 and equations
+i(x1+x2) = xi for i = 1, 2. (Our results extend to arbitrary data structures; we use
integer constants in examples.) The metavariable u ranges over names and variables.
Among names, we distinguish the set of principals, denoted p, a, e, and the set of lo-
cation names, ranged over by l. Contrarily to standard applied pi, each process P runs
under the control of a principal p, denoted p[P].

Committable cells and capabilities A cell is a memory location owned by a principal
who can, once, commit its content to a value of its choice. In addition, the owner can
pass capabilities to other principals, thereby granting these principals partial read access
to the cell.

Our language features three kinds of capabilities. The read capability l .Rd (p M)
is created by the owner p of the location l when it commits to a value M . Any principal
can use a read capability to read the content of the location associated to the capability.
The identity capabilities instead partially disclose the state of a cell without actually re-
vealing the value possibly committed. So the committed id capability l . Idc (p) proves
that the location l is committed and reveals the owner p of the location. The uncommit-
ted id capability l . Idu just asserts the identity l of the location.

The language of terms is sorted: we distinguish marshallable values, that include
all the terms except location and channel names, and committable values, that include
all marshallable values except those that mention committed id and read capabilities.

The state of each committable cell is represented by a process: l .(p) denotes an
uncommitted cell named l owned by p; l .(p M) denotes the same cell once it has been
committed to the committable value M . Two new kinds of processes manipulate cells.
The newloc process creates a fresh, uncommitted location and binds both its unique
identifier l (from L) and its uncommitted capability in its continuation:

a[newloc (x , y).P] −→ ν l . (l .(a) | a[P{l/x}{l . Idu/y}])

where l is fresh for P . The unique identifier l can then be used to commit an uncom-
mitted cell to some committable value M :

l .(a) | a[commitM l (x).P] −→ l .(a M) | a[P{l .Rd (a M)/x}]

The commit process yields a read capability for the newly-committed cell. The sort sys-
tem does not allow to communicate or store in another location the cell name l: hence,

only the principal that created the cell can commit a value into it. The abbreviation
newcommit creates a new committed location (where x′, x′′ are fresh for P):

p[newcommitM (x).P] def= p[newloc (x ′, x ′′).commitM x ′ (x).P]

Capabilities can be communicated over channels; they can also be manipulated us-
ing special functions, according to the equational theory below.

read(x .Rd (p v)) = v get idc(x .Rd (p v)) = x . Idc (p)
get idu(x . Idc (p)) = x . Idu get prin(x . Idc (p)) = p

is idu(x . Idu) = ok is idc(x . Idc (p)) = ok is rd(x .Rd (p v)) = ok

The read function yields the value from read capabilities. Since the read capability is
generated when committing the cell, the semantics of the source language guarantees
that all reads for a given cell always return the same value. The get prin function yields
the principal that owns the cell from committed capabilities. (We could also provide
get prin from uncommitted capabilities, at some additional cost in the cryptographic
implementation.) The get idu and get idc functions downgrade capabilities, yielding
a more restrictive capability for the same cell. Hence, get idu yields an uncommitted
capability, which can be used only to identify the cell, whereas get idc takes a read
capability and hides its committed value. The language finally has functions that support
dynamic typechecking of capabilities. In particular, is idc(x) = ok or is rd(x) = ok
implies that the cell associated with x is committed.

3 Example: an online game

Our example describes a game run by a server a0, between n players a1, . . . , an. The
game is played in one turn, with all players revealing their moves simultaneously. (A
simple instance of the game with n = 2 is Rock, Paper, Scissors.) The players and
the server are willing to cooperate, but with minimal trust assumptions between them;
however, it is deemed sufficient to detect any dishonest principal at the end of the game.
Similar examples include multiparty protocols for online auctions, voting, or partial-
information games [16, 3, 6].

The protocol has three exchange rounds between the server and each player, using
channels ci for i = 1..n: (1) the server sets up the game, distributes the details to the
players, and collects their sealed moves; (2) the server distributes all the players’ sealed
moves and collects their actual moves; (3) the server distributes the result of the game.

We begin with the server code, given below. For simplicity, the code does not pro-
vide any error handling—execution stops when a test fails.

A0 = a0[newloc (l, resultid).newcommit resultid +details (challenge).(
ci !〈challenge〉.ci?(promisei).if get prin(promisei) = ai then

)
i=1..n

newcommit challenge+ ˜promise (game).(
ci !〈game〉.ci?(movei).if get idc(movei) = promisei then

)
i=1..n

commit winner(m̃ove, challenge) l (result).
(
ci !〈result〉.0

)
i=1..n

]

In round (1), the server creates an uncommitted cell l for storing the outcome of the
game, and a readable cell challenge that provides the identifier for l and the (unspec-
ified) details of the game. Upon receiving each player’s response, the server authenti-
cates it as a committed capability from that player. In round (2), the server creates a
second committed cell that binds the challenge to the received commitments from all
players. Upon receiving each player’s second response, the server correlates it as the
read capability associated with their first response. In round (3), the server has all the
players’ information: it resolves the game and finally commits the cell l to the pub-
lished result of the game (which may include, for instance, selected information from
the players’ moves). We omit the code for the function winner that computes this result.

The code for the players performs symmetric operations:

Ai = ai [ci?(challenge).if get prin(get idc(challenge)) = a0 then
newcommit zi (movei).ci !〈get idc(movei)〉.
ci?(game).if valid game (game , challenge , movei) then

ci !〈movei〉.ci?(resulti).if no cheat (resulti , read(game)) thenPi]

In round (1), after receiving the challenge, each player confirms its validity, for instance
by checking that it is a genuine readable capability from a0, then it selects a move and
sends back its commitment. In round (2), after receiving all commitments, the player
correlates them to the challenge and verifies that its own commitment is recorded (using
for instance valid game) then it releases its move in clear. In round (3), the player checks
the outcome of the game and verifies a posteriori that the server followed the rules
(using for instance no cheat). The tests are defined as follows:

valid game (x1 , x2 , x3) def= +1(read(x1)) = x2 and get idc(x3) ∈ +2(read(x1))
no cheat (x , y) def= get idu(get idc(x)) = +1(y) and get idc(x) ∈ +2(y)

Guarantees offered to the players We distinguish language level guarantees, en-
forced by the abstract semantics of locations, and application level guarantees, relying
on high-level, application-specific checks on top of the language semantics. For each
kind of guarantees, we also distinguish between immediate (conservative) and deferred
(optimistic) enforcement. For instance, enforcement may be deferred until the content
of a cell becomes readable.

As an illustration of immediate language-level checks, committed values offer basic
authentication guarantees to the participants. For instance, each player has the privilege
to choose its moves, and the move is securely attributed to the player even if the commu-
nication channels ci are unprotected; participants can also check this attribution later.

To protect application integrity, the code must perform sufficient checks before pro-
ceeding with the game. Systematic testing of the owner identities for the received capa-
bilities avoids unauthorized, possibly non-accountable, participants. Some checks are
immediate, e.g. testing if two capabilities are associated to the same location; other
checks that depend on the commitment semantics are delayed. In the example, play-
ers are guaranteed that they all get the same result (if any) for any given game, since
they must get the same location read capability, but it is up to the application code to
correlate the received read capability to the initial uncommitted capability.

At the same time, the applicative logic of our protocol guarantees that, even if the
server is willing to leak information to the other players, those players cannot get that
information before committing to their own moves.

4 Distributed cryptography implementation

The target language is an instance of applied pi, with standard (symbolic) cryptographic
primitives and data structures but without ad-hoc rules or constructs for locations.

We rely on a cryptographic hash function, denoted h, and a public-key signature
mechanism satisfying the equation verify(v , sign(v , sk(m)) , pk(m)) = ok. The func-
tions sk(m) and pk(m) generate a pair of secret/public keys from a nonce m. All other
data constructors admit a projection function funci(func(x1 , ... , xn)) = xi .

To every principal p, we associate a keypair and export its public key tagged with
constructor prin using an active substitution of the form { prin(pk(mp)) / p }.

Cryptographic implementation of capabilities We compile the capabilities associ-
ated to a location l .(p V) as follows:

l .Rd (p V) rd(p , s , [[V]] , w)
l . Idc (p) idc(p , h(s) + h(s + [[V]]) , w)
l . Idu idu(h(p + h(s)))

where p = prin(pk(mp)) is the owner’s public key, s is a fresh value used as a seed, and
w = sign(h(s) + h(s + [[V]]) , sk(mp)) signs the committed value [[V]].

A read capability is a tagged tuple that includes these elements. A committed id
capability is a tagged tuple that provides p and verifiable evidence of the commitment
without actually revealing [[V]]. To this end, it includes both a hash of the committed
value, first concatenated with the seed s, to protect against brute force attacks, yielding
h(s + [[V]]), and the hash h(s), to enable the receiver to correlate the owner and signa-
ture with a previously-received uncommitted id capability by recomputing the identifier
h(p + h(s)). An uncommitted id capability just includes this unique location identifier,
which may be compared to other capabilities and, later, associated with p and s. The
receiver can compute committed capabilities from read capabilities, and uncommitted
capabilities from committed capabilities, but not the converse.

The signaturew authenticates read and committed id capabilities, binding their con-
tent to the owner’s key sk(mp). Their receiver can extract p and h(s) + h(s + [[V]]) from
these tagged tuples and use them to verify w. When the signature is valid, the public
key identifies the owner of the location associated to the capability.

Detection of multiple commitments In a typical run, an honest principal receives a
commitment to some value from the principal p, say idc(p , v1 + v2 , w), and later the
value itself, say rd(p , s , z , w ′). The receiver can easily check that the two capabilities
refer to the same location, by testing h(s) = v1, and verify the two signatures w =
sign(v1 + v2 , sk(mp)) and w′ = sign(h(s)+h(s + z) , sk(mp)). If these tests succeed, then
the receiver can check whether v2 = h(s + M): if the test fails, the principal p can be
convicted of multiply committing the location identified by h(p + h(s)).

In preparation for the translation, we introduce functions that operate on tuples rep-
resenting capabilities in the target language. For instance, the function read implements
source-language reads as a projection, and check idc verifies the seal of committed ids.

read(x) def= rd3(x)
get idc(x) def= idc(rd1(x) , h(rd2(x)) + h(rd2(x) + rd3(x)) , rd4(x))

check idc(x) def= verify(idc2(x) , idc3(x) , prin1(idc1(x))) = ok

get idu(x) def= idu(h(idc1(x) + (+1 idc2(x))))

In general, inconsistent capabilities may be scattered in the whole system. To detect
such inconsistencies and reliably blame cheating principals, a compiled system logs all
the committed capabilities generated or received by honest principals by sending them
over the channel log to the following resolution process R:

R = repl log?(y1).log?(y2).
if check idc(y1) and check idc(y2) then

if get idu(y1) = get idu(y2) and idc2(y1) 6= idc2(y2) then bad !〈get prin(y1)〉
This resolution process repeatedly reads pairs of Idc capabilities over the log chan-
nel and tests them for inconsistencies, as described above. If cheating is detected, the
principal is blamed on channel bad. The resolution process acts as an external judge
auditing the compiled system, and the data sent over the channel log as a secure audit
trail. Since all messages on log are replicated, log entries cannot be erased or modified
by a malicious principal, and every principal may run its own copy of process R. At the
same time, a malicious principal cannot forge capabilities that would accuse an honest
principal, as it cannot produce a valid seal associated with the honest principal.

Translation of initial configurations Protocol descriptions can be expressed as initial
configurations of a source system that do not contain, or refer to, locations and capabil-
ities; these are created later, during the run of the protocol. We describe the translation
of such configurations; a full treatment of capabilities and locations is deferred to Sec-
tion 5. Our translation is a homomorphism over terms and over most systems.

[[x]] = x [[c]] = c [[func(M1 , ... , Mn)]] = func([[M1]] , ... , [[Mn]])

[[[A]]] = [[A]] | R | E [[a[P]]] = νma . ([[P]]a | { prin(pk(ma)) / a })

[[A1 | A2]] = [[A1]] | [[A2]] [[ν u .A]] = ν u . [[A]] [[{M / x }]] = { [[M]] / x }
Let A the set of principals running a process in the system and E the set of other

(possibly dishonest) principals whose names occur in the system (E = P ∩ fn(A) \A).
For each principal a ∈ A, the translation creates a secret seed ma used to gener-

ate the pair of secret/public keys of the principal. The public key is published using an
active substitution, while the process run by the principal is compiled within the scope
of the private seed ma used for signing. Similarly, the translation includes active sub-
stitutions E =

∏
e∈E({ prin(pk(me)) / e } | {He /me }) that records, for each principal

e ∈ E , a public key pk(me) and an associated secret He. The translation also spawns a
replicated resolution server R.

The translation of processes is given next. (We omit the homormorphic clauses for
0, P1 |P2, replP , and ν c .P).

[[newloc (x , y).P]]a = ν s ′l . ν cl . (cl !〈None〉 | [[P]]a {cl/cx
} {s′

l/sx } {idu(h(a+h(s′
l)))/y})

[[commitV x (x ′).P]]a = cx?(y).([[P]]a | repl log !〈idc(a , vx , wx)〉)
{h(sx)+h(sx+[[V]])/vx

} {sign(vx , sk(ma))/wx
} {rd(a , sx , [[V]] ,wx)/x ′}

parse x P =
if is rd(x) = ok then

if check idc(get idc(x)) then parse read(x) (P | repl log !〈get idc(x)〉) else r !〈None〉
else if is idc(x) = ok then if check idc(x) thenP | repl log !〈x 〉 else r !〈None〉

else if is prin(x) = ok or is idu(x) = ok thenP
else if is pair(x) = ok then parse (+1 x) (parse (+2 x)P) else r !〈None〉

[[c!〈M 〉.P]]a = c!〈[[M]]〉.[[P]]a

[[c?(x).P]]a = ν r . (c?(x).parse x [[P]]a | repl (r?().c?(x).parse x [[P]]a))

[[if M = M ′ thenP1 elseP2]]a = if [[M]] = [[M ′]] then [[P1]]a else [[P2]]a

The translation of newloc creates a fresh location seed s′l and a local channel cl
(with a message None, recording that the location is uncommitted), and substitutes cl
for cx, s′l for sx and the idu capability for y in the continuation. a

The translation of commit can proceed only if the location has not been previously
committed (the message on cx provides mutual exclusion); it then substitutes the rd ca-
pability for x′ in the contuation code. It also generates the corresponding idc capability
for the location and logs it by sending it to the resolution protocol.

The parse function filters any received value received over channels. If the value
is tagged with rd or idc, then it might (or not) be a valid capability, depending on the
validity of its embedded signature: valid capabilities are passed to the continuation,
while the associated idc is sent to the resolution protocol. If the value is tagged as
a principal or an uncommitted capability, it is always passed to the continuation. For
compound data, here pairs, each element is separately parsed. Other values, as well as
non-valid committed capabilities, are silently discarded. In the translation of an input,
we assume that the channel r is fresh for [[P]]a , and use this channel to loop after
discarding such values.

5 Model and translation of environment interactions

We define a labelled source semantics that explicitly captures all possible interactions
between a system composed of honest principals and an abstract environment com-
posed of potentially hostile principals. To maintain the committable-cell invariants, this
semantics keeps track of the capabilities exported to the environment and of the partial
knowledge acquired when receiving capabilities from the environment. We then extend
our translation from initial configurations to any such reachable configuration.

Extended location states and capabilities We use overlapping syntaxes for capa-
bilities appearing in values, in transition labels, and in the processes representing the
state of the cells. Their general form is l . Cap ([p] [H] [V]), where l is the loca-
tion identifier; Cap ∈ {0, Idu, Idc,Rd} is a capability tag; p is a principal name; H

ranges over terms of the target language; and V is a value of the source language.
(This syntaxes extend those given in Section 2 for capabilities and location states, with
l .(a M) = l . 0 (a M)). The fields p, H , and V are optional. The presence of a value V
indicates that the location is committed to this value. The term H plays no role in the
source language, but is technically convenient in its translation: it enables us to repre-
sent any reachable state of our implementation as the translation of a source system.

The interpretation of Cap depends on the principal p that owns the location. If a
location is owned by a ∈ A, then Cap represents the most permissive capability sent to
the environment (and H is omitted), with Cap = 0 when no capabilities have been ex-
ported so far. If a location is owned by e /∈ A, then Cap represents the most permissive
capability received from the environment (and H records some opaque cryptographic
value in its received representation).

Ordering capabilities We formalize the notion of “more permissive capability” by
defining a preorder � on capabilities. Intuitively, C � C ′ holds if C and C ′ have
compatible contents and C can be derived from C ′ using the equational theory. We also
introduce a special capability⊥ that represents the absence of knowledge on a location.
The order is defined by the axioms below:

⊥ � 0 ct 0 ct � Idu ct Idu fu (ct) � Idc ct Idc fc (ct) � Rd ct

Cap (p H) � Cap (p H V)

where ct is any fixed contents and fu and fc are fixed functions that rewrite H in ct.
We write C gC ′ for the sup of C and C ′ with respect to �, when it exists.

Normal form We say that a system is in normal form when it is of the form

S = νN
(∏

l∈L l .Cl |
∏
a∈A a[Pa] | φ

)
for some finite sets of names N , L, and A and active substitutions φ. Every initial
configuration can be written in normal form (with L = ∅) using structural equivalence.
A system S is well-formed when it is structurally equivalent to a normal form such that
if l is a location name within S then l ∈ L and l occurs only

1. in terms l.C such that: (a) if get prin(l . Cl) ∈ A, then C and Cl are owned by the
same principal and if C has a value, then Cl has the same value; and
(b) if get prin(l . Cl) /∈ A, then C � Cl (informally, for a cell owned by the envi-
ronment, the system cannot have capabilities more permissive than those received);

2. in subprocesses commitM l (x).P of Pa when a = get prin(l . Cl);
3. in N when get prin(l . Cl) ∈ A and Cl = 0 ct .

In the labelled semantics below, we require that the initial and final systems and the
label be well-formed. We define labelled transitions A α−→ A′ between source systems
on top of an auxiliary relation C

γ−→ C ′ between capabilities.

Labelled transitions on capabilities Input/output actions with the environment can
affect the state of memory cells. To model these updates compositionally we define a
labelled transition semantics between capabilities.

C !C ′

−−→ C gC ′
C ′ � C prin(C ′) ∈ A

C ?C ′

−−→ C

prin(C ′) /∈ A

C ?C ′

−−→ C gC ′

The label !C ′ records that the capabilityC ′ is exported to the environment: the outcome
of the transition CgC ′ is an updated record of the most permissive exported capability.
The label ?C ′ records that the capability C ′ is imported from the environment. There
are two import rules, depending on the owner of C ′. If the owner is inA, then the capa-
bility refers to a location which is part of the system, so the environment can send back
at most capabilities that can be derived from those exported by the system, hence the
C ′ � C condition. On the contrary, if the owner is not in A, the environment can send
any capability, provided that the capability is compatible with the partial knowledge
that the system already has, i.e. that C gC ′ exists.

Labelled transitions on systems The labelled semantics for systems is adapted from
the one for the applied pi calculus. We point out the novelties, and refer to the compan-
ion paper for the full semantics.

The labelled semantics has silent steps for all system reductions, including the
location-specific reductions described in Section 2. The axioms for input and output
are recalled below. (We refer to [1] for a discussion of admissible output values when
the equational theory includes cryptographic primitives.)

a[c!〈M 〉.P] c !M−−−→ a[P] a[c?(x).P] c?M−−−→ a[P{M]

/x}]

When a capability is received, the rule substitutes in a capability value M] obtained
from the capability label M by erasing information used only to update the cell state.

The context rules below ensure that the communication of capabilities is reflected
in the state of the cells of the system; the condition l.C in M checks whether the cell
l.C occurs in the transmitted capability (possibly within another capability).

A c !M−−−→ A′ C0
!C−−→ C1 l .C inM

l .C0 | A c !M−−−→ l .C1 | A′
A c?M−−−→ A′ C0

?C−−→ C1 l .C inM

l .C0 | A c?M−−−→ l .C1 | A′

A α−→ A′ l .C not inα

l .C0 | A α−→ l .C0 | A′

We equate l .⊥ | A to A, so that the input rule covers the case of an input carrying
fresh, unknown locations from the environment. (The resulting configuration must be
well-formed, which excludes the introduction of a fresh location state for l if one al-
ready exists in the system.) We impose the following well-formedness conditions on
labels: (1) in every label, a location name occurs at most in a single, well-formed ca-
pability, plus possibly in the label restriction—this excludes e.g. pairs of simultaneous,
incompatible commitments; and (2) the target term H , the principal in uncommitted
capabilities, and the value in committed capabilities, appear iff the transition is an input
and the capability is owned by e /∈ A.

Example of transitions in the source language Consider the third round of the game
of Section 3, with two honest players a1 and a2 and an external, untrusted principal
e0 /∈ A running the server. A simplified configuration of this system can be written

A′ = l . Idu (e0 H) | a1[c1?(x1).P1] | a2[c2?(x2).P2]

where l is the uncommitted cell pre-allocated by e0 to store the winning move. (Here
H = h(e0 + h(s)) for some secret s created by e0.) We have possible input transitions
on channels c1 and c2, to notify the winning move to each of the players. The first
transition may be:

A′
c1?l .Rd (e0 s 11)−−−−−−−−−−→ l .Rd (e0 s 11) | a1[P1{l .Rd (e0 11)/x1}] | a2[c2?(x2).P2]

which triggers the final process P1 with a read capability for l substituted for x1, car-
rying the game result (here 11). At the same time, the state for l is updated by the third
capability-transition rule, since Idu (e0 H)gRd (e0 s 11) = Rd (e0 s 11). Conversely,
for instance, transitions with a label that attributes l to a1 instead of e0 are disabled.
At this stage, the configuration records the commitment on l, so the only subsequent

input transition A′′ c2?l .C
′

−−−−−→ A′′′ carrying a read capability C ′ for l must be such that
Rd (e0 s 11) � C ′ (by the third capability-transition rule), that is, C ′ = Rd (e0 s 11).
This guarantees that the second player gets exactly the same result as the first one.

Relating the reduction-based and labelled semantics for the source language The
labelled semantics precisely characterizes the interactions between a system and an ar-
bitrary environment. Given two systems A and E consisting of principals in A and E ,
respectively, if E |A −→∗ S then there exist two such systems A′ and E′ and transi-

tions A
φ−→ A′ such that S ≡ νN .(E′ |A′), where N is the set of names exported in

the labels of φ. Conversely, for all systems A and transitions A
φ−→ A′, there exists a

system E′ and reductions E |A −→∗ νN .(E′ |A′).

Translation of extended location states and capabilities We extend the translation of
Section 4 to cover all configurations reachable by transitions from initial configurations.
This extended translation is inductively defined for all well-formed configurations in
normal form, using the clauses of Section 4 plus the rules below for location states and
capabilities.

We extensively rely on active substitutions [1] with the following naming conven-
tions: for a location l, cl denotes the local channel that contains the state of the location,
sl the secret seed, vl the hidden value, and wl the seal. We define two extended pro-
cesses that compute and log identifiers, commitment values, and seals for a location
owned by a given principal p using active substitutions.

ϕ(M1,M2)p = { h(p + M1) / l } | ς(M1,M2)p
ς(M1,M2)p = {M1 + M2 / vl } | { sign(vl , sk(mp)) /wl } | repl log !〈idc(p , vl , wl)〉

We first translate locations owned by honest principals a ∈ A. The translation im-
plements these locations by sending the location state on the local channel cl, activating
the relevant substitutions, creating a fresh secret and, for committed locations only, run-
ning a replicated log entry:

[[l . 0 (a)]] = [[l . Idu (a)]] = cl !〈None〉 | { h(a + h(sl)) / l } | ν s . { s / sl }
[[l . 0 (a V)]] = [[l . Idc (a V)]] = [[l .Rd (a V)]] = ϕ(h(sl), h(sl + [[V]]))a | ν s . { s / sl }

We also translate locations owned by principals e /∈ Awhose capabilities have been
previously received by some principals in A. The translation records partial knowledge
of these locations, in the form of active substitutions plus, for committed locations only,
a replicated log entry. The form of the terms in these substitutions reflect the test that
processes in A have successfully performed before accepting these values, e.g. that the
seal is well-formed signature from e.

[[l . Idu (e H)]] = {H / l }
[[l . Idc (e (M ′ + M ′′)V)]] = ϕ(M ′,M ′′)e
[[l .Rd (e M V)]] = {M / sl } | ϕ(h(M), h(M + [[V]]))e

In a well-formed system, there is a location state for every capability that occurs in
the system. Accordingly, the translation of capabilities relies on the active substitutions
introduced by the translation of location states, as follows:

[[l . Idu]] = idu(l) [[l . Idc (p)]] = idc(p , vl , wl) [[l .Rd (p V)]] = rd(p , sl , [[V]] , wl)

The compilation of each location state l .C introduces name cl and variables sl, vl,
wl, l whose visibility from the environment depend on the exported capability recorded
in C. Thus, our translation finally introduces the following top-level restrictions: for
every location, if no capability have been exported, all these names and variables are
restricted; if C has tag Idu, the identifier l is unrestricted. for locations owned by prin-
cipals in A; if C has tag Idc, the variables wl and vl are also unrestricted; if C has
tag Rd, only the channel cl is restricted.

Example of transitions in the target language Let us consider how our translation
operates on the following transition, which represents player a1 receiving the result of
the game from server e0 (with H = h(e0 + h(s))).

l . Idu (e0 H) | a1[c1?(x).P1]
c1?l .Rd (e0 s 11)−−−−−−−−−−→ l .Rd (e0 s 11) | a1[P1{l .Rd (e0 11)/x}]

The translated system {H / l } | [[[a1[c1?(x).P1]]]] simulates the source transition
by an input with label c1 ? (rd(e0 , s , 11 , sign(h(s) + h(s + 11) , sk(me0)))), followed
by a series of reductions through the code of parse, including dynamic checks on is rd
and check idc. In 6 silent steps (including 3 steps for recursive processing of value 11),
this yields the process

{H / l } | [[a1[P1]]]{rd(e0 , s , 11 , sign(h(s)+h(s+11) , sk(me0)))/x}
| repl log !〈get idc(x)〉 | ν r . (repl r?().c1?(x).parse x [[P]]a) | R | E.

After applying structural equivalence with active substitutions and eliminating the dead
loop on channel r, we obtain a system

ν sl . ν vl . ν wl . ({ s / sl } | ϕ(h(sl), h(sl +11))e0 | [[a1[P1]]]{rd(e0 , sl , 11 ,wl)/x}) | R | E

that matches the translation of the resulting source system above.

6 Correctness results

The first proposition states that the behaviour of every source system can be simulated
by its translation. That is, for any labelled trace of all source systems, there is a labelled
trace of the process resulting from its translation. This shows the correctness (or func-

tional adequacy) of our translation. We let
φ−→ (resp.

ψ−→) range over series of transitions
in the labelled semantics of the source (resp. target) language.

Theorem 1 (Functional adequacy). Let A be a well-formed source system.

For all series of transitions A
φ−→
∗

A′ , there exist transitions [[[A]]]
ψ−→
∗

[[[A′]]].

The proof of the theorem is by induction on a series of source transitions between
systems in normal forms. For each source transition, we exhibit target transitions that
commute with the translation.

The “upwards” direction is more challenging: the trace produced by the translation
of a source process A can be related to a trace produced by A unless its translation
emits the name of a cheating principal on the special channel bad . This property unifor-
mally guarantees the security of the translation of all systems with respect to the source
semantics, provided that a proof that a principal cheated is a reasonable exceptional
outcome for the other principals.

We let S −→∗D S ′ denote that a target system S goes to S′ with a (possibly empty)

series of silent deterministic transitions, and let S ⇓ M abbreviate S −→∗D
bad!M−−−−→ S ′

for some S′; we then say that M is blamed.

Theorem 2 (Security). For all transitions [[[A]]]
ψ−→
∗

S starting from a well-formed
source system A, we have

1. either there are source transitions A
φ−→
∗

A′ leading to a well-formed source sys-
tem A′ such that S −→∗D [[[A′]]]; or S ⇓ e for some e /∈ A;

2. if S ⇓ M , then M /∈ A.

The proof is by induction on the series of transitions in the target language that do not
trigger a blame. The first part of the theorem states that either the source semantics is
respected, or the implementation at least provides the honest participants with the name
of one dishonest principal to blame. Said otherwise, its statement excludes the possi-
bility of cheating without eventual detection. The second part of the theorem expresses
that honest participants are never blamed (even in the case some dishonest participants
cheat), a necessary property for any optimistic implementation.

The form of our theorem differs from security properties for other programming
abstractions (e.g. [7, 2]), where any run or labelled trace of the cryptographic imple-
mentation of a source program is related to a run or labelled trace of the program on the
source level. Reflecting a more flexible approach to security, it enables bad runs as long
as malicious principals are reliably detected and blamed.

We illustrate how the Resolution protocol and the verifications made by the trans-
lation of receive suffice to detect write-after-commit attacks. Consider the online game
example and suppose that a1, a2 ∈ A and e0 /∈ A, that is, the server implementation

is malicious. In particular, the server implementation may commit location l twice, to
convince a1 that he is the winner with his bid 11 and a2 that he is the winner with his
bid 8. The system composed by the translation of the two clients [[[A1 | A2]]] generates
a trace

[[[A1 | A2]]]→ · · · → [[[A′]]]
c1 ? (rd(e0 , s , 11 ,w))−−−−−−−−−−−−−−→ c2 ? (rd(e0 , s , 8 ,w

′))−−−−−−−−−−−−−→ S

where the seals w and w′ sign commitments of l to 11 and 8, respectively.
For the first input transition, there exists a matching source transition, with a re-

sulting source system A′′ that includes the location state l .Rd (e0 s 11). Moreover, the
translation of A′′ emits the corresponding idc on log.

For the second input transition, however, there is no matching source transition. This
would require a capability transition from Rd (e0 s 11) to Rd (e0 s 8), which is excluded
by our definition of the � preorder. Instead, the resulting system sends a second Idc
on log. As soon as the Resolution process reads both commitments, it detects that they
are inconsistent, and blames e0 on bad .

7 Prototype implementation

We have implemented committable cells as a library for OCaml [9]. We have also coded
a series of examples, including simple online games and sealed-bid auctions.

The library provides abstract datatypes and access functions that closely follow
those of our source language. Its implementation relies on standard cryptographic li-
braries and on a public-key (X.509) infrastructure for processing capabilities; it uses
pseudo-random number generation for creating fresh secret seeds. Programs that use
our library may communicate with one another using OCaml marshalling and network
socket interfaces—cryptographic validation of received capabilities then occurs during
unmarshalling.

The main difference between the implementation and its formal semantics is the
handling of resolution. We refine the idealized resolution mechanism of Section 4 as
follows: instead of relying on a central resolution process, our implementation keeps
track of all principals and cells involved in a run of the system, and eventually imple-
ments the exchange and local resolution for all shared commitments.

8 Conclusions and future work

We presented a simple language for specifying systems based on optimistic commit-
ments, and we compiled this language into a realistic concurrent framework modelled
in the applied pi calculus. We established two security properties relating the labelled
traces of a source semantics with commitment primitives to those of their implementa-
tion, with a target semantics that uses only ordinary communications and cryptographic
functions. We only consider authenticity for now, but we believe it would also be pos-
sible to guarantee some properties of formal secrecy.

Although committable cells provide a reasonably useful (and formally challeng-
ing) block for building protocols, we focused on one particular usage of secure logs,

rather than proposing a comprehensive language design for optimistic protocols. Our
formal approach could be extended to other, more involved datatypes—as long as we
can represent their live cycles using a preorder on exported capabilities, as detailed in
Section 5. It would be interesting, for instance, to design compilers for such datatypes
with incremental commitment properties.

More generally, audit logs constitute an important tool for designing protocols and
applications. Although their efficient implementation has been thoroughly studied, we
believe ours is the first work to address their reliable, principled usage from a program-
ming-language viewpoint.

References
1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th

ACM Symposium on Principles of Programming Languages (POPL’01), 2001.
2. M. Abadi, C. Fournet, and G. Gonthier. Secure Implementation of Channel Abstractions.

Information and Computation, 174(1):37–83, 2002.
3. J. Castellà-Roca, J. Domingo-Ferrer, A. Riera, and J. Borrell. Practical mental poker without

a ttp based on homomorphic encryption. In Progress in Cryptology-Indocrypt, LNCS, 2003.
4. J.G. Cederquist, R. Corin, M.A.C. Dekker, S. Etalle, J.I. den Hartog, and G. Lenzini. Audit-

based compliance control. Int’l Journal of Information Security, 6(2):133–151, 2007.
5. D. Chaum. Secret-ballot receipts : True voter-verifiable elections. IEEE Security and Pri-

vacy, 2(1):38–47, 2004.
6. D. Chaum, P.Y.A. Ryan, and S. Schneider. A practical, voter-verifiable election scheme.

Technical Report CS-TR-880, 2004.
7. R. Corin, P.-M. Denielou, C. Fournet, K. Bhargavan, and J. Leifer. Secure implementations

for typed session abstractions. In IEEE Computer Security Foundations Symposium, 2007.
8. R. Corin, D. Galindo, and J.H. Hoepman. Securing data accountability in decentralized

systems. In 1st Int’l Workshop on Information Security (IS’06), LNCS, 2006.
9. X. Leroy et al. Objective caml. http://caml.inria.fr.

10. S. Etalle and W.H. Winsborough. A posteriori compliance control. In 12th ACM Symposium
on Access Control Models and Technologies, 2007.

11. ISO/IEC. Common criteria for information technology security evaluation.
http://www.commoncriteriaportal.org/public/expert/index.php?menu=3, 2004.

12. S. Jha, S. Katzenbeisser, C. Schallhart, H. Veith, and S. Chenney. Enforcing semantic in-
tegrity on untrusted clients in networked virtual environments. In IEEE Symposium on Se-
curity and Privacy, 2007.

13. S. Kremer and M. D. Ryan. Analysing the vulnerability of protocols to produce known-pair
and chosen-text attacks. In 2nd Int’l Workshop on Security Issues in Coordination Models,
Languages and Systems (SecCo’04), ENTCS, 2005.

14. NIST Special Publications. Generally accepted principles and practices for securing infor-
mation technology systems, 1996.

15. B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACM Transac-
tions on Information and System Security, 2(2):159–176, 1999.

16. A. Shamir, R.Rivest, and L. Adleman. Mental poker. Mathematical Gardener, 1981.
17. B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted and search-

able audit log. In Network and Distributed System Security Symposium (NDSS), 2004.
18. W. Xu, D. Chadwick, and S. Otenko. A PKI Based Secure Audit Web Server. In IASTED

Communications, Network and Information and CNIS, 2005.
19. L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning to

build secure distributed systems. In IEEE Symposium on Security and Privacy, 2003.

