
Let’s Go Public! Taking a Spoken Dialog System to the Real World

Antoine Raux, Brian Langner, Dan Bohus, Alan W Black, Maxine Eskenazi

Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA
{antoine,blangner,dbohus,awb,max+ }@cs.cmu.edu

Abstract
In this paper, we describe how a research spoken dialog system
was made available to the general public. The Let’s Go Public
spoken dialog system provides bus schedule information to the
Pittsburgh population during off-peak times. This paper describes
the changes necessary to make the system usable for the general
public and presents analysis of the calls and strategies we have
used to ensure high performance.

1. Introduction
The Let’s Go bus information dialog system [1] was created as
a test bed for spoken interaction with extreme user populations.
Specifically, the focus was on making spoken dialog systems
more accessible to the elderly and non-natives. Earlier efforts
in this work were on speech synthesis modifications to aid the
elderly understand synthetic speech [2] and changes in speech
recognition to aid non-natives [3].

The Port Authority of Allegheny County (PAAC) provided
data for the system both in the form of bus schedules and recorded
dialogs between callers and human operators. In the fall of 2004,
the management of PAAC called the Let’s Go experimental sys-
tem and found that it could correspond to their users’ needs for
information outside of the hours when human operators answer
the phone lines. The decision was made to make Let’s Go pub-
licly available in early March 2005 for two main reasons: this
would allow the Let’s Go group to collect speech data from real
users to train the system; and the group could carry out a series
of tests of the system with real users.

Experimental dialog systems are very different from com-
mercial systems. The changes that are made in order to accom-
modate public use would initially seem to render the system less
useful for experimental studies. In this article, we explain the
changes we have made to the Let’s Go system to make it useful
for the general public while retaining aspects that will allow us
to continue to experiment with dialog systems in general and for
extreme user populations. We describe the performance of this
baseline system, and analyze the understanding errors, and the
strategies used to overcome them.

This analysis is based on a corpus of dialogs we have col-
lected since the system went “live”, amounting to an average of
40 calls per day.

2. System Architecture, Components, and
Adaptations For Public Use

2.1. Speech Recognition

We use the CMU Sphinx2 speech recognizer with gender-specific
telephone quality acoustic models from the Communicator sys-
tem [4]. We run both male and female recognizers in parallel and
automatically select the best result. This method, as others have
found, improves our recognition accuracy.

Our original language model was a state-specific model
trained on past calls to the mixed-initiative system. Due to the
differences between the two systems, we were expecting a mis-
match between the old language models and user utterances in the
new system. Moreover, the modifications we made to the dialog

task generated new states in the dialog for which no data was yet
available. We initially resorted to hand-coded Finite State Gram-
mars for confirmations and neighborhood names but we found
that recognition accuracy (and particularly false rejection) was
not satisfying so we finally settle on tri-gram language models
trained on artificial corpora generated using simple templates and
information from the database (for neighborhood names).

In addition to speech recognition, we allowed the user to use
touch tones for Yes/No answers for explicit confirmation and to
ask for help (which they could also do at any time by simply
saying “Help”).

2.2. Dialog Manager

Dialog management in the Let’s Go system is based on the
RavenClaw architecture [5], for dialog management. RavenClaw
features a task-independent dialog engine that carries out a dialog
according to a given task specification.

Our initial system was designed for mixed-initiative, fairly
open-ended dialogs. Although good for exploring and experi-
menting with natural spoken language interactions, this approach
makes the system more fragile in the presence of less-than-
optimal conditions. Although the RavenClaw framework already
supports a variety of recovery strategies, we modified our base-
line system towards a very conservative and cautious approach
to dialog. This did not require any changes to RavenClaw archi-
tecture itself, but a new task description which encodes a fairly
linear, system-initiative dialog that asks the user for three or four
concepts sequentially: an optional bus route number, a departure
place, a destination and a desired travel time. Each concept is ex-
plicitly confirmed so it is rare that the dialog advances without the
system getting the correct information from the user. The draw-
back of this conservative approach is that users can get “stuck”
when the system fails to recognize one concept. Moreover, the
pace of the dialog is somewhat slow and, even without recogni-
tion errors, expert users might find it frustrating to have to pro-
vide and confirm one concept at a time. Nevertheless, we opted
for this solution so as to maximize the chances of task success.

In addition to the “normal” flow of the dialog, we explic-
itly coded subdialogs dealing with bus routes or areas of the city
for which the system does not provide schedule information. In
these cases the system simply informs the user of the limited cov-
erage of the current version and allows them to start a new query.
We also added a back-off strategy triggered by 2 successive fail-
ures to get the departure place. This strategy first asks for the
neighborhood from which the user is leaving, and then ask for
the specific stop in this neighborhood (or informs them that the
neighborhood is not covered by the system). More details about
this strategy and the ensuing user behavior are given below.

2.3. Backend Manager

The backend of the system is primarily a database of bus sched-
ules and routing information provided by PAAC. The PAAC sys-
tem consists of 14,983 stops (although some stops have multiple
names). The stop names were regularized, expanding abbrevi-
ations, allowing us to say that “5th Ave”, and “Fifth Avenue”
all reference the same street, but maintaining the distinction with
“5th Street”. There are 2428 routes (including variations of routes

according to time of day or week).

2.4. Language Generation

For language generation, we are using Rosetta, which is a lan-
guage generation toolkit originally designed for the CMU Com-
municator. Rosetta is capable of generating utterances from tem-
plates, filling in slots with information received from the dialog
manager. It can also randomly select from a list of templates for
a given response. The generated utterances are then sent to the
text-to-speech engine for synthesis.

In addition to changing system utterances to account for the
difference between a user-initiated and a system-initiated dialog,
we also modified the language generation to produce shorter ut-
terances in general, and longer, more detailed help utterances.

2.5. Speech Synthesis

As most of the spoken output in such a system is constrained,
and high quality output is required, we followed the techniques
in Limited Domain Synthesis [6], to build a unit selection con-
catenative speech synthesis voice specifically designed for this
domain.

Although much of the output follows well defined templates,
or informational prompts, with almost 15,000 bus stops it is not
possible to record even one example of each stop name. There-
fore in addition to the standard templates, bus numbers, informa-
tional prompts, we also designed a sub-corpus that maximized
diphone coverage over the 15,000 bus stop names. The voice is
good almost all the time.

For the Public system we had to spend time tuning it to re-
spond fast enough to keep the dialog going, and although the
voice can say anything, even things outside the domain, we fur-
ther handcrafted some of the prompts to avoid poorly synthesized
examples.

3. Corpus Description
3.1. Data Collection

The Let’s Go Public system runs every night from 7pm to 7am on
weekdays and from 6pm to 8am on weekends and holidays. Dur-
ing these hours, when PAAC users call customer service, they
first get to choose between schedule information and other types
of requests (e.g. complaints) through a standard touch-tone in-
terface. After selecting schedule information, they are informed
that operators are not working at the time and are given the pos-
sibility to transfer to the Let’s Go system by pressing “one”. This
message also lists the 10 routes that are currently covered by the
system. This initial interaction filters out some of the requests
that the system can not handle.

In the first three weeks of operation, we gathered a total of
614 dialogs (excluding calls which do not contain any speech di-
rected at the system), containing 7936 user turns. All these di-
alogs were manually transcribed and then checked by a second
annotator. Transcriptions include noise labels as well as a vari-
ety of tags for asides and other speech not directed to the system.
Table 1 shows some basic corpus statistics

Whole Corpus Turns with Speech
dialogs 627 614
turns 9162 7936
Turns/dialog 12.9 14.6
Avg WER 68% 60%
Understanding Rate 45.0% 51.9%
Task success 43.3% 43.6%

Table 1:Overview of the Let’s Go Public corpus.

3.2. System Performance

3.2.1. Word Error Rate

While we can assume that most users were calling to fulfill a gen-
uine information need, we found a large range of attitudes toward
the system, from amusement, to infinite patience, and sometimes
sarcasm. The conditions in which people called were also very
diverse, some calls being made from a quiet indoor place, while
others were done from cell phones while on the street, and others
from noisy rooms (due to background conversations, loud televi-
sion, babies crying, etc).

The raw word error rate (WER) computed from the transcrip-
tions is 68%, which is significantly higher than what we have
previously observed using the same engine and acoustic models
on more controlled conditions (17% for native and 43% for non-
native speakers in [7]). Part of the problem is background noises
and utterances by the main speaker directed at another person
rather than at the system. Yet, even when taking these utterances
out of the computation, the WER is still 60%.

3.2.2. Task Success

Because each caller’s actual information need is unknown, many
calls cannot be easily labeled as success or failure. Two of the
authors inspected the dialogs (with access to the recordings, the
transcriptions and all of the system information) and marked them
as success if they felt that the system did answer the users need
as they understood it. This includes some tolerance if for ex-
ample the system misrecognized the departure stop for a nearby
stop, which the user accepted. All calls in which the system did
not give any information to the user were labeled as failures, al-
though the reason for users hanging up in the middle of a call can
be unrelated to the quality of the dialog (e.g. their bus arrives).
Finally, we noticed several cases where, when having a difficult
conversation with the system, users hung up and called back right
away. The kappa coefficient for the agreement between the two
annotators was 0.75. Since one of the annotators labeled a larger
portion of the dataset (463 dialogs), we use their labels as our
“truth” for task success. The overall success rate is 43.3%, 43.6%
when excluding sessions that did not contain any system-directed
speech.

3.2.3. Dialog Length

The mean number of turns per call is 12.9, with a relatively large
standard deviation of 11.5 turns. 22% of the calls are shorter
than 6 turns (the minimum necessary to get schedule informa-
tion, including confirmations), and 16% longer than 20 turns. In
addition, although the system does understand “start over” as a
request to restart the dialog from scratch, certain users preferred
to hang up and call back immediately when facing many mis-
understandings. This resulted in “splitting” certain queries over
several calls.

3.3. Understanding Errors

3.3.1. Definitions

To be successful, calls require three or four pieces of information
from the user: a departure stop, a destination, a travel time, and,
optionally a bus route. Moreover, the names with which users
refer to places might not match the names used in the schedule
database (although we did extend the original database with land-
marks). Finally, while the introductory prompt explicitly listed
the routes covered by the system, we still encountered a signifi-
cant number of users asking for uncovered routes and areas of the
state.

In order to quantify understanding at the turn level, we define
the following terms:

• non-understanding: a turn where the system could not ex-
tract any meaning from the user utterance

Figure 1:Speaking styles and understanding rate following non-
understandings.

• misunderstanding: a turn where the system wrongly un-
derstood at least one concept from the user utterance, ei-
ther by inserting a concept or getting the wrong value for a
concept (simple concept deletions, which are usually less
harmful to the dialog, are not considered misunderstand-
ings).

• understanding error: a turn that is either a non-
understanding or a misunderstanding

• understanding rate: the ratio of turns that are correctly un-
derstood (i.e. not understanding errors) over the total num-
ber of turns

The overall understanding rate is 45% on the whole corpus,
51.9% when ignoring non-speech utterances.

3.3.2. Speaking Styles

One author manually labeled a subset of 991 turns for hyper-
articulation and loud speech (as compared to the other utterances
from the same call). We found 10.2% of turns hyper-articulated
and 11.2% turns of loud utterances, which span respectively
57.8% and 46.4% of the dialogs. Another author labeled a subset
of 593 turns for signs of frustration including sighs, noticeable
changes in intonation and lexical cues such as expletives. 11.5%
of the turns were marked as frustrated and 30.8% of the dialogs
had at least one frustrated turn.

We computed the understanding rate for turns immediately
following a non-understanding. While we will explore in more
detail the different strategies used for reprompting in Section 4,
Figure 1 gives the overall understanding rate for those turns, in
the presence or absence of each speaking style. As can be seen,
all three styles are associated with a decrease in understanding
rate (all differences are statistically significant atp < 0.05).
This is in partial agreement with [8], who found in a study of
the DARPA Communicator corpus that frustration was correlated
with higher WER, but did not find such a correlation for hyper-
articulation. Note that correlation does not mean that these speak-
ing styles are causing the degradation in understanding (or WER),
since, conversely, poor understanding is also likely to cause frus-
tration, hyper-articulation, or loud speech. A controlled experi-
ment remains to be done to tease apart these interfering effects.

4. Recovery Strategies: A Case Study
4.1. Default Non-understanding Strategy

The mismatches between user expectations and/or language de-
scribed above lead to misrecognitions that cannot be solved by
simply asking the user to repeat what they said. Rather, we ex-
plored two strategies: one consisted of giving examples of stops
covered by the system, the other in asking the user which neigh-
borhood they were leaving from, before refining to the exact stop
name.

Figure 2: Success rate of subdialogs for the acquisition of the
four key concepts.

By default, the system uses a simple hand-crafted pol-
icy when faced with non-understandings. On the first non-
understanding of a call, the system issues a prompt that notifies
the user of the problem and explicitly recommends going to a
quiet place, since we found that background noise was a major
cause of recognition errors.

The user is also given examples of expressions that the sys-
tem expects them to use at that point in the dialog (e.g. typical
place names, times, or schedule navigation commands). On sub-
sequent non-understandings, the user is always given examples,
along with more or less help. The most verbose prompt includes
a list of all the pieces of information that the system got from the
user so far and an explanatory version of the current question.

Figure 2 shows the rate at which each concept was success-
fully acquired from the user. Note that users were not asked for
their destination or travel time if the system detected that they
were looking for uncovered bus routes or neighborhoods. Also,
since the dialogs progress sequentially through the concepts in
the order departure/bus route, destination, and time, many of the
failed dialogs do not reach the point where the system asks about
destination or time. This explains why the success rate is higher
for destination and time than it is for departure place and bus
routes.

4.2. User Responses to Non-Understandings

To better understand what happens when the user is faced with
a non-understanding, we defined a labeling scheme based on the
one proposed by Shin et al [9] to describe user responses to sys-
tem prompts. In our case, we limited the labels to be of four
kinds: REP, when the user exactly repeats their previous ut-
terance,RPH, when the user rephrases their previous utterance
while keeping the same semantics,NEW, when the user changes
what they ask for, either by themselves or following a change
of question from the system. The last class wasOTH for all
turns that would not fit in the previous three classes, including
non-speech turns. Two of the authors labeled 2532 and 1120 ut-
terances, with an agreement of 83% and a kappa of 0.65. In this
study, we use the labels from the first labeler only on turns fol-
lowing a non-understanding, which amounts to 703 turns. The
distribution across the three main classes is given in Figure 3,
along with the understanding errors that each type of response
triggered. First, it appears that all three types of responses were
roughly equally frequent. Second, theNEW class yields signif-
icantly fewer understanding errors than the other two. This re-
sult is in agreement with what we have found in a different di-
alog system (see [10]). It also matches what Skanze [11] found
in a Wizard-of-Oz situation, namely that, when unsure of what
the user said, human wizards would predominantly ignore the ut-
terance and try to pursue the task through a different path and
ask different questions, rather than asking the user to repeat or
rephrase. Also, although repeats and rephrases generate the same
rate of understanding errors, the breakdown in misunderstand-

Figure 3:Distribution of Understanding Errors by User Response
Type

Figure 4:Distribution of Neighborhood Backoff Strategy Success
for Different User Request Types

ings and non-understandings is different: repeats are more likely
to trigger non-understandings (withp < 0.05) and rephrases
are more likely to trigger misunderstandings (withp < 0.1).
This should not come as a surprise since in the repeat case,
users are repeating an utterance which already triggered a non-
understanding. Nevertheless, dialog system designers should take
this aspect into account when balancing the trade-off between
non-understandings and misunderstandings, which typically have
different costs and impact on the dialog.

4.3. Backing Off to Neighborhood Information

As seen in the last section, merely reprompting the user after a
non-understanding is not always the right approach. Goldberg
and her colleagues reported in [8] that simply repeating the sys-
tem prompt leads to more user frustration than rephrasing it. They
also found that the more times the user gets reprompted for a par-
ticular concept, the worse the WER and thus the understanding
ratio. In order to avoid such understanding error spirals, we im-
plemented a backoff strategy to obtain the departure place from
the user. After two consecutive non-understanding at the begin-
ning of the dialog, the system stops asking about the specific de-
parture stop of the user and instead asks “Which neighborhood do
you want to leave from?”. If there are more non-understandings,
examples of neighborhoods are given to the user. When a cov-
ered neighborhood is given and confirmed by the user, the system
asks for the specific stop in the neighborhood. The user is also
given the possibility to say “I don’t know” to this last question,
in which case the system uses a default stop for the neighbor-
hood. When an uncovered neighborhood is given, the system
informs the user that it currently does not support buses serv-
ing that neighborhood. Thus, this strategy has two goals: limit-
ing the repetitiveness of the interaction in the presence of errors,
and identifying out-of-coverage requests, which result in out-of-
vocabulary words.

Figure 4 shows the distribution of calls where the backoff
strategy was used, split by whether the user was asking for a

neighborhood covered by the system, one that was in the PAAC
database but not covered by the system, and neither of those two,
i.e. a neighborhood not served by the PAAC buses or no neigh-
borhood information at all.

5. Future Directions and Conclusion
We are continuing to support the public system and there are sev-
eral improvements we would like to bring to this baseline system
in the near future, along with more in-depth research questions
we would like to address. First, we are going to use the collected
data to improve recognition accuracy. We plan to investigate the
use of acoustic models trained on frustrated or hyper-articulated
speech. Another direction for research is the study of alternative
strategies like the “backoff to neighborhood” introduced here. A
controlled experiment would allow us to identify the strengths
and weaknesses of this strategy as opposed to a system using only
standard reprompting strategies.

6. Acknowledgments
This work is supported by the US National Science Foundation
under grant number 0208835, “LET’S GO: improved speech in-
terfaces for the general public”. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation. Thank you to the Port Authority of
Allegheny County for access to their database and for their help
in making the Let’s Go system accessible to Pittsburghers.

7. References
[1] A. Raux, B. Langner, A. Black, and M. Eskenazi, “LET’S

GO: Improving spoken dialog systems for the elderly and
non-native,” inEurospeech03, Geneva, Switzerland, 2003.

[2] B. Langner and A. Black, “An examination of speech in
noise and its effect on understandability for natural and
synthetic speech,” Language Technologies Institute, CMU,
Pittsburgh PA, Tech. Rep. CMU-LTI-04-187, 2004.

[3] A. Raux and R. Singh, “Maximum likelihood adaptation of
semi-continuous hmms by latent variable decomposition of
state distributions,” inICSLP 2004, Jeju, Korea, 2004.

[4] A. Rudnicky, C. Bennett, A. Black, A. Chotimongkol,
K. Lenzo, A. Oh, and R. Singh, “Task and domain specific
modelling in the Carnegie Mellon Communicator system,”
in ICSLP2000, vol. II, Beijing, China., 2000, pp. 130–133.

[5] D. Bohus and A. Rudnicky, “RavenClaw: Dialog manage-
ment using hierarchical task decomposition and an expecta-
tion agenda,” inEurospeech03, Geneva, Switzerland, 2003.

[6] A. Black and K. Lenzo, “Limited domain synthesis,” inIC-
SLP2000, vol. II, Beijing, China., 2000, pp. 411–414.

[7] A. Raux, “Automated lexical adaptation and speaker clus-
tering based on pronunciation habits for non-native speech
recognition,” inICSLP 2004, Jeju Island, Korea, 2004.

[8] J. Goldberg, M. Ostendorf, and K. Kirchhoff, “The im-
pact of response wording in error correction subdialogs,” in
ISCA Workshop on Error Handling in Spoken Dialog Sys-
tems, Chateau d’Oex, Vaud, Switzerland, 2003.

[9] J. Shin, S. Narayanan, L. Gerber, A. Kazemzadeh, and
D. Byrd, “Analysis of user behavior under error conditions
in spoken dialogs,” inICSLP2002, Denver, Colorado, 2002.

[10] D. Bohus and A. Rudnicky, “An empirical analysis of non-
understanding and recovery strategies in spoken dilague
systems,” submitted to SIGdial 2005, Lisbon, Portugal,
2005.

[11] G. Skantze, “Exploring human error recovery strategies:
Implications for spoken dialogue systems,”Speech Commu-
nication, vol. 45, no. 3, 2005.

