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1. INTRODUCTION
An increasing number of applications require distributed

data storage and processing infrastructure over large clus-
ters of commodity hardware for critical business decisions.
The MapReduce programming model [2] helps programmers
write distributed applications on large clusters, but requires
dealing with complex implementation details (e.g., reasoning
with data distribution and overall system configuration).
Recent proposals, such as Scope[1], raise the level of ab-

straction by providing a declarative language that not only
increases programming productivity but is also amenable to
sophisticated optimization. Like in traditional database sys-
tems, such optimization relies on detailed data statistics to
choose the best execution plan in a cost-based fashion.
However, in contrast to database systems, it is very dif-

ficult to obtain and maintain good quality statistics in a
highly distributed environment that contains tens of thou-
sands of machines. First, it is very challenging to efficiently
combine a large number of individually collected local com-
plex statistical information (e.g., histograms, distinct val-
ues) in a statistically meaningful way. Second, calculating
statistics typically requires scans over the full dataset. Such
operation can be overwhelmingly expensive for terabytes of
data. Third, even if we can collect statistics for base ta-
bles, the nature of user scripts, which typically rely on user-
defined code, makes the problem of statistical inference be-
yond selection and projection even more difficult during op-
timization. Finally, the cost of user defined code is another
important source of information for cost-based query opti-
mization. Such information is crucial for the optimizer to
choose the optimal degree of parallelism for the final execu-
tion plan and when and where to execute the user code. It
is challenging, if not impossible, to estimate its actual cost
before running the query with the real dataset.
We leverage the fact that a large proportion of scripts in

this environment are parametric and recurring over a time
series of data. The input datasets usually come in regularly,
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say, hourly or daily. The same business logic is applied to dif-
ferent datasets in an hourly or daily fashion. We call those
scripts recurring jobs. Although the input datasets arrive
in a time series, they share a similar data distribution and
characteristics. In this paper, we describe mechanisms to
capture data statistics concurrently with job execution and
automatically exploit them for optimizing a class of recur-
ring jobs. We achieve this goal by instrumenting different
job stages and piggybacking statistics collection with the
normal execution of a job. After collecting such statistics,
we show how to feed them back to the query optimizer so
that future invocations of the same (or similar) jobs take
advantage of accurate statistics. We implemented this ap-
proach in the Scope system at Microsoft, which runs over
tens of thousands of machines and processes over 30 thou-
sand jobs daily, 40% of which have a recurring pattern.

2. SOLUTION OVERVIEW
We describe the main characteristics of our approach to

collect statistics at runtime and subsequently leverage them
while optimizing new scripts (see also Figure 1):

1. Initially, a script is submitted to the cluster for exe-
cution. The script might be recurring or new, and it
is assumed to be annotated with parametric informa-
tion (e.g., usually the input datasets change every day
following a simple expression pattern).

2. The compiler parses the input script, performs syntax
and type checking, and passes an annotated abstract
syntax tree to the query optimizer [3]. The query op-
timizer explores many semantically equivalent rewrit-
ings, estimates the cost of each alternative, and picks
the most efficient one. While doing costing, the opti-
mizer relies on cardinality estimates and other statis-
tics for each plan alternative.

3. We extend the query optimizer to generate signatures
for plan subtrees (explained below). During plan ex-
ploration we collect all the signatures that are associ-
ated with execution alternatives, and before implemen-
tation and costing we probe the statistics repository
for signature matches. The repository is a new ser-
vice that stores plan signatures and the corresponding
runtime statistics gathered during execution of previ-
ous jobs. The optimizer relies on such feedback to
produce a more effective execution plan. Signatures
can be matched not only on the same recurring job,
but also on similar jobs that share common subex-
pressions. Also during optimization, the optimizer in-
struments the resulting execution plan to collect addi-












































  


 























Figure 1: Architecture to collect and leverage statistics.

tional statistics during execution: the resulting execu-
tion plan might contain sub-plans not yet seen by the
statistics repository, and also data properties might
change over time, invalidating previous estimates.

4. The resulting execution plan is passed to the job sched-
uler in the form of a directed acyclic graph, where
each vertex is an execution unit which looks similar
to a single-node relational query plan, and each edge
corresponds to data transfer due to repartitioning op-
erators.

5. The scheduler manages the execution graph to achieve
load-balancing, outlier detection and fault tolerance,
among others.

6. The job scheduler transfers the vertex definition of
new execution units to be run in cluster machines, and
monitors the health and progress of each instance.

7. The runtime, which can be seen as a single-instance
database engine, executes the vertex definition and
concurrently collects statistics requested by the opti-
mizer and instrumented during code generation.

8. When the vertex finishes execution, as part of the last
heartbeat to the job scheduler, it sends back the ag-
gregated statistical information, which is collected and
further aggregated over all vertex instances.

9. Before finishing execution of the whole job graph, the
job scheduler contacts the statistics repository and in-
serts the new statistics, to be consumed by future jobs.
In case of duplicate signatures, the repository recon-
ciles them using different policies. Periodically a back-
ground task maintains and/or discards statistics in the
repository that exceed a certain age.

We comment on some technical aspects of our approach,
but omit most details due to space constraints.

What to collect: Statistics collection needs to satisfy the
following properties: (i) be cheap to collect, (ii) be action-
able during optimization. We compute cardinality values,
average row sizes and average time to process a row by user-
defined operators. Additionally, based on query require-
ments, we selectively gather more expensive statistics such
as histograms and distributions of distinct values.

Signatures: Plan signatures are used to identify plan frag-
ments. This is very similar to view matching technology in
traditional database systems. View matching is a very flexi-
ble approach, since it obtains a canonical representation of a
sub-query and is able to use compensating actions in case of
partial matches. At the same time, traditional view match-
ing does not scale well when used on all subexpressions of

thousands of input queries. For scalability purposes, and
exploiting the fact that many jobs are naturally recurring
in our environment, we take a slightly different approach.
Specifically, we serialize the representation of the canonical
logical expression tree and compute a 64-bit hash value for a
given query expression (we use parameterized serialization,
so we do match logically equivalent trees as long as the input
datasets belong to the same class). This hash value is the
signature of the query expression. This approach has some
advantages over traditional view matching in our scenar-
ios. First, we can handle any logical operator tree including
user defined operators in Scope, which are not considered
in traditional view matching. Second, these signatures are
very compact and easy to manipulate inside the optimizer
and across components. Finally, querying and updating the
statistics repository for signature matches is a very efficient
lookup operation.

3. AN EXAMPLE
Figure 2 shows an example of our techniques applied to

a daily recurring job that monitors the health of the clus-
ter and aggregates and reports various warnings and errors.
After gathering and exploiting statistics, the runtime of the
recurring job improves by over 30%, and incurs in 18% less
I/O. In this example, a significant fraction of the improve-
ment comes from a better determination of the degree of
parallelism of expensive repartitioning operators, which is
overestimated by the optimizer due to complex filter predi-
cates and user defined operators.



























 












Figure 2: Performance results when using statistics.
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