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Abstract
Approximating detailed models with coarse, texture-mapped
meshes results in polygonal silhouettes. To eliminate this artifact,
we introduce silhouette clipping, a framework for efficiently
clipping the rendering of coarse geometry to the exact silhouette of
the original model. The coarse mesh is obtained using progressive
hulls, a novel representation with the nesting property required
for proper clipping. We describe an improved technique for
constructing texture and normal maps over this coarse mesh. Given
a perspective view, silhouettes are efficiently extracted from the
original mesh using a precomputed search tree. Within the tree,
hierarchical culling is achieved using pairs of anchored cones.
The extracted silhouette edges are used to set the hardware stencil
buffer and alpha buffer, which in turn clip and antialias the rendered
coarse geometry. Results demonstrate that silhouette clipping can
produce renderings of similar quality to high-resolution meshes in
less rendering time.
Keywords: Level of Detail Algorithms, Rendering Algorithms,
Texture Mapping, Triangle Decimation.

1 Introduction
Rendering detailed surface models requires many triangles, result-
ing in a geometry processing bottleneck. Previous work shows that
such models can be replaced with much coarser meshes by captur-
ing the color and normal fields of the surface as texture maps and
normal maps respectively [2, 3, 20, 26]. Although these techniques
offer a good approximation, the coarse geometry betrays itself in the
polygonal silhouette of the rendering. This is unfortunate since the
silhouette is one of the strongest visual cues of the shape of an ob-
ject [14], and moreover the complexity of the silhouette is often only
O(
p

n) on the number n of faces in the original mesh.
In this paper, we introduce silhouette clipping, a framework for

efficiently clipping the rendering of coarse geometry to the exact
silhouette of the original model. As shown in Figure 1, our system
performs the following steps.

Preprocess Given a dense original mesh:

� Build a progressive hull representation of the original mesh and
extract from it a coarse mesh, which has the property that it
encloses the original, allowing proper clipping (Section 3).

� Construct a texture map and/or normal map over each face of
the coarse mesh by sampling the color and/or normal field of the
original mesh (Section 4).

� Enter the edges of the original mesh into a search tree for efficient
runtime extraction of silhouette edges (Section 5).
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Figure 1: Overview of steps in silhouette clipping.

Runtime Then, for a given viewpoint:

� Extract the silhouette edges from the search tree (Section 5).

� Create a mask in the stencil buffer by drawing the silhouette
edges as triangle fans. Optionally, draw the edges again as
antialiased lines to set the alpha buffer (Section 6).

� Render the coarse mesh with its associated texture/normal maps,
but clipped and antialiased using the stencil and alpha buffers.

Contributions This paper describes:

� The framework of silhouette clipping, whereby low-resolution
geometry is rendered with a high-resolution silhouette.

� A progressive hull data structure for representing a nested se-
quence of approximating geometries. Within the sequence, any
coarser mesh completely encloses any finer mesh.

� A new method for associating texel coordinates on the coarse
model with positions on the original model. The association
is based on the simple idea of shooting along an interpolated
surface normal.

� A scheme for efficiently extracting the silhouette edges of a
model under an arbitrary perspective view. It is inspired by pre-
vious work on backface culling [13, 15], but uses a convenient
“anchored cone” primitive and a flexible n-ary tree to reduce ex-
traction time.



� An efficient technique for setting the stencil buffer given the
silhouette edges. Special care is taken to overcome rasterization
bottlenecks by reducing triangle eccentricities.

� An improvement for efficiently antialiasing the silhouette with
little additional cost.

� Demonstrations that silhouette clipping produces renderings of
similar quality to high-resolution meshes in less time.

Limitations
� Only the exterior silhouette is used for clipping and antialiasing.

Internal silhouettes retain their polygonalized appearance from
the coarse model.

� As in other texture mapping schemes, some minor texture slip-
ping can occur, depending on the accuracy of the coarse model.

� Efficiency depends on a relative sparsity of silhouettes, and
therefore breaks down for extremely rough geometry like trees
or fractal mountains.

� The approach only works for static models represented by
closed, oriented, 2-dimensional manifolds.

� The stencil setting method assumes that the viewpoint is outside
the convex hull of the original model.

2 Previous Work
Level of Detail/Simplification Level-of-detail (LOD) tech-
niques adapt mesh complexity to a changing view. The simplest
approach precomputes a set of view-independent meshes at differ-
ent resolutions from which an appropriate approximation is selected
based on viewer distance (see survey in [10]). A more elaborate ap-
proach, termed view-dependent LOD [12, 18, 27], locally adapts the
approximating mesh. Areas of the surface can be kept coarser if they
are outside the view frustum, facing away from the viewer, or suf-
ficiently far away. In particular, the view-dependent error metric of
Hoppe [12] automatically refines near mesh silhouettes. However,
a cascade of dependencies between refinement operations causes
refinement in areas adjacent to the silhouette, increasing rendering
load. Also, the efficiency of these systems relies on time-coherence
of the viewing parameters.

With silhouette clipping, fewer polygons need to be processed
since silhouettes are obtained as a 2D post-process. Antialiasing
is achieved by processing only the silhouette edges rather than
supersampling the entire frame buffer.

Texturing Maruya [20] and Soucy et al. [26] define textures
over a coarse domain by following invertible mappings through a
simplification process. The shape of the final parametrization is
influenced by the fairly arbitrary sequence of simplification steps.

Cignoni et al. [2] describe a simple method for defining a
parametrization using only the geometry of the coarse and fine mod-
els. Each position on the coarse model is associated with its closest
point on the fine model. This method often creates mapping discon-
tinuities in concave regions (Figure 4). In Section 4 we present a
method that instead shoots rays along the interpolated surface nor-
mal. Although not guaranteed to produce a one-to-one mapping, our
parametrization has far fewer discontinuities.

Silhouette Extraction Silhouette information has been used to
enhance artistic renderings of 3D objects [6, 7, 19]. Blythe et al. [1]
describe a multipass rendering algorithm to draw silhouettes in the
screen. Other work highlights the visible silhouette by rendering
thickened edges [24] or backfaces [23] translated slightly towards
the viewpoint. These works require the traversal of the entire
geometric object.

A number of algorithms exist for extracting silhouette edges from
polyhedral models. Markosian et al. [19] describe a probabilistic
algorithm that tests random subsets of edges and exploits view

coherence to track contours. Their method is not guaranteed to
find all of the silhouette components, and is too slow for models
of high geometric complexity. Gooch et al. [7] extract silhouette
edges efficiently using a hierarchical Gauss map. Their scheme
is applicable only to orthographic views, whereas ours works for
arbitrary perspective views.

Backface Culling Our method for fast silhouette extraction is
inspired by previous schemes for fast backface culling. Kumar
et al. [15] describe an exact test to verify that all faces are back-
facing. They reduce its large cost by creating a memory-intensive
auxiliary data structure that exploits frame-to-frame coherence. Jo-
hannsen and Carter [13] improve on this by introducing a conserva-
tive, constant-time backfacing test. The test is based on bounding
the “backfacing viewpoint region” with a constant number of half
spaces. In our system we use an even simpler anchored cone test
primitive.

Johannsen and Carter do not address hierarchy construction,
while Kumar et al. build their hierarchy using a dual space gridding
that does not explicitly take into account the extraction cost. We
describe a general bottom-up clustering strategy, similar to Huffman
tree construction, that is greedy with respect to predicted extraction
cost. In the results section we report the advantage of using our
method over that of Johannsen and Carter.

Silhouette Mapping Our earlier system [8] performs silhouette
clipping using an approximate silhouette, obtained using interpola-
tion from a fixed number of precomputed silhouettes.

3 Progressive Hull
In order to be properly clipped by the high-resolution silhouette,
the coarse mesh should completely enclose the original mesh Mn.
In this section we show how such a coarse mesh can be obtained
by representing Mn as a progressive hull — a sequence of nested
approximating meshes M0 � � �Mn, such that

V(M0) � V(M1) � � � � V(Mn)

where V(M) denotes the set of points interior to M. A related
construction for the special case of convex sets was explored in [4].

Interior volume To define interior volume, we assume that Mn

is oriented and closed (i.e. it has no boundaries). In most cases,
it is relatively clear which points lie in V(M). The definition of
interior is less obvious in the presence of self-intersections, or when
surfaces are nested (e.g. concentric spheres). To determine if a point
p � R3 lies in V(M), select a ray from p off to infinity, and find all
intersections of the ray with M. Assume without loss of generality
that the ray intersects the mesh only within interiors of faces (i.e.
not on any edges). Each intersection point is assigned a number,
+1 or �1, equal to the sign of the dot product between the ray
direction and the normal of the intersected face. Let the winding
number wM(p) be the sum of these numbers [22]. Because the mesh
is closed, it can be shown that wM(p) is independent of the chosen
ray. To properly interact with the stencil algorithm described later
in Section 6, we define interior volume using the positive winding
rule as V(M) = fp � R3 : wM(p) � 0g. Note that this description
only defines interior volume; it is not used in actual processing.

Review of progressive mesh The progressive hull sequence
is an adaptation of the earlier progressive mesh (PM) representa-
tion [11] developed for level-of-detail control and progressive trans-
mission of geometry. The PM representation of a mesh Mn is ob-
tained by simplifying the mesh through a sequence of n edge col-
lapse transformations (Figure 3), thus defining a dense family of ap-
proximating meshes M0 � � �Mn.

For the purpose of level-of-detail control, edge collapses are
selected so as to best preserve the appearance of the mesh during
simplification (e.g. [3, 10, 11, 17]). We show that proper constraints
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Figure 2: Example of progressive inner and outer hulls. The original mesh has 69,674 faces; n�=34,817; n=34,818.
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Figure 3: The edge collapse transformation.

on the selection of edge collapse transformations allow the creation
of PM sequences that are progressive hulls.

Progressive hull construction For the PM sequence to be a
progressive hull, each edge collapse transformation Mi+1 � Mi

must satisfy the property V(Mi) � V(Mi+1). A sufficient condition
is to guarantee that, at all points in space, the winding number either
remains constant or increases:

�p � R3 , wMi+1 (p) � wMi (p) .

Intuitively, the surface must either remain unchanged or locally
move outwards everywhere.

Let Fi+1 and Fi denote the sets of faces in the neighborhood of the
edge collapse as shown in Figure 3, and let v be the position of the
unified vertex in Mi. For each face f � Fi+1, we constrain v to lie
outside the plane containing face f . Note that the outside direction
from a face is meaningful since the mesh is oriented. The resulting
set of linear inequality constraints defines a feasible volume for the
location of v. The feasible volume may be empty, in which case the
edge collapse transformation is disallowed. The transformation is
also disallowed if either Fi or Fi+1 contain self-intersections1. If v
lies within the feasible volume, it can be shown that the faces Fi

cannot intersect any of the faces Fi+1. Therefore, Fi � flip(Fi+1)
forms a simply connected, non-intersecting, closed mesh enclosing
the difference volume between Mi and Mi+1. The winding number
w(p) is increased by 1 within this difference volume and remains
constant everywhere else. Therefore, V(Mi) � V(Mi+1).

The position v is found with a linear programming algorithm,
using the above linear inequality constraints and the goal function of
minimizing volume. Mesh volume, defined here as

R
p�R3 wM(p)dp,

1We currently hypothesize that preventing self-intersections in Fi and
Fi+1 may be unnecessary.

is a linear function on v that involves the ring of vertices adjacent to
v (refer to [9, 17]).

As in earlier simplification schemes, candidate edge collapses
are entered into a priority queue according to a cost metric. At
each iteration, the edge with the lowest cost is collapsed, and the
costs of affected edges are recomputed. Various cost metrics are
possible. We obtain good results simply by minimizing the increase
in volume, which matches the goal function used in positioning the
vertex.

Inner and outer hulls The algorithm described so far con-
structs a progressive outer hull sequence M

0 � � � � � M
n
. By sim-

ply reversing the orientation of the initial mesh, the same construc-
tion gives rise to an progressive inner hull sequence M0 � � � � �
Mn� . Combining these produces a single sequence of hulls

M0 � � � � � Mn� = M
n � � � � � M

0

that bounds the original mesh from both sides, as shown in Figure 2.
(Although the surface sometimes self-intersects, interior volume
defined using the winding number rule is still correct.)

We expect that this representation will also find useful applica-
tions iTj
ET
q
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Figure 4: Closest-point parametrization often produces discontinu-
ities not present with normal-shooting.

(a) original mesh (b) closest-point (c) normal-shooting

Figure 5: Comparison of texturing the coarse mesh using the
closest-point parametrization and our normal-shooting parametriza-
tion. Note the parametric discontinuities in the concave regions for
closest-point.

� Calculate the barycentric coordinates of t within the triangle T.

� Calculate the position p and normal�n by interpolating the posi-
tions and normals of the vertices of T.

� Shoot a ray from p in the ��n direction. This ray will intersect
the original mesh at a particular point q. In the extremely rare
event of a ray failing to hit the original model, we instead use
the closest point to p.

� Given the triangle and barycentric coordinates of q in the origi-
nal model, interpolate the prelit color or normal of its three ver-
tices, and store the result in t.

We adjust the sampling resolution on the texture tiles depending
on the complexities of the original and simplified meshes. For the
models in Section 7, we sampled 512 texels per coarse face on the
bunny and holes, but only 128 texels on the dragon, parasaur, and
knot since these have many more coarse faces. These resolutions
are enough to capture the desired level of detail. To allow bilinear
interpolation on the resulting texture, we appropriately pad the
triangle texture tiles.

5 Fast Silhouette Extraction
We consider each geometric edge in the mesh to consist of a pair of
opposite-pointing directed edges. For a given mesh and viewpoint
p, the 3D silhouette is the subset of directed edges whose left adja-
cent face is frontfacing and whose right adjacent face is backfacing.
More formally, a directed edge e is on the silhouette if and only if

p � frontfacing(e. f1) and p 	� frontfacing(e. f2),

where the region

frontfacing(f ) = fp � R3 j (p� f .v) 
 f .�n � 0g
in which f .v is any vertex of f , and f .�n is its outward facing normal.

Runtime Algorithm Applying this test to all edges in a brute-
force manner proves to be too slow. Instead, our approach is to
enter the edges into a hierarchical search tree, or more properly,
a forest. Each node in the forest contains a (possibly empty) list
of edges to test. Let the face cluster F(n) for a node n be the set
of faces attached to edges contained in that node and in all of its
descendants. If for a given viewpoint we can determine that the
faces in F(n) are entirely frontfacing or entirely backfacing, then
none of the edges contained in the node’s subtree can be silhouettes,

and thus the depth-first traversal skips the subtree below n. The
basic structure of the algorithm is as follows:

procedure findSilhouetteEdges(node n, viewpoint p)
if ( p � frontfacing(F(n)) or p � backfacing(F(n)) )

return; // skip this subtree
for edges e in n.E

if ( p � frontfacing(e. f1) and p 	� frontfacing(e. f2) )
output(e);

for children c in n.C
findSilhouetteEdges(c,p);

The frontfacing and backfacing regions of a face cluster F are
defined as

frontfacing(F) =
�
f�F

frontfacing(f ) and

backfacing(F) =
�
f�F

frontfacing(f ) .

To make hierarchical culling efficient, we need a fast, constant-
time algorithm to conservatively test p � frontfacing(F) and p �
backfacing(F). We do this by approximating these regions using
two open-ended anchored cones, af and ab, satisfying

af � frontfacing(F) and ab � backfacing(F)

as shown in Figure 6. Each anchored cone a is specified by an
anchor origin a.o, normal a.�n, and cone angle a.�. The construction
of these cones will be presented shortly.

Each region test then reduces to

p � a � cos�1

�
p� a.o
kp� a.ok 
 a.�n

�
 a.� .

For efficiency and to reduce storage, we store in our data structure
the scaled normal a.�ns = a.�n� cos(a.�). With careful precomputa-
tion, the above test can be then implemented with two dot products
and no square roots or trigonometric operations, via

p � a � (p� a.o) 
 a.�ns � 0 and�
(p� a.o) 
 a.�ns

�2 � kp� a.ok2 .

Because we construct af and ab to have the same cone angle and
opposite cone normals, we can test for inclusion in both anchored
cones with just two dot products. This is made possible by precom-
puting and storing the “anchor separation” d = (af.o � ab.o) 
 af.�n.
For reference, the final node data structure is:

struct node
vector scaledNormal; //�ns

point ffAnchor; // af .o
point bfAnchor; // ab.o
float AnchorSeparation; // d
edgeList E;
childPointerList C;

Anchored Cone Construction We first find the cone having
the largest angle � inside the frontfacing region. It can be shown that
the central axis �n of such a cone has the following property: if one
associates a point on the unit sphere with each face normal in the
cluster, and computes the 3D convex hull of this pointset,�n must
pass through the closest point from the origin to that convex hull.
We therefore use Gilbert’s algorithm [5] which directly finds this
closest point in linear time. (Note that an open-ended cone exists
if and only if the convex hull does not contain the origin.) The
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Figure 7: The three join operations.

largest cone angle � is then easily computed as the complement of
the maximum angle from�n to the set of face normals. In fact, � is
also the complement of the angular distance of�n to any vertex in the
closest simplex found by Gilbert’s algorithm.

For a given node, we assign

af .�n = �ab.�n = �n
af .� = ab.� = � .

We then find the best cone origins, af .o and ab.o, by solving the
linear programs

af .o = argmin
o�frontfacing(F)

�n 
 o and ab.o = argmin
o�backfacing(F)

��n 
 o .

Tree Construction We construct our trees in a bottom-up
greedy fashion much like the construction of Huffman trees. We be-
gin with a forest where each edge is in its own node. Given any two
nodes (a,b), we allow the following three join operations (see Fig-
ure 7).

� parent(a,b): creates a new node with two children a and b.

� adopt(a,b): gives node b to node a as an additional child node.

� merge(a,b): creates a new node whose edge and child lists are
the union of those from a and b.

Given these possible join operations, the algorithm is as follows:

Forest buildOptimalForest(Forest forest)
candidates = buildJoinCandidates(forest);
candidates.heapify();
while (joinOp = candidates.removeTop())

if ( joinOp.cost � 0 ) break;
forest.applyJoin(joinOp);
candidates.updateCosts(joinOp);

return forest;

Candidate join operations are ordered in the heap by their pre-
dicted decrease in silhouette extraction cost. The silhouette extrac-
tion cost is computed as follows.

The cost of a forest is simply the sum of the costs of its roots:

forestCost =
X

r

rootCost(r) .

The cost of a root node is some constant ka for the anchored cone
tests, plus the possible cost of testing its edges and its children:

rootCost(r) = ka + P(r)

�
ke jr. Ej +

X
c�r.C

nodeCost(c, frg)

�
,

where ke is the cost for testing an edge, and P(r) is the probability
of the node r not being culled2. To compute P(r), one must assume
some probability distribution over the viewpoints. We assume a
uniform distribution over a large sphere U, in which case

P(r) =
vol(U � r. af � r. ab)

vol(U)
.

The cost of a non-root node n with ancestor set A is computed
recursively as:

nodeCost(n, A) = ka+P(n jA)

�
ke jn. Ej +

X
c�n.C

nodeCost(c, fng�A)

�

where P(n jA) is the probability of the node n not being culled given
that its ancestors A were also not culled. If one assumes that both
anchored cones of a child are contained in its parent’s, then

P(n jA) =
vol(U � n. af � n. ab)
vol(U � p. af � p. ab)

where p is n’s immediate parent. While this containment must be
true of a node’s respective frontfacing and backfacing regions, it
is not necessarily true for their approximating anchored cones. In
practice, numerical experiments have shown this approximation to
be reasonable.

In principle one might consider all n2 pairs of forest roots for
candidate join operations. For computational efficiency during the
preprocess, we limit the candidate set in the following way. A
candidate graph is initialized with a graph vertex for each root in
the initial forest, each representing a single mesh edge. Two vertices
in the graph are linked if their corresponding mesh edges share the
same mesh vertex, or if adjacent mesh faces have normals within an
angular threshold3. Then during tree construction, when two roots
are joined, their vertices and links are merged in the candidate graph.

6 Stencil Setting
The 3D silhouette extracted in the previous section is a set of di-
rected edges. Since the mesh is closed and the silhouette edges sep-
arate frontfacing triangles from backfacing ones, the number of sil-
houette edges adjacent to any vertex must be even. Therefore the
edges can be organized (non-uniquely) into a set of closed contours.
Each such contour projects into the image plane as an oriented 2D
polygon, possibly with many loops, and possibly self-intersecting.
The winding number of this polygon at a 2D image location cor-
responds to the number of frontfacing surface layers that are seen
along the ray from the viewpoint through that image location [19].
Our approach is to accumulate these winding numbers in the hard-
ware stencil buffer for all contours in the 3D silhouette. Then, we
clip the coarse geometry to the external silhouette of the original ge-
ometry by only rendering the coarse model where the stencil buffer
values are positive.

2We have found that setting ka�ke = 4�3 gives us the best results.
3In practice we have found that ignoring similarity of normals (i.e., only

considering mesh proximity) still provides search trees that are almost as
good, with far less preprocessing time.
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Figure 8: Comparison of rendering the bunny ear using the orig-
inal mesh (69,674 face model), and using a coarse hull (500 face
model) whose silhouette is (b) clipped to the stencil buffer and (c)
antialiased using the alpha buffer.

Basic Algorithm The directed silhouette edges are organized
into closed contours using a hash table. (For each directed edge,
the hash key is the vertex index of the source vertex.) In order to
render the winding number of each contour into the stencil buffer,
we use a variation of the standard stencil algorithm for filling con-
cave polygons [21]. Each edge contour is drawn as a fan of triangles
about an arbitrary center point, which we choose to be the 3D cen-
troid of the contour vertices. The orientation of each triangle deter-
mines whether its rendered pixels increment or decrement the sten-
cil buffer values. To avoid testing triangle orientations in the CPU,
we instead render the triangles twice, first with backface culling and
stencil mode set to increment, and then with frontface culling and
stencil mode set to decrement, as shown in the pseudocode below.
The triangles are drawn as triangle fans for efficiency.

procedure setStencil(contours C, viewpoint p)
setStencilToZero(boundingBox(C));
cullFace(BACKFACE);
for contours c in C

point q = centroid(c. E);
for edges e in c. E

triangle t = makeTriangle(q, e.v1, e.v2);
rasterizeToStencil(t, INCREMENT);

cullFace(FRONTFACE);
for contours c in C

point q = centroid(c. E);
for edges e in c. E

triangle t = makeTriangle(q, e.v1, e.v2);
rasterizeToStencil(t, DECREMENT);

setDrawingToPositiveStencil();

Although the graphics hardware clips triangle fans to the view
frustum, the setStencil algorithm remains correct even if parts of the
model lie behind the viewer, as long as the viewer remains outside
the convex hull of the object. This can be tracked efficiently by the
test used in [25].

Loop Decomposition The basic algorithm described so far
tends to draw many long, thin triangles. On many rasterizing chips
(e.g. NVIDIA’s TNT2), there is a large penalty for rendering such
eccentric triangles. It is easy to show that the setStencil algorithm be-
haves best when the screen-space projection of q has a y coordinate
at the median of the contour vertices. Choosing q as the 3D centroid
of the contour vertices serves as a fast approximation.

To further reduce the eccentricity of the fan triangles, we break
up each large contour into a set of smaller loops. More precisely,
we pick two vertices on the contour, add to the data structure two
opposing directed edges between these vertices, and proceed as
before on the smaller loops thus formed.

When tested with the NVIDIA’s TNT2, loop decomposition gave
speedups of up to a factor of 2.3 on models that are raster bound on
the stencil setting stage.

Model Bunny Dragon Parasaur Knot Holes3
Model complexities (number of faces)

Original mesh 69,674 400,000 43,886 185,856 188,416
Coarse hull 500 4,000 1,020 928 500

System timings (milliseconds)
Original rendering 34.7 204.7 20.63 81.12 90.3
Silhouette extraction 4.5 24.2 4.0 6.5 4.0
Stencil setting 2.7 21.5 2.0 2.8 1.0
Coarse rendering 4.8 5.2 4.9 4.9 4.4
Total� 7.8 50.3 6.9 10.3 5.5
Speedup factor 4.4 4.1 3.0 7.9 16.4
(Antialiasing) +3.0 +22.5 +2.9 +3.4 +1.5

Table 1: Timings of steps in our silhouette clipping scheme, and
comparison with rendering the original mesh. �Total frame times
are less than the sum due to parallelism between CPU and graphics.

Model Bunny Dragon Parasaur Knot Holes3
Total faces 69,674 400,000 43,866 185,856 188,416
Total edges 104,511 600,000 65,799 278,784 282,624

Silhouette extraction statistics
Silhouette edges 3,461 23,493 3,227 3,291 1,737
Tested edges 10,256 67,934 10,938 13,134 5,976
Tested nodes 4,282 26,291 3,538 7,926 4,594

Silhouette extraction times (milliseconds)
Our search tree 4.1 28.2 4.3 6.4 3.3
Brute-force 20.4 117.3 12.5 50.6 51.4
Speedup factor 5.0 4.2 2.9 7.9 15.6

Table 2: Statistics of our silhouette extraction algorithm.
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Figure 9: Comparison of the average silhouette extraction time
with our algorithm and the brute-force algorithm, using bunny
approximations with 500, 4,000, 20,000, 50,000, and 69,674 faces.

Antialiasing Although many graphics systems can antialias line
segments, triangle antialiasing requires framebuffer supersampling
which slows rendering except on high-end workstations. As a result,
the silhouette typically suffers from aliasing artifacts (Figure 8a).
The stencil buffer algorithm described in the previous section cre-
ates a binary pixel mask, therefore the coarse mesh clipped to this
mask exhibits the same staircase artifacts (Figure 8b).

We can antialias the silhouette by applying line antialiasing
on the silhouette contour. First, the silhouette edges are ren-
dered as antialiased line segments into the alpha buffer (using
glBlend(GL ONE,GL ZERO)). Second, the stencil buffer is computed
as in the previous section. This binary stencil is then transferred
to the alpha buffer, i.e. pixels interior to the silhouette are as-
signed alpha values of 1. Finally, the low-resolution geometry
is rendered with these alpha buffer values using the over opera-
tion (glBlend(GL DST ALPHA,GL ONE MINUS DST ALPHA)). The result
is shown in Figure 8c. As the timings in Table 1 reveal, silhouette
antialiasing adds little to the overall time. Note that antialiased sil-
houette clipping on multiple models involves the non-commutative
over operation, and thus requires visibility sorting [25].



(a) original mesh (b) simplified mesh (not hull) (c) silhouette-clipped coarse hull

Figure 10: Comparison of rendering the original mesh, a normal-mapped simplified mesh without the progressive hull constraints, and a coarse
hull with the same number of faces but with silhouette clipping.

7 Results

We tested our framework on the five models of Table 1. The bunny
and dragon are from 3D scans at Stanford University. (The dragon
was simplified to 400,000 faces; the four boundaries in the base of
the bunny were closed.) The parasaur is from the Viewpoint library.
The 3-holed torus and knot are subdivision surfaces tessellated
finely to obtain an accurate silhouette. We used normal maps for all
of our examples.

Preprocessing a model consists of building a coarse hull, the nor-
mal and/or texture map, and the edge search structures. This takes
between 30 minutes and 5 hours depending on model complexity.

We have focused our effort on optimizing the runtime algorithm.
Times for the substeps of our scheme are shown in Table 1. These
are obtained on a PC with a 550MHz Pentium III and a Creative
Labs Annihilator 256 graphics card based on the NVIDIA GeForce
256 GPU. The execution times represent averages over many ran-
dom views of the models. Note that the expense of extracting sil-
houette edges is significantly reduced due to parallelism between the
CPU and GPU. For instance, silhouette extraction is nearly free for
the bunny. We compare our approach of silhouette-clipping a coarse
hull with rendering the original mesh, and find speedups of approx-
imately 3 to 16. For rendering both the coarse hulls and the original
meshes, we use precomputed triangle strips.

Figure 10 compares the image quality of the silhouette-clipped
coarse hull with a simplified mesh of the same complexity and the
original mesh. Figure 11 indicates that given a fixed amount of
resources, our system can render a model with a silhouette of much
higher resolution than the brute-force method.

As shown in Table 2, our hierarchical culling scheme results
in explicit silhouette testing of only a small fraction of the edges,
particularly on the smooth models. In all cases, our extraction time
is much lower than the brute-force approach of explicitly testing
all edges. It works much like a quadtree search algorithm, which
can find all cells that touch a line in O(

p
n) time. Figure 9 shows

this comparison as a function of silhouette complexity for several
simplified bunny meshes. The graph indicates that the time for our
algorithm increases linearly on the number m of silhouette edges in
the model, whereas the brute-force time increases linearly on the
total number n of edges, which in this case is quadratic on m.

We implemented Johannsen and Carter’s backface culling algo-
rithm and modified it to extract silhouettes, in order to compare it
with our silhouette extraction scheme. For this comparison we mea-
sured computation based on the number of edges explicitly tested
and nodes traversed. We did not use wall-clock time because our
implementation of Johannsen and Carter was not overly optimized.
For bunnies with 500, 4000, 20,000, 50,000, and 69,674 faces, our
speedup factors were 1.1, 1.3, 1.5, 2.0, and 2.1, respectively.

8 Summary and Future Work
We have shown that silhouette clipping is a practical framework for
rendering simplified geometry while preserving the original model
silhouette. The operations of extracting silhouette edges and setting
the stencil buffer can be implemented efficiently at runtime. With
little added cost, silhouette clipping also permits antialiasing of the
silhouette, a feature previously available only through expensive
supersampling. Several areas for future work remain.
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Figure 11: Comparison between silhouette clipping and brute-force
rendering. The x-axis represents the resolution of the model used
for silhouette extraction. The resolution of the coarse hull was fixed
at 500 faces. The curves represent configurations that take the same
amount of time to render. The star represents the configuration used
in the bunny ear example shown above.

The complexity of the extracted silhouette should be adapted to
the view, since it is obviously unnecessary to extract thousands of
edges from an object covering a few pixels. Given a set of LOD
meshes, our framework can use these for silhouette extraction by
creating for each one a corresponding coarser hull. Alternatively,
all of the silhouette meshes and their associated coarse hulls could
be extracted from a single progressive hull. A related idea is to
perform higher-order interpolation on the silhouette using projected
derivatives or curvatures in addition to 2D points. This would result
in smoother silhouettes without extracting more silhouette edges.

Currently, silhouette clipping only improves the appearance of
exterior silhouettes. We have considered several approaches for
dealing with interior silhouettes. One possibility is to exploit the
winding number computed in the stencil buffer. Another approach
partitions the mesh and applies silhouette clipping to each piece
independently. We have performed initial experiments along these
lines, but have not yet obtained a satisfactory solution.

Since the exterior silhouette of a shape is determined by its visual
hull [16], silhouette extraction is unaffected by any simplification
of the original mesh that preserves its visual hull. As an example,
the interior concavity of a bowl can be simplified until it spans the
bowl’s rim. Such simplification offers an opportunity for further
reducing silhouette extraction cost.
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