
Generative Modeling: A Symbolic System for Geometric Modeling

John M. Snyder
James T. Kajiya

California Institute of Technology
Pasadena, CA 91125

Abstract

This paper discusses a new, symbolic approach to geometric modeling called
generative modeling. The approach allows specification, rendering, and
analysis of a wide variety of shapes including 3D curves, surfaces, and
solids, as well as higher-dimensional shapes such as surfaces deforming in
time, and volumes with a spatially varying mass density. The system also
supports powerful operations on shapes such as “reparameterize this curve
by arclength”, “compute the volume, center of mass, and moments of inertia
of the solid bounded by these surfaces”, or “solve this constraint or ODE
system”. The system has been used for a wide variety of applications, in-
cluding creating surfaces for computer graphics animations, modeling the
fur and body shape of a teddy bear, constructing 3D solid models of elastic
bodies, and extracting surfaces from magnetic resonance (MR) data.

Shapes in the system are specified using a language which builds multidi-
mensional parametric functions. The language is based on a set of symbolic
operators on continuous, piecewise differentiable parametric functions. We
present several shape examples to show how conveniently shapes can be
specified in the system. We also discuss the kinds of operators useful in
a geometric modeling system, including arithmetic operators, vector and
matrix operators, integration, differentiation, constraint solution, and con-
strained minimization. Associated with each operator are several methods,
which compute properties about the parametric functions represented with
the operators. We show how many powerful rendering and analytical opera-
tions can be supported with only three methods: evaluation of the parametric
function at a point, symbolic differentiation of the parametric function, and
evaluation of an inclusion function for the parametric function.

Like CSG, and unlike most other geometric modeling approaches, this
modeling approach is closed, meaning that further modeling operations can
be applied to any results of modeling operations, yielding valid models. Be-
cause of this closure property, the symbolic operators can be composed very
flexibly, allowing the construction of higher-level operators without chang-
ing the underlying implementation of the system. Because the modeling
operations are described symbolically, specified models can capture the de-
signer’s intent without approximation error.

CR Categories:I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling – curve, surface, solid, and object representations; geo-
metric algorithms, languages, and systems

Additional Key Words: geometric modeling, parametric shape, sweep

1 Introduction

One way of representing a limited class of shapes uses sweeps. A sweep rep-
resents a shape by moving an object (called a generator) along a trajectory

through space. The simplest sweeps are extrusions and surfaces of revo-
lution, which sweep 2D curves. Sweeps whose generator can change size,
orientation, or shape are called general sweeps. General sweeps that use 2D
curve generators are called generalized cylinders [BINF71].

Several researchers have studied sweeps [GOLD83,CARL82b,WANG86,
COQU87]. Barr’sspherical product [BARR81], is an example of a sweep
that uses a constant 2D curve generator with translation and scaling. Carlson
[CARL82b] introduced the idea of varying the sweep generator. Wang and
Wang [WANG86] explored sweeps of surfaces for use in manipulating nu-
merically controlled milling machine cutter paths. Sweeps have been used in
solid modeling systems for many years (e.g., GMSolid, ROMULUS). Loss-
ing and Eshleman [LOSS74] developed a system using sweeps of constant
2D curves. Alpha1, a modeling system developed at the University of Utah,
has a much more sophisticated sweeping facility [COHE83].

One of the advantages of sweeps is their naturalness, compactness, and
controllability in representing a large class of man-made objects. For exam-
ple, an airplane wing is naturally viewed as an airfoil cross section which is
translated from the root to the tip of the wing. At the same time its thickness
is modified, it is twisted, swept back, and translated vertically according to
other schedules. Two crucial questions remain concerning how sweeps fit
into a general shape design and manipulation program:

� how can sweeps be specified by the human designer in a general and
powerful way?

� what tools are appropriate to allow swept shapes to be rendered and
simulated?

The generative modeling approach presented here extends the kinds of
sweeps that can be conveniently specified, and provides high-level tools for
their rendering and simulation. The approach specifies sweeps procedurally,
in a fashion similar to other procedural specification methods in computer
graphics: shade trees [COOK84], Perlin’s texturing language [PERL85],
and the POSTSCRIPT language [ADOB85].

A prototype system called GENMOD has been developed implementing
these ideas, which includes a C interpreter, a curve editor, methods for sev-
eral dozen primitive symbolic operators, and a multidimensional visualiza-
tion library. While each piece of the system is fairly simple, we have found
that combining all the pieces into a single system produces an extremely
powerful geometric modeling tool.

2 Generative Modeling Overview

A generative model is a shape generated by the continuous transformation
of a shape called thegenerator. As an example, consider a curve generator
� (u): R 1 � R3, and a parameterized transformation,� (p � v): R 3 � R � R3,
that acts on pointsp � R 3 given a parameterv. A generative surface,S(u � v),
may be formed consisting of all the points generated by the transformation
� acting on the curve� , i.e.,

S(u � v) = � (� (u) � v)

A cylinder is an example of a generative model. The generator, a circle
in thexy plane, is translated along thez axis. The set of points generated as
the circle is translated yield a cylinder. Mathematically, the generator and

transformation for a cylinder are

� (u) =

�
cos(2� u)
sin(2� u)

0 � � (p � v) =

�
p1

p2
p3 + v �

yielding the surface

S(u � v) = � (� (u) � v) =

�
cos(2� u)
sin(2� u)

v �
2.1 Parametric Functions and the Closure Property

If a generator is expressed as a parametric function, then a generative model
built by transforming this generator is also a parametric function. General-
izing from the cylinder example, let a generator be represented by the para-
metric function

F(x): R l � Rm

A continuous set of transformations can be represented as a parameterized
transformation

T(p; q): Rm � Rk � Rn

wherep � Rm is a point to be transformed, andq � R k is an additional
parameter that defines a continuous set of transformations. The generative
model is the parametric function1

T(F(x); q): R l+k � Rn

The ability to use a generative model as a generator in another genera-
tive model will be called theclosure property of the generative modeling
representation. The use of parametric generators and transformations yields
closure because transformation of a generator can be expressed as a simple
composition of parametric functions, resulting in another parametric func-
tion. In fact, the use of parametric generators and transformations blurs the
distinction between generator and transformation. Both are parametric func-
tions; the domain of a generator must be completely specified, while the
domain of a transformation is partly specified and partly determined as the
image of a generator.

2.2 Terminology

Let F: Rn � Rm be a parametric function with scalar variables
x1 � x2 � � � � � xn, called theparametric variables or parametric coordinates.
The number of parametric coordinates on whichF depends,n, is called the
input dimension of the parametric function. The number of components in
the result ofF, m, is called theoutput dimension of the parametric function.
In this work, the domain ofF is a rectilinear region ofR n, called ahyper-
rectangle, of the form:

[a1 � b1] � [a2 � b2] � � � � � [an � bn]

Hyper-rectangles are convenient for sampling and integration of the para-
metric functions in a computer implementation. The image ofF over a spec-
ified hyper-rectangle defines the shape of interest.

2.3 Operators and Methods

One way of specifying parametric functions is by selecting a set ofopera-
tors. An operator is a function that takes parametric functions as input and
produces a parametric function as output. For example, addition is an op-
erator that acts on two parametric functionsf and g, and produces a new
parametric function,f + g. The addition operator is recursive, in that we can
continue to use it on its own results or on the results of other operators, in
order to build more complicated parametric functions (e.g., (f + g) + h).

Like the addition operator, all operators in the system are recursive; their
results can be used as inputs to other operators.2 Together with the closure

1More precisely, the generative model is the set of points in the image ofT(F(x); q) over a domain

U � Rl+k .
2It shouldbe noted that the result of an operator can not always beused as input to another operator.

Operators may constrain the output dimensionof their arguments (e.g., an operator may accept only a
scalar functionas an argument and prohibit the useof functions of higheroutput dimension). Inspecial
circumstances, it may be desirable to constrain other properties of operator arguments. For example,

property of parametric generators, this recursive nature of operators yields
a modeling system with closure. That is, the designer is not prevented from
using any reasonable combination of operations to specify shapes. For ex-
ample, the addition operator can be applied to parametric functions of any
input dimension (e.g., curves or surfaces). It can also be applied to paramet-
ric functions of any output dimension, to perform vector addition, as long as
the output dimension of its two arguments is identical.

Of course, it is not enough to represent parametric functions; we must also
be able to compute properties about the parametric functions for rendering
and analysis. Such computations can be implemented by defining a set of
methods for each operator. One method evaluates the parametric function at
a point in its parameter space. Other methods include symbolic differentia-
tion of the parametric function and evaluation of an inclusion function (see
[SNYD92a] for a discussion of inclusion functions). Section 3.2 discusses
methods in more detail.

3 Symbolic Operators

3.1 Specific Operators

In this section, we examine specific operators that form a basis for a flexible
variety of shapes. This set of operators will be used in Section 4 to show the
capability of the generative modeling approach for combining such operators
to build interesting shapes.

Elementary Operators Elementary operators include constants, paramet-
ric coordinates, arithmetic operators, square root, trigonometric functions,
exponentiation, and logarithm.3 The constant operator represents a paramet-
ric function with a real, constant value, such asf (x) = 2�5 . The parametric
coordinate operator represents a particular parametric coordinate, such as
f (x) = x 2, wherex2 is the second component of the parametric domain, in
a global coordinate system. Arithmetic operators are addition, subtraction,
multiplication, division, and negation of parametric functions. They are use-
ful for such geometric operations as scaling and interpolation, and in many
other more complicated operations. They can also be combined to represent
bicubic patches, NURBS, and other parametric polynomials.

Other elementary operators are useful in special circumstances. The
square root operator, for example, is useful to compute the distance between
points. The sine and cosine operators are useful in building parametric cir-
cles and arcs.

Vector and Matrix Operators Vector operators are projection, cartesian
product, vector length, dot product, and cross product. Projection and carte-
sian product allow extraction and rearrangement of coordinates of paramet-
ric functions. Vector length, dot product, and cross product find many appli-
cations in defining geometric constraints on parameterized shapes.

Vector operator analogs of the arithmetic operators are also useful for ge-
ometric modeling. These operators include addition and subtraction of vec-
tors, and multiplication and division of vectors by scalars. Matrix operators
include multiplication and addition of matrices, matrix determinant, and in-
verse. Matrix multiplication is especially useful to define affine transforma-
tions, which are used extensively in simple sweeps (see Section 4.2). While
these operators can be defined in terms of simple projection, cartesian prod-
uct, and arithmetic operators, they are included as primitive operators for the
sake of efficiency.

Differentiation and Integration Operators The differentiation operator
returns the partial derivative of a parametric function with respect to one of
its parametric coordinates. This is useful, for example, in finding tangent or
normal vectors on curves and surfaces.

The integration operator integrates a parametric function with respect to
one of its parametric coordinates, given two parametric functions represent-
ing the upper and lower limits of integration. For example, the function

a(u �v)

b(u)

s(v � �)d�
the inversion operator expects its argument to be a monotonic scalar function. In this context, closure
of the set of operators implies that an operator not arbitrarily prohibit any “reasonable” arguments,
given the nature of the operator.

3GENMOD contains many more simple operators like these, listed in [SNYD92b].

can be formed by the integration operator applied to three parametric func-
tions, wheres(v � �) is the integrand,a(u � v) the upper limit of integration,
andb(u) the lower limit of integration. In general, parametric functions hav-
ing any number of input parameters can be used as the integrand, or limits of
integration. Integration can be used to compute arclength of curves, surface
area of surfaces, and volumes and moments of inertia of solids.

Indexing and Branching Operators A useful operation in geometric
modeling is concatenation, the piecewise linking together of a collec-
tion of shapes. For example, the concatenation of the set ofn curves
�

1(u) � � 2(u) � � � � � � n(u), each defined over the parametric variableu �
[0 � 1], may be defined as

� (u) = �����
�

1(nu) u � [0 � 1� n]
�

2(nu � 1) u � (1� n � 2� n]
...
�

n(nu � (n � 1)) u � ((n � 1)� n � 1]

The concatenation of surfaces or functions with many parameters can be
defined similarly, where the concatenation is done with respect to one of the
coordinates. This kind of concatenation isuniform concatenation, because
each concatenated segment is defined in an interval of equal length (1� n) in
parameter space. It is commonly used in defining piecewise cubic curves
such as B-splines.

Uniform concatenation is implemented using anindexingoperator, which
takes as input an array of parametric functions and an index function that
controls which function is to be evaluated. Given the same�

i(u) curves
used in the previous example, and an index functionq(x), the index operator
is defined as

index(q(x) � � 1(u) � � � � � � n(u)) = � �
q(x)

� (u)

whereq(x) = nu results in the uniform concatenation of the�
i functions.

In addition to the indexing operator, it is also useful to have asubstitution
operator to define uniform concatenation. The substitution operator sym-
bolically substitutes a given parametric function for one of the parametric
coordinates of another parametric function. For example, this can be used to
represent� i(nu � (i � 1)) given�

i(u), by substituting the functionnu � (i � 1)
for the parametric coordinateu.

The index operator is a special case of abranching operator, an operator
that takes as input a sequence of conditional functions and evaluation func-
tions. The result of the branching operator is the result of the first evaluation
function whose corresponding conditional is true. This multiway branch op-
erator can be used to define anonuniform concatenation of parametric func-
tions where each concatenated segment need not be defined on an equally
sized interval. Branching operators are also useful for finding the minimum
and maximum of a pair of functions, for defining deformations that act only
on certain parts of space, and for detecting error conditions (e.g., taking the
square root of a negative number, or normalizing a zero length vector).

Relational and Logical Operators In order to support the definition of
useful conditional expressions for the branching operators (and the con-
straint solution operator to be presented), we include the standard mathe-
matical relational operators such as equality, inequality, greater than, etc.,
and the logical operators (such as “and”, “or”, and “not”).

Curve and Table Operators Curve and table operators allow shapes to be
specified from data produced outside the system. The curve operator spec-
ifies continuous curves such as piecewise cubic splines, produced using an
interactive curve editor. The table operator is used to specify an interpolation
of a multidimensional data set (GENMOD implements both linear and bicu-
bic interpolation). For example, a simulation program may produce data
defined over a discrete collection of points on a solid. The table operator
interpolates this data to yield a continuous parametric function.

Inversion Operator Inversion of monotonic functions can be used, for
example, to reparameterize a curve by arclength, as shown in Figure 1. Let
� (t) be a continuous curve specifying the object’s trajectory, starting att = 0
and ending att = 1. The arclength along� , �

arc(t) is given by

�
arc(t) =

t

0 � � 	 (�) � d�

original reparameterized by arclength

Figure 1: A parametric curve is reparameterized by arclength. Each dot
represents a point on the curve along uniform increments of the curve’s input
parameter.

The integration and differentiation operators mentioned previously serve to
define�

arc. The reparameterization of� by arclength,� new, is then given
by4

�
new(s) = �
 � � 1

arc � s �
arc(1) �

This reparameterization involves the inversion of the monotonic arclength
function, � arc.

Many other useful operations can also be formulated in terms of the inver-
sion of monotonic functions, including the reparameterizing of curves and
surfaces so that their parameters are matched by arclength, polar angle, or
output coordinate to some other curve or surface. Inversion of monotonic
functions in a single variable may be computed using fast algorithms, such
as Brent’s method [PRES86].

Constraint Solution Operator The constraint solution operator takes a
parametric function representing a system of constraints, and produces a so-
lution to the constrained system or an indication that no solution exists.5 Two
forms of solution are useful: finding any point that solves the system, or find-
ing all points that solve it, assuming there is a finite set of solutions.6 The
operator also requires a parametric function specifying the hyper-rectangle
in which to solve the constraints.

For example, the constraint solution operator can be used to find an inter-
section between two planar curves. Let� 1(s) and� 2(t) be two curves inR 2.
These curves could be represented using the curve operator of Section 3.1,
or any of the other operators. The appropriate constraint is

F(s � t) � (� 1(s) = � 2(t))

which can be represented using the equality relational operator. The con-
straint solution operator applied toF produces a constant function repre-
senting a point, (s � t), where the two curves intersect. Such an operation can
be used to define boolean operations on planar areas bounded by parametric
curves, which we will use in the screwdriver tip example of Section 4.4.

The constraint system can also be solved over a subset of its parameters,
to yield a non-constant parametric function. For example, the constraint
system� 1(r � s) = � 2(t) can be solved overs andt, resulting in a function that
depends onr. The user therefore specifies not only a parametric function
representing the constraint system, but also which parametric coordinates
the system should be solved over, and which coordinates parameterize the
system.

Constraint solution has application to problems involving intersection,
collision detection, and finding appropriate parameters for parameterized
shapes. A robust algorithm for evaluating this operator uses interval analy-
sis, and is described in [SNYD92a].

4Thes parameter of� newactually represents “normalized” arclength, in thats varies between 0
and 1 to traverse the original curve� , and equal distances ins represent equal distances in arclength
on the curve.

5Note that inversion operator of the previous section is a special case of the constraint solution
operator.

6One form of the constraint solution operator producesa singlesolution, with an output dimension
equal to the number of coordinates over which the constraint is solved. The other form returns the
number of solutions as one output coordinate, followed by the solution points. The concatenated
array of solution points is padded to some maximum length,n, specifiedby the user. Padding is done
because parametric functions in GENMOD always have a fixed output dimension. The second form
thus has output dimensionn + 1.

Constrained Minimization Operator The constrained minimization op-
erator takes two parametric functions representing a system of constraints
and an objective function, and produces a point that globally minimizes the
objective function, subject to the constraints. The operator also requires a
parametric function specifying a hyper-rectangle in which to perform the
minimization. The minimization operator has many applications to geomet-
ric modeling, including

� finding intersections of rays with surfaces

� finding the point on a shape closest to given point

� finding the minimum distance between shapes

� finding whether a point is inside or outside a region defined with para-
metric boundaries

A robustalgorithm for evaluating parametric functions defined with the min-
imization operator uses interval analysis, and is described in [SNYD92a].

ODE Solution Operator The ODE operator solves a first order, initial
value ordinary differential equation. It is useful for defining limited kinds
of physical simulations within the modeling environment. For example, we
can simulate rigid body mechanics, or find flow lines through vector fields.
Figure 12 illustrates the results of the ODE operator for a simple simulation
specified entirely in GENMOD.

Let f be a specified parametric function of the form

f (t � y1 � y2 � � � � � yn): Rn+1 � Rn

The ODE operator returns the solutiony(t) to the system ofn first order
equations

dy

dt
= f (t � y)

with the initial condition
y(t0) = y 0

Parameterized ODEs, in whichf andy 0 (and thus the resulty) depend on an
additionalm parametersx 1 � � � � � xm, are also allowed. The user supplies the
ODE operator with an indication of which parametric coordinates off are
thet andy i variables, and which are the additional parametersx i.

GENMOD implements the ODE operators using a Numerical Algorithms
Group(NAG) ODE solver. Similar operators, for solution of boundary value
problems and PDEs, are also useful in a geometric modeling environment,
but have not been implemented in the present GENMOD system.

3.2 Operator Methods

Let P be an operator that takesn parametric functions as inputs and produces
the parametric functionp = P(f 1 � � � � � fn). A method forP is a function that
can be evaluated by evaluating similar methods for the functionsf 1 � � � � � fn.
A method on parametric functions is calledlocally recursive for P if its re-
sult onp is completely determined by the set of its results on each of the
n parametric functionsf 1 � � � � � fn. Thus, a method to evaluate a parametric
function at a point in parameter space is locally recursive for the addition
operator becausef + g can be evaluated by evaluatingf , evaluatingg, and
adding the result. A method to symbolically integrate a parametric function
is not locally recursive for the division operator, because� f � g can not be

computed given only� f and � g. Generally, a locally recursive method
can be simply implemented and efficiently computed.

We now examine specific methods useful in a geometric modeling system.

Evaluation at a Point Computation of points on a shape is necessary to
approximate the shape for visualization and simulation. A method to evalu-
ate a parametric function at a point in parameter space is locally recursive for
most of the operators discussed previously. Several operators are exceptions:
the integration, inversion, and ODE solution operators.7 All three of these
operators require their input parametric functions to be evaluated repeatedly
over many domain points. For example, evaluation of the integration op-
erator can be computed numerically using Romberg integration [PRES86,

7The derivative operator, and the constraint solution and constrained minimization operators are
also exceptions. As we will discuss later, the evaluation method for the differentiation operator de-
pends on the differentiation method, while the evaluation method for the constraint solution and con-
strained minimization operators uses the inclusion function method.

pages 123–125], which adds evaluations of the integrand over many points
in its domain.

Two forms of the evaluation method have proved useful: evaluation at
a single, specified point in parameter space and evaluation over a multidi-
mensional, rectilinear lattice of points in parameter space. Evaluation of
a parametric function over a rectilinear lattice gives information about how
the function behaves over a whole domain, and is useful in “quick and dirty”
rendering schemes. Although evaluation over a rectilinear lattice can be im-
plemented by repeated evaluation at specified points, much greater compu-
tational speed can be achieved with a special method, as we will see in the
Appendix.

The evaluation methods return an error condition as well as a numerical
result. The error condition signifies whether the parametric function has
been evaluated at an invalid point in its domain (e.g.,f � g whereg evaluates
to 0, or � h whereh � 0). A failure error condition is also returned when
the constraint solution or constrained minimization operators are evaluated
in a domain in which there are no solutions.

Differentiation The differentiation method is used to implement the dif-
ferentiation operator introduced in Section 3.1. The differentiation method
computes a parametric function that is the partial derivative of a given para-
metric function with respect to one of the parametric coordinates. The partial
derivative is computed symbolically; that is, the partial derivative result is
represented using the set of symbolic operators. For example, the partial
derivative with respect tox 1 of the parametric functionx 1 + � x1x2 yields
the parametric function 1 +x 2 � (2� x1x2), which is represented with the ad-
dition, multiplication, division, square root, constant, and parametric coor-
dinate operators.

Although the differentiation method is not locally recursive for most oper-
ators discussed previously, it is still relatively easy to compute. For example,
the partial derivative of the parametric functionh = cos (f) depends not only
on the partial derivative off , but also onf itself, since�

h�
xi

= � sin (f)
�

f�
xi

The differentiation method is therefore not locally recursive for the cosine
operator, but may be computed simply if a sine operator exists. Similar situ-
ations arise for many of the other operators. Fortunately, it is a simple matter
to extend a set of operators such that the set is closed with respect to the dif-
ferentiation method, meaning that any partial derivative may be represented
in terms of available operators.8

Evaluation of an Inclusion Function An inclusion function computes
a hyper-rectangular bound for the range of a parametric function, given a
hyper-rectangular domain. It is used in interval analysis algorithms to eval-
uate parametric functions defined with the constrained minimization and
constraint solution operators. It is also useful to approximate shapes to
user-defined tolerances, and compute CSG and offset operations. The uses
and implementation of inclusion functions are fully discussed in [SNYD92a,
SNYD92b].

Although an inclusion function computes a global property of a paramet-
ric function, it can often be computed using locally recursive methods. For
example, an inclusion function method for the multiplication operator can be
computed using interval arithmetic on the results of the inclusion functions
for its parametric function multiplicands.

Other Methods Another useful method determines whether a paramet-
ric function is continuous or differentiable to a specified order over a given
hyper-rectangle. Many times, algorithms for rendering and analysis require
differentiability of input functions (e.g., multidimensional root finding meth-
ods). The differentiability operator can therefore be used to select whether
an algorithm that assumes differentiability is appropriate, or if a more robust
and slower algorithm must be used instead.

The differentiability/continuity method is locally recursive for most of
the operators discussed previously, but there are exceptions. For example,
the differentiability method for the division operator can not simply check
that the two parametric functions being divided are differentiable. It must

8For example, this implies that if the cosine operator is included in the set of primitive operators,
then the sine operator must be included as well. Some operators, such as the constrained minimiza-
tion operator, do not have analytically expressible partial derivatives. For these operators, the partial
derivative must be computed numerically.

also check whether the denominator is 0 in the given domain. This can be
accomplished using an inclusion function method.

Other operator methods, whose implementation is still a research issue,
include determining whether a functionf : R n � Rn is one-to-one over a
hyper-rectangle. A similar method isdegree, defined as

d(f � D � p) = cardinality � x � D � f (x) = p�
whereD � Rn.

3.3 Operator Libraries

While the primitive operators described in Section 3.1 form a powerful basis
for a shape representation, they do not always match the operations the de-
signer wishes to perform. In these cases, the designer can employ operators
formed by composition of the primitive operators. The GENMOD system
includes operator libraries which predefine hundreds of such higher level op-
erators. The definitions of these operators are loaded from interpreted files
when the program is first run, and can be dynamically modified and added
to by the user.

For example, a simple but useful non-primitive operator is the linear in-
terpolation operator,� � � � � 	
 � , whose GENMOD definition is 9

� � � � � � � 	
 � � � � � � � � � � � � � ��

 	 � �
 � � � � � � � � � � ��

The
� �

type (for manifold) is the basic data structure in GENMOD, rep-
resenting a parametric function. The

�
,

�
, and

�
operators have been over-

loaded to perform addition, subtraction, and multiplication of manifolds.
The � � � � � 	
 � operator takes three parametric functions as input:f and

g are functions to be interpolated, andh is the interpolation variable. The
parametric functionsf andg can be of any input or output dimension, as
long as they have equal output dimension. This allows linear interpolation
between two curves, surfaces, or even higher dimensional shapes.10

The closure property of the generative modeling approach means that
su