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Abstract through space. The simplest sweeps are extrusions and surfaces of revo-
lution, which sweep 2D curves. Sweeps whose generator can change size,
This paper discusses a new, symbolic approach to geometric modeling calle@rientation, or shape are called general sweeps. General sweeps that use 2D
generative modeling. The approach allows specification, rendering, andcurve generators are called generalized cylinders [BINF71].
analysis of a wide variety of shapes including 3D curves, surfaces, and Several researchers have studied sweeps [GOLD83,CARL82b,WANGS6,
solids, as well as higher-dimensional shapes such as surfaces deforming iICOQU87]. Barr’sspherical product [BARR81], is an example of a sweep
time, and volumes with a spatially varying mass density. The system also that uses a constant 2D curve generator with translation and scaling. Carlson
supports powerful operations on shapes such as “reparameterize this curvCARL82b] introduced the idea of varying the sweep generator. Wang and
by arclength”, “compute the volume, center of mass, and moments of inertiaWwang [WANG86] explored sweeps of surfaces for use in manipulating nu-
of the solid bounded by these surfaces”, or “solve this constraint or ODE merically controlled milling machine cutter paths. Sweeps have been used in
system”. The system has been used for a wide variety of applications, in-solid modeling systems for many years (e.g., GMSolid, ROMULUS). Loss-
cluding creating surfaces for computer graphics animations, modeling theing and Eshleman [LOSS74] developed a system using sweeps of constant
fur and body shape of a teddy bear, constructing 3D solid models of elastic 2D curves. Alphal, a modeling system developed at the University of Utah,
bodies, and extracting surfaces from magnetic resonance (MR) data. has a much more sophisticated sweeping facility [COHES83].

Shapes in the system are specified using a language which builds multidi- One of the advantages of sweeps is their naturalness, compactness, and
mensional parametric functions. The language is based on a set of symbolicontrollability in representing a large class of man-made objects. For exam-
operators on continuous, piecewise differentiable parametric functions. Weple, an airplane wing is naturally viewed as an airfoil cross section which is
present several shape examples to show how conveniently shapes can lreanslated from the root to the tip of the wing. At the same time its thickness
specified in the system. We also discuss the kinds of operators useful inis modified, it is twisted, swept back, and translated vertically according to
a geometric modeling system, including arithmetic operators, vector and other schedules. Two crucial questions remain concerning how sweeps fit
matrix operators, integration, differentiation, constraint solution, and con- into a general shape design and manipulation program:
strained minimization. Associated with each operator are several methods,
which compute properties about the parametric functions represented with ¢ how can sweeps be specified by the human designer in a general and
the operators. We show how many powerful rendering and analytical opera- powerful way?
tions can be supported with only three methods: evaluation of the parametric
function at a point, symbolic differentiation of the parametric function, and @ what tools are appropriate to allow swept shapes to be rendered and
evaluation of an inclusion function for the parametric function. simulated?

Like CSG, and unlike most other geometric modeling approaches, this Th " deli h ted h tends the kinds of
modeling approach is closed, meaning that further modeling operations can € genéralive modeling approach presented heré extends the kinds o

be applied to any results of modeling operations, yielding valid models. Be- sweeps that can be conveniently specified, and provides high-level tools for

cause of this closure property, the symbolic operators can be composed ver)?heir rendering and simulation. The approach specifies sweeps procedurally,
n

: . . : . fashion similar to other procedural specification methods in computer
flexibly, allowing the construction of higher-level operators without chang- ata . o .
ing the underlying implementation of the system. Because the modelin graphics: shade trees [COOK84], Perlin's texturing language [PERL8S],
g ying mp y 9 and the POSTSCRIPT language [ADOBSS].

operations are described symbolically, specified models can capture the de . .
p o B ymoolca'y, sp P A prototype system called GENMOD has been developed implementing
signer’s intent without approximation error. . A . .
these ideas, which includes a C interpreter, a curve editor, methods for sev-

CR Categories:|.3.5 [Computer Graphics]: Computational Geometry and €ral dozen primitive symbolic operators, and a multidimensional visualiza-

Object Modeling — curve, surface, solid, and object representations; geo-tion library. While each piece of the system is fairly simple, we have found

metric algorithms, languages, and systems that combining all the pieces into a single system produces an extremely
powerful geometric modeling tool.

Additional Key Words: geometric modeling, parametric shape, sweep

1 Introduction 2 Generative Modeling Overview

. L A generative model is a shape generated by the continuous transformation
One way of representing a limited class of shapes uses sweeps. A sweep rep 5 shape called thgenerator. As an example, consider a curve generator

resents a shape by moving an object (called a generator) along a trajectoryy(u): R1 — R3, and a parameterized transformatiéfp,v): R 3x R — R3,
that acts on points € R 2 given a parameter. A generative surfac&u, v),
may be formed consisting of all the points generated by the transformation
§ acting on the curve, i.e.,

Su,v) = 6(v(u), V)

A cylinder is an example of a generative model. The generator, a circle
in thexy plane, is translated along ta@xis. The set of points generated as
the circle is translated yield a cylinder. Mathematically, the generator and




transformation for a cylinder are property of parametric generators, this recursive nature of operators yields
a modeling system with closure. That is, the designer is not prevented from

095(2”“) P1 using any reasonable combination of operations to specify shapes. For ex-
yW) = | sin(2ru) 6(pv) = P2 ample, the addition operator can be applied to parametric functions of any
0 pstv input dimension (e.g., curves or surfaces). It can also be applied to paramet-

ric functions of any output dimension, to perform vector addition, as long as

ielding the surface
y g the output dimension of its two arguments is identical.

cos(2ru) Of course, itis not enough to represent parametric functions; we must also
u,v) = §(y(u),V) = sin(2ru) be able to compute properties about the parametric functions for rendering
Vi and analysis. Such computations can be implemented by defining a set of

methods for each operator. One method evaluates the parametric function at

. . a point in its parameter space. Other methods include symbolic differentia-
2.1 Parametric Functions and the Closure Property tion of the parametric function and evaluation of an inclusion function (see

If a generator is expressed as a parametric function, then a generative moddSNYD922] for a discussion of inclusion functions). Section 3.2 discusses
built by transforming this generator is also a parametric function. General- methods in more detail.
izing from the cylinder example, let a generator be represented by the para-

tric functi i
metric function FOOR! — RT 3 Symbolic Operators

tA contlnuoqs set of transformations can be represented as a parameterlze%_l Specific Operators
ransformation

T(p;0):R™ x Rk — R" In this section, we examine specific operators that form a basis for a flexible
wherep € RMis a point to be transformed, ange R X is an additional variety of shapes. This set of operators will be used in Section 4 to show the
parameter that defines a continuous set of transformations. The generativéapability of the generative modeling approach for combining such operators

model is the parametric functior to build interesting shapes.

T(F(X);g):R"™* = R" Elementary Operators Elementary operators include constants, paramet-

» . ) ric coordinates, arithmetic operators, square root, trigonometric functions,
_ The ability to use a generative model as a generator in another generagyponentiation, and logarithm? The constant operator represents a paramet-
tive model will be called thelosure property of the generative modeling  ic function with a real, constant value, suchf@§ = 2.5 . The parametric
representation. The use of parametric generators and transformations yieldg oo dinate operator represents a particular parametric coordinate, such as
closure because transformation of a generator can be expressed as a simpjf ) = x 2 wherex; is the second component of the parametric domain, in
composition of parametric functions, resulting in another parametric func- 5 gipal coordinate system. Arithmetic operators are addition, subtraction,
tion. In fact, the use of parametric generators and transformations blurs theitiplication, division, and negation of parametric functions. They are use-
Q|st|nct|on betwe_en generator and transformation. Both are p_qrametrl_c func-,1 for such geometric operations as scaling and interpolation, and in many
tions; the domain of a generator must be completely specified, while the 5iher more complicated operations. They can also be combined to represent
domain of a transformation is partly specified and partly determined as the pic\pic patches, NURBS, and other parametric polynomials.

image of a generator. Other elementary operators are useful in special circumstances. The
square root operator, for example, is useful to compute the distance between
2.2 Terminology points. The sine and cosine operators are useful in building parametric cir-

cles and arcs.
Let F:R" — R™ be a parametric function with scalar variables

X1, X2, . - ., Xn, called theparametric variables or parametric coordinates. Vector and Matrix Operators Vector operators are projection, cartesian
The number of parametric coordinates on whicbependsp, is called the product, vector length, dot product, and cross product. Projection and carte-
input dimension of the parametric function. The number of components in  sian product allow extraction and rearrangement of coordinates of paramet-
the result ofF, m, is called theoutput dimension of the parametric function. ric functions. Vector length, dot product, and cross product find many appli-
In this work, the domain oF is a rectilinear region oR ", called ahyper- cations in defining geometric constraints on parameterized shapes.
rectangle, of the form: Vector operator analogs of the arithmetic operators are also useful for ge-
ometric modeling. These operators include addition and subtraction of vec-
(81, ba] X [@, b2] X ... X [@n, bn] tors, and multiplication and division of vectors by scalars. Matrix operators

include multiplication and addition of matrices, matrix determinant, and in-
verse. Matrix multiplication is especially useful to define affine transforma-
tions, which are used extensively in simple sweeps (see Section 4.2). While
these operators can be defined in terms of simple projection, cartesian prod-
uct, and arithmetic operators, they are included as primitive operators for the
2.3 Operators and Methods sake of efficiency.

Hyper-rectangles are convenient for sampling and integration of the para-
metric functions in a computer implementation. The imagE ofer a spec-
ified hyper-rectangle defines the shape of interest.

One way of specifying parametric functions is by selecting a seperfa- Differentiation and Integration Operators ~ The differentiation operator
tors. An operator is a function that takes parametric functions as input and returns the partial derivative of a parametric function with respect to one of
produces a parametric function as output. For example, addition is an op-jts parametric coordinates. This is useful, for example, in finding tangent or
erator that acts on two parametric functidnandg, and produces a new  grmal vectors on curves and surfaces.

parametric functiorf, +g. The addition operator is recursive, inthatwe can  The integration operator integrates a parametric function with respect to
continue to use it on its own results or on the results of other operators, in gne of its parametric coordinates, given two parametric functions represent-

order to build more complicated parametric functions (efgt, ) + h). _ ing the upper and lower limits of integration. For example, the function
Like the addition operator, all operators in the system are recursive; their
results can be used as inputs to other operatofsTogether with the closure v o, 7)d
Vv, 7)ar
IMore precisely, the generative model is the set of points in the ima@é~¢%); q) over a domain b(u)

uc R|+k.
2|t shouldbe noted that the result of an operator can not always be used as inputto another operator the inversion operator expects its argument to be a monotonic scalar function. In this context, closure

Operators may constrain the output dimension of their arguments (e.g., an operator may accept only 2°f the set of operators implies that an operator not arbitrarily prohibit any “reasonable” arguments,

scalar function as an argument and prohibitthe use of functions of higher output dimension). Inspecial 9iven the nature of the operator.

circumstances, it may be desirable to constrain other properties of operator arguments. For example, 3GENMOD contains many more simple operators like these, listed in [SNYD92b].



can be formed by the integration operator applied to three parametric func- ..
tions, wheres(v, ) is the integranda(u,v) the upper limit of integration, . )
andb(u) the lower limit of integration. In general, parametric functions hav- ’

ing any number of input parameters can be used as the integrand, or limits of
integration. Integration can be used to compute arclength of curves, surface
area of surfaces, and volumes and moments of inertia of solids.

© S tennenesene,

Indexing and Branching Operators A useful operation in geometric . i
modeling is concatenation, the piecewise linking together of a collec- . . C
tion of shapes. For example, the concatenation of the set airves
y1(U),v2(u), ... ,n(u), each defined over the parametric variablee
[0, 1], may be defined as

ya(nu) uelo,1/n]
Yz(nu — 1) ue (1/n,2/n Figure 1: A parametric curve is reparameterized by arclength. Each dot
y(u) = : represents a point on the curve along uniform increments of the curve’s input

. parameter.
w(u—(n—1)) ue€ ((n—1)/n,1]

The concatenation of surfaces or functions with many parameters can be ) ) ) o ] ]
defined similarly, where the concatenation is done with respect to one of the The integration and differentiation operators mentioned previously serve to
coordinates. This kind of concatenationuigform concatenation, because ~ definevarc. The reparameterization gfby arclength;y new is then given

original reparameterized by arclength

each concatenated segment is defined in an interval of equal lepgiirf1 by* .

parameter space. It is commonly used in defining piecewise cubic curves new(s) = (w;m (s Warc(l)))

such as B-splines. This reparameterization involves the inversion of the monotonic arclength
Uniform concatenation is implemented using asexing operator, which function,~ arc.

takes as input an array of parametric functions and an index function that  Many other useful operations can also be formulated in terms of the inver-
controls which function is to be evaluated. Given the same(u) curves  sjon of monotonic functions, including the reparameterizing of curves and
used inthe previous example, and an index funogied, the index operator  surfaces so that their parameters are matched by arclength, polar angle, or
is defined as output coordinate to some other curve or surface. Inversion of monotonic
: functions in a single variable may be computed using fast algorithms, such
index@9,v1(W, - -, yn(W) = Lgeg) (W) d Y P glastay

as Brent's method [PRES86].
whereqg(x) = nu results in the uniform concatenation of the ; functions.
In addition to the indexing operator, it is also useful to haweiastitution Constraint Solution Operator The constraint solution operator takes a
operator to define uniform concatenation. The substitution operator sym- Parametric function representing a system of constraints, and produces a so-
bolically substitutes a given parametric function for one of the parametric lutionto the constrained system or an indication thatno solution exist8.Two
coordinates of another parametric function. For example, this can be used tdorms of solution are useful: finding any point that solves the system, or find-

representy ;(nu— (i — 1)) given i (U), by substituting the functionu— (i — 1) ing all points that solve it, assuming there is a finite set of solutiorfs.The
for the parametric coordinate operator also requires a parametric function specifying the hyper-rectangle
The index operator is a special case @Fanching operator, an operator in which to solve the constraints.

that takes as input a sequence of conditional functions and evaluation func- FOr @xample, the constraint solution operator can be used to find an inter-
tions. The result of the branching operator is the result of the first evaluation Section between two planar curves. het'(s) and 2(t) be two curves iR 2.
function whose corresponding conditional is true. This multiway branch op- These curves could be represented using the curve operator of Section 3.1,
erator can be used to defin@anuniformconcatenation of parametric func- ~ OF any of the other operators. The appropriate constraintis
tions where each concatenated segment need not be defined on an equally Fist) = (v 1(9) = v 2(1))
sized interval. Branching operators are also useful for finding the minimum -
and maximum of a pair of functions, for defining deformations that act only which can be represented using the equality relational operator. The con-
on certain parts of space, and for detecting error conditions (e.qg., taking thestraint solution operator applied # produces a constant function repre-
square root of a negative number, or normalizing a zero length vector). senting a point,, t), where the two curves intersect. Such an operation can

. ) o be used to define boolean operations on planar areas bounded by parametric
Relational and Logical Operators In order to support the definition of  ¢yrves, which we will use in the screwdriver tip example of Section 4.4.
useful conditional expressions for the branching operators (and the con-  The constraint system can also be solved over a subset of its parameters,
straint solution operator to be presented), we include the standard matheyg yield a non-constant parametric function. For example, the constraint
matical rele_ltlonal operators such as equality, inequality, greater than, etc-’systemy I(r,s) = ~ 2(t) can be solved ovesandt, resulting in a function that
and the logical operators (such as “and”, “or”, and “not”). depends om. The user therefore specifies not only a parametric function

Curve and Table Operators Curve and table operators allow shapes to be representing the constraint system, but als_o which parametrlc coord}nates
the system should be solved over, and which coordinates parameterize the

specified from data produced outside the system. The curve operator specé Stem
ifies continuous curves such as piecewise cubic splines, produced using any o ) L . L .
Constraint solution has application to problems involving intersection,

interactive curve editor. The table operator is used to specify an |nterpolat|onCoIIision detection, and finding appropriate parameters for parameterized

ofa multidimensional data set (GENMOD implements both linear and bicu- shapes. A robust algorithm for evaluating this operator uses interval analy-
bic interpolation). For example, a simulation program may produce data sis, and is described in [SNYD92a].

defined over a discrete collection of points on a solid. The table operator

interpolates this data to yield a continuous parametric function. 4Thesparameter ofy newactually represents “normalized” arclength, in thagries between 0
and 1 to traverse the original curye and equal distances srepresent equal distances in arclength

Inversion Operator Inversion of monotonic functions can be used, for ~onthe curve.
examp|e to reparameterize a curve by arclength as shown in Figure 1. Let SNote that inversion operator of the previous section is a special case of the constraint solution

N . e X X operator.
’Y(t) be a_contmuous curve spemfylng the ObJeCt N ,”al?cmry' startmg a@ 60ne form of the constraint solution operator produces a single solution, with an output dimension
and ending at = 1. The arclength along, v arc(t) is given by equal to the number of coordinates over which the constraint is solved. The other form returns the

number of solutions as one output coordinate, followed by the solution points. The concatenated
t array of solution points is padded to some maximum lengtbpecified by the user. Padding is done
Wam(t) = / ||’Yl(/r)| |dq— because parametric functions in GENMOD always have a fixed output dimension. The second form
0 thus has output dimension+ 1.



Constrained Minimization Operator The constrained minimization op- pages 123-125], which adds evaluations of the integrand over many points
erator takes two parametric functions representing a system of constraintsin its domain.

and an objective function, and produces a point that globally minimizes the  Two forms of the evaluation method have proved useful: evaluation at
objective function, subject to the constraints. The operator also requires aa single, specified point in parameter space and evaluation over a multidi-
parametric function specifying a hyper-rectangle in which to perform the mensional, rectilinear lattice of points in parameter space. Evaluation of
minimization. The minimization operator has many applications to geomet- a parametric function over a rectilinear lattice gives information about how
ric modeling, including the function behaves over a whole domain, and is useful in “quick and dirty”
rendering schemes. Although evaluation over a rectilinear lattice can be im-

¢ finding intersections of rays with surfaces plemented by repeated evaluation at specified points, much greater compu-

¢ finding the point on a shape closest to given point tational speed can be achieved with a special method, as we will see in the
- . . Appendix.
¢ finding the minimum distance between shapes The evaluation methods return an error condition as well as a numerical

o finding whether a point is inside or outside a region defined with para- result. The error condition signifies whether the parametric function has
metric boundaries been evaluated at an invalid pointin its domain (e.gg whereg evaluates

i ] ] ] ] ] . toO,or vhwhereh < 0). A failure error condition is also returned when
A robustalgorithm for evaluating parametric functions defined with the min-  the constraint solution or constrained minimization operators are evaluated
imization operator uses interval analysis, and is described in [SNYD92a]. in a domain in which there are no solutions.

ODE Solution Operator The ODE operator solves a first order, initial  pifferentiation ~The differentiation method is used to implement the dif-
value ordinary differential equation. It is useful for defining limited kinds  ferentiation operator introduced in Section 3.1. The differentiation method
of physical simulations within the modeling environment. For example, we computes a parametric function that is the partial derivative of a given para-
can simulate rigid body mechanics, or find flow lines through vector fields. metric function with respect to one of the parametric coordinates. The partial
Figure 12 illustrates the results of the ODE operator for a simple simulation derivative is computed symbolically; that is, the partial derivative result is

specified entirely in GENMOD. _ represented using the set of symbolic operators. For example, the partial
Letf be a specified parametric function of the form derivative with respect ta ;1 of the parametric functiox 1 + /XX, yields

the parametric function 1 x 2/(2,/X1x2), which is represented with the ad-

f(t oo, Yn):R™L 5 RY o e )
(Y22, Yn) - dition, multiplication, division, square root, constant, and parametric coor-

The ODE operator returns the solutig(t) to the system oh first order dinate operators.
equations Although the differentiation method is not locally recursive for most oper-
dy _ f(ty) ators discussed previously, it is still relatively easy to compute. For example,
dat Y, the partial derivative of the parametric functibr cos ) depends not only
with the initial condition on the partial derivative df, but also orf itself, since
Y(to) =Yo oh of
Parameterized ODEs, in whidrandy ¢ (and thus the resu}f) depend on an % " © %
additionalm parameters 1, ..., Xm, are also allowed. The user supplies the . o . ) )
ODE operator with an indication of which parametric coordinatet arfe The differentiation method is therefore not locally recursive for the cosine
thet andy ; variables, and which are the additional parameters. operator, but may be computed simply if a sine operator exists. Similar situ-

GENMOD implements the ODE operators using a Numerical Algorithms ations arise for many of the other operators. F_ortunately,_it isa simple mattgr
Group(NAG) ODE solver. Similar operators, for solution of boundary value 0 €xtend a set of operators such that the set is closed with respect to the dif-
problems and PDEs, are also useful in a geometric modeling environment,_ferent'at'on me_thod, meaning that any partial derivative may be represented
but have not been implemented in the present GENMOD system. in terms of available operators.

Evaluation of an Inclusion Function An inclusion function computes
3.2 Operator Methods a hyper-rectangular bound for the range of a parametric function, given a
. . . hyper-rectangular domain. It is used in interval analysis algorithms to eval-
Let P be an operator that takeparametric functions as inputs and produces ate parametric functions defined with the constrained minimization and

the parametric functiop = P(f 1,...,%). Amethod forPis a function that  constraint solution operators. It is also useful to approximate shapes to
can be evaluated by evaluating similar methods for the funcfions ..., f.  yser-defined tolerances, and compute CSG and offset operations. The uses
A method on parametric functions is callestally recursivefor P if its re- and implementation of inclusion functions are fully discussed in [SNYD92a,
sult onp is completely determined by the set of its results on each of the SNYD92b].

n parametric function$ 1, ...,fn. Thus, a method to evaluate a parametric Although an inclusion function computes a global property of a paramet-
function at a point in parameter space is locally recursive for the addition ric function, it can often be computed using locally recursive methods. For
operator becauske+ g can be evaluated by evaluatifigevaluatingg, and example, an inclusion function method for the multiplication operator can be

adding the result. A method to symbolically integrate a parametric function computed using interval arithmetic on the results of the inclusion functions
is not locally recursive for the division operator, becausﬁf/g cannotbe  for jts parametric function multiplicands.

computed given onlyff and fg. Generally, a locally recursive method
can be simply implemented and efficiently computed. Other Methods Another useful method determines whether a paramet-

We now examine specific methods useful in a geometric modeling system.ic function is continuous or differentiable to a specified order over a given
hyper-rectangle. Many times, algorithms for rendering and analysis require

Evaluation at a Point Computation of points on a shape is necessary to differentiability of input functions (e.g., multidimensional root finding meth-
approximate the shape for visualization and simulation. A method to evalu- ods). The differentiability operator can therefore be used to select whether
ate a parametric function at a pointin parameter space is locally recursive foran algorithm that assumes differentiability is appropriate, or if a more robust
most of the operators discussed previously. Several operators are exceptionsand slower algorithm must be used instead.
the integration, inversion, and ODE solution operatorg. All three of these The differentiability/continuity method is locally recursive for most of
operators require their input parametric functions to be evaluated repeatedlythe operators discussed previously, but there are exceptions. For example,
over many domain points. For example, evaluation of the integration op- the differentiability method for the division operator can not simply check
erator can be computed numerically using Romberg integration [PRES86,that the two parametric functions being divided are differentiable. It must

7The derivative operator, and the constraint solution and constrained minimization operators are 8For example, this implies that if the cosine operator is included in the set of primitive operators,
also exceptions. As we will discuss later, the evaluation method for the differentiation operator de- then the sine operator must be included as well. Some operators, such as the constrained minimiza-
pends on the differentiation method, while the evaluation method for the constraint solution and con- tion operator, do not have analytically expressible partial derivatives. For these operators, the partial
strained minimization operators uses the inclusion function method. derivative must be computed numerically.



also check whether the denominator is 0 in the given domain. This can be MAN cross = m_crv('cross.crv',m_x(0));
accomplished using an inclusion function method. MAN profile = m_crv("profile.crv",m_x(1));

Other operator methods, whose implementation is still a research issue, MaN lampbase = m_profile(cross,profile);
include determining whether a functidnR " — R" is one-to-one over a
hyper-rectangle. A similar method degree, defined as

d(f, D, p) = cardinality {x € D | f(x) = p}

T~
i

whereD C R".

3.3 Operator Libraries

I
]

While the primitive operators described in Section 3.1 form a powerful basis
for a shape representation, they do not always match the operations the de-
signer wishes to perform. In these cases, the designer can employ operators cross.crv profile.crv
formed by composition of the primitive operators. The GENMOD system
includes operator libraries which predefine hundreds of such higher level op-
erators. The definitions of these operators are loaded from interpreted files
when the program is first run, and can be dynamically modified and added
to by the user.

For example, a simple but useful non-primitive operator is the linear in-
terpolation operatom_interp, whose GENMOD definition is 2

MAN m_interp(MAN h,MAN £, MAN g)
{

return £ + hx(g-f);
}

The MAN type (for manifold) is the basic data structure in GENMOD, rep-
resenting a parametric function. The-, and* operators have been over-
loaded to perform addition, subtraction, and multiplication of manifolds.
Them_interp operator takes three parametric functions as inpaind
g are functions to be interpolated, ahds the interpolation variable. The
parametric function$ andg can be of any input or output dimension, as
long as they have equal output dimension. This allows linear interpolation
between two curves, surfaces, or even higher dimensional shdfes.
The closure property of the generative modeling approach means that

Figure 2: Lamp base example — A lamp base shape is represented by a
profile surface. The GENMOD definition of a lamp base is shown, followed
by graphs of the two curves (plotted between -1 andxlandy) used in the
definition, and a wire frame image of the shape.

MAN m_profile(MAN cross,MAN profile)

T {
such non-prlml.tlve operatprs_ can be very powerful. For exe_lmple, the return @(cross[0]#+profile[0],
m_arc_2pt_height non-primitive operator used in the next section forms cross[1]*profile[0]
a circular arc connecting two 2D points and having a specified height above rofile [15) . ’
their line of connection. The 2D points supplied as arguments to this opera- } P ’

tor need not be constants but can depend on parameters, allowing convenient

definition of the spoon of Section 4.3. Thee() operator, a C extension in GENMOD's language, is the cartesian

product operator, which, in this case, combines three scalar functions into a

3D point. The[] operator returns a single output coordinate of a parametric

4 Examples function. In keeping with C language convention (and unlike the mathemat-
ical notation used in the definition &u, v)), coordinate indexing is done

This section presents examples of generative shapes and their specificatiofitarting with index 0 for the first coordinate, rather than index 1.
in GENMOD. It is meant to show how the generative modeling approach ~ Figure 2 presents an example of a profile product surface for a lamp base
leads a designer to think about shape, and the size of the domain of shapedhape. It uses the_profile operator defined above, and the primitive

that