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Abstract

One of the most prominent goals of computer graphics is to generate images that

look as real as photographs. Realistic computer graphics imagery has however

proven to be quite challenging to produce, since the appearance of materials arises

from complicated physical processes that are difficult to analytically model and

simulate, and image-based modeling of real material samples is often impractical

due to the high-dimensional space of appearance data that needs to be acquired.

This thesis presents a general framework based on the inherent coherency in

the appearance data of materials to make image-based appearance modeling more

tractable. We observe that this coherence manifests itself as low-dimensional

structure in the appearance data, and by identifying this structure we can take ad-

vantage of it to simplify the major processes in the appearance modeling pipeline.

This framework consists of two key components, namely the coherence structure

and the accompanying reconstruction method to fully recover the low-dimensional

appearance data from sparse measurements. Our investigation of appearance co-

herency has led to three major forms of low-dimensional coherence structure and

three types of coherency-based reconstruction upon which our framework is built.

This coherence-based approach can be comprehensively applied to all the ma-

jor elements of image-based appearance modeling, from data acquisition of real

material samples to user-assisted modeling from a photograph, from synthesis of

volumes to editing of material properties, and from efficient rendering algorithms

to physical fabrication of objects. In this thesis we present several techniques

built on this coherency framework to handle various appearance modeling tasks

both for surface reflections and subsurface scattering, the two primary physical

components that generate material appearance. We believe that coherency-based

appearance modeling will make it easier and more feasible for practitioners to

bring computer graphics imagery to life.



Chapter 1

Introduction

It has long been a goal of computer graphics to synthesize imagery indistinguish-

able in appearance from the real world. With high realism in computer graphics,

created objects and scenes can come to life, providing viewers with compelling

visual experiences in a variety of media, including simulators, movies and video

games. A high level of realism however has been challenging to achieve, due to

complex factors that determine the appearance of objects and scenes.

In images, the appearance of an object is formed from two components. One

is shape, for which there exists various methods for accurate 3D measurement,

including systems such as stereo cameras and laser scanners. The other is re-

flectance, which describes the way an object’s materials appear under different

illumination conditions. Different materials can have vastly different reflectance

properties, depending on how they interact with light. Some materials, such as

wax, are characterized by light penetration and extensive scattering within their

volumes, which leads to a soft and smooth appearance from the emergent radi-

ance. Others such as polished metals have a relatively hard appearance because

of highly directional mirror-like reflections of light off the material surface. Yet

others exhibit different visual effects, such as the retro-reflection of street signs

where the illumination of car headlights is largely reflected back in the direction

1



CHAPTER 1. INTRODUCTION

(a) Geometric model (b) Color textures (c) Complete surface appearance

Figure 1.1: Reflectance detail in appearance modeling. For this example of a silk
pillow, just a geometric model without further appearance information conveys
only its basic shape and diffuse shading. Adding color textures to the geometry
brings more realism to the pillow, but it still lacks the look and feel of silk. With a
more comprehensive model of surface appearance, the pillow exhibits the natural
reflectance properties of silk.

it came from, or the transparency of apple juice, through which light passes with

little interaction at all. Reflectance is the source of a material’s intrinsic visual

appearance, and modeling of this phenomena is the focus of this thesis.

For realistic modeling of appearance, detailed reflectance data is essential, as

illustrated in Figure 1.1. Often only slight differences in reflectance distinguish

the appearance of one material from another, so even subtle reflectance features

need to be accounted for, and done so with high accuracy, to make a material look

convincing. The reflectance of a material encompasses not only the appearance

of a single point, but also the spatial variations over the surface and within the

material volume. These spatial variations may simply be changes in color, such as

on a magazine cover, or they may include complete changes in optical properties,

such as glitter in nail polish. The need for detail has been magnified by recent

increases in image display resolution, from VGA to XVGA, and then to full HD

(high definition). With higher resolutions come greater visibility of fine-scale

surface features and appearance characteristics, making high fidelity appearance

modeling even more essential for rendered objects and scenes to appear real.

2



CHAPTER 1. INTRODUCTION

Detailed modeling of material appearance, however, is challenging because of

the numerous material and physical factors on which it depends. The complex in-

teractions of light and material that give rise to appearance may span a variety of

reflectance mechanisms, and how they unfold depends upon the optical properties

of the material as well as the physical nature of the interactions themselves. Sim-

ple analytical models have been developed for the physical processes that yield

material appearance, but they generally provide only a rough approximation of

the observed behavior and lack the power to preserve subtleties that characterize

a material. To accurately reproduce material appearance in computer graphics

imagery, detailed appearance properties need to be directly and precisely derived

from real material samples.

Modeling material appearance from a real sample is unfortunately a painstak-

ing task. This is because the appearance of a material depends not only on the in-

trinsic optical properties of the material itself, but also on various extrinsic factors

such as the shape of its volume, lighting conditions and viewpoint. Appearance

variations over the surface and within the 3D volume, due to different constituent

elements with spatially varying distributions, need to be accounted for and mod-

eled as well. All of these variables influence in different ways how a material

looks, and it is hard in practice to capture and model the tremendous amount of

data on the different appearances that a material can take. As a result, computer

graphics practitioners typically avoid appearance modeling from real samples, and

instead rely on artistic skill to generate graphics content. While excellent render-

ings have been produced in this manner, it is rare for such imagery to appear just

like the real thing.

1.1 Data Coherence for Appearance Modeling

Though complicated and widely varying, the different appearances of a real-world

material are far from random. A material exhibits commonalities and patterns

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Repetition in material reflectance. Though different points on the
fabric may not appear exactly the same, they share commonalities in color, mate-
rial composition and geometric thread structure that lead to strong consistencies
in their reflectance and appearance properties. In addition, the color patterns in
many local regions are a close match to others on the surface.

that characterize its appearance, such as the soft translucency and flowing veins

in marble, or the configurations of green patina on exposed areas of weathered

bronze. Aside from its distinctive aspects, a material’s appearance under different

viewing conditions must also exhibit some form of physical consistency, as its

optical properties and volumetric composition remain unchanged. This thesis is

built upon the inherent coherency in the appearance data of real materials, and we

take advantage of this property to overcome practical difficulties in appearance

modeling.

Data coherence

Our key observation on this coherence is that it manifests itself as low-dimensional

structure in the appearance data. Various forms of low-dimensional structure may

potentially exist. One common type of coherency is the repetition of material

attributes over a surface, as shown by the silk pillow in Figure 1.2 where many

4



CHAPTER 1. INTRODUCTION

High-dimensional Reflectance SpaceMaterial Sample

Figure 1.3: Low-dimensional manifold structure of surface reflectance variations
in the high-dimensional reflectance space. A 3D slice of the space is shown for
viewing purposes.[145]

points share the same intrinsic color, material composition and fine-scale geome-

try. Generally this repetition results from a limited number of material elements

that comprise a material sample, and we refer to this type of coherence as ma-

terial attribute repetition. By contrast, other kinds of repeated patterns may not

be suitable for appearance modeling. Taking measured RGB values as an exam-

ple, the same material may produce different RGB values over its surface due to

variations in surface orientations as exhibited in Figure 1.2. Likewise, the same

observed RGB values do not necessarily result from the same material attributes.

Repetition in material attributes is intrinsically tied both to appearance and to the

small set of elements in a material, so it is this form of repetitive coherence that is

important for appearance modeling.

A material volume might be characterized not by a small set of discrete el-

ement types, but instead by continuous transitions across different elements or

different local geometric properties. This leads to a coherence of appearance in

which the measured appearance data resides in a smooth low-dimensional linear

subspace. We refer to such low-dimensional structure as appearance subspace

coherency. An example of this kind of coherency is shown in the rusting iron

of Figure 1.3. Its gradual variations in appearance over the surface span a broad

5
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swath of the high-dimensional reflectance space, but lie on a low-dimensional

manifold in which the reflectance of a point can be well approximated as a linear

combination of neighboring points. A special case of this is when appearance co-

herency takes the form of low-dimensional transformations. The brushed metal

plate of Figure 1.4 provides such an example, where the reflectance of surface

points are well represented by 1D rotations of each other.

These two forms of low-dimensional coherency in appearance data may ex-

ist not only from point to point, but also among local areas. At a local level of

appearance, coherence often can be described statistically, with accurate repre-

sentations of appearance variations by Markov random fields [166] or filter bank

responses [96]. Also for many material surfaces, the number of perceptually dis-

tinct local elements may be small, such that a surface could be represented by a

small vocabulary of repeated prototypes, called textons [89].

The aforementioned types of coherence for surface appearance may further-

more present itself within material volumes, with similar consistencies and rela-

tionships among volumetric elements (voxels) or local sub-volumes. Coherence

may also exist among light paths and scattering profiles within a volume, from

which the appearance of transparent and translucent objects are determined.

The low-dimensional structure of appearance data may lead to coherence not

only within a given appearance attribute or part of the appearance data, but also to

correlations among different components of the data. In particular, similarities (or

differences) in one part of the appearance data can indicate similarities (or differ-

ences) in other parts. Such coherence can neither be modeled by linear subspaces

nor by spatial repetitions, and we refer to such correlation based coherence as

inter-attribute correlation. This type of coherence between attributes exists in the

rusting iron of Figure 1.3, where surface points of the same color have the same

reflectance properties as well.

Coherency is a property that permeates nature, and in some aspect of a mate-

rial’s appearance, coherency of some form generally exists. In our framework for

6



CHAPTER 1. INTRODUCTION

Figure 1.4: Low-dimensional coherence in reflectance. Points on the metal plate
have very similar reflectance properties, and differ by a rotational transformation
due to the different orientations of the brushed grooves.

coherency based modeling, we first identify the primary type of coherence and the

aspects of the appearance data to which it applies. If different forms of coherence

are be present together in the data, we seek that with the strongest coherence as it

typically leads to greater gains in appearance modeling.

Coherence-based reconstruction

With coherency we have relationships within the appearance data that can be used

to simplify the various aspects of the modeling process. Taking material attribute

repetition as an example, it can be seen that repetitive patterns in appearance data

allow the data to be represented more concisely, such as with a small set of basic

elements. This type of coherency can significantly reduce the acquisition burden,

by allowing appearance information at a point to be inferred from observations of

other similar elements on the material surface. Also, appearance editing can be

expedited by propagating modifications of an element to others that are similar,

7
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and rendering can be made faster with relatively small memory footprints and

frequent reuse of appearance computation for multiple points.

To make appearance modeling from real samples practical, we take advan-

tage of the identified coherence to fully reconstruct the appearance data from only

sparse measurements. Reconstruction from sparse data, however, presents a chal-

lenging problem that differs according to the type of coherence and the model-

ing task. In contrast to data decompression, in which the decoding algorithm is

known based on the encoding performed on the full data set, our case of appear-

ance modeling from sparse measurements needs to uncover how the coherence

can be utilized to recover unmeasured data.

We have found through our investigations that coherence-based reconstruc-

tion methods typically fall into three categories. Since coherence exists as low-

dimensional structure in the appearance data, a natural approach is to recon-

struct unmeasured appearance data by linear combinations of measured data.

For appropriate linear combinations of measured data to be determined, the low-

dimensional structure within the high-dimensional appearance space needs to be

obtained, along with some partial appearance data for each surface point. Often

this type of reconstruction employs mathematical tools such as the Nyström method

or compressive sensing.

Some scenarios employ a low-dimensional appearance structure based on a

complex scattering model and a small set of material attributes. In such cases, the

attributes may be reconstructed by direct optimization, in which the optical prop-

erties that best fit the measured appearance are solved. The coherency properties

that exist among the different attributes need to be found, and this coherence is

then formulated together with the scattering model into a solvable optimization

problem to reconstruct unmeasured data.

A third form of coherence-based reconstruction is to employ subspace search,

in which the reconstructed data is found within a material-specific subspace. Con-

straining appearance to a low-dimensional subspace reduces the solution space

8
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(a) Capture from 
real material samples

(b) Reconstruction with 
coherent material model

(c) Applied to efficient acquisition, 
interactive modeling and fabrications

Figure 1.5: Pipeline of coherence-based appearance modeling. From measured
data of a real material sample, a coherent material model is reconstructed. The
coherent model then can be applied for efficient appearance acquisition, interac-
tive modeling and appearance fabrication.

considerably, leading to greater efficiency and robustness while potentially also

reducing the measurement that is needed. Since subspace constraints may rule

out possible solutions, it is essential to use the correct subspace. If the subspace

is built by sampling, mechanisms are needed to uniformly and completely sam-

ple the subspace. During reconstruction, the subspace needs to be efficiently and

comprehensively searched while rejecting solutions that do not obey the identified

coherence.

A general framework for coherence-based appearance modeling

Based on the preceding analysis of data coherence and reconstruction, we present

a general framework for coherence-based appearance modeling. The framework

consists of two major, mutually dependent components: the data coherence model

and the accompanying reconstruction method. An appropriate coherence model is

needed to determine the low-dimensional structure of the appearance data, since

the reconstruction cost in the high-dimensional appearance space is prohibitively

high. On the other hand, though a low-dimensional structure may fully describe

the appearance data and its coherence, an efficient method is needed to reconstruct

it from sparse measurements, so that appearance modeling can benefit from it. In

9
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this thesis, we follow this general framework to find an appropriate coherence

model and develop a suitable reconstruction algorithm to efficiently model high

quality appearance data.

In summary, this thesis presents the use of coherence in the form of low-

dimensional structure to make acquisition, modeling and rendering from real ma-

terial samples considerably more efficient and practical. Our general framework

involves identifying in the appearance data its underlying coherence – material at-

tribute repetition, appearance subspace, or inter-attribute correlation – and then

capitalizing on this coherence to reconstruct the appearance data from sparse sam-

ples using direct optimization, linear combinations, or subspace search. We ap-

ply this approach over a full range of appearance modeling tasks, while purposely

employing hardware constructed almost entirely from off-the-shelf components,

to make these techniques accessible to non-expert practitioners.

1.2 Contributions

In this thesis, we employ our comprehensive framework for coherency-based

appearance modeling to all the major components of the appearance modeling

pipeline, including acquisition, user-assisted modeling, editing, synthesis, render-

ing and fabrication. These methods are organized into three sections. The first

two respectively address the two principal mechanisms of reflectance: surface re-

flections from opaque materials, and subsurface scattering in translucent volumes.

The third part focuses on a new appearance-based application in computer graph-

ics, namely the fabrication of materials with a desired translucent appearance.

10
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Acquisition and modeling of opaque surfaces

Surface appearance is often represented by a Spatially-Varying Bi-Directional Re-

flectance Distribution Function (SVBRDF), which models reflected light with re-

spect to surface point position, lighting direction, and viewing direction. It is one

of the most commonly used models in computer graphics, as it can fully represent

the appearance of opaque materials in which light does not penetrate the surface.

This and other appearance models, as well as the appearance modeling pipeline,

are reviewed in Chapter 2.

In the subsequent two chapters, we propose practical methods to acquire SVBRDFs

from real objects and materials by taking advantage of appearance coherency.

Chapter 3 presents a method called manifold bootstrapping for high quality re-

flectance capture from a real material sample [32]. An SVBRDF consists of

a considerable amount of reflectance data that can make its acquisition a long

and tedious process. Based on appearance subspace coherency in which the re-

flectance of a material’s surface points forms a low-dimensional manifold in the

high-dimensional reflectance space, we develop an efficient acquisition scheme

that obtains a high resolution SVBRDF from just sparsely measured data. This

scheme reconstructs the SVBRDF manifold by decomposing reflectance measure-

ment into two phases. The first measures reflectance at a high angular resolution,

but only for sparse samples over the material surface, while the second acquires

low angular resolution samples densely over the surface. Using a linear combina-

tion reconstruction scheme, we show that from this limited data, measured with

a novel and simple capturing technique, the rest of the SVBRDF can be inferred

according to the coherency that exists.

Besides direct acquisition of an SVBRDF from a real material sample, an

SVBRDF may alternatively be obtained using just a single image of a material

surface together with additional input from the user. This approach is presented

in Chapter 4, where the user provides simple annotations that indicate global re-

flectance and shading information [30]. This data is propagated over the surface
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CHAPTER 1. INTRODUCTION

in a manner guided by inter-attribute correlation coherence in the material, and

this is used jointly with some image analysis to decompose the image by direct

optimization into different appearance components and fine-scale geometry, from

which the SVBRDF is reconstructed. Convincing results are generated with this

technique from minimal data and just minutes of interaction, in contrast to the

hour or more needed to obtain similar results using professional editing software.

Modeling and rendering of subsurface light transport

Besides surface reflections, the transport of light beneath the material surface has

a significant effect on the appearance of many objects and materials. The ap-

pearance of translucent volumes, within which light can penetrate and scatter, is

frequently modeled by the Bi-Directional Surface Scattering Reflectance Distri-

bution Function (BSSRDF), which represents the appearance of a surface point

with respect to light that enters the volume from other points. In Chapter 5, the

problem of modeling and analyzing such light transport within a material volume

is addressed. The non-linear consistencies in light transport are transformed by

kernel mapping into a form with appearance subspace coherence. This coherence

is exploited to reconstruct the subsurface scattering of light within an object from

a relatively small number of images [144] by a linear combination based scheme.

These images are acquired using an adaptive scheme that minimizes the number

needed for reconstruction. With this technique, the appearance of an object can be

regenerated under a variety of lighting conditions different from those recorded in

the images.

Often one wants to edit the appearance of a captured material. In such cases,

the surface-based BSSRDF described in Chapter 5 provides an unsuitable rep-

resentation, since there is no intuitive way to modify it to fit different material

properties or shapes. In Chapter 6, we present a system based on a volume-based
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representation that allows for capturing, editing and rendering of translucent ma-

terials [146]. This solution is built on the diffusion equation, which describes the

scattering of light in optically dense media. With this equation and a volumetric

model, our method solves for a material volume whose appearance is consistent

with a sparse number of image observations. For sparse image data, many ma-

terial volume solutions can possibly fit the measured observations. To deal with

this ambiguity, we take advantage of the material attribute repetition coherency

that exists within the volumes of natural materials, and use this as a reconstruction

constraint in a direct optimization scheme to solve for the material volume. Such

solutions are shown to yield accurate renderings with novel lighting conditions

and viewpoints. In addition, the captured volumetric model can be easily edited

and rendered in real time on the GPU.

For translucent objects with texture-like material distributions, we present in

Chapter 7 an algorithm to generate high-resolution material volumes from a small

2D slice [29]. With this limited data, we capitalize on the material attribute rep-

etition coherence of textures for material modeling, and utilize subspace search

to synthesize full objects. This approach, together with the volumetric model

for translucent rendering, is fast enough to enable interactive texture design and

real-time synthesis when cutting or breaking translucent objects, which greatly

facilitates modeling of translucent materials.

Material fabrication

From an acquired model of material appearance, efficient techniques for recreat-

ing objects are needed to ultimately view them. While most methods aim for rapid

display on monitors, we present in Chapter 8 a novel solution for fabricating actual

materials with desired subsurface scattering effects [31]. Given the optical prop-

erties of material elements used in a manufacturing system, such as a 3D printer,

a volumetric arrangement of these elements that reproduces the appearance of a
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material attribute appearance subspace inter-attribute
repetition correlation

linear combinations / Chapters 3 and 5 /
direct optimization Chapter 6 / Chapter 4
subspace search Chapter 7 / Chapter 8

Table 1.1: Within the coherency-based appearance modeling framework, the co-
herency and reconstruction employed in each chapter.

given translucent material is solved. The solution is obtained both efficiently and

stably by accounting for inter-attribute correlation coherence between scattering

profiles and element arrangements. The reconstruction technique in this method

is based on subspace search.

Within the coherency-based appearance modeling framework, an overview of

the coherency and reconstruction utilized in each chapter is shown in Table 1.1.

This thesis concludes in Chapter 9 with a summary of its contributions and a

discussion of potential future work in coherency-based appearance modeling.
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Chapter 2

Background

Before presenting the main content of this thesis, we provide some background on

appearance modeling. This chapter begins with a review of light interaction with

materials and a taxonomy of reflectance functions, with specific attention to the

commonly used representations that will be focused on in this thesis. The general

pipeline for appearance modeling and rendering is then described, followed by

an overview of previous work on the two main forms of light interaction: surface

reflectance and subsurface light transport.

2.1 Fundamentals of light interaction with materi-

als

The appearance of a material or object arises from how it scatters light that arrives

from the surrounding environment. The scattering of light at a given point in a

material is determined by its geometric structure and optical properties, and is

referred to as reflectance.

Reflectance depends on various forms of physical interaction between material

and light. When a light ray reaches a surface, some portion of it may be reflected
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at the air-material interface, which is referred to as specular reflection, while the

rest of the light penetrates the surface where it may undergo further interaction

with the material. This component of light, when eventually emitted out of the

material, is called diffuse reflection.

The amount of incident light that reflects diffusely or specularly is determined

by the Fresnel reflection formulas derived from Maxwell’s equations for elec-

tromagnetic waves. Specifically, the ratio of specularly reflected light Ir to the

incoming lighting Ii is given by the following equation:

Ir

Ii
=

1
2
[(

nacosθi−nmcosθt

nacosθi +nmcosθt
)2 +(

nacosθt−nmcosθi

nacosθt +nmcosθi
)] (2.1)

where na and nm denote the refractive index of air and the material, and θi and θt

are the reflection and refraction angles modeled by Snell’s law:

sinθi

sinθt
=

na

nm
. (2.2)

The relative amounts of specular and diffuse reflection can vary significantly

among different materials, particularly between metals such as copper and di-

electrics (non-conductors) such as glass, and is a major factor in material appear-

ance.

Light that specularly reflects may encounter further interaction with the sur-

face in the form of additional specular reflections and surface penetrations. Mul-

tiple reflections from a surface are referred to as interreflections, which can occur

not only for specular reflections but for diffuse reflections as well. Even for an

apparently convex object, interreflections may occur within micro-scale surface

concavities that are a characteristic of many rough materials.

At a micro-scale level, a material surface is composed of microscopic planar

facets, or microfacets, from which specular reflections are considered to follow

the mirror reflection law [7], where the direction of incoming light and outgoing
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(a) Reflection (b) Occlusion (c) Interreflection

Figure 2.1: Different microfacet interactions at a microscopic scale.

reflected light have equal and opposite angles with respect to the microfacet sur-

face normal. At the macro-level at which we view an object, the reflectance is

the sum of light interactions among the microfacets. Several microfacet interac-

tions are illustrated in Figure 2.1, which shows different reflection directions and

energy due to different microfacet normal directions. Microfacets may mask and

cast shadows onto each other, in addition to producing interreflections of light.

What we see as surface reflectance is an aggregation of all these effects mixed

together in a local region.

For light that penetrates into the object volume, a significant amount of in-

teraction with the material medium generally occurs, and is termed as subsurface

scattering. In subsurface scattering, light strikes particles within the material and

disperses in various directions according to a scattering distribution function. The

dispersed rays subsequently interact with other particles in the medium, and even-

tually the light emerges from the object as diffuse reflection. This diffuse com-

ponent may leave the object from points other than the surface point at which it

entered the material volume, and for translucent or transparent materials, some or

all of the light may emerge from opposite surfaces of the object without interacting

with the material, in a process referred to as light transmission.

Based on the number of scattering events for a light ray beneath the surface,

the subsurface scattering can be further classified into single scattering or multiple
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scattering. In single scattering, only one interaction of light with the material oc-

curs within the object. This interaction determines the direction of the light path,

and the material properties along the path determine the amount of light attenu-

ation by absorption. In multiple scattering, light bounces multiple times in the

material volume before exiting through the object surface. Due to its complexity,

the effects of multiple scattering are relatively harder to compute.

Since the appearance from subsurface scattering is an integration of large num-

ber of scattered light paths, statistical models are often applied. At an interaction

point, the probability of its scattering in a given direction can be modeled by a

phase function p(ω,ω ′). Based on the phase function, the light transport process

for subsurface scattering can be formulated as the radiative transport equation

(RTE) [70]:

ω ·∇φd(x,ω)+σtφd(x,ω) =
σs

4π

∫

4π

p(ω,ω ′)φd(x,ω)dω
′)+φi(x,ω) (2.3)

where the extinction coefficient σt and scattering coefficient σs are optical prop-

erties of the material. φi is the reduced incident intensity that measures the distri-

bution of incoming light within the object, while the distribution of scattered light

is represented by the diffuse intensity φd . The RTE is a differential equation that

considers the distributions of light at all spatial positions and angular directions,

and in its general form the RTE does not have an analytical solution. The sub-

stantial computation required to solve the RTE directly necessitates a simplified

representation for subsurface scattering effects for efficient modeling of subsur-

face scattering appearance in computer graphics.

For many objects and materials, the optical properties and surface structure

that determine the scattering of light are not uniform over a surface or throughout

a volume. The spatial and volumetric variations of reflectance and surface geome-

try, such as the grain pattern in wood and the roughness of cement, are commonly
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General function  12D
{x,y,θ,ϕ,λ,t}in,{x,y,θ,ϕ,λ,t}out

BSSRDF  8D
{x,y,θ,ϕ}in,{x,y,θ,ϕ}out

BTF or SVBRDF  6D
{x,y,θ,ϕ}in,{θ,ϕ}out

Light field  4D
{x,y}in,{θ,ϕ}out

BRDF  4D
{θ,ϕ}in,{θ,ϕ}out

BSSDF  6D
{θ,ϕ}in,{θ,ϕ}out, xout-xin, yout-yin

Color textures  2D
{x,y}

Bump maps  2D
{x,y}

Time and wavelength independent

Opaque materials Spatially homogeneous materials

Spatially homogeneous

Disregard incident light

Disregard light directions Only geometry details

Opaque materials

Figure 2.2: Taxonomy of reflectance functions derived as reductions of the 12D
general scattering function.

referred to as texture. The detailed material features provided by textures can sig-

nificantly enrich the appearance of an object. In this thesis, we primarily consider

textures that are statistical in nature, as these forms of textures frequently occur

in both natural and man-made scenes, and facilitate efficient use of computational

resources. In particular, we take an approach to texturing based on image samples,

which can take advantage of the inherent realism of actual images.

2.2 Taxonomy of Light Scattering Functions

Rather than simulate intricate and computationally expensive low-level scatter-

ing interactions, a vast majority of rendering algorithms employ an abstraction
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of these physical processes in the form of light scattering functions that relate

incoming light to outgoing light from a surface. A scattering function can be

measured for a given object or precomputed from a given scattering model, and

provides all the information necessary to generate an material’s appearance in a

given illumination environment. Convincing appearance can be obtained with this

simplification, with a significant reduction in rendering costs.

Scattering functions may be represented in different forms. Most basically,

light scattering physically measured from objects is listed in a table, whose entries

enumerate a range of lighting and viewing conditions. More compactly, scattering

functions have been represented in terms of basis functions such as spherical har-

monics, wavelets, and Zernike polynomials. Most typically, scattering is modeled

by parametric functions, whose simplicity allows for rapid evaluation.

Because of differences in optical and geometric properties among various ma-

terials, varying degrees of approximation accuracy are achieved by different para-

metric scattering functions for different objects. For instance, the Lambertian

reflectance function, in which the intensity of reflected light towards all direc-

tions is modeled as being proportional to the inner product of the light direction

and surface normal, is effective in modeling the strongly diffuse light scattering of

matte materials, but is inadequate for representing the highly directional scattering

of light by metallic objects. Due to the diversity of material properties, different

scattering functions have been proposed for different target materials. For many

materials, particularly organic substances such as human skin and tree bark, the

scattering properties are complex and not entirely understood, and consequently

much room exists for further development of parametric scattering functions.

A comprehensive model of scattering can be described by a 12D function pa-

rameterized by the surface location (x,y), light direction (θ ,φ), time t and wave-

length λ of light incident on a surface and outgoing from the surface: (x,y,θ ,φ ,λ , t)in−>

(x,y,θ ,φ ,λ , t)out . The amount of light transmitted with respect to these 12 param-

eters defines a model for reproducing the appearance of a material. However, a
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12D function is infeasible both to measure, store or process. Because of this, com-

puter graphics applications utilize low-order approximations that disregard certain

parameters.

The most commonly-used reductions of the 12D general scattering function

are organized in Figure 2.2. A few simplifications to the general function are em-

ployed almost universally in rendering methods. These include the assumption

that scattering properties do not change over time and reflections occur instanta-

neously, which removes the dependence on time. It is also assumed that scattering

is wavelength independent or discretized into red, green and blue bands such that

the outgoing light in a wavelength band results from scattering of only this band of

incoming light. Disregarding wavelength in addition to time results in an 8D func-

tion, commonly called the bidirectional scattering-surface reflectance distribution

function (BSSRDF). The BSSRDF is a significant appearance representation in

computer graphics, since it fully accounts for the optical features of heteroge-

neous translucent materials as well as opaque materials with spatial variations in

appearance.

Different simplifications of the 8D function have been utilized, most com-

monly that light entering a material exits from the same point. This assumption

disregards light transport due to internal light scattering in the material. With

(x,y)in = (x,y)out , we are left with a 6D function that is referred to either as a bidi-

rectional texture function (BTF) or a spatially-varying bidirectional reflectance

distribution function (SVBRDF). Although BTFs and SVBRDFs essentially rep-

resent the same scattering function, a difference in emphasis is placed in the scat-

tering process. For a BTF, changes in scattering with respect to position (x,y)

are attributed mainly to 3D surface geometry and the shadowing, masking, and

interreflections that they produce. On the other hand, the spatial dependence of an

SVBRDF is focused primarily on variations in the optical properties of a surface.

Another reduction of the 8D function ignores the effect of absolute position
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on scattering. This 6D function, referred to as the bidirectional subsurface scatter-

ing distribution function (BSSDF) depends only upon relative surface positions of

incoming and outgoing light (xout − xin,yout − yin), such that scattering character-

istics do not vary over a surface. Accounting for light transport within a material

is particularly important for translucent objects such as milk, human skin, and

marble, for which subsurface scattering is a significant component of their overall

appearance.

A 4D bidirectional reflectance distribution function (BRDF) can be considered

as a BSSDF without internal light transport, or a BTF or SVBRDF that does not

vary spatially. It depends only on incident and outgoing light directions, and is the

most common form of scattering function used in computer graphics. BRDFs may

be further simplified, for example, to consider relative elevation angles φout −φin

instead of absolute angles, or to measure reflections only on the incident plane

defined by the incident light ray and its projection onto the surface.

From the 6D BTF or SVBRDF function, another simplification to 4D light

fields and related structures disregards the direction of incident light and is usu-

ally employed in conjunction with image-based representations of object appear-

ance. By further excluding the dependence on viewing direction, we are left with

a 2D texture map or bump map, which records spatial variations of surface color

or surface normal orientation, respectively. These 2D functions do not explic-

itly represent light scattering, but instead provide appearance attributes that are

typically used in conjunction with BRDFs in rendering.

In practice, simpler lower-dimensional scattering functions have been favored

for their greater computational efficiency, even with some noticeable reduction in

accuracy. However, recent increases in computation power have led to consider-

able interest in more detailed modeling and rendering of texture and appearance.

With this burgeoning attention, much effort has recently been focused on devel-

oping more accurate characterizations of light scattering processes and efficiently

incorporating these more complex scattering features into rendering techniques to
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elevate the reality of computer graphics. In this thesis, we focus primarily on the

BSSRDF and SVBRDF, since they fully represent a broad range of real-world ma-

terials ranging from heterogeneous translucent volumes to opaque surfaces with

rich spatial and angular reflectance details.

2.3 Modeling and rendering pipeline of material ap-

pearance

This thesis presents algorithms that address various components of the modeling

and rendering pipeline of material appearance. The different pipeline components

are briefly described in the following.

Realistic material modeling often begins with an appearance acquisition stage.

In this stage, direct measurements are recorded of how light is reflected from or

transported within a given material sample. Typically this involves sampling of

all visible points on the object surface and numerous viewing and lighting an-

gles. Measuring data from real materials is an important step towards high fidelity

appearance, but full sampling of high dimensional reflectance functions requires

a tremendous amount of data storage. Furthermore, capturing processes tend to

be long and tedious. While some recently proposed acquisition methods recover

reflectance functions of certain forms without full sampling, efficient capture of

high-quality appearance data remains a challenging task.

An alternative to appearance acquisition is the use of appearance modeling

tools, with which high quality appearance data can be produced from very little

image data with the help of user interaction. This interaction generally requires

the user to provide information about surface points in an image, such as surface

normal orientations and reflectance model parameters. From just a small amount

of appearance data obtained through either acquisition or modeling, appearance

synthesis algorithms can be used to generate additional novel appearance data
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with similar characteristics. Modeling and synthesis, though producing appear-

ance data that is just a perceptual match to real materials, are generally more

time efficient than appearance acquisition, and are thus important components in

the general appearance modeling and rendering pipeline. Data obtained through

acquisition, modeling and/or synthesis may also be processed by appearance edit-

ing, to modify the appearance data to suit the user’s requirements or preferences.

Editing is of particular importance when one wants to achieve an appearance that

does not quite match a material available for appearance acquisition, or if one

wishes to change the visual features of an existing material for artistic purposes.

After obtaining the appearance data, the appearance pipeline ends with a pro-

cess of appearance rendering of the material as objects and surfaces. Typically,

objects are rendered in a display system such as a computer or television moni-

tor. Alternatively, an object could be fabricated from physical materials such as

in a 3D printer. The goal of appearance fabrication is to automatically produce

materials with a desired material appearance from a limited number of manufac-

turing base materials. Appearance fabrication is a relatively new concept in the

computer graphics field, and it closes the loop of the appearance pipeline by bring-

ing the acquired material model back to the physical world. Within this thesis, all

parts of the appearance pipeline will be discussed with respect to the central theme

of appearance coherency.

2.4 Surface reflectance

In this section we give an overview of related works that provides a basic back-

ground in acquisition and modeling of surface reflectance. We first discuss vari-

ous methods for acquisition, and then describe interactive techniques for material

modeling and editing.
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2.4.1 Acquisition methods

The most direct method of acquiring surface reflectance is to densely record the

values of a reflectance function from a real material sample. This brute force ap-

proach has been used to measure SVBRDFs [23; 105; 84], BTFs [22; 109], and

reflectance fields [45]. Dense measurements are obtained both in the angular do-

main of view and light directions and in the spatial domain over points on the sur-

face. Special rigs called gonioreflectometers are needed for this capture process,

and the acquired 6D datasets are huge and require hours to collect and process. A

compact kaleidoscope-based device was developed by Han et al. [59] for quickly

measuring BTFs. This device can also be used for SVBRDF acquisition, but only

with a low angular resolution.

For the case of homogeneous materials, significant time can be saved in the

acquisition process by using convex or spherical objects [97; 94]. Such objects

display a broad range of surface normal orientations for the given material. An

image of the object therefore provides numerous BRDF measurements over the

points on the surface, and substantially reduces the number of images that need

to be captured to densely sample a 4D BRDF. This approach, however, cannot be

applied to materials with spatial variations.

To expedite data capture for materials with spatially varying surface reflectance,

several techniques employ parametric reflectance models. In [24; 44], a simple

parametric model is fit to the BRDF measurements at each surface point using

data taken from a sparse set of view and light directions. Though this approach is

considerably more efficient than brute force acquisition, existing research shows

that simple parametric models lack the power to accurately capture the appearance

of real materials [113].
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2.4.2 Interactive modeling and editing

An alternative to direct acquisition of material reflectance models is for the user

to interactively provide information within a single input image for recovering the

geometry and reflectance of objects. Oh et al. [115] developed a set of tools for

interactively modeling the depth layers in a single image. The tools included a

filter to extract the shading component in uniformly textured areas. Their method

is designed for modeling the geometry of a scene or character but not materials

with the rich texture and geometric details we are interested in.

Several interactive methods have been developed for modeling a bump map

of structured textures [28], displacement map of tree barks [150], and stochas-

tic/procedural volumetric textures [51] from single image input. All these meth-

ods are designed for specific kinds of textures and cannot easily be extended to

model others. In industry, CrazyBump [19] is widely used by artists to gener-

ate bump maps from single images. For most texture inputs, it simply takes the

image intensity as the shading map. Since image intensity is also influenced by

the albedo variations of the underlying material, much manual work is needed to

refine the results.

User interaction has also been employed for editing materials in a photograph

to alter its appearance. Fattal et al. [41] compute a multi-scale decomposition

of images under varying lighting conditions and enhance the shape and surface

details of objects by manipulating its details in each scale. Fang and Hart [40]

and Zelinka et al. [163] decorate an object in a photograph with synthesized tex-

ture, in which the object normals recovered via shape from shading are used to

guide texture synthesis. Both methods assume the object geometry to be smooth

and ignore intensity variations caused by albedo. Khan et al. [76] infer the shape

and surrounding lighting of an object in a photograph and render its appearance

with altered material. This method does not recover object reflectance and simply

maps smoothed pixel intensities to depth. Xue et al. [162] model the reflectance

of weathered surface points in a photograph as a manifold and use it for editing
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the weathering effects in the image. All these methods only recover partial mate-

rial information for editing object appearance under the view and lighting of the

original image. New viewing and lighting conditions cannot be rendered in this

way.

2.5 Subsurface Light Transport

Subsurface light transport within a material has often been represented with phys-

ically based models of radiative light transfer. Radiative transfer models were first

introduced to computer graphics by Blinn [11] to represent the scattering of light

in participating media. This technique addressed single scattering within a ho-

mogeneous medium such as dusty air. To render multiple scattering in optically

thick participating media such as clouds, Stam [136] later presented an approxi-

mation of multiple scattering as a diffusion process, where the many and frequent

collision events within the medium causes light intensity to become isotropic or

directionally independent. For a detailed survey on techniques for modeling and

rendering of participating media, we refer the reader to [16].

Radiative light transfer for subsurface scattering has been modeled for translu-

cent material volumes with known optical properties [60; 35; 120]. Jensen et

al. [74] later presented a model for homogeneous translucent materials that com-

bines an exact solution for single scattering with an analytic dipole diffusion

approximation for multiple scattering based on the diffusion approximation of

Stam [136]. This method was later extended in [33], where a shading model was

formulated from multipole theory for light diffusion in multi-layered translucent

materials. In this thesis, we also utilize the diffusion equation, to more generally

model multiple scattering effects in heterogeneous translucent materials.

Aside from radiative transfer models, subsurface scattering of heterogeneous

materials may also be acquired directly from image appearance. Acquisition

methods have been presented for human faces [24], object-based models [53],
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material-based models for volumes with an even distribution of heterogeneous

elements [140], and material models for general heterogeneous volumes [119].

These image-based representations are specific to the measured object or mate-

rial. Although the appearance of a material could potentially be modified in these

models, physical material properties cannot be edited in a meaningful way.

Models of subsurface scattering may also be acquired through estimation of

scattering parameters from a material sample. Parameter estimation, however, is

often confounded by multiple scattering, whose appearance arises in a complex

manner from a material’s scattering properties. For homogeneous materials, mul-

tiple scattering can be approximated with analytic models [74; 111], which have

greatly facilitated estimation of scattering parameters. In [110], the effects of mul-

tiple scattering are avoided by diluting participating media to low concentrations,

such that multiple scattering becomes negligible and scattering parameters can be

solved from only single scattering. For heterogeneous, optically dense materials,

multiple scattering cannot be addressed with such simplifications.

For heterogeneous translucent materials, several methods compute spatially

varying scattering properties by fitting the dipole model to BSSRDFs at each point

[139; 34] or per region [156; 48]. However, these methods can only represent

materials with slowly varying properties such as skin, whose BSSRDF can be well

approximated by a homogeneous BSSRDF computed from scattering properties at

each point. It cannot be used for modeling many other heterogeneous translucent

materials with sharp variations, such as marble and jade.

Many methods have been developed for editing BSSRDFs [160; 148; 135]

and rendering BSSRDFs under different lighting conditions [87; 61; 149; 27]. Al-

though these methods provide good solutions for modeling and rendering surface

appearance caused by subsurface scattering, they all ignore the actual material

properties inside the object volume.

From a given volumetric material model, subsurface scattering has been simu-

lated and rendered using Monte Carlo methods [35; 120] and photon tracing [73].
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Physically based simulation of the numerous scattering events within a material

provides a high level of realism, but entails a considerable expense in computa-

tion. Real-time rendering can be achieved through precomputation of light trans-

port [61; 149]. However, light transport quantities that have been precomputed

with respect to a given volumetric model become invalid after material editing.

2.6 Material Fabrication

Material fabrication is a new but important direction for computer graphics re-

search. For ultimate viewing of the modeled appearance data, techniques have

been developed for physically reproducing them in the real world. Here, we briefly

introduce the existing work on fabricating different surface reflectance properties.

Fabrication of translucent materials with subsurface scattering will be introduced

in Chapter 8.

As previously discussed, surface reflectance is determined by the micro-geometry

of the surface. A direct solution for fabricating the reflectance is to reproduce

the micro-geometry that generates the desired reflectance features. However, a

BRDF only models the normal distributions of such micro-geometry; there is no

direct mapping between a BRDF and actual microfacets. Furthermore, directly

reproducing such micro-scale geometry is not feasible for general manufacturing

techniques.

To address these issues, Weyrich et al. [157] take as input a BRDF or other

form of reflectance data and solve for probability distribution functions of surface

facet orientations that would give an equivalent reflectance. The facets are formed

into a continuous surface, which makes the surface physically valid and ensures

manufacturability. A simulated-annealing optimization technique is introduced to

minimize discontinuity between facets. Practical issues are also taken into con-

sideration, such avoiding valleys that extend beyond manufacturing limits. A final

surface is fabricated using a milling machine, and a variety of results is presented.
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Although this fabrication method can produce materials with complex re-

flectance features, the targeted reflectance is observable at only a very coarse scale

at which the facets appear dense enough to correctly simulate the microfacet nor-

mal distribution. Additionally, only a single BRDF is generated for a material

sample, and spatial variations of reflectance cannot be reproduced by this method.

Rather than reproducing the micro-scale details directly, Matusik et al. [100]

take an different approach. Based on the knowledge that BRDFs can be repre-

sented by a linear combination of a set of basis BRDFs, they take a set of inks

with known BRDFs and automatically find the optimal linear combination that

best represents the targeted SVBRDF. The linear combination is realized by a

halftoning algorithm specially designed for BRDF inks, which have different dot

sizes. To handle materials beyond the capability of current material inks, a gamut

mapping process for SVBRDFs is proposed. Finally, the resulting halftone pat-

terns of material inks are printed using a desktop thermal printer.
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Part I

Acquisition and Modeling of
Opaque Surfaces
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Many materials have optical properties which make them opaque. Within such

volumes, there is no penetration of light and no subsurface scattering. The appear-

ance of opaque materials depends only on reflections from the surface. Though

such materials may be optically less complex than other materials in certain ways,

they nevertheless can exhibit rich and detailed reflectance variations. Modeling

and acquisition of these appearance details is essential for producing realistic CG

imagery with opaque objects.

Surface appearance is influenced by several physical factors. Besides the op-

tical properties at each surface point, the appearance of opaque surfaces depends

also on local geometric features and surface orientations at the micro-structure

level. These different factors can combine to produce various surface appearance

properties, ranging from diffuse to glossy, from smooth to rough, and from pat-

terned to random.

As described in Chapter 2, the spatially varying reflectance of surfaces can

be represented by the six-dimensional spatially varying bidirectional reflectance

distribution function (SVBRDF) f(x,i,o) [114], which describes the proportion of

radiance that is reflected towards a given viewing direction with respect to surface

point position and lighting direction. Surface positions are defined in the spatial

domain, while lighting and viewing directions are expressed in the angular do-

main. Since the SVBRDF can fully represent the appearance of opaque materials,

it is one of the most commonly used reflectance models in computer graphics.

There are two approaches to SVBRDF acquisition and modeling in computer

graphics. The first of these is to capture the SVBRDF data directly by measuring

them from real material samples. This provides high realism as the created model

is built from actual material appearance. It also leads to considerable technical

challenges, because material capture often requires large and expensive hardware,

as well as hours of measurement and processing. These issues greatly limit the

use of direct SVBRDF capture in computer graphics applications.

A second approach which is employed for the vast majority of CG materials
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is to manually model surface appearance using color textures and analytic re-

flectance models. For this, a design artist typically starts from a single texture

image (e.g. a cataloged texture or a photograph of a material sample under spe-

cific lighting conditions) which is used as a guide for assigning parameter values

of an analytic reflectance model together with a bump map of local geometric vari-

ations. For many materials, this process takes hours to perform, with the use of

image manipulation programs (e.g. Photoshop), inverse shading tools (e.g. Crazy-

Bump), and 3D shading network software (e.g. Maya). Not only is this process

cumbersome, but it often does not lead to the highest quality material models,

since it is difficult to derive detailed reflectance and normal maps from a texture

image.

The complexity of direct capture and the difficulty of manual modeling are

the two principal roadblocks in surface appearance modeling. In this section,

we address each of these problems in a manner that capitalizes on material co-

herency to enable efficient reflectance capture and easy interactive material mod-

eling. Chapter 3 presents manifold bootstrapping [32], a technique for obtaining

high-resolution reflectance from sparse captured data using appearance subspace

coherence and data reconstruction by linear combinations. For instances when

physical acquisition is impractical, we propose AppGen [30] in Chapter 4, a sys-

tem that significantly accelerates the manual appearance modeling process. App-

Gen takes advantage of inter-attribute correlation coherence in the appearance

data and uses direct optimization for reconstruction. With these methods, we can

efficiently obtain high quality SVBRDFs that faithfully represent the actual re-

flectance features of real-world materials.
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Chapter 3

Efficient SVBRDF acquisition with
manifold bootstrapping

General function  12D

BSSRDF  8D

SVBRDF  6D

Light field  4D
BRDF  4D

BSSDF  6D

Color textures  2D Bump maps  2D

Appearance subspace coherency
solved by: Linear combinations

Acquisition

Interactive 
modeling

Fabrication

A major goal of this thesis is to

simplify appearance measurement by

avoiding collection of redundant data

and by performing acquisition with in-

expensive devices. At the same time,

the acquired and reconstructed mea-

surement data should faithfully rep-

resent the highly detailed appearance

characteristics of the material sample.

In this chapter, we focus on capturing spatially varying surface reflectance proper-

ties. Specifically, we will discuss efficient SVBRDF acquisition by fully utilizing

the non-linear coherency of real-world surface appearance.

The key to efficient SVBRDF capture is to utilize the inherent coherence of

material reflectance. Coherence in the form of spatial redundancy in reflectance
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has been exploited to expedite SVBRDF acquisition. Several methods have mod-

eled reflectance at different surface points as linear combinations of representa-

tive BRDFs, and applied this idea to compress densely measured data [87; 102;

84]. Studies have shown that the BRDFs over a material surface are not globally

coherent in a linear manner, since arbitrary linear combinations of BRDFs may

result in implausible BRDFs [102; 145]. Rather, the spatially varying BRDFs of

a material have non-linear coherence and form a low-dimensional manifold in the

high-dimensional BRDF space.

Though not globally linear, these low-dimensional manifolds have a locally

linear structure. Via local linear embedding [126], BRDFs are well approximated

by linear combinations of nearby manifold points. However, how to reconstruct

the entire manifold of a material surface without full sampling is a major unsolved

challenge in SVBRDF acquisition. Since the BRDF manifold is defined in a high-

dimensional space, any direct measurement involves enormous data and lengthy

capture times.

In this chapter, we propose an efficient bootstrapping scheme that separates

data acquisition for a high-dimensional SVBRDF manifold into two lower-dimensional

phases. The first phase captures the BRDF manifold structure of a given material

sample according to appearance subspace coherency, while the second one de-

termines the manifold point to which each surface position x corresponds using

reconstruction by linear combinations. Specifically, the first phase captures a set

of full-resolution BRDF representatives (hereafter referred to simply as represen-

tatives) at sparsely sampled points on the surface. The locations of these points

need not be known. The second phase captures a set of reflectance measurements

densely over the surface but sparsely in the angular domain, under only a few

different lighting directions. This data we refer to as key measurements, which

are arranged at each surface position x into a low-dimensional key vector. From

a key vector, a high-resolution BRDF is inferred from representatives that have

similar key vectors. The high-resolution BRDF is reconstructed by computing a
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linear combination of these representatives whose response to the key measure-

ments matches the measured key at x. The total amount of data acquired in the two

phases is substantially less than full direct measurement of the SVBRDF, yet is

sufficient for accurate SVBRDF reconstruction. Complex reflectance effects such

as from anisotropic materials with spatially-varying normal and tangent vectors

can be well modeled by this method.

To expedite data capture in the first phase, we present a technique to syn-

thetically enlarge the representative set. For bumpy surfaces, a discrete series of

normal tilts are applied to each original representative to obtain additional repre-

sentatives. Similarly, for anisotropic surfaces we augment the representative set

using discrete azimuthal rotations. Bootstrapping is then performed as before on

the enlarged set.

The remainder of this chapter is organized as follows. We review related

works in the first section. The second section introduces the basic components of

manifold bootstrapping, such as representative and key measurements, and then

presents the theoretical framework of manifold bootstrapping including the re-

construction method and an analysis of coherence in reflectance. In Section 3.3,

a practical acquisition approach is described, including the design of a portable

BRDF sampling device and an on-site setup for capturing of reflectance maps.

A validation of this method and experimental results are provided in Section 3.4.

The chapter closes in Section 3.5 with a summary of the major points in this work.

3.1 Related Work

In previous work, redundancies in reflectance data have been exploited to simplify

data acquisition. One class of methods exploits angular redundancy. Gardner et

al. [44] scan the surface of a material with a linear light source and capture its re-

flectance from a fixed viewpoint. An isotropic Ward model [151] is then fit to the
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captured data at each point, to extrapolate the measured data to unmeasured light-

ing and viewing angles. A parametric reflectance representation such as the Ward

model, however, provides limited accuracy in representing the angular reflectance

variations of many real-world materials.

Another class of methods exploits coherence in both the angular and spatial

domain. Several of these techniques employ a single data collection pass in their

acquisition process. Lensch et al. [88] reconstruct the SVBRDF of a real ob-

ject of known geometry. BRDFs from different surface points are grouped into

small sets, with each set fit using a Lafortune model [83] basis. The reflectance

at each point is then represented as a linear combination over the basis. Goldman

et al. [55] use the same linear combination idea but with an isotropic Ward model

as the BRDF basis, to reconstruct both an object’s shape and its SVBRDF from

sparse measurements. These methods capture spatial variation, but miss details in

the BRDF’s anisotropy, specularity, and other types of angular variation, because

they merge angular information from different spatial samples. [167] models the

SVBRDF using six-dimensional radial basis functions. By assuming isotropic re-

flectance that varies smoothly over space, BRDF fitting at each point can be done

with sparse reflectance data by using information from neighboring points. Our

approach makes no assumptions about the material’s spatial distribution, which

in general may not be spatially smooth. Recently, Alldrin et al. [1] extended the

linear combination idea using an isotropic bivariate function as the BRDF basis.

It is not clear how to extend this method to model anisotropic SVBRDFs. [147]

models anisotropic surface reflectance from data captured from a single view and

dense lighting directions, based on the general microfacet model. Reconstruction

involves merging data from surface points having consistent reflectance properties

with respect to microfacet normal distributions, and requires dense measurements

over both space and lighting directions.
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In general, methods based on a single data collection pass cannot avoid cap-

turing huge datasets to obtain both spatial and angular details of complicated re-

flectance. Acquiring data in two separate and much smaller passes, the first for

angular variations and the second for spatial variations, our method takes advan-

tage of both angular and spatial coherence to significantly reduce the data and

time needed for capture.

Some recent methods also perform a sort of two-step bootstrapping. To obtain

surface reflectance of large outdoor scenes, Debevec et al. [25] measure a set of

representative BRDFs from small regions of the scene using controlled lighting, as

well as images of the entire scene under natural lighting. At each scene point, the

Lambertian color is recovered and its BRDF is modeled as a linear combination

of two representative BRDFs whose diffuse colors are most similar to that of the

point. This approach works well for the targeted application, but fails in general

when surface points have similar diffuse colors but different specular reflectance.

We generalize the concept of key measurement, as well as the bootstrapping pro-

cedure, to enable capture of a wide range of materials.

Matusik et al. [103] represent an isotropic BRDF as a linear combination of

100 BRDFs chosen from an existing database. Based on this reconstruction, an-

other BRDF can be optimally projected using about 800 measurements. Similarly,

[156] represents the reflectance of human skin as a linear combination of a set of

isotropic BRDFs manually selected from an existing database. Weights for each

surface point are computed via non-negative matrix factorization (NMF), based

on data that is densely acquired from 15 views and 300 light directions. These

methods assume only isotropic reflectance and acquire much denser key measure-

ments than we do (by 1-2 orders of magnitude). More fundamentally, they assume

that the existing database or set of parameterized RBF models fill in the missing

angular data. By contrast, we obtain high-resolution BRDF representatives from

the actual target. These are especially effective when the BRDF space becomes

large, complex, and anisotropic. A second difference is that our technique respects
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Figure 3.1: SVBRDF bootstrapping. A key vector at each spatial position x is
projected to the space of matching vectors to determine a local linear embedding.
The linear weights and neighborhood indices are then applied to the full-resolution
representatives to reconstruct the BRDF at x.

the nonlinear nature of the BRDF space and applies only local reconstruction.

3.2 SVBRDF Manifold Bootstrapping

This section introduces the basic theory of manifold bootstrapping for SVBRDF

capture. Implementation details, synthetic enlargement of the representative set,

and a validation of the key measurement approach are also presented.

3.2.1 Representative and Key Measurement

Representative Measurement In the first phase, we capture a set of M high-

resolution representative BRDFs, indexed by p and denoted by B∗= {b∗p(o, i) | p=
1,2, . . .M}. To represent BRDFs, each representative vector, b∗p, comprises Nb =

No×Ni samples, No over viewing directions and Ni over lighting directions. We

assume this set of representatives adequately samples the BRDF manifold across
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the surface.

To uniformly sample the BRDF manifold, we cull nearly identical representa-

tives if their distance is less than ε , fixed at 10% of the average distance over all

pairs of nearest neighbors.

Key Measurement The second phase measures a low-dimensional set of keys,

or reflectance responses over the whole sample. Critical to bootstrapping is a set

of key measurements that is still able to accurately discriminate BRDF features.

Previous work [84; 147] has shown that many BRDFs are well-characterized by a

single 2D BRDF slice; i.e., by measurements with respect to varying lighting but

a fixed view. This is because specular reflectance for many real-world materials

can be represented using the microfacet model [20], which expresses a complex

4D BRDF in terms of a simpler, 2D normal distribution function (NDF). The NDF

can then be inferred by measuring data which covers the hemisphere of half-angle

vectors midway between view and light directions,

h = (o+ i)/‖o+ i‖. (3.1)

This is clearly possible from measurements which vary the lighting but fix the

view. The microfacet model will be used again and discussed in more detail in the

next section. Note that the fact that real materials are captured by the microfacet

model does not imply that they can be captured by simple parametric models:

real-world NDFs are complicated and require tabulation or more sophisticated

modeling [113; 147].

The view direction, o∗, is chosen to be 45◦ from directly overhead. The pro-

vides the best coverage of half-angle vectors as the light source is varied.

Our key measurement captures N images of the material sample, each indexed

by j and acquired from a fixed view direction o∗ and under a known but vary-

ing source radiance field L j. The measured reflectance responses at each point x
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provide constraints on integrals of the BRDF bx(i,o) , via

r j(x) =
∫

Ω+(n)
bx(i,o∗)(n · i)L j(i)di, (3.2)

where n is the surface normal and o∗ and L j are the view direction and source

radiance fields for the j-th key measurement, respectively.

Assembling all N reflectance responses at surface point x into an N-dimensional

key vector, rx =
(
r1(x),r2(x), · · · ,rN(x)

)T , we can represent Equation (3.2) in ma-

trix form as

rx = Rbx, (3.3)

where bx is the BRDF vector at x. The N×Nb key measurement matrix, R, con-

verts sampled BRDFs to key measurements and is given by

R jk =

{
(n · iki)L j(iki), oko = o∗

0, otherwise.
(3.4)

The indices ko and ki decompose the overall index k of the packed BRDF vector

bx into its constituent view and lighting directions, via k = koNi + ki. In fact, the

dimensionality of R is really only N×Ni (not N×Nb), because it is based on a

single view and so has no response to view vectors other than o∗.

3.2.2 Manifold Bootstrapping Overview

Given the previous two-phase measurement of a material sample, our method

combines the two to reconstruct a high-resolution SVBRDF as shown in Fig-

ure 3.1.
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Local BRDF Reconstruction Interpolation of distant BRDFs leads to implau-

sible reflectance, as demonstrated in [102] for isotropic BRDFs of different (spa-

tially homogeneous) materials. For anisotropic BRDFs, the problem is even worse

(see Figure 3.9f). We solve this problem by bootstrapping using local reconstruc-

tion, which interpolates only over nearby representatives. We assume that the

local dimensionality of the BRDF manifold is constant.

Mathematically, a particular BRDF bx at a spatial position x can be represented

as a convex linear combination of a small number k of nearby representatives,

called the representative neighborhood, b∗p, p ∈ δ (bx), k = |δ (bx)|:

bx ≈ ∑
p∈δ (bx)

wp b∗p, ∑
p∈δ (bx)

wp = 1. (3.5)

The neighborhood here is defined in terms of L2 distance in BRDF space, not

spatial distance. This ensures that the linear combination produces a physically

plausible result.

Representative Projection and Bootstrapping Substituting Equation (3.5) into

Equation (3.3), we obtain a constrained linear equation on the weights wp:

rx = ∑
p∈δ (rx)

wp r∗p, ∑
p∈δ (rx)

wp = 1 (3.6)

where

r∗p = Rb∗p. (3.7)

The projection in Equation (3.7) numerically applies the key lighting we captured

in phase two to the representative BRDFs we captured in phase one, and also eval-

uates at the key viewing direction o∗. It reduces an Nb-dimensional representative

vector, b∗p, to an N-dimensional matching vector, r∗p. Equations (3.5) and (3.3)

imply that the measured key vector rx can be represented as a linear combination

of neighboring matching vectors, r∗p, p ∈ δ (rx).
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Because we do not know the entire BRDF vector bx but instead only the key

vector rx, we require that key vectors roughly preserve distance so that a neigh-

borhood in key vector space corresponds to a similar neighborhood in the original

BRDF space. This requires a sufficient number of key measurements.

3.2.3 Manifold Bootstrapping Details

Estimating Local BRDF Dimensionality We choose k based on an analysis

of intrinsic local dimensionality of the representative set. The basic idea is to

assemble a growing set of neighbors in terms of increasing distance around each

representative, considered as a local center. We analyze dimensionality based on

a singular value decomposition (SVD) of vector differences of all neighbors in the

set to this center. Eliminating singular values less than a threshold (e.g., preserving

95% of total energy), the number of significant singular values remaining forms

an estimate of dimensionality. At first, dimensionality increases rapidly, since

each new neighbor typically adds an entire new dimension. But after we have

discovered a spanning set of neighbors, additional ones add no more significant

dimensions to the space. We use a simple heuristic that fixes dimensionality when

twice as many neighbors fails to increase the dimensionality estimate. We then

average local dimensionality estimates over a random selection of representative

centers.

Uniform Measurement Scaling Overlapping light sources and varying envi-

ronmental lighting in key measurement produce a non-orthogonal key measure-

ment matrix. This leads to ellipsoidal rather than spherical neighborhoods in key

space, and so complicates the selection of neighbors and distorts the interpolation.

We orthogonalize the projection by applying the SVD to R, yielding

R = UR ΛR VR (3.8)
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where UR is an N×N orthogonal matrix of left-hand eigenvectors, ΛR is an N×N

diagonal matrix of eigenvalues, and VR is an N×Nb (really N×Ni) orthogonal

matrix of transposes of right-hand eigenvectors. ΛR should contain no zero or

very small elements; if it does, then we are measuring redundant (i.e., linearly

dependent) lighting configurations, which add no new information to the key.

To remove non-uniform scaling in our key measurements, we apply the SVD

in Equation (3.8) to obtain the uniform key vector

r̂x = Λ−1
R UT

R rx. (3.9)

We also define the uniform matching vector r̂∗p as

r̂∗p = VR b∗p. (3.10)

Neighbors can now be found in the uniform key space using a simple distance

threshold over these N-dimensional vectors, in order to match a linear combina-

tion of the r̂∗p to each r̂x.

Neighborhood Selection After uniform measurement scaling, the representa-

tive neighborhood δ is determined at each spatial position x by finding the k-

nearest uniform matching vectors r̂∗p to the uniform key r̂x. We use approximated

nearest neighbor (ANN) search [108] to accelerate finding the k-nearest neigh-

bors. We also remove outliers having distance more than 5 times of the average

distance over all neighborhoods.
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Local Linear Combination We then determine the linear weights, wp, based

on the distance metric in each local neighborhood [126], via:

wp = ∑
q∈δ (rx)

C−1
pq (r̂x · r̂∗q +λ ), (3.11)

λ =
1−∑p,q∈δ (rx)C−1

pq (r̂x · r̂∗q)
∑p,q∈δ (rx)C−1

pq
. (3.12)

Cpq = r̂∗p · r̂∗q denotes the covariance matrix of the neighborhood and C−1 is its

inverse. We compute the inverse based on SVD, and clamp reciprocals of small

singular values back to 0. Though negative weight solutions are theoretically

possible, in practice, we have not encountered negative weights.

3.2.4 Synthetic Enlargement for Representatives

To handle bumpy surfaces, we enlarge the representative set by rotating each

BRDF to align the vertical direction to a discrete set of tilted normals. The set

is regularly sampled using 120 azimuthal angles and 30 polar angles in a 75◦

range, yielding an enlargement factor of 3600. The same bootstrapping algorithm

is then applied to capture spatially-varying bumpy reflectance. After enlargement,

nearly identical representatives are removed using distance culling as described in

Section 3.2.1.

For anisotropic materials, we similarly rotate the derived BRDF around the

normal direction by a discrete set of 360 azimuthal angles and add the correspond-

ing BRDFs to the example set. We can then recover the anisotropic reflectance

and local orientation angle at each spatial position.

Given a 3×3 rotation matrix R, the rotated BRDF b′(i,o) is given by

b′(i,o) = b(RT i, RT o). (3.13)

To handle tilts due to normal variation, representative BRDFs are defined on the
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full spherical domain, not just the upper hemisphere. The lower hemisphere of

the original BRDF b is zeroed out before rotation. In our implementation, since

our phase one capture relies on the microfacet model, we can simply rotate the

NDF’s half-angle vector h, and then convert the NDF to a full 4D BRDF, as later

described in Section 3.3.1.

3.2.5 Key Measurement Validation

Key measurements must adequately discriminate BRDF features in two ways.

First, they should ensure that representative neighborhoods in “key” space, δ (rx),

also correspond to neighborhoods in BRDF space, δ (bx), so that distant BRDFs

are not interpolated. Second, they should ensure that local distances in the BRDF

manifold are preserved, to yield an accurate local reconstruction. This motivates

an investigation of how well key measurements preserve distance in the original

BRDF manifold, at both small and large length scales.

Overall distance preservation τ over a neighborhood of representatives of ra-

dius r, δ (p,r) = {q | ||b∗p−b∗q||< r} can be measured by:

τ(p,r) =
∑i, j∈δ (p,r) ‖r̂∗i − r̂∗j‖
∑i, j∈δ (p,r) ‖b∗i −b∗j‖

. (3.14)

In the uniformly-scaled space, we have 0≤ ‖r̂∗i − r̂∗j‖ ≤ ‖b∗i −b∗j‖. The closer τ is

to 1, the better our key measurement is at discriminating between representatives

in the neighborhood. Based on this, we examine average distance preservation at

various length scales, r via

τ̄(r) = 1/M
M

∑
p=1

τ (δ (p,r)) . (3.15)
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Figure 3.2: Single point BRDF measurement device (phase 1): (a) optical design,
(b/c) prototype from side/bottom view.

Finally, we define global distance preservation,

τg = τ̄(∞) (3.16)

by calculating average distance over all pairs of representatives. We also define

local distance preservation

τl = τ̄(r̄ ) (3.17)

where r̄ is the average local radius over all representative BRDFs. It is defined as

the maximum distance over the k nearest neighbors to each representative, aver-

aged over all representatives.

3.3 SVBRDF Data Acquisition

Our approach captures two datasets from a flat sample of the target material. Typ-

ical sample dimensions are 10cm×10cm. Our device setups are portable and han-

dle natural background lighting and inexact lighting control, allowing materials to

be captured on-site without the need to move them to a dedicated capture room.
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3.3.1 Acquiring Representatives: BRDF Samples

We developed a portable device for capturing a hemispherical field of reflected

rays emanating from a single point on the material sample using a single camera

position. Data is acquired by illuminating the surface point using nl = 6 light-

ing directions and capturing its resulting reflectance. A high-resolution general

microfacet BRDF [6] is derived from this captured data. We scan the sample to

acquire typically about hundreds of BRDFs scattered over its surface.

Device Setup Figure 3.2 shows the design of our single-point BRDF measure-

ment device. Our setup includes a pair of Anchor Optics 47mm condenser lenses

with 21mm focus length, a 200µm pinhole and a Firefly(R) MV camera from Point

Grey Research. These components are mounted along the same optical axis using

a lens tube from Thorlabs. We use six high-brightness LEDs as light sources; each

is attached to a carbon fiber tube to generate a light beam. One (top light beam)

is mounted between the two condenser lenses and illuminates the capturing point

at roughly a 10 degree bias from the vertical direction. The other five (side light

beams) are mounted around the optical axis between the field condenser lens and

the target surface, and illuminate the capturing point at 20 degrees above the hor-

izontal plane.

A sample is placed at the focal plane of the field condenser lens, fF. The

pinhole is placed at the focal plane of the ocular condenser lens, fO, and images

the light field at a single point on the target surface onto a video camera. The

acceptance angle of the condenser lens is 48◦ from the optical axis. The camera

communicates with a laptop via an IEEE1394 cable, which also supplies power

for the LEDs and their control unit. A housing ensures the device is at the correct

distance from the target sample.

Calibration The lens tube ensures optic alignment of the lenses, pinhole and

camera. Distances between them are manually adjusted. The LED for the top
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light beam is held by an acrylic disc; its position is calibrated by measuring a

mirror. Positions of the side LEDs are calibrated in manufacture. We calibrate

the color and intensity of each LED by measuring a color checker pattern. Radial

distortion of the dual condenser system is analytically calculated based on the

specification from Anchor Optics, and determines the view direction at each pixel

in the captured image.

Capturing The device is a cylinder 50mm in diameter and 150mm tall, and

weighs about 500g. We scan it over the sample to collect BRDFs at different

locations. For each position, we acquire six images lit by each LED and two im-

ages per light for exposure bracketing. The camera captures images of resolution

320×240 at 135Hz, yielding about 0.1s per BRDF point capture. In a postpro-

cess, each exposure pair is merged into an HDR image [26], and the resulting six

images of 240×240 are used to derive a high-resolution BRDF. Figure 3.3a shows

an example.

The top light LED component occludes a 3mm diameter hole in the captured

image. Since the top light beam is away from the optic axis, this hole typically

does not occlude the peak of the specular lobe. We obtain the occlusion mask

when calibrating with the color checker. If the hole contains no high frequency

features, we fill it with harmonic interpolation [128]. We detect this by querying

the intensity range of pixels surrounding the hole and testing whether the max/min

ratio exceeds 2. In that case, we discard the sample.

Reflectance samples are then computed from the six HDR images by dividing

by the cosine factor and light intensity:

ρ (o(u), il) =
Gl(u)

(n · il)Ll
(3.18)

where u is the pixel position in the image corresponding to the view direction o(u),
and il and Ll are the direction and intensity of the l-th LED. These quantities are
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Figure 3.3: NDF reconstruction: (a) 2D BRDF slice captured using top light
beam, (b) using side light beam, (c) reconstructed NDF, (d) covered region in
the reconstructed NDF. BRDF slices from these six lighting directions cover most
of the NDF domain.

all determined in calibration.

In sustained mode, we move the device continuously but slowly (e.g., around

1mm/s) over materials with smooth spatial variations. For materials with piece-

wise reflectance discontinuities or small details, the device also runs in a triggering

mode. Placing the device on the desired target location, the user triggers a single

BRDF point capture using a UI on the computer connected to the device.

Reconstruction To reconstruct a high-resolution 4D BRDF from this captured

data, we decompose the BRDF into diffuse and specular components. The diffuse

component ρd is determined by using a simple minimum filter on the samples ρ

in Equation (3.18), via

ρd =
∑l minu {ρ(o(u), il)}

nl
. (3.19)

The specular component is the residual after subtracting this diffuse term:

ρs (o(u), il) = ρ (o(u), il)−ρd. (3.20)

We then represent the specular component with a general microfacet model
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Figure 3.4: Device setup for capturing reflectance maps (phase 2): (a) diagram,
(b) photograph.

[6] as

ρs(o, i) = cs
D(h)S(i)S(o)F(o, i)

π (i ·n)(o ·n) , (3.21)

This model is defined in terms of five factors: a microfacet normal distribution

function (NDF) D in terms of the half-angle vector from Equation (3.1), its shad-

owing factor S, a Fresnel reflection factor F , and the scalar specular coefficient,

cs. We assume the surface normal is aligned to the z axis: n = z = (0,0,1).

Since D dominates the other factors in determining the high-frequency charac-

teristics of the BRDF, we follow [6; 24; 147] and tabulate it as a square image

using the spherical parameterization in [133]. We fit this microfacet BRDF in

Equation (3.21) from the measured specular data ρs in Equation (3.20) using the

method described in [113]. In our case, the view direction varies densely rather

than the lighting direction. Therefore we reconstruct the full NDF from partial

NDFs inferred using a sparse set of nl lighting directions. We represent the re-

covered NDF by a 400×400 square image using the spherical parameterization in

[133]. Figure 3.3 summarizes the process and shows an example.
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3.3.2 Acquiring Keys: Reflectance Maps

Keys are based on reflectance maps captured from a single view and lit by N

different lighting configurations (Figure 3.4). The lighting can include variable

environmental/area sources and their inter-reflections off surrounding geometry,

as shown in Figure 3.5. The light source is attached to a hand-held pole and

moved in a 2D plane opposite the sample from the camera, about 1.5m away from

the sample center. We attempt to uniformly sample this plane, and ensure that the

set of reflected directions are “covered” by a light direction (i.e., make a highlight

appear on the sample). Precise lighting control is not necessary.

A mirror ball is used to probe the lighting applied. A Canon 30D camera with

EF-100 2.8 lens is placed above and 2.0m away from the center of the material

sample. The image resolution is 3504×2336.

Before capturing, we calibrate the camera’s position and orientation using the

method in [165]. For each lighting change, we record an HDR image including the

material and the mirror ball using exposure bracketing as in [26]. In our prototype

system, we simply move the light source around the sample by hand.

The process is finished after capturing N images, resulting in the material’s

reflectance responses, r j(x), and reconstructed source radiance fields, L j(i), for

j ∈ 1,2, . . . ,N. The environmental lighting and moving area light source are far

enough away to reasonably assume that the radiance field is constant over the

entire material sample. We also compute the viewing direction o? at the sample

Figure 3.5: Lighting used for key measurement, L j, visualized as hemicube maps.
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Figure 3.6: Distance preservation from representative space to matching vector
space. (a) with increasing number of key measurements. (b) with increasing size
of light source. Light radius is a linear angle, measured in radians. The material
used in this experiment is glossy paper, shown in Figure 3.10b. The distance
preservations are computed from Equations (3.16) and (3.17).

center and assume it to be constant over all x as well.

Key Lighting Dimensionality To investigate the sufficiency of key lighting

measurements, we captured 100 lighting conditions based on a small varying area

light source, and randomly selected N as input to generate the matching vector

space of 1200 BRDFs, sampled from the example in Figure 3.10b. Results are av-

eraged over ten trials of this random lighting selection. Figure 3.6a plots distance

preservation as a function of N. Global and local distance preservation converge

fairly quickly as N increases. In our experiments, convincing results are obtained

with τg > 0.9 and τl > 0.85. Evaluating τl and τg at a few hundred representatives

takes little time and indicates whether our lighting configuration and value for N

are sufficient. So this validation can be applied between phase one and before

phase two, to guide the key measurement.
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Key Lighting Size In addition to the number of measurements, the size of the

light source used also affects the sufficiency of our key measurement. To in-

vestigate this parameter, we performed an experiment on the material shown in

Figure 3.10b, which mixes BRDFs of different specularity and color. We syn-

thetically generated a series of matching vectors with a moving disk-shaped light

source of varying radius. We then plot local and global distance preservation as

a function of light source size. The result is shown in Figure 3.6b. Smaller light

sources generate a higher-rank projection VR from Equation (3.10). However,

their corresponding key space is also sparsely supported, so significant variation

in the BRDF manifold can fall into its null space. Light sources of medium ex-

tent (e.g., 0.4π) provide an optimal balance between subspace dimensionality and

wideness of support, and so best preserve distance.

3.4 Experimental Results

We implemented our SVBRDF bootstrapping algorithm on a Intel Core(TM)2 Duo

2.13G PC with 2G memory. Core capturing for BRDF representatives and re-

flectance map keys takes 10-20 minutes, excluding time for setting up the mate-

rial target, camera, and light source. Subsequent data processing takes less than

10 minutes. Table 3.1 lists the parameters used in capturing. We infer 2D NDFs

of resolution 400×400, yielding 4D BRDFs with more than ten million angular

samples in viewing and lighting direction. The spatial resolution ranges from one

to four million samples.

3.4.1 Method Validation

Test on Fully-Sampled SVBRDF We tested our bootstrapping method on fully

sampled anisotropic SVBRDF data (greeting card from [84]). The experiment

selected 1000 BRDFs from random positions as the representatives. Reflectance
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Material Sample
Reflectance Maps Representative BRDFs
Resolution # (N) # (M) τg/τl k

glossy paper (fig.11b) 1000×1000 50 30 0.90/0.87 10
wrinkle paper (fig.1c) 1000×600 200 30 † 0.90/0.83 13
weathered copper (fig.1d) 2000×2000 80 1200 0.93/0.85 21
aluminum pan (fig.1a) 2000×2000 200 10 S 0.99/0.85 15
satin (fig.1b) 2000×2000 90 30 0.99/0.85 15
wrinkled satin (fig.14) 1500×1500 200 30 †S 0.91/0.85 19

Table 3.1: Statistics for our examples. The M column shows number of repre-
sentatives before enlargement. Materials using synthetic enlargement are marked
with † for normal and S for tangent enlargement.

Figure 3.7: Validation example. (a) Reconstruction error as a function of number
of lighting measurements, N. (b) Rendering with original SVBRDF. (c) Rendering
with reconstructed SVBRDF.

map capture was simulated by applying the Grace Cathedral environment map

[26] along with a disk light source with angular radius 0.4π at a controlled di-

rection. We then measured reconstruction error of our bootstrapping method as

a function of the number N of different key measurements (light directions). For

each N, we average over ten randomly generated sets of light directions. Fig-

ure 3.7a shows the average reconstruction error, which falls quickly as N in-

creases. The rightmost two columns of the figure compare rendered results be-

tween the original data (b) and our reconstructed SVBRDF (c), at a view not used

in the second phase capture. An accurate match is obtained.
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Figure 3.8: Comparison with result by microfacet synthesis [147]. (a) ground
truth. (b) our result. (c) result of microfacet synthesis

Comparison with Microfacet Synthesis We compared our method with mi-

crofacet synthesis [147]. Results are shown in Figure 3.8. We made N=20× 20

lighting measurements for microfacet synthesis, as suggested in [147], requiring

capture of 400 reflectance images. Our method was based on N=50 key mea-

surements. Both methods applied point source lighting. Even with such a large

data set, microfacet synthesis generates results with grid artifacts on highly spec-

ular texels. The artifacts are caused by point light source sampling, which aliases

specular peaks. By reconstructing based on full-resolution BRDFs acquired in a

separate step, our method is able to avoid such artifacts with a greatly reduced

measurement.

Effect of Neighborhood Size We also investigated how k affects reconstruction

quality. Our experiment is based on the brushed aluminum sample with N=100

key measurements. We used representative set enlargement based on tangent ro-

tation as described in Section 3.2.4. Using a total of M=3600 representatives, we

compared reconstruction error from local linear combination as k varied from 1 to

3600. Results at a typical texel (marked with a red circle) are shown in Figure 3.9a.

The ground truth BRDF is acquired at that point by the device described in Sec-

tion 3.3.1. As expected, increasing k always reduces the fitting error between the

key vector and the linear combination of matching vectors. When k = N, the num-

ber of parameters matches the number of constraints and the error drops to 0. This
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Figure 3.9: Local linear reconstruction with different neighborhood sizes, k. Er-
ror is measured by sum of squared differences (squared L2), normalized to the
signal’s sum of squares. BRDFs are visualized as 2D NDFs inferred from the
microfacet model. (a) Matching vector and final BRDF reconstruction error vs. k.
(b) BRDF ground truth. (c-f) reconstructed BRDF with different k, as marked in
(a).

does not imply a corresponding reduction in error for the final BRDF, because re-

construction is based on a sparse key measurement and so becomes extremely

under-determined. As discussed, the BRDF manifold is not globally linear so

such under-determined linear combinations generate results off the BRDF mani-

fold and provide a poor fit. A very large k thus generates an implausible BRDF

with ghosting artifacts and high error, as shown in Figure 3.9ef. Over a broad

range (4-60), the choice of k has little effect on reconstruction quality.

3.4.2 SVBRDF Capture Results

Figure 3.10 shows results for different material samples. We compare the rendered

result of our reconstructed SVBRDFs to photographs of the captured sample with

the same lighting conditions. Materials with smooth (a/d) and sharp (b/e) spatial

57



CHAPTER 3. EFFICIENT SVBRDF ACQUISITION WITH MANIFOLD BOOTSTRAPPING

variation are both handled. The leftmost two columns show isotropic materials,

while the rightmost column shows anisotropic satin. The comparison is made

under a novel view and light which does not correspond to any view or light

conditions used in capture.

Figure 3.11 shows results for a bumpy isotropic material (b), an anisotropic

material with spatially varying tangents (a), and a material with both spatially-

varying normals and tangents (c). Rendering results with reconstructed SVBRDFs

match well with the ground truth, as shown in the second row. The number of rep-

resentatives before enlargement is listed in Table 3.1. The wrinkled satin example

is enlarged based on both normal and tangent rotation; we reduced its enlarge-

ment factors to 72× for tangent and 400× for normal rotations, yielding 864k

Figure 3.10: SVBRDF examples. Top row shows an original image of the ex-
ample; bottom row shows the reconstructed SVBRDF rendered with the same
lighting condition. Examples: (a/d) weathered copper plate, (b/e) glossy paper,
(c/f) satin.
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total representatives after enlargement. All other examples use 3600× for nor-

mal and 360× for tangent enlargement, as mentioned in Section 3.2.4. The figure

also shows normal/tangent maps inferred by applying the same linear combination

used to reconstruct each SVBRDF texel to the representative normal/tangent vec-

tors themselves. Such vectors provide a good, low-dimensional proxy to visualize

our method’s output.

Figures 3.12 and 3.13 show rendered results of the acquired SVBRDFs mapped

on objects, from two different views. A brushed aluminum pan is shown in (a); the

fan-shaped highlight and detailed brushing pattern create a realistic appearance.

A satin pillow with complex needlework is rendered with environment lighting in

(b), and exhibits complex appearance changes as the view and light varies. Wrin-

kled glossy paper with sharp reflectance changes is rendered in (c). Progressively

changing reflectance captured from a weathered copper plate is shown in (d). Fig-

ure 3.14 shows rendered results from the wrinkled satin SVBRDF capture.

3.5 Conclusion

Manifold bootstrapping simplifies and accelerates the capture of complex reflectance

by decomposing data acquisition into two phases. One captures the overall BRDF

manifold while the other maps this manifold over the surface. Both phases make

only sparse measurements of the overall 6D SVBRDF. We propose a new com-

pact device based on a pair of condenser lenses to scan BRDF point samples in

the first phase. Using local linear embedding and representative set enlargement,

we produce SVBRDFs of high resolution in both the spatial and angular domains

from this sparse data. Captured materials exhibit convincing realism, isotropic

and anisotropic specularity, and spatial detail.

Our method is general and may have application to other sorts of data capture,

whenever representatives form a low-dimensional manifold in a high-dimensional

space. It can also accommodate different methods for phase one and phase two
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Figure 3.11: Enlarged SVBRDF examples. Top row shows an original image of
the example, second row shows reconstructed SVBRDF rendered with the same
lighting condition. Third and fourth rows show inferred normal and tangent maps.
Examples: (a/d) brushed aluminum pan, (b/e) wrinkled glossy paper, (c/f) wrin-
kled satin. Image (g) shows the tangent map of (a); (h) shows the normal map of
(b); (i/j) shows the normal/tangent map of (c).

60



CHAPTER 3. EFFICIENT SVBRDF ACQUISITION WITH MANIFOLD BOOTSTRAPPING

Figure 3.12: Renderings of high-resolution SVBRDFs reconstructed by our
method from two-phase, low-dimensional captured data: (a) anisotropic brushed
metal, (b) satin with complex needlework, (c) wrinkled glossy paper, (d) weath-
ered copper.

Figure 3.13: Zoomed results: (a) brushed aluminum, (b) satin, (c) wrinkled glossy
paper, (d) weathered copper.
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Figure 3.14: Rendering results for wrinkled satin.

measurement. Our hand-held BRDF scanner measures only a few light directions,

and so requires amplification via the (single-bounce) microfacet model. Though

this model has wide applicability [6; 147], it does prohibit anomalous materials

such as retro-reflective ones. Our method for acquiring reflectance maps is limited

to flat surfaces without significant self-shadowing and self-masking. We would

like to address these drawbacks in future work.
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Chapter 4

Interactive SVBRDF Modeling from
a single image

General function  12D

BSSRDF  8D

SVBRDF  6D

Light field  4D
BRDF  4D

BSSDF  6D

Color textures  2D Bump maps  2D

Inter-attribute correlation coherency
solved by: Direct optimization

Interactive 
modeling

Fabrication

Acquisition

In the previous chapter, we presented

an efficient method for capturing and

representing an SVBRDF with the

BRDF manifold model, which greatly

simplifies the measurement process

and accelerates acquisition speed. In

many instances though, one wishes to

model the appearance of a material for

which a physical sample is not readily

available. All that one may have is just an image of the desired material from an

online photo gallery. For cases like this, manual modeling by artists is needed

to generate a CG appearance model of the material. Software design tools like

Photoshop, CrazyBump and Maya are often used for manual modeling from an

image, but require considerable time and skill to generate materials with a reason-

ably convincing appearance.
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This chapter presents an efficient and easy-to-use system called AppGen for in-

teractive material modeling from a single image. We focus on modeling spatially-

varying surface reflectance and normal variations from a texture image that is

captured from a nearly planar surface lit by directional lighting. Such images are

easily found in texture collections used by artists for material modeling. In this

work, our goal is not to determine the exact reflectance and normals from such

single images, which is well-known to be an ill-posed problem. Instead, we aim

to obtain a material material that is visually consistent with the photo while sig-

nificantly speeding up the workflow of artists. To keep user interaction minimal,

the key idea is to require the user to specify shading or reflectance information

on only a few pixels with sparse strokes, while our algorithm employs direct op-

timization in efficiently inferring the reflectance and normal details for all pixels

in the image based on this input. This inference uses two forms of inter-attribute

correlation coherence: between diffuse and specular reflection, and between the

chroma and albedo of surface points. The outcome of this process is exemplified

in Fig. 4.1, which exhibits a material modeled using our system with just a few

user strokes. With AppGen, an artist can quickly produce a highly detailed, re-

alistic output material that is comparable in appearance to what he or she would

generate with traditional software tools in substantially more time, as shown in

Fig. 4.2.

What makes it possible for our system to reconstruct a material’s spatially

varying appearance from very little user input is the strong coherence in reflectance

over a surface. By identifying the exact form of coherence that exists among the

different surface points, our system is able to enforce corresponding constraints on

the solution and also propagate the user-supplied reflectance data over the entire

material accordingly.

Our system consists of four steps, illustrated in Fig. 6.1. (1) First, we remove

highlight and shadow pixels in the input image and fill them by image inpaint-

ing. After that, we are left with an image of only the diffuse contribution. (2) We
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(a) Input image (b) User interaction (c) Rendering result

Figure 4.1: Given a single image (a), our system models the spatially varying
reflectance properties and normals with a few strokes specified by the user (b). The
resulting material can be rendered under different lighting and viewing conditions
(c).

Our results Results generated by artist

(a)(a) (b)(b)

(c)(c) (d)(d)

Figure 4.2: Comparisons between the materials modeled by our method and
materials manually modeled by an experienced artist. The results generated by
the two methods are similar. Our system generates each result within 5 minutes,
while the artist takes one hour to generate each result.
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present an algorithm for interactively separating the texture image into the prod-

uct of shading and diffuse albedo. We assume that in each local region pixels with

the same chroma value belong to the same material and have the same albedo in-

tensity, while groups of pixels with different chroma values share the same global

geometry and thus have the same average shading. Based on these two assump-

tions, we formulate the separation as an optimization problem and solve it via an

Expectation-Maximization (EM) like algorithm. We ask the user to interactively

mark regions that violate our assumptions using a few rough strokes and augment

our optimization procedure with these constraints to further refine the separation

results. The result of this step is a diffuse color map and a shading map caused

by normal variations. (3) We recover the per-pixel normals from the shading map

by representing the underlying geometry as a height field (to capture the over-

all shape) with perturbed normals over it (to fit the remaining fine-scale shading

variations). In general, splitting the shading map into a height field and perturbed

normals contribution is an ill-posed problem. In our case though, since we assume

that the contributions of the perturbed normals are subtle high frequency effects,

we remove them from the shading map by smoothing. Based on this observa-

tion, we introduce a two-scale normal reconstruction algorithm. We first compute

a height field that best fits the smoothed shading image, and then solve for a de-

tailed normal map over the height field that best fits the detailed shading map. The

geometry features at different scales are well recovered in this way and generate

consistent shading results under different lighting conditions. (4) Finally, we as-

sign the proper specular properties to each pixel based on the diffuse albedo and

the specular properties of a sparse set of pixels that are assigned by the user with

rough strokes.

With this technique, materials with compelling appearance can be generated

with only a few minutes of interaction. As we will later demonstrate, our sys-

tem works well for a variety of material types, including natural surfaces (metals,

woods, rocks, leathers) and man-made ones (textiles, papers, concrete).
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4.1 Related Work

Several previous works have aimed to decompose an input image into a lighting

and a reflectance component, commonly referred to as intrinsic images. Without

prior knowledge about the scene and its objects, decomposition of a single input

image into intrinsic images cannot be solved due to its inherent ill-posedness [56].

Methods that tackle this problem incorporate additional constraints to make the

decomposition tractable. Horn [68] makes the assumption that the illumination

varies smoothly over the surface, which is generally not true for bumpy surfaces.

Tappen et al. [137] use color information and a pre-trained classifier to label gra-

dients in the input image as either reflectance or albedo changes. Shen et al. [131]

detect similar local neighborhoods (i.e., textons) over the image and assume these

areas to have a similar reflectance. However the texton clustering used in their

method can lead to banding artifacts in the resulting shading map. Recently,

Bousseau et al. [14] decoupled intrinsic images from a single input image with

user assistance. Their method assumes that the reflectance of pixels in a local

window lies in a plane. Although this assumption is valid for natural images, it

will fail in a texture image with rich reflectance details. All of these methods are

designed for natural images and cannot work well for images of materials with

rich variations in both albedo and shading. Our separation algorithm targets such

texture images. With few assumptions and sparse user input, our method opti-

mally decomposes the reflectance from shading while preserving both albedo and

shading details in the result. In contrast to the diffuse shading separation method

of Xue et al. [162] for images of weathered surfaces, our method does not assume

surface reflectance to form a 1D manifold in color space. Our method provides

a general solution to the separation problem, as well as an efficient refinement

scheme.

In the field of computer vision, methods have been proposed for estimating
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surface shape from its shading in a single image. As in intrinsic image decom-

position, this problem is also ill-posed and requires additional constraints. Horn

and Brooks [69] recover the normals from a shading image by regularizing the

problem with smoothness constraints. The resulting normals tend to be noisy and

biased toward the lighting direction. Later methods [164; 36] assume the under-

lying surface to be integrable and solve a height field from the shading image.

Although these methods work well for reconstructing the overall surface geome-

try, they fail to fit the shading details and thus cannot reproduce detailed normal

variations over the surface. Our two step normal reconstruction approach accu-

rately recovers both surface geometry and detailed normal variations from a single

shading image and generates consistent shading results under different lighting di-

rections.

Recently, Glencross et al. [52] hallucinated a surface height field from an im-

age captured under diffuse ambient lighting. Another image with flash illumi-

nation of the same scene is needed for separating the albedo from the input im-

age. Our system uses a single input image under directional lighting for modeling

both albedo variations and normal variations. Moreover, our normal reconstruc-

tion method accurately recovers detailed normal maps and preserves details in the

shading map.

4.2 System Overview

Our system takes as input a texture image I of a nearly planar surface with spatially-

varying reflectance and normal variations that is illuminated by a directional light.

Since the underlying surface is nearly planar, we further ignore occlusion and

inter-reflections between geometry details on the surface. Although this lighting

model is not physically accurate, it nevertheless produces plausible results for

many input images as later shown.

Without losing generality, we model the BRDF ρ(x) at pixel x as the sum
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Input

Highlight and shadow removal Diffuse shading separation

Initial albedo map

Initial shading map

Specular map

Specular assignment

Normal map

Normal reconstruction

Diffuse component

Shading correction stroke Albedo correction stroke Specular assignment strokes for different BRDFsStroke legend

Refined shading map

Refined albedo map

Figure 4.3: Overview of our system. In the preprocessing step, we remove high-
light and shadow pixels. After that, with user assistance, we decompose the dif-
fuse component into the product of a diffuse albedo map and a diffuse shading
map. We then assign specular reflectance guided by the albedo map and user
strokes. Finally, we reconstruct geometry details from the diffuse shading map. A
legend of color coded strokes used in this chapter is shown at the bottom.

of a Lambertian component, with albedo ρd(x), and a specular component, with

specular coefficient ρs(x) and lobe shape fr(x). Under directional lighting, the

image value I(x) at x can be computed as the sum of the diffuse contribution Id(x)

and the specular highlights Is(x) as

I(x) = Id(x)+ Is(x), (4.1)

where

Id(x) = ρd(x)Sd(x) = ρd(x)(N(x) ·L) Il (4.2)

Is(x) = ρs(x)Ss(x) = ρs(x) fr (N(x),L,V )(N(x) ·L) Il. (4.3)

The diffuse shading Sd(x) is determined by the local normal N(x), the light

direction L and light intensity Il , while the specular shading Ss(x) is additionally

related to the viewing direction V .
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Given input image I, the goal of our system is to model spatially-varying dif-

fuse albedos ρd(x), specular coefficients ρs(x), lobe shapes fr(x), and normals

N(x) with the help of a few user strokes. Figure 6.1 shows an overview of our

system that is composed of the following steps:

• Highlight and shadow removal. We first identify the highlight Is(x) and

shadow pixels Io(x) by thresholding the pixel values (I(x) > 235 for high-

lights and I(x) < 25 for shadows for 8-bit images) and fill these pixels by

image inpainting [10]. After that, the image only contains the diffuse com-

ponent Id . Any other shadow removal and specular separation methods can

be used instead in this step.

• Diffuse Shading Separation (Sec. 4.3). We decompose Id obtained from the

last step into the product of a diffuse albedo map ρd and a diffuse shading

map Sd . We formulate this separation as an optimization problem and com-

pute the initial shading and diffuse albedo maps. After that, the user quickly

refines the initial separation results by drawing sparse strokes in regions that

violate our assumptions and thus exhibit artifacts.

• Normal Reconstruction (Sec. 4.4). We reconstruct a normal map N from the

diffuse shading map Sd with a two-scale normal reconstruction approach.

After the user specifies the lighting direction, we first compute a height field

that fits a smoothed shading map. We then recover fine geometric variations

by fitting detailed normals over the height field to match the detailed input

shading map Sd .

• Specular Assignment (Sec. 4.5). We assign the specular reflectance proper-

ties (ρs and fr) of a fixed set of specular basis BRDFs to each pixel, guided

by user strokes that assign the basis BRDFs to just a few pixels. A material

classification algorithm determines the material type of all pixels, according
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to the diffuse color and stroke location, and uses this to assign a specular

BRDF to each pixel.

4.3 User-Assisted Shading Separation

In this step, we decompose the diffuse components Id into a shading map Sd and

a diffuse albedo map ρd . These two components will serve as the input of the

following steps for normal reconstruction and specular assignment.

For this purpose, we represent the image value Id = (Ir
d,I

g
d,I

b
d) by its intensity

Ii
d = (Ir

d +Ig
d +Ib

d)/3 and chroma value Ic
d = (Ir

d/Ii
d,I

g
d/Ii

d,3−Ir
d/Ii

d−Ig
d/Ii

d). We

assume the light is white Il = (1.0,1.0,1.0) so that the image chroma comes from

the chroma of the diffuse albedo ρc
d(x) = Ic

d(x), while the image intensity is the

product of shading and albedo brightness:

Ic
d(x) = ρ

c
d(x), Ii

d(x) = ρ
i
d(x)S

i
d(x). (4.4)

Our goal is to decompose the diffuse intensity Ii
d into an albedo intensity map

ρ i
d and a shading intensity map Si

d . To this end, we formulate the separation as an

optimization problem and solve the initial albedo map and shading map by an EM

(Expectation-Maximization) like algorithm. After that, we refine the results with

the constraints specified by sparse strokes.

4.3.1 Separation as Optimization

We first assume that in each local region Ω, pixels with the same chroma value

Ic
d(x) = ρc

d(x) = c belong to one material and thus have the same albedo intensity

ic. Based on this local albedo assumption, we have

ρ
i
d(x) = ic x ∈Ωc, (4.5)
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where Ωc refers to the set of pixels that are in Ω and have the same chroma

value c. For shading caused by the geometric details in Ω, our key observation is

that although the spatial patterns and amplitudes of the geometric details of each

material (i.e., pixels in each Ωc) may be different from one another, the large scale

geometry in Ω is almost flat. As a result, the average normals of the geometric

details of all materials in Ω are almost the same and the shading estimation of

each material is equivalent to the shading estimation of all pixels in Ω. Based on

this local shading assumption, we have

E(Si
d(x)|x ∈Ωc) = E(Si

d(x
′)|x′ ∈Ω). (4.6)

Given Equation (4.5) and Equation (4.6), the intensity estimation of pixels in

Ωc can be computed as

E(Ii
d(x)|x ∈Ωc) =

∑x∈Ωc(ρ
i
d(x)S

i
d(x))

NΩc

=
ic ∑x∈Ωc Si

d(x)
NΩc

= icE(Si
d(x)|x ∈Ωc) = icE(Si

d(x
′)|x′ ∈Ω), (4.7)

where NΩc is the number of pixels in Ωc. So the albedo intensity ρ i
d(x) of a

pixel x in region Ωc should satisfy

ρ
i
d(x) =

E(Ii
d(x
′)|x′ ∈Ωc)

E(Si
d(x

′′
)|x′′ ∈Ω)

x ∈Ωc. (4.8)

Since the shading intensity is Si
d(x) = Ii

d(x)/ρ i
d(x), we can rewrite the right

side of the equation as a function of image intensities and albedo intensities of

pixels in Ω as

E0(Ω,c,Ii
d,ρ

i
d) =

E(Ii
d(x
′)|x′ ∈Ωc)

E(Si
d(x

′′
)|x′′ ∈Ω)

=

1
NΩc

∑x′∈Ωc Ii
d(x
′)

1
NΩ

∑x′′∈Ω
Ii

d(x
′′
)

ρ i
d(x
′′
)

. (4.9)
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Based on this local constraint, we formulate the separation as an optimization

problem by minimizing the following energy function of ρ i
d(x):

F0(ρ
i
d(x)) = ∑

Ω∈Ω†

||ρ i
d(x)−E0(Ω,ρc

d(x),I
i
d,ρ

i
d)||2, (4.10)

where Ω† is the collection of all fixed sized local regions that contain x.

In practice, we define Ω as a W ×W window and solve this optimization us-

ing an iterative algorithm similar to Expectation-Maximization. In the E-step,

given E0(Ω,ρc
d(x),I

i
d,ρ

i
d) computed from the current albedo intensity map, we

update ρ i
d(x) by solving the linear equations that result from the differentiations

of F0(ρ
i
d(x)) with respect to ρ i

d(x). Then in the M-step, we update E0(Ω,c,Ii
d,ρ

i
d)

for each window and each chroma value from the new albedo intensity map ac-

cording to Equation (4.9). We repeat these two steps iteratively until conver-

gence. After obtaining the albedo intensity ρ i
d(x), we compute the shading in-

tensity Si
d(x) = Ii

d(x)/ρ i
d(x). Figure 4.4b and 4.4c illustrate the shading intensity

map and albedo intensity map separated by our optimization algorithm.

In practice, we set the region size to W = 20 and initialize the optimization

by setting the albedo intensity to the image intensity (i.e., the shading intensity is

1.0 everywhere). To determine whether two pixels have the same chroma value,

we uniformly subdivide the first two channels of chroma vectors into 20 slots and

quantize each pixel’s chroma value to one of 400 quantized chroma values.

4.3.2 Interactive Refinement

Although our method generates reasonable results in most image regions, it will

fail and generate artifacts in regions that violate our assumptions. Specifically,

in regions that violate the local albedo assumption, pixels with the same chroma

value have different albedo intensities. In this case, our method will leave image

intensity variations of these pixels to the shading map and thus generate undesired

detail shading variations in flat regions (shown in the top row of Figure 4.4b and
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(a) Input 
strokes

(b) Initial 
shading map

(c) Initial 
albedo map

(d) Refined
shading map

(e) Refined
albedo map

Figure 4.4: Interactive refinement. Given the initial shading map (b) and albedo
map (c) separated from the input image, the user draws sparse strokes in regions
that violate our assumptions to refine the results. The top row shows the effect of
Albedo correction stroke, and the bottom row shows the effect of Shading correc-
tion strokes. Artifacts in the initial results (b) and (c) are fixed in (d) and (e) after
refinement.
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(a)[Kimmel et al. 2003] (b)[Shen et al. 2008] (c) Our method
without interactions

Input

Figure 4.5: Comparisons to automatic intrinsic image algorithms. (a) Color
retinex [77] has artifacts in the separated results. (b) Even if combined with non-
local texture cues [131] these artifacts cannot be fully removed. (c) Without user
interaction, our method already produces reasonable results.

4.4c). In regions that violate the local shading assumption, the shading estimate

of each material is different from each other and thus is also different from the

shading estimate of the local region. In this case, our method will compute a

biased albedo intensity for each pixel and thus introduce undesired variations in

regions with constant albedo (shown in the bottom row of Figure 4.4b and 4.4c).

This case often happens in regions where the material distribution is correlated to

large scale geometric structures.

User Strokes We design a user stroke for each type of artifact for users to

quickly specify artifact pixels. Based on sparse strokes specified by the user, our

algorithm automatically removes the artifacts and refines the separation results.

To fix the artifacts in regions that violate the local albedo assumption, we

ask the user to draw albedo correction strokes over artifact pixels to indicate that

locally the underlying geometry is flat and the shading details of a pixel should be
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(c) Our method
without interactions

(d) Shading map(c) Albedo map(a) User strokes
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Figure 4.6: Comparisons to user-assisted intrinsic images. Our method is shown
in the top row, while the results of [14] are shown in the bottom row. With only
three interactions, our method can generate high quality separation results, while
[14] requires many more input strokes to get a reasonable separation.

moved to its albedo intensities. As a result, each albedo correction stroke defines

the following constraint:

ρ
i
d(x) = ES(Ω,x,Ii

d,ρ
i
d) =

Ii
d(x)

E(Si
d(x
′)|x′ ∈Ω)

=
Ii

d(x)
1

NΩ
∑x′∈Ω

Ii
d(x
′)

ρ i
d(x
′)

(4.11)

and an energy term FS for optimization:

FS(ρ
i
d(x)) = ∑

Ω∈Ω†

w(x)||ρ i
d(x)−ES(Ω,x,Ii

d,ρ
i
d)||2, (4.12)

where w(x) = λe−||x−xs||2/σ is a weight function to control the importance of

the stroke constraint at x, which is determined by the distance between x and its

closest stroke pixel x′. In practice, we set λ = 10.0 and σ = 3.0.

To fix artifacts in regions that violate the local shading assumption, we ask the

user to draw shading correction strokes over artifact pixels to indicate that locally
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the albedo intensity of a pixel with chroma c should be the same as the albedo

intensity of stroke pixels that have the same chroma c. If no pixel in the stroke has

chroma c, the pixel keeps its original albedo. So each shading correction stroke

defines the following constraint:

ρ
i
d(x) = EA(Ωs,c,ρ i

d) = E(ρ i
d(x
′)|x′ ∈Ωsc)

=
1

NΩsc
∑

x′∈Ωsc

ρ
i
d(x
′) ρ

c
d(x) = c, (4.13)

where Ωs is the set of all pixels in the stroke, Ωsc refers to all pixels in Ωs

that have chroma c, and NΩsc is the number of pixels in Ωsc. We thus define the

following energy term FA for optimization:

FA(ρ
i
d(x)) = ∑

Ω∈Ω†

w(x)||ρ i
d(x)−EA(Ωs,ρ

c
d(x),ρ

i
d)||2. (4.14)

Result Refinement To refine the separation result with user specified strokes,

we minimize the following energy function that combines the energy terms de-

fined by all strokes and F0:

F0(ρ
i
d(x))+λS

NS

∑
j=0

FS, j(ρ
i
d(x))+λA

NA

∑
k=0

FA,k(ρ
i
d(x)), (4.15)

where FS, j denotes the for j-th albedo correction stroke, and FA,k is the k-th

shading correction stroke. NS and NA are the numbers of strokes of the two types.

λS and λA weight the constraints specified by the two types of strokes respectively

in optimization, both of which are set to 1.0 in practice.

We adapt our iterative solver for this new energy function. In the E-step, we

update the albedo intensity ρ i
d(x) by solving the sparse linear system resulting

from the differentiations of the new energy function with respect to ρ i
d(x). In the
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M-step, we update the functions E0, ES and EA with the new albedo intensity val-

ues according to Equations (4.9), (4.11), and (4.13) respectively. We repeat these

two steps iteratively until convergence. The spatial weights w for each stroke are

computed before the optimization. Figure 4.4d and 4.4e illustrate refined separa-

tion results, where the artifacts are removed with the help of sparse user strokes.

4.3.3 Discussion

Different from previous intrinsic images methods [56] mainly designed for nat-

ural images, our method targets texture images with details in both reflectance

and shading. On one hand, our local albedo assumption allows arbitrary chroma

variations in the local region and thus can well handle complicated reflectance de-

tails. On the other hand, our local shading assumption only constrains the average

shading of each material in the local region and thus well preserves the compli-

cated shading details in the input. Moreover, we design two types of strokes for

the user to quickly remove artifacts and refine results. We compare our method

with two automatic intrinsic images methods [77; 131] in Figure 4.5. The color

retinex method [77] generates visible artifacts in the separated results. Although

the non-local texture used in [131] improves the results, the separation artifacts

still cannot be fully removed. By contrast, our method can automatically recover

the shading/albedo in images with both shading and albedo variations. Figure 4.6

compares the results generated by our method with ones generated by the user-

assisted intrinsic images method in [14]. Note that in [14] the local reflectance

plane assumption cannot guarantee the shading/albedo to be constant in regions

with constant shading/albedo. User inputs are always necessary for generating

reasonable results and become cumbersome as the detail in the input image in-

creases, while in our method the automatic solution already generates convincing

results for most image inputs. User input is only needed to fix artifacts in the

results.
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4.4 Two-Scale Normal Reconstruction

To model the geometry details of the input surface, we reconstruct a normal map

N(x) from the diffuse shading map Sd(x) and a lighting direction L roughly spec-

ified by the user.

For this purpose, we represent the surface geometry as a height field with per-

turbed normals over it and develop a two-scale normal reconstruction algorithm.

The key observation of this approach is that the shading details produced by the

normal perturbations in Sd(x) are always subtle and high-frequency, and as such

can be filtered out by smoothing. Based on this observation, we first filter the

input shading map Sd with a 3× 3 Gaussian filter (σ = 0.4 in our implementa-

tion) and recover a height field H from the filtered shading map S′d via shape from

shading. We follow the method in [159] to compute a height field H in our cur-

rent implementation, but other shape from shading methods can be used instead

here. After that, we compute the perturbed normals defined over the height field

by minimizing the energy function:

En = ∑
x
||N(x) ·L−Sd(x)||2 +λ ∑ ||N(x)−Nh(x)||2. (4.16)

The first term constrains the shading result of N with lighting direction L to

fit the input shading map Sd , while the second regularization term minimizes the

difference between the resulting normal N and the normal Nh computed from the

height field H. The weight λ is a regularization term, which is set to 0.001 for

all results shown in this chapter. This optimization can be done by solving a

sparse linear system. In practice, we initialize the optimization by setting N(x) =

Nh(x) and compute the normal via a Gauss-Seidel solver with successive over-

relaxation. The results of these two steps are illustrated in Figure 4.7. Note that

the normal map recovered by our method well preserves geometric details and

generates convincing rendering results under different lighting conditions.
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(a) (b) (c)

Figure 4.7: Two-scale normal reconstruction. (a) Filtered shading map. (b)
Result rendered from the reconstructed height field. (c) Result rendered from the
final normal map.

Discussion Our method is not sensitive to the accuracy of the light direction L

specified by the user in that the error of light direction will lead only to a global

rotation of all normals over the surface but has no effect on the relative normal

variations. Since our method assumes the underlying geometry is almost flat, we

rotate the initial normals and lighting in the first step so that the average normal

of underlying geometry is always upward. Figure 4.8 illustrates results generated

from one input shading map but with different lighting directions specified by the

user. As the error of the specified lighting direction becomes larger, the error of

the resulting normal map is small and almost unchanged.

In Figure 4.9, we compare the result generated by our method (Figure 4.9g)

with the ones generated by other existing normal reconstruction methods. A

straightforward solution would be to directly reconstruct the normal map from

Sd with a regularization term as in [69]. Although the resulting normal map well

fits the input shading image, it is biased toward the lighting direction L and gen-

erates artifacts under other lighting directions (Figure 4.9c). Other shape from

shading approaches assume the surface to be integrable and reconstruct a height

field from the input shading map. Although these methods can reconstruct the

overall surface geometry, the detailed normal perturbations over the surface are
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Figure 4.8: Normal maps reconstructed from the same shading map, but different
lighting directions, rotated respectively by 0, 5, 10, and 20 degrees. The rendering
results are shown in the top row. The middle row displays a visualization of the
reconstructed normal map. The bottom row shows the 5times magnified recon-
struction error, measured as the length of the cross product between the resulting
normal map and the normal map at 0 degrees. Note how our method is robust to
the input light directions.
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smoothed out. Figure 4.9d shows a rendering result of the height field recon-

structed using [159]. Although the height field generates reasonable results under

different lighting directions, the shading details caused by detailed normal varia-

tions are lost. Figure 4.9e illustrates the result generated by the shading-as-depth

method used in [76]. Although the shading-as-depth method works well for many

smooth surfaces, it fails to model the geometric features in this input. We also

compare the results generated by our method with one (Figure 4.9f) generated by

the photometric method in [54]. While the photometric method can well recover

the normal map, it needs many more images (12 images in this example) as input,

which are not always available in our application. Instead, our method generates

convincing results from just a single input image.

4.5 User-Assisted Specular Assignment

In this step, we assign a specular coefficient ρs and lobe shapes fr to each pixel.

Based on the observation that the specular properties at each pixel mostly depend

on the underlying material type (e.g., whether a pixel is metal or rust) rather than

detailed diffuse color variations, we ask the user to assign the specular BRDF to

a sparse set of pixels, using rough strokes, and then automatically determine the

specular BRDF for other pixels. The user strokes not only determine the specular

reflectance of the underlying pixels, but also assign the same material type to

these pixels. With NM BRDFs and NM corresponding material types assigned by

the strokes, we classify each pixel’s material type by computing the probability

that it belongs to each material type. After that, we assign the specular BRDF to

each pixel based on the material classification results. This process is illustrated

in Figure 4.10.

Material Classification Given the set of pixels that belongs to each material

type i (i.e., the pixels in the same-BRDF strokes), we construct the sets Mi of their
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(a) Input shading map (b) Reference (d) [Wu et al. 2008]

(e) [Khan et al. 2006]

(c)[Horn and Brooks 1989]

(g) Our result(f) [Goldman et al. 2005]

Figure 4.9: Comparisons of different normal reconstruction methods. (a) is the
input shading map rendered from a ground truth normal map. (b) is a reference
image rendered from the ground truth under a novel lighting direction. (c) to
(g) are images rendered from results generated by different normal reconstruction
methods. The lighting directions used in rendering are the same as the one used
in (b). Previous shape from shading methods either generate biased results (c), or
smooth out the detailed normal variations (d). Simply taking the shading as depth
[76] in (e) does not generate a reasonable result. The photometric stereo method
[54] (f) can accurately reconstruct the normal map, but requires much more input
data. Our normal reconstruction algorithm can well preserve normal details and
generate a convincing result in (g) from a single input image.
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diffuse colors. We remove the outliers in each set Mi by checking each diffuse

albedo in the set and finding whether its k = 10 nearest diffuse albedos are in

the same material set. If more than 50% of them come from material sets other

than Mi, we remove this diffuse color value from Mi. After that, we compute

the probability pi(x) that each pixel x belongs to the i-th material type by using

Shepard’s method [132]:

pi(x) =
di(x)−p

∑m
j=1 d j(x)−p , (4.17)

where m is the total number of material types and di(x) is the distance from

pixel x’s diffuse color to the i-th material type’s material set, which is computed

by

di(x) =
1

10

10

∑
j=0
||ρd(m j)−ρd(x)||, (4.18)

where ρd(m j) is the ten diffuse albedos in Mi that are closest to ρd(x). In

practice, we pick p = 1 for all the results. Although it is possible to apply other

edit propagation methods [2; 161] for determining the di for each pixel, we apply

Shepard’s method in our current implementation because of its simplicity.

Specular coefficient assignment. After material classification, we assign the

specular coefficient ρs(x) and specular roughness α(x) to each pixel by

ρs(x) =
M

∑
i=1

ρi pi(x), α(x) =
M

∑
i=1

αi pi(x), (4.19)

where pi(x) is the probability that pixel x belongs to the i-th material, and ρi

and αi are the specular coefficient and roughness of the i-th material respectively.

In our implementation, the specular BRDFs are selected from 120 pre-defined
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(a) Input strokes (b) Probability map (c) Specular map (d) Roughness map

Figure 4.10: Specular assignment. We ask the user to assign single BRDFs to
pixels that belong to the same material type by sparse strokes (a). Our algorithm
then classifies the material type of pixels and determines the probability map (b).
Finally, the specular (c) and roughness (d) coefficient of each pixel are calculated
based on the probability map (b) and assigned BRDFs.

specular BRDFs extracted from measured materials. We represent the specular

lobe shapes fr by using the Ward model controlled by the roughness parameter

α(x) ranging from 0.005 to 0.5. When necessary, the user can fine tune the pa-

rameters as well as the specular color of the selected BRDF. We use the Ward

model as it can be easily adjusted by the user to fine tune the lobe shape. Our

method itself is not constrained to a parametric specular model.

4.6 Experimental Results

Performance We performed our tests on a PC with an Intel Xeon 2.83GHz

CPU and 4GB RAM. For a typical input image of size 768×768, the albedo and

shading separation runs within 1.8 seconds, the two-step normal map reconstruc-

tion converges within 1.5 seconds, depending on the input shading map, and the

specular assignment step takes less than 0.2 seconds for material classification

and reflectance coefficient blending. The fast computations in each step provide

responsive feedback for user interaction.

User Input All results shown in this chapter are generated by an artist in one

to five minutes. Depending on the complexity of the input image, up to nine
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(a) (b) (c)

Figure 4.11: Images rendered from the results generated with different stroke
inputs. The user stroke inputs are shown in the bottom right. Although the stroke
inputs are different, the results generated by our method are similar.

strokes were used for diffuse shading separation, while one to four strokes were

drawn for specular assignment. For all results shown in Figures 4.13 to 4.17,

we display all the strokes used for modeling in the input image. Different types of

strokes are rendered in different colors. Similar to other stroke based methods, our

method does not require accurate user strokes. Figure 4.11 illustrates the results

generated from the same input but with different input strokes. Provided that the

user intention was the same, these different user strokes generate similar results.

Comparison with Standard Toolsets Figure 4.12 compares a ground truth ren-

dering with the result generated by our method, a combination of [14] and [159],

and CrazyBump. We use an RGBN dataset from [41] to render the input image

under directional lighting. We then compare the rendering of the ground truth

data and the data reconstructed by the different methods under a new lighting di-

rection. In generating these images, we assume that the surface presented by the

RGBN data is diffuse and take the RGB value as the albedo. To generate the re-

sult shown in Figure 4.12d, we applied the algorithm in [14] to separate the input

image and then computed the normals from the resulting shading map with [159].

As shown in Figure 4.12, both CrazyBump and the combination of [14] and [159]
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(a) Input

(c) Our result

(d)[Bousseau 09]+[Wu 08] (e) Crazybump

(b) Reference

Figure 4.12: Comparison with prior work. (a) Input image rendered from ground
truth data [41]. (b) Reference image rendered from ground truth data lit from
different lighting direction. (c) Rendering results of our method. (d) Results gen-
erated by a combination of [14] and [159]. (e) Results modeled by an artist using
Crazybump. (b)-(e) are rendered under the same light direction, but different from
(a). The result generated by our method is closer to the ground truth, while other
methods fail to recover the shading and reflectance presented in the input image.

fail to recover the reflectance and normals from the input. By contrast, our method

recovers the reflectance and normal details well.

Figure 4.2 illustrates two results generated by an experienced artist, in about

one hour each, using standard image manipulation tools, including Photoshop and

CrazyBump. With our method, the user generates similar results using a few

user strokes within five minutes. Although a more systematic user study would

be needed to derive formal results, we feel that this comparison is typical of our

experience and shows the efficiency of our approach.
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Results We tested our system with a wide variety of input images, shown in Fig-

ures 4.13-4.17 together with user strokes and the final materials, rendered under

different viewing and lighting. We show user input as yellow strokes for shading

correction strokes, red strokes for albedo correction strokes, and blue ones with

different intensity to indicate the strokes that mark the placement of the different

specular BRDFs.

We chose input images that correspond to a wide range of materials, ranging

from man-made materials such as paper (Figure 4.14) and wood carving (Figure

4.17a), to natural materials like wood (Figure 4.13c, 4.15a), stone (Figure 4.13a),

asphalt (Figure 4.16c), and rusted metals (Figure 4.15c, 4.16a). These input im-

ages and corresponding materials show a wide range of spatial distributions of

geometry and reflectance, demonstrating the wide applicability of our approach.

Figure 4.13 shows results of two natural materials with complex geometric

details. Note how the large scale geometry variations of the rock and the sharp

cracks in the raw wood are modeled well by our method.

Figure 4.14 shows two results of wrinkled papers, which consist of sharp color

variations and rich geometric details at multiple scales. Our method captures well

these reflectance and normal variations and generates convincing rendering re-

sults.

In many natural materials, such as wood and rust, complex reflectance and nor-

mal variations are often combined. Figure 4.15 shows two typical images of these

material types. Note that with minimal interaction, our method models well the

spatially-varying highlights of the finished wood and the rich color and reflectance

details in the rust.

Figures 4.16 and 4.17 demonstrate examples of surfaces composed of multiple

material types, each of which exhibits its own spatially-varying appearance. The

rusted metal in Figure 4.16 has shiny specular highlights in the metallic regions,

while the rusted parts are nearly diffuse with strong normal variations. Our result

reproduces realistic appearance for both the metallic and rusted regions. Note the
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(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 4.13: Natural materials with complex geometric details generated by our
system. (a)(b) Rock, (c)(d) raw wood.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 4.14: Wrinkled paper results generated by our system.

natural variations of the highlights in the final rendered images. For the asphalt in

Figure 4.16, our method successfully reveals the detailed bump variations of the

surface while preserving the global structure of the yellow paint.

Figure 4.17 shows two materials that have man-made global structure and de-

tailed natural textures. Our system reproduces the geometry variations for both

man-made carvings and natural textures. In the wood carving, the specular re-

flectance of the polished red wood and matte reflectance of the dusted part are

well preserved by our specular assignment. For the rock wall example, the rich

albedo variations and sharp boundaries between rock and cement are well mod-

eled in our result.

Limitations Although our system works well for a wide variety of texture im-

ages, we made several assumptions that might be violated by some input, as shown

in Figure 4.18. First, we assume that the input comes from a nearly planar surface
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(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 4.15: Finished wood (a)(b) and rusted metal (c)(d) generated by our sys-
tem.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 4.16: Rusted metal (a)(b) and asphalt with yellow paint (c)(d) generated
by our system.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 4.17: Carved wood plate (a)(b) and concrete rock wall (c)(d) generated by
our system.
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(a)(a) (b)(b) (c)(c) (d)(d)

Figure 4.18: Failure cases of our method. (a) Image with strong geometric struc-
tures. (b) Image containing large regions of highlights. (c) Grayscale image,
where the albedo only has grayscale variations. (d) Our method fails to separate
the black text from shading variations and generates artifacts in the normal map.

lit by directional lighting. For images that violate this assumption, our algorithm

may fail to produce convincing results (e.g., Figure 4.18a). Second, our method

mostly uses the diffuse component of the input image for material modeling. For

images that contain large regions of highlight and shadows (e.g., Figure 4.18b),

that are often clamped, the material variations in these regions cannot be recon-

structed well by our method. Finally, our interactive shading separation method

relies on chroma variations during initialization. For materials with grayscale

albedo, our separation method fails to generate the initial separation result, thus

potentially requires too much user input for diffuse shading separation. Figure

4.18c illustrates a typical case: an image of a wrinkled paper with greyscale text

on it, where our method generates artifacts in the resulting normal map and albedo

map.

4.7 Conclusion

In this chapter, we presented AppGen, an interactive system for modeling materi-

als from a single image. Given an input texture image of a nearly-planar surface lit
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by directional lighting, our system allows artists to efficiently model the spatially-

varying reflectance and normals from only a few minutes of interaction to place a

few rough strokes. A diffuse shading separation algorithm and a two-step normal

reconstruction method are presented for deriving the normal and reflectance de-

tails from the texture input. We illustrate the capability of our method by modeling

a wide variety of materials generated from images with different reflectance and

normal variations. We believe that our system can greatly speed up the workflow

of expert artists and might allow novices to start modeling materials.

Our method assumes that the input image is lit with directional lighting. One

direction for future work is to extend our system to model materials from im-

ages taken under environment lighting. We are also interested in investigating

the modeling of materials with complex meso-structure, that produce images with

complex shadowing and inter-reflection. Finally, we are interested in developing

methods that leverage measured material datasets when available in order to speed

up the material modeling process.

92



Part II

Modeling and rendering of
subsurface light transport
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For objects and materials that are not opaque, their appearance is influenced

not only by surface reflections, but also by the transport of light beneath the sur-

face. Many materials, ranging from marble to human skin, exhibit translucency

due to the light penetration and scattering within the volume, and capturing this

effect is critical for producing realistic appearance.

The light transport in translucent materials is much more complicated than sur-

face reflectance. For heterogeneous translucent objects, subsurface scattering is

determined by the object geometry, the optical properties of constituent volumet-

ric elements, and the spatial distribution of these elements in the volume. Because

of the complex effects of these various factors on subsurface scattering, modeling

of these materials has been challenging topic in computer graphics.

As discussed in Chapter 2, spatially varying subsurface scattering can be rep-

resented by the eight-dimensional Bi-Directional Surface Scattering Reflectance

Distribution Function (BSSRDF) [114], which represents the appearance of a sur-

face point with respect to light that enters the volume from other points. Although

it records the light scattering effects within the material volume, the BSSRDF is a

surface model, since all the light transport defined by a BSSRDF is between two

surface points.

Since subsurface scattering is determined by the optical properties of the mate-

rial volume, a very different modeling approach is to directly compute the translu-

cent appearance from volumetric material properties. In contrast to the surface

model, volumetric material data is independent of object shape, and such a mate-

rial model can be used with arbitrary target objects. In addition, such volumetric

data is intuitive for artists to manipulate, which facilitates interactive editing to

create novel material volumes with a desired translucent appearance.

Although volumetric data has many advantages for modeling translucent ap-

pearance, a full resolution 3D material volume often requires substantial storage

space and computation. Since the spatial distribution of optical properties within
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material volumes generally has strong coherency in terms of patterns and statis-

tics, we can use a texture model to efficiently represent the 3D spatial distribution

of material properties.

In this part of the thesis, we present techniques for all three of these forms of

subsurface light transport modeling. These methods offer efficient modeling based

on the inherent coherency of materials in the BSSRDF domain, in the material

volume, or in its material element distributions. In Chapter 5, we directly analyze

the non-linear coherence properties in subsurface light transport between surface

points using the kernel Nyström method [144]. Appearance subspace coherency

is exploited to reconstruct the BSSRDF of a material by linear combinations from

a relatively small number of images. Chapter 6 presents a system based on a

volume-based representation that allows for capturing, editing and rendering of

translucent materials [146]. This solution is built on the diffusion equation, which

describes the scattering of light in optically dense media. With this equation and

a volumetric model, our method uses material attribute repetition coherency in

solving for the material volume whose appearance is consistent with image obser-

vations. While accounting for material coherency, we obtain a solution by direct

optimization from only a sparse set of images that allows accurate reproduction

of the material for novel viewing and lighting conditions. To further exploit the

spatial coherency for texture-like translucent material, we present in Chapter 7

an algorithm to generate high-resolution material volumes from a small 2D slice

[29]. We capitalize on the material attribute repetition coherence of textures and

subspace search reconstruction to model the volume from little data. The translu-

cent volume can be efficiently rendered using the TransCut technique [91], which

enables interactive modeling of high-resolution translucent material volumes.
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Chapter 5

Modeling subsurface light transport
with the kernel Nyström method

General function  12D

BSSRDF  8D

SVBRDF  6D

Light field  4D
BRDF  4D

BSSDF  6D

Color textures  2D Bump maps  2D

Appearance subspace coherency
solved by: Linear combinations

Interactive 
modeling

Fabrication

Acquisition

In this chapter, we present an image-

based technique for modeling the sub-

surface light transport within a translu-

cent object so that it can be regen-

erated with new illumination. Math-

ematically, the radiance from subsur-

face light transport can be formulated

as the following equation [112; 118]:

b = T · l, (5.1)

where T is the n× n light transport matrix that describes the diffuse BSSRDF

between pairs of n surface points, l is the illumination condition represented by a

vector of incident radiance at the n surface points, and b is the outgoing radiance

observed in a camera image at the n points. We aim in this work to recover the

matrix T for given real world object.
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A special advantage of an image-based approach is that it provides accurate

modeling without the need to directly recover the shape and optical properties of

the object, which is often an arduous task. However, to generate high quality re-

sults, an extremely large number of images (e.g., on the order of tens of thousands

[24; 155]) is often required for accurate reconstruction of the light transport ma-

trix. Some techniques have aimed to reduce the number of required images, but

they are either dedicated to specific light transport effects [168] or mainly effec-

tive only for simple object geometry [101; 117]. Applying these techniques to

objects with complex subsurface scattering effects still requires a large number of

input images and expensive reconstruction methods [118].

In this chapter we propose a kernel Nyström method for reconstructing the

light transport matrix from a small number of images. We first acquire a small

number of rows and columns of the light transport matrix of an actual object

and then reconstruct the entire matrix from these sparse samples. This approach

is inspired by the Nyström method proposed by Williams and Seeger [158] for

reconstructing a low rank symmetric matrix using a linear combination of sparsely

sampled rows and columns.

In the kernel Nyström method, the effectiveness of the Nyström method is

enhanced by taking advantage of the non-linear coherence of the light transport

matrix. This is done by employing a kernel function (the light transport kernel)

to map the rows and columns in the light transport matrix to produce a matrix

of reduced rank with appearance subspace coherence. This data specific ker-

nel function can be estimated from sparse row and column samples in the light

transport matrix. With this kernel mapping, a high quality matrix can then be re-

constructed by linear combinations from sparse samples via the Nyström method.

Finally, the light transport matrix is obtained from elements of the reconstructed

matrix by inverse kernel mapping. By taking advantage of both the linear co-

herence and the nonlinear coherence of the light transport matrix in this way, the

kernel Nyström method becomes much more powerful and the number of sampled
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rows and columns (and hence acquired images) needed for matrix reconstruction

is greatly reduced.

A novel aspect of the kernel Nyström method is that it exploits the data coher-

ence during the matrix reconstruction process, before the whole matrix is known.

It has been recognized in the past that the data coherence in light transport can be

used for data compression after the whole matrix is known [98; 95]. The kernel

Nyström method takes a different approach and only uses the known rows and

columns as representative samples for analyzing the data coherence and recon-

structing the matrix. To this end, we develop an adaptive scheme for measuring

the sparse row and column images of the light transport matrix and estimating the

light transport kernel. Our experiments indicate that the kernel Nyström method

can achieve good reconstruction of the light transport matrix with relatively few

images and can lead to high quality renderings of subsurface light transport ef-

fects.

5.1 Related Work

We begin with a review of previous work on light transport matrix estimation both

for subsurface scattering and for light transport in full scenes. The light trans-

port matrix represents discrete samples of the reflectance field [24]. A complete

8D reflectance field, which describes the light transport from the incident light

field to the outgoing light field [90], is difficult to capture and process due to the

tremendous amount of data [45]. Therefore, most existing methods only consider

simplified 4D [24; 92; 101; 117] and 6D reflectance fields [104; 99; 130; 155]. In

this chapter, we focus on 4D reflectance fields with a fixed viewpoint and point

light sources that lie in a 2D plane.

Existing methods for light transport acquisition may be categorized into three

classes. We refer to the first as brute force methods, which directly measure the

light transport matrix from the scene or object, where each column is an image
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of the scene lit by a single light source in the incident light domain. Debevec

et al. [24] developed a light stage device for capturing 4D reflectance fields for

a fixed viewpoint and distant lighting by moving a point light source around the

object. They later improved the device for fast capturing [155]. Hawkins et al. [65]

exploited Helmholtz reciprocity to capture the reflectance field of highly reflective

objects. To obtain dense samples in the incident light domain, rows of the light

transport matrix are captured by shooting rays from the viewpoint and capturing

the high resolution image of the scene projected over the incident light domain.

Reciprocity is also exploited in [130] for acquiring 6D reflectance fields. All

these methods require tens of thousands of images for modeling a high quality

light transport matrix. For subsurface scattering of similar quality, our approach

requires only a few dozen images.

The second class, which we call sparsity based methods, model the light trans-

port matrix with a set of basis functions defined over the incident light domain and

assume that each row of the light transport matrix can be approximated by a lin-

ear combination of a sparse set of basis functions. Thus the light transport matrix

can be reconstructed by deriving the sparse basis and their weights for each row

from a set of images captured under special lighting conditions. Environment mat-

ting [168] models the reflectance of specular or refractive objects by representing

the light transport of each pixel (i.e., a row of transport matrix) with a single

2D box function. It was later extended to model glossy objects by replacing the

box function with an oriented Gaussian kernel [18]. Matusik et al. [101] mod-

eled the light transport matrix with hierarchical rectangular basis functions. An

adaptive algorithm is developed for deriving the sparse basis and their weights for

each pixel from images of the scene captured under various natural illumination

conditions. Peers et al. [117] modeled the light transport matrix with wavelets

and inferred the light transport matrix from images of the scene illuminated by

carefully designed wavelet noise patterns. Both approaches apply a greedy strat-

egy to find a suboptimal sparse basis for each pixel, which only works well for
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scenes with simple occlusions. Recently a compressive sensing approach [118]

was proposed which computes the solution for each pixel from images captured

from a scene illuminated by patterned lighting. However, the number of images

needed for reconstruction depends on both the row length and the number of basis

functions used for each row, which becomes quite large for scenes with complex

occlusions. The reconstruction process is also time consuming.

Unlike the aforementioned sparsity based approaches, our method exploits the

coherence in the matrix for reconstruction. It can well handle scenes with complex

occlusions and caustics. The number of images needed for reconstruction is only

proportional to the rank of the light transport matrix and independent of the size

of the matrix. Moreover, our reconstruction algorithm consists of a set of matrix

operations, which is simple and fast.

The third class, coherence based methods, acquire the light transport matrix

by exploiting the coherence of reflectance field data. Masselus et al. [98] explored

the interpolation and compression of reflectance fields. Fuchs et al. [43] proposed

an adaptive sampling scheme for sampling the 4D reflectance field. The spatial

coherence of the reflectance field in the incident domain is exploited for acceler-

ating the acquisition process. Starting from a set of images taken with a sparse set

of regularly distributed lighting directions, their algorithm analyzes the observed

data and then captures more images in each iteration with the new lighting direc-

tions where the reflectance field is not smooth. We note that the smoothness of

reflectance data among neighboring pixels is also exploited in [101; 117; 118] for

improving the quality of the results.

While these methods only exploit the coherence in either rows or columns,

our method exploits the data coherence in the entire light transport matrix for

reconstruction. Since our approach makes no assumptions about the smoothness

of the sampled reflectance field, it can effectively handle sharp variations of the

light transport, such as shadows, caustics, and surface textures.
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The Nyström method has been employed for various purposes besides recon-

struction of low rank symmetric matrices. In the machine learning community, it

has also been used for approximately computing the eigenvalues and eigenvectors

of a symmetric matrix from sparse matrix samples [121]. In graphics research, An

et al. [2] applied the Nyström method to accelerate appearance edit propagation by

approximating the dense symmetric distance matrix with sparsely sampled rows

and columns. For a given illumination, Hasan et al. [62] applied similar tech-

niques to efficiently render synthetic scenes. In their approach, columns of the

matrix are clustered in a small number of groups according to their values in the

sparsely sampled rows. A representative column for each group is then sampled

and weighted for approximating other columns in the same group. This approach

only uses the coherence between columns in approximating the matrix. Coher-

ence between rows is not exploited. Moreover, applying this approach to the light

transport matrix may generate temporal artifacts under animated light, as noted in

[64].

5.2 The Kernel Nyström Method

In this section, we introduce the kernel extension to the Nyström method, and

present a method for estimating the light transport kernel. Let us first assume that

a sparse set of columns of the light transport matrix is known. How to capture

individual columns from a real world object is described in the next section.

The following notational convention is used throughout this chapter: a matrix

is denoted by bold uppercase letters (e.g., T), a vector is denoted by bold lower-

case letters (e.g., l), and a scalar or a scalar function is denoted by lowercase italic

letters (e.g., f ). Given a matrix T, its element at row i and column j is denoted as

Ti j, while f (T) denotes a matrix obtained by applying f to each element of the

matrix T.
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applied the Nyström method to accelerate appearance edit propa-
gation by approximating the dense symmetric distance matrix with
sparsely sampled rows and columns. For given illumination, Hasan
et. al. [2007] applied similar techniques to efficiently render syn-
thetic scenes. In their approach, columns of the matrix are clus-
tered in a small number of groups according to their values in the
sparsely sampled rows. A representative column for each group
is then sampled and weighted for approximating other columns in
the same group. This approach only uses the coherence between
the columns for approximating the matrix. Coherence between the
rows is not exploited. Moreover, applying this approach to the light
transport matrix may generate temporal artifacts under animated
light, as noted in [Hašan et al. 2008].

3 The Kernel Nyström Method

In this section, we first review the generalized Nyström method for
asymmetric matrices [Goreinov et al. 1997] and then introduce our
kernel Nyström method. Here we assume that a sparse set of rows
and columns of the light transport matrix is known. We will discuss
how to capture individual rows and columns from a real world scene
in the next section.

Throughout this paper, we use the following notational convention:
the matrix is denoted by bold uppercase letters, e.g. T, a vector is
denoted by bold lowercase letters, e.g. l, and a scalar or a scalar
function is denoted by lowercase italic letters, e.g. f . Given a ma-
trix T, its element at row i and column j is denoted as Ti j , while
f (T) denotes a matrix obtained by applying f to each element of
the matrix T.

3.1 Asymmetric Generalization

The Nyström method in [Williams and Seeger 2000] reconstructs
a low rank symmetric matrix from sparsely sampled columns. As
shown in Figure 2(a), an unknown (n+k)× (n+k) symmetric ma-
trix T with k sampled rows [ A CT ] can be approximated as

T =

[
A CT

C B

]
≈
[

A CT

C CA−1CT

]
. (2)

The reconstruction is accurate when the symmetric matrix T has a
rank d ≤ k, except that the sampled rows [ A CT ] are of a rank
smaller than d.

For asymmetric light transport matrices in which the image pixels
(columns) and light sources (rows) are sampled in different spaces,
the generalized Nyström method [Goreinov et al. 1997] can be
applied for reconstruction. As illustrated in Figure 2(b), we assume
r rows [ A R ] and c columns [ AT CT ]T are known out of an
(r+m)× (c+ n) asymmetric matrix T. If the rank of T equals to
that of A: d = rank(T) = rank(A), we can expect the following
relationship:

[
C B

]
= P

[
A R

]
and

[
R
B

]
=

[
A
C

]
Q, (3)

where P and Q are matrices of appropriate sizes, which implies that
C = PA, R = AQ and B = PR = CQ. Thus the missing portion B
in the matrix T can be reconstructed as:

B = PAQ = PAA+AQ = CA+R, (4)

where A+ denotes the Moore-Penrose pseudoinverse of A, which
has the property AA+A = A. So the reconstruction is

T =

[
A R
C CA+R

]
. (5)

C
T

(k×n)

C(n×k) B(n×n) = ?

A(k×k)

k + n

k
 +
 n

c +n

r
+
m

R(r ×n)

C(m×c)

A(r×c)

B(m×n) = ?

(a) (b)

Figure 2: Matrix reconstruction from sparsely sampled columns
and rows. (a) Symmetric case. (b) Asymmetric case.

Comparing Equation 2 and 5, the traditional Nyström method is a
special case of the generalized Nyström method when R≡ CT .

To compute the Moore-Penrose pseudoinverse of A, we apply the
singular value decomposition (SVD) to A and obtain

A = UAΣAVT
A, (6)

where UA, ΣA and VT
A are of sizes r× d, d× d and d× c, respec-

tively, and the columns of UA and VA are orthonormal: UT
AUA = I

and VT
AVA = I. The matrix A+ is then computed as

A+ = VAΣ−1
A UT

A. (7)

With A+, we can reconstruct the light transport matrix T using
Equation 5.

3.2 Kernel Extension

Both the traditional and the generalized Nyström methods rely on
the assumption that the ranks of T and A are identical, in order to
achieve an exact reconstruction. In reality, this assumption may be
violated, resulting in some reconstruction error. One possible way
to make the Nyström method more effective is to apply a transfor-
mation to the entries in the matrix so that this low rank assumption
is better satisfied, hence the reconstruction error can be expected
to be minimized. As linear transforms do not change the rank of a
matrix, nonlinear transforms are necessary.

In the machine learning literature, the ”kernel trick” [Cristianini and
Shawe-Taylor 2000] is a standard approach for enhancing the per-
formance of algorithms based on nonlinear transformations of the
input data. The kernel trick is to map vectors in the data space to a
(usually) higher dimensional feature space. Then the same proce-
dures of the original algorithm done in the data space are transferred
to the feature space. The key to the success of the kernel trick is
that the mapping function need not be explicitly specified. Rather,
a kernel function is sufficient for computing the inner products in
the feature space.

Inspired by the success of the kernel trick, we consider using a non-
linear function f to change the values of the entries in light transport
matrix T, such that the rank assumption can be better fulfilled, i.e.,
the rank of f (T) is as close to that of f (A) as possible. We name
this nonlinear function f the light transport kernel. After recon-
structing f (T) using the generalized Nyström method, i.e.,

f (T)≈K =

[
f (A) f (R)

f (C) f (C)
(

f (A)
)+ f (R)

]
, (8)

the original T can be recovered by an inverse mapping with f−1:
T≈ f−1(K).

To see that the above nonlinear mapping process is a kind of the
kernel method, one may regard T as an inner product matrix:

Ti j = φi ·ψ j, (9)

Figure 5.1: Matrix reconstruction from sparsely sampled columns and rows. (a)
Symmetric case. (b) Asymmetric case.

5.2.1 Kernel Extension

The Nyström method in [158] reconstructs a low rank symmetric matrix from

sparsely sampled columns. As shown in Figure 5.1(a), an unknown (n+k)× (n+

k) symmetric matrix T with k sampled columns [ A CT ] can be approximated as

T =

[
A CT

C B

]
≈
[

A CT

C CA−1CT

]
. (5.2)

The reconstruction is accurate when the symmetric matrix T has a rank d ≤ k,

except that the sampled columns [ A CT ] are of a rank smaller than d.

The Nyström method relies on the assumption that the ranks of T and A are

identical, in order to achieve an exact reconstruction. In reality, this assumption

may be violated, resulting in some reconstruction error. One possible way to

make the Nyström method more effective is to apply a transformation to the en-

tries in the matrix so that this low rank assumption is better satisfied, hence the

reconstruction error can be expected to be minimized. As linear transforms do not
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change the rank of a matrix, nonlinear transforms are necessary.

In the machine learning literature, the ”kernel trick” [21] is a standard ap-

proach for enhancing the performance of algorithms based on nonlinear transfor-

mations of the input data. The kernel trick is to map vectors in the data space to

a (usually) higher dimensional feature space. Then the same procedures of the

original algorithm done in the data space are transferred to the feature space. The

key to the success of the kernel trick is that the mapping function need not be

explicitly specified. Rather, a kernel function is sufficient for computing the inner

products in the feature space.

Inspired by the success of the kernel trick, we consider using a nonlinear func-

tion f to change the values of the entries in light transport matrix T such that the

rank assumption can be better fulfilled, i.e., the rank of f (T) is as close to that of

f (A) as possible. We name this nonlinear function f the light transport kernel.

After reconstructing f (T) using the Nyström method, i.e.,

f (T)≈K =

[
f (A) f (R)

f (C) f (C)
(

f (A)
)−1

( f (RC))T

]
, (5.3)

the original T can be recovered by an inverse mapping with f−1: T≈ f−1(K).

To see that the above nonlinear mapping process is a kernel method, one may

regard T as an inner product matrix:

Ti j = φi ·ψ j, (5.4)

where {φi} and {ψ j} are two different point sets in a particular space1. This is

slightly different from the traditional kernel method which requires that {φi} and

{ψ j} are identical. We use different point sets because here T is asymmetric. The

standard kernel method then uses an implicit mapping Γ to map the point sets to

another space. Then the kernel matrix K in the mapped space, a.k.a. the inner

1As we will show, it is not necessary to specify what these two point sets are.
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product matrix of the mapped point sets, is

Ki j = Γ(φi) ·Γ(ψ j). (5.5)

To compute K, one only has to prepare an explicit kernel function g such that

g(φi,ψ j)≡ Γ(φi) ·Γ(ψ j), rather than explicitly specifying Γ, which is much more

difficult. One of the most frequently used kernel functions is the polynomial ker-

nel: g(φi,ψ j) = (1+ φi ·ψ j)
p. So one can choose the kernel g in such a form:

g(φi,ψ j) = f (φi ·ψ j). With this choice of the kernel function, we have that

Ki j = f (φi ·ψ j) = f (Ti j), i.e., K = f (T). (5.6)

5.2.2 Estimating the Light Transport Kernel f

To make the kernel Nyström method work, one has to specify the light transport

kernel f . As the space of all monotonic smooth functions is of infinite dimension,

one has to assume its form in order to narrow down the search space. In this

chapter, we simply assume that f is a power function, f (x) = xγ , as this family of

functions has only one parameter and hence the optimal function is easy to find.

Moreover, our experiments show that such a choice of the light transport kernel

can indeed greatly enhance the reconstruction. We leave the problem of whether

there are even better light transport kernel functions to future work.

As argued before, to reduce the reconstruction error, one has to make the rank

of f (T) as close to that of f (A) as possible. However, we do not have the full

information on T. So the real rank of f (T) is actually unknown. To overcome

this difficulty, we choose to minimize the rank of f (A) instead. The underlying

philosophy is that if the rank of f (A) is much less than min(r,c), then it is very

likely that the rank of f (T) does not exceed min(r,c). So the generalized kernel

Nyström method can be effective. This leads to the rank minimization problem

[42], which is usually formalized as minimizing the nuclear norm of a matrix. We
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AdaptiveCapture( r′, c′, ε )

f inished = f alse
capturing r′ rows and c′ columns
r = r′; c = c′

While( f inished == f alse)
estimating f from A
estimating rank factor er of f (A)
If( er/min(r,c)< ε )

f inished = true
Else

capturing r′ rows and c′ columns
adding samples in sample set
updating A
r = r+ r′; c = c+ c′

Figure 5.2: Pseudo code of the adaptive capturing scheme.

seek a light transport kernel f that minimizes the rank factor

er =
‖ f (A)‖∗
‖ f (A)‖2

, (5.7)

where the nuclear norm is defined as ‖X‖∗ = ∑
i

σi, the spectral norm is defined

as ‖X‖2 = max
i
{σi} and σi’s are the singular values of the matrix X. Note that

here we normalize the nuclear norm with the largest singular value because we

do not want to reduce the rank by mapping the entries to be close to zero (which

corresponds to a small ‖ f (A)‖2). Rather, we want to reduce the rank of f (A) by

enhancing the linear coherence of the rows/columns of f (A).

It is easy to imagine that mapping all the entries to a constant can trivially

reduce the rank of f (A) to 1 or even 0. However, such a trivial mapping causes

a problem in inverting from K to T by using the inverse function f−1. To reduce

the reconstruction error, we have to further make sure that this inversion is numer-

ically robust. The robustness of inversion can be measured by the slope of f−1:
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the steeper f−1 is, the less robust the inversion is. So we have to further minimize

es =
∫ 1

0
( f−1)′(x)p(x)dx =

∫ 1

0

1
f ′(x)

p(x)dx, (5.8)

where the identity ( f−1)′(x) = 1
f ′(x) is used and p(x) is the distribution density of

the values in A, which is estimated from the histogram of entry values of A. p(x)

is assumed to be identical to that in T, due to the random sampling of A from T.

We weight the slope of f−1 by p(x) in order to achieve the best overall robustness

for all entry values in T.

Combining the above two criteria, our algorithm selects the light transport

kernel function f whose parameter γ minimizes the objective function

g(γ) = er · es =
‖ f (A)‖∗
‖ f (A)‖2

∫ 1

0

1
f ′(x)

p(x)dx. (5.9)

We use the golden section search [123] to search for the optimal γ within [0.001,1000]

in logarithmic space. As A is of a relatively small size (r× c), this optimization

takes only a few seconds.

In summary, our kernel Nyström method works as follows. Given the matrices

of sampled columns (A and C), we estimate the light transport kernel f from

A and map matrices of sparse samples to their kernel version f (A) and f (C)

respectively. We then apply the Nyström method to reconstruct the kernel light

transport matrix K = f (T). Finally, we obtain the light transport matrix T via the

inverse kernel mapping T = f−1(K).

5.3 Adaptive Light Transport Measurement

The kernel Nyström method requires a sparse set of columns of the light transport

matrix as input for reconstruction. However, without any knowledge about the

light transport within an object, it is difficult to determine the sample number
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in advance. To address this issue, we design an adaptive scheme for capturing

sparse columns from the object, where the sample number is determined from

the captured data. As shown in Figure 5.2, after a batch of columns is sampled

from the scene, we estimate the light transport kernel f from the matrix A of the

current sample set and compute the rank factor ec of f (A) using Equation (5.7).

For a sample set that has c columns, if ec/c is smaller than a pre-defined threshold

ε , the rank of f (A) is much less than c. Based on the same philosophy used in the

kernel estimation, it is very likely the rank of f (T) does not exceed c. Thus the

sampled data are sufficient for reconstructing f (T) and the capturing is finished.

Otherwise, we capture a new batch of columns and repeat the above steps with the

extended sample set.

A device setup is designed for acquiring a batch of column samples from the

scene. As shown in Figure 5.3, we focus on the light transport from point light

sources on a 2D plane to image pixels captured from a fixed viewpoint. In our

setup, a column of the light transport matrix is directly obtained from the image

of the object under a virtual point light source.

Device Setup and Calibration In our implementation, we use a device setup

similar to the one used in [53] for capturing. As shown in Figure 5.3(b), our

setup consists of an Optoma HD73 DLP projector, three laser emitters that can

generate red, blue and green laser beams, and a Canon 20D camera. The three

laser emitters are close to each other and shoot three color beams to points over

the object surface. We control the laser beams to make sure that they focus on the

same surface point. HDR images of the object surface are captured from a fixed

viewpoint. We repeat this process by shooting the laser beams to a random set of

surface points. With the calibrated camera position and known geometry of the

object, we map the image pixels onto the object surface.

Before capturing, we calibrate the color and intensity of each point light source.

In our implementation, we first calibrate the point light sources sampled on 40×
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Figure 5.3: Device setup for capturing sparse columns of the light transport ma-
trix. (a) Illustration. (b) Photograph.
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40 regular grids by capturing the images of the diffuser plane lit with each of the

1600 point light sources from the object side. We then calibrate the other point

light sources within the regular grid by interpolating the calibration results of the

neighbor point light sources on the grid.

Column Sampling After calibration, we capture the columns of the light trans-

port matrix with the projector and the camera. Without any knowledge on the

light transport in the object, we acquire a set of columns from the camera with r

illuminated points that are uniformly distributed over the surface. For each sam-

pled point light source l j, eight images of different exposures are taken from the

camera and then down-sampled and fused into HDR images as in [26]. The result

is a set of column vectors T., j of the matrix T.

5.4 Results and Discussions

We implemented our kernel Nyström method on a PC with an Intel CoreTM2 Duo

3.2GHz CPU and 4GB of memory. In our implementation, we capture a batch of

ten columns in each adaptive capture step and experimentally set the threshold as

ε = 0.05. A typical acquisition session (including image acquisition, HDR recon-

struction, and kernel estimation) takes about 45 minutes for capturing 50 columns

from the object. The image resolution is 1752× 1168, while the light sampling

resolution is 1024× 768. To reconstruct the light transport matrix for relighting,

we store the sampled matrices (C and A) in memory and reconstruct all rows of

the matrix during rendering. With 50 columns, our kernel Nyström method takes

less than 5 minutes to estimate the kernel and reconstruct all rows of the light

transport matrix of the scene. For samples that do not fit in memory, we store one

matrix (C in our implementation) on disk and the other matrices in memory. An

out-of-core implementation, which is dominated by the disk I/O, then takes about

30 minutes for reconstruction.
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Figure 5.4: Ranks of the kernel mapped matrices f (A) of the sparse sample sets
with different numbers of samples. The orange line indicates the sample number
determined by the adaptive capturing scheme, while the blue line indicates the
rank of the kernel mapped matrix f (T).

5.4.1 Method Validation

We validate the kernel Nyström method with the light transport matrices acquired

from a star fruit and a piece of marble, in which the light sources are sampled on

regular 35×35 grids. We simulate the adaptive sampling scheme for each object.

In each iteration, we randomly pick ten columns that are not in the sample set

from the acquired full matrix and add them in the sparse sample set. After that, we

estimate the light transport kernel f and compute the rank of the kernel mapped

matrix f (A) of the sparse samples. The rank of a matrix is determined by the

number of eigenvalues of the matrix that can preserve 95.0% energy of the original

matrix. We also reconstruct the light transport matrix from the sparse sample

set via the kernel Nyström method. We repeat this process until the number of

sparse samples reaches 300, which is more than the number of sparse samples ns

determined by the adaptive sampling scheme with the pre-defined ε .

Figure 5.4 shows plots of the ranks of kernel mapped matrices f (A) of sparse

sample sets with a different number of samples, where the number of sparse sam-

ples ns determined by the adaptive sampling scheme is marked by an orange line.

The blue line indicates the rank of the kernel mapped matrix f (T), in which the
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Relative error Relative error

Sample number Sample number

Figure 5.5: Relative reconstruction errors of the light transport matrix recon-
structed from sparse sample sets with different number of samples. The orange
line indicates the sample number determined by the adaptive capturing scheme.

kernel function is estimated from the sparse sample set with ns samples. For both

objects, the ranks of f (A) of sparse samples grow as the number of samples in-

creases and are close to that of f (T) as the number of samples approaches ns,

which leads to a good reconstruction.

Figure 5.5 shows plots of the relative errors of the light transport matrices re-

constructed from a different number of samples, where the relative reconstruction

error is computed as

ε =

√
∑i, j |Bi, j− B̃i, j|2

∑i, j |Bi, j|2
. (5.10)

Here Bi, j is the ground truth submatrix element that is not in the sparse sam-

ple set and B̃i, j is the same submatrix element reconstructed using the kernel

Nyström method. To further explore the impact of different sample sets on re-

construction quality, we execute the above experiment 16 times, each time with

different rows and columns randomly selected from the matrix. As shown in Fig-

ure 5.5, the relative error decreases quickly as the number of sparse samples in-

creases. With the same number of sparse samples as we used in our capturing, the

relative error of the reconstructed light transport matrix is below 5%. Also note

that the variance of the error under the same number of samples reduces quickly
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with the increasing number of samples, which guarantees the quality of the light

transport matrix reconstructed from the random sampled rows and columns.

Figure 5.6(a) compares the performance of the Nyström method and the ker-

nel Nyström method for a star fruit. For each sparse sample set, we recon-

struct the light transport matrices using both the Nyström method and the ker-

nel Nyström method. Their relative errors are shown in Figure 5.6(a). With-

out the kernel extension, the Nyström method requires roughly five to six times

the number of samples to achieve the same reconstruction quality as the kernel

Nyström method does.

Figure 5.6(b,c) compares the performance of the kernel Nyström method with

different light transport kernels (i.e., different γ values) for the star fruit exam-

ple. For each γ value, we reconstruct the light transport matrix from the same

set of sparse samples (250 samples) with the kernel Nyström method. Figure

5.6(b,c) shows plots of the objective function g(γ) and the relative error of the

reconstructed light transport matrices as a function of γ . Note that the relative

reconstruction error is minimal when the optimal γ value derived by our approach

is used for reconstruction. Also, the light transport matrix is well reconstructed by

the kernel Nyström method using the optimal γ value. However, the light trans-

port matrices reconstructed with the kernel Nyström method using other γ values

exhibit larger relative errors and visible artifacts.

5.4.2 Subsurface Scattering Results

We applied the kernel Nyström method for modeling the light transport due to sub-

surface scattering. The elements of the light transport matrix describe the diffuse

BSSRDF Rd between the two surface points xi and x j as Ti j = Rd(xi,x j) [53].

With 50 sampled images, we reconstruct the light transport matrix of subsur-

face scattering using the kernel Nyström method. The coefficient of the light trans-

port kernel used in reconstruction is γ = 0.0625. The resolution of surface points
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Figure 5.6: Reconstruction results with the kernel Nyström method and with the
Nyström method. The relative reconstruction errors with respect to the different
numbers of samples are compared in (a). The reconstruction results of the kernel
Nyström method with different light transport kernels are shown in (b,c). The
objective function values with respect to different γ values are given in (b), while
the relative reconstruction errors are shown in (c).

in the light transport matrix is the same as the image resolution. Figure 5.7 com-

pares the rendering result of the reconstructed light transport matrix, the ground

truth image captured from the object under the same lighting condition, and the

result rendered by directly interpolating the nearby sample images. Note that the

detailed spatial patterns and anisotropic subsurface scattering in the real material

are well preserved with the reconstructed light transport matrix, while the results

generated by interpolation clearly exhibit artifacts. Also note that to capture the

light transport effects with a similar resolution, brute force methods [53; 119]

need dense light sampling, which is prohibitively expensive and time consuming.

5.4.3 Discussion

The light transport matrix of an object exhibits both data coherence and sparsity.

While sparsity based approaches exploit data sparsity for capturing the light trans-

port matrix, the kernel Nyström method exploits the coherence in both rows and

columns of the light transport matrix for the same task. For the low frequency light
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Figure 5.7: Modeling subsurface light transport with the kernel Nyström method.
(a) The image of marble lit by a laser beam at one point. (b) Image rendered
with reconstructed light transport matrix with light on the same point. (c) The
difference between (a) and (b), intensity of which is scaled by 10. (d) Photograph
of the flat marble sample. (e) Image rendered by interpolating the nearby sample
images. (f) The difference between (a) and (e), intensity of which is scaled by 10.

transport effects of subsurface scattering, light transport matrices always exhibit

strong coherence in both rows and columns, which can be efficiently reconstructed

using the kernel Nyström method with dozens of images, which is far fewer than

used in sparsity based methods.
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5.5 Conclusion

We presented the kernel Nyström method for reconstructing the light transport

matrix of subsurface scattering from a relatively small number of acquired im-

ages. While existing techniques typically require tens of thousands of images for

accurate reconstruction of a light transport matrix, the kernel Nyström method can

achieve a good reconstruction with a few dozen images and produces high quality

relighting results. The kernel Nyström method is able to capture complex lighting

effects which are particularly challenging for many existing techniques, especially

various sparsity-based methods. The effectiveness of the kernel Nyström method

comes from its ability to exploit both the linear and nonlinear coherence in the

light transport matrix from a relatively small number of columns in the matrix.

In future work, we are interested in investigating better kernel estimation

methods and designing new kernel functions for light transport matrix recon-

struction. We also plan to apply the kernel Nyström method to model surface re-

flectance. Finally, we want to explore ways to extend the kernel Nyström method

to handle high-dimensional tensor data.
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Chapter 6

Modeling and rendering subsurface
scattering using diffusion equations

General function  12D

BSSRDF  8D

SVBRDF  6D

Light field  4D
BRDF  4D

BSSDF  6D

Color textures  2D Bump maps  2D

Material attribute repetition coherency
solved by: Direct optimization

Interactive 
modeling

Fabrication

Acquisition

Surface based modeling of BSSRDFs,

such as in the preceding chapter and

in techniques that directly measure the

BSSRDF under sampled lighting and

viewing directions [53; 140; 119], has

important drawbacks that can limit the

use of these BSSRDFs. One is that

a surface based BSSRDF is coupled

with the object geometry, making it unsuitable to use with different surface shapes.

Another is that rendering of such surface models involves an integration of BSS-

RDF contributions from all points on the surface, which is inefficient in practice

without complex precomputations. Also, this form of reflectance data is difficult

to manipulate if one wants to edit the material appearance.

In this chapter, we propose volume based techniques for modeling and ren-

dering of heterogeneous translucent materials that enable acquisition from mea-

sured samples, interactive editing of material attributes, and real-time rendering.
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The material is represented as a discretized volume in which spatially-variant ab-

sorption and diffusion coefficients are associated with each volume element. In

contrast to the previous chapter which extracts the non-linear coherency in the sur-

face based BSSRDF, here we more directly model the coherency among optical

properties of the material volume, which through subsurface scattering among the

different volumetric elements leads to the observed non-linearities.

We focus on multiple scattering and assume the material to be optically dense

such that subsurface scattering becomes nearly isotropic and can be well approx-

imated by a diffusion process [70]. This is called the diffusion approximation.

In medical imaging, the diffusion approximation has been widely used to model

the multiple scattering in heterogeneous human tissues [129; 12]. For rendering

participating media, Stam [136] used the diffusion approximation to model the

multiple scattering in heterogeneous clouds, where the absorption and diffusion

coefficients can vary in the volume. For subsurface scattering, an analytic dipole

model derived from the diffusion approximation was used by Jensen et al. [74]

for multiple scattering in homogeneous materials. In this chapter, we also ad-

dress subsurface scattering, but deal with the general case of multiple scattering

in heterogeneous materials with the diffusion approximation.

For modeling heterogeneous materials, we present an algorithm for recovering

a material model from appearance measurements by solving an inverse diffusion

problem. For a given distribution of spatially-variant absorption and diffusion co-

efficients, the corresponding diffusion process that generates the material appear-

ance can be expressed as a partial differential equation, defined over the volumet-

ric elements, with the boundary condition given by the lighting environment. Ac-

quiring a volumetric model from a material sample involves an inverse diffusion

problem in which we search for a distribution of spatially-variant absorption and

diffusion coefficients such that the corresponding diffusion process generates the

material appearance that is most consistent with the measured surface appearance

in captured images. Since the images record an actual material sample, a solution
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to the inverse diffusion problem certainly exists. This inverse problem, however,

is well-known to be ill-posed, since a range of different volumetric models may

have indistinguishable surface appearances [4]. Consequently, the diffusion equa-

tions and image measurements define a group of solutions. Since all solutions

correspond to the same visual appearance, any solution from this group might

provide a valid volumetric appearance model of the given material. To address

this problem, we take advantage of the material attribute repetition coherency

in material volumes, which generally consist of a limited number of distinct ele-

ments. Our method incorporates a smoothness constraint on the optical properties

of neighboring voxels in order to favor solutions with substantial repetition, and in

this way we obtain solutions by direct optimization that are more natural and pro-

vide more realistic results for novel viewing and lighting conditions. A material

volume with greater coherence furthermore simplifies appearance editing.

Generally, finding a solution to the inverse diffusion problem is challenging

due to the nature of the inverse problem and the large number of variables in-

volved. The inverse diffusion problem is usually solved with an iterative opti-

mization procedure, in which each iteration requires an expensive gradient evalu-

ation. For a volume with elements on an n3 grid, this gradient evaluation involves

n3×M light diffusion computations, where M is the number of image measure-

ments. The inverse diffusion problem is also ill-conditioned numerically, which

presents convergence problems for the iterative solver. To ensure stable conver-

gence, we incorporate the smoothness regularizer on the diffusion coefficients and

use an effective initialization that assigns uniform diffusion coefficients among the

voxels. We additionally employ an adjoint method [93], widely used in optimal

control for gradient computation, to dramatically reduce the cost of the gradient

evaluation down to 2M light diffusion computations. With these schemes and a

GPU implementation of the diffusion computation, we show that finding a solu-

tion of the inverse diffusion problem becomes feasible for volumes of moderate

size.
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We also present an algorithm for rendering a volumetric model with known

material properties by solving a diffusion equation whose boundary condition is

defined by the given illumination conditions. That multiple scattering may be

modeled as a diffusion process was first observed by Stam [136] in the context of

participating media rendering. He solved the diffusion equation on a cubic vol-

ume using a regular grid and a finite difference method (FDM). Our rendering

algorithm solves the diffusion equation on 3D volumes of arbitrary shape using

a polygrid and an FDM. Our algorithm is centered around the polygrid represen-

tation, which facilitates the solution of the light diffusion equation in arbitrary

volumes. A polygrid is a grid with regular connectivity and an irregular shape for

a close geometric fit without fine sampling. The regular connectivity allows us to

develop a hierarchical GPU implementation of our rendering algorithm for real-

time performance. We describe how to construct a polygrid on an arbitrary 3D

object, and present a technique for evaluating diffusion equations defined among

the irregular intervals of polygrid nodes.

6.1 Related work

Before presenting our system in detail, we briefly describe several works most

relevant to ours.

In medical imaging, estimation of scattering properties within body tissue with

multiple scattering effects has been examined as a general inverse diffusion prob-

lem [12]. For better conditioning of this inverse problem, special devices for

measuring time domain and frequency domain information have been utilized in

recent techniques [49]. In contrast to medical imaging applications, we do not

aim to recover the actual scattering coefficients in a material volume, but instead

seek a material model whose appearance is consistent with image measurements.
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For rendering of BSSRDF models of subsurface scattering, several hierarchi-

cal schemes [72; 15] have been proposed to facilitate integration of BSSRDF con-

tributions from all points on the surface. Since these hierarchical data structures

need to be precomputed before rendering, they cannot be used in material editing.

[107] proposed a hierarchical scheme that supports real-time updates, but since

this method is based on the dipole diffusion model, it can be used only for render-

ing homogeneous materials. In [87], local subsurface scattering is computed by

a local image filter, while the global scattering is determined from vertex-vertex

transport. Although this method can provide interactive rendering speed, precom-

putation of the local filter and global transport makes this approach unsuitable for

material editing.

For radiance transfer modeled as a diffusion process, the set of partial dif-

ferential equations may be numerically solved to determine material appearance.

Multi-grid schemes and simplified volume representations have been employed

to facilitate rendering of participating media in [136]. Haber et al. [58] used em-

bedded boundary discretization to solve for light diffusion in object volumes of

arbitrary shape, though not in real time. A finite element method (FEM) could

also be used in computing light diffusion in an arbitrary object. However, FEMs

require decomposition of the object into tetrahedra, whose irregular connectivity

makes GPU implementation difficult. In our proposed approach, real-time evalu-

ation of diffusion is achieved with a polygrid representation of the object volume

and an adaptive hierarchical scheme for diffusion computation that has an efficient

implementation on the GPU.

6.2 Overview

Figure 6.1 presents an overview of our approach. Let the object interior be volume

V and the object surface be A. The outgoing radiance L(xo,ωo) at a surface point

xo in direction ωo may be computed by integrating the incoming radiance L(xi,ωi)
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Figure 6.1: Overview. (a) Rendering with forward diffusion, from the volumetric
material properties (κ(x) and µ(x)) and illumination setting (Li) to the outgoing
radiance (Lo). (b) Model acquisition with inverse diffusion, from a set of illu-
mination conditions (Li) and measured outgoing radiances (Lo) to the volumetric
material properties (κ(x) and µ(x)).

from all incident directions ωi and points xi on surface A:

Lo(xo,ωo) =
∫

A

∫

Ω
S(xi,ωi,xo,ωo)Li(xi,ωi)(n ·ωi)dωidA(xi),

where n is the surface normal at xi and S(xi,ωi,xo,ωo) is the BSSRDF. The out-

going radiance can be divided into single- and multiple-scattering components:

Lo(xo,ωo) = Ls(xo,ωo)+Lm(xo,ωo).

The single-scattering component Ls(xo,ωo) accounts for light that interacts

exactly once with the medium before exiting the volume, and may be evaluated

by integrating the incident radiance along the refracted outgoing ray, as described

in Equation (6) of [74]. In our method, we focus on multiple scattering and use a

highly simplified single scattering term that assumes scattering to be isotropic and

occurring only at surface points xo:

Ls(xo,ωo) =
σs(xo)F

4π

∫

2π

Li(xo,ωi)dωi, (6.1)
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where σs is the scattering coefficient, and F = Ft(η(xo),ωo)Ft(η(xo),ωi) is the

product of incoming and outgoing Fresnel transmission terms with η being the

refractive index.

The multiple-scattering component Lm(xo,ωo) consists of light that interacts

multiple times within the object volume. For highly scattering, non-emissive ma-

terials, multiple scattering may be approximated by a diffusion process described

by the following equation [70]:

∇ · (κ(x)∇φ(x))−µ(x)φ(x) = 0, x ∈V, (6.2)

with boundary condition defined on the object surface A:

φ(x)+2Cκ(x)
∂φ(x)

∂n
=

1
1−Fdr

q(x), x ∈ A, (6.3)

where φ(x) =
∫

4π
Lo(x,ω)dω is the radiant fluence (also known as the scalar irra-

diance), κ(x) = 1/[3(µ(x)+σ ′s(x)] is the diffusion coefficient, µ(x) is the absorp-

tion coefficient, and σ ′s(x) = σs(1−g) is the reduced scattering coefficient with g

being the mean cosine of the scattering angle. We define C = (1+Fdr)/(1−Fdr),

where Fdr is the diffuse Fresnel reflectance. The diffuse incoming light at a surface

point x is given by q(x) =
∫

Ω Li(x,ωi)(n ·ωi)Ft(η(x),ωi)dωi. With the diffusion

approximation, the multiple scattering component of the outgoing radiance is cal-

culated as

Lm(xo,ωo) =
Ft(η(xo),ωo)

4π
[(1+

1
C

φ(xo)−
4

1+Fdr
Li(xo)], (6.4)

where φ(xo) is computed from Equation (6.2) and Equation (6.3).

Our work centers on modeling and rendering multiple scattering in a hetero-

geneous material using the diffusion approximation. For rendering an object with

known µ(x) and κ(x) throughout the object volume V , we solve the diffusion

problem with a given illumination condition q(x) on the object surface A. Once
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the solution φ(x) is found, the multiple scattering component of the outgoing ra-

diance can be easily evaluated using Equation (6.4). We note that the diffusion

equation assumes scattering to be frequent enough to be considered isotropic and

independent of the phase function.

In acquiring the material properties from measured appearance, we need to

compute the absorption coefficients µ(x) and diffusion coefficients κ(x) based on

measured outgoing radiances {Lo,m(x,ωo) | x ∈ A, m = 0,1, . . .M} from the ob-

ject surface due to multiple scattering under M different illumination conditions

{Li,m(x,ωi) | x ∈ A, m = 0,1, . . .M} on the object surface. For this purpose, we

solve the inverse diffusion problem to find κ(x) and µ(x) such that the correspond-

ing diffusion problem, which is expressed by Equation (6.2), Equation (6.3), and

Equation (6.4), produces the outgoing radiance LR
o,m(x,ωo) that is most consistent

to the measured outgoing radiance Lo,m(x,ωo) under the same illumination con-

ditions Li,m(x,ωi). The inverse diffusion problem is thus formulated as finding

the values of κ(x) and µ(x) throughout the volume that minimize the objective

function
M

∑
m=1

∫

A

∫

Ω

(
Lo,m(x,ωo)−LR

o,m(x,ωo)
)2

dA(x)dωo. (6.5)

To obtain multiple scattering components from image measurements, a cross-

polarization approach as described in [24] may be employed. We instead utilize

an image acquisition scheme described in the following section that minimizes the

presence of single scattering and surface reflections in the image data.

6.3 Acquisition of Material Model

To acquire the volumetric material model of a real object, we obtain images of the

object under different illumination conditions and then solve the inverse problem

of light diffusion on the multiple scattering components. In solving the inverse dif-

fusion problem, we search for the volumetric model (µ(x),κ(x)) whose forward
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Camera Material Sample Projector

Material Sample Projector

Camera

(a)

(b)

Figure 6.2: Two experimental setups used for data acquisition. (a) back-lighting
setup for thin material samples. (b) front-lighting for thick material samples.

diffusion solution is most consistent with the acquired images. This procedure is

described in the following subsections.

6.3.1 Data Capture

We use a Canon 30D digital camera with a 17-45mm lens to record images of a

material sample that is illuminated by an Optoma DLP projector with a 4500:1

contrast ratio. In our experiments, the material samples are all block-shaped and

represented as a regular grid with n×m× l sample points (n≥ m≥ l) on the grid

nodes. As shown in Figure 6.2, we utilize two setups depending on the thickness

of the sample. In both setups, we position the sample so that one of the n×m faces

is perpendicular to the optical axis of the projector. For thin material samples

(n,m� l), the camera is placed facing the sample from the opposite side, such

that the sample is imaged with back-lighting. For thick material samples with

little transmission of light through the volume, we position the camera beside the

projector as done in [119]. We will refer to the side of the sample facing the

124



CHAPTER 6. MODELING AND RENDERING SUBSURFACE SCATTERING USING DIFFUSION EQUATIONS

camera as the front face.

The camera and projector are calibrated prior to image acquisition. For ra-

diometric calibration of the camera, we apply the method of [26]. Geometric

calibration of both the camera and projector is done with the technique in [164],

where for the projector we project a chessboard pattern onto different planes. The

white balance of the camera is calibrated with respect to the projector, based on the

projection of a white image onto a Macbeth Color CheckerT M chart with known

albedos. The color chart is also used in measuring the black level of the projector.

To avoid interference effects from the projector’s color wheel, we utilize exposure

times of at least 1/30 second.

In illuminating the sample, we subdivide the face that receives direct lighting

into 4× 4 regions, and separately project light onto each region while capturing

an image sequence of the complete sample with a fixed aperture and variable

exposure times ranging from 1/30 to 8 seconds. Using the method in [26], we

construct an HDR image from the image sequence for each illumination condition.

Vignetting effects from the projector are minimized by illuminating the sample

using only the center of the projector images. This capture process typically takes

about half an hour.

With this capture process, we obtain images of multiple scattering data. In the

thin-sample setup, the back-lighting is assumed to scatter multiple times before

exiting from the front face, such that captured images contain only multiple scat-

tering. In the setup for thick samples, we utilize image data only from surface

points that are not directly illuminated by the projector. The appearance of these

points is considered to result only from multiple scattering. Since the projector

and camera are aligned perpendicularly to the material sample in both configura-

tions, we can disregard the Fresnel transmittance effects on the measured multiple

scattering, and drop the dependence on ωo in Equation (6.5). For all examples in

this chapter, we set C = 2.1489 with η = 1.3.

To capture the approximate single scattering term in Equation (6.1), we use
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the front-lighting setup and follow the method in [140], which records one image

of the sample under uniform lighting. The single scattering term is obtained by

subtracting the multiple scattering contribution from it.

6.3.2 Volumetric Model Acquisition

For each captured image and corresponding lighting condition, we map onto each

grid node on the front and back faces its incoming light intensity and measured

outgoing radiance. The material model is then acquired by solving for the scatter-

ing parameters (κ and µ) of each node in the volume that would result in image

appearances most consistent with the measured data. With the M measured im-

ages of the material sample, we thus aim to minimize the following objective

function:

fM(~κ,~µ) =
M

∑
m=1

fm(~κ,~µ)+λ ∑
x∈V
‖∇κ(x)‖2,

where fm(~κ,~µ) = ∑x∈A
(
Lo,m(x)−LR

o,m(x)
)2 measures the consistency between

the measured outgoing radiance Lo,m(x) from all frontal surface points x and the

outgoing radiance LR
o,m(x) that is computed from the estimated scattering param-

eters with the illumination condition of image m. Note that in fm we drop the

dependence on ωo that is present in Equation (6.5) because of our imaging con-

figuration. The vectors~κ and~µ represent the set of diffusion and absorption coef-

ficients defined over all the grid nodes. Since model acquisition is ill-conditioned

with respect to κ , we add a regularization term ∑x∈V ‖∇κ(x)‖2 based on material

coherency to the objective function, where λ is set to 1e− 5 in our implementa-

tion.

To minimize fM, we employ the conjugate gradient algorithm outlined in Ta-

ble 8.1. From an initialization of~κ and~µ , we first compute the gradient of fM with

respect to (~κ,~µ) over the set of measured images. The search direction is then up-

dated with the Polak-Ribiere method [123]. Subsequently, we perform a golden
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Set initial material properties: ~κ0, ~µ0

Set initial search direction: ~d0 =−~z(κ0,µ0) and ~p0 = ~d0
Repeat following steps until fM < ε

Compute gradient~z(κt ,µt) =
(

d fM(~κ,~µ)
dκ(x) , d fM(~κ,~µ)

dµ(x)

)

Set pt =−~z(κt ,µt)

Update search direction ~dt = ~pt +β · ~dt−1, β = max
(
~pT

t (~pt−~pt−1)

~pT
t−1~pt−1

,0
)

Golden section search λ ′ by min
λ ′

[
fM

(
(~κt ,~µt)+λ ′~dt

)]

Update solution (~κt+1,~µt+1) = (~κt ,~µt)+λ ′~dt

Table 6.1: Conjugate gradient based algorithm for minimizing fM.

section search to find the optimal step size λ ′ along the search direction. Finally,

we update ~κ and ~µ using the computed gradient~z(κ,µ) and λ ′. These steps are

iterated to update~κ and~µ until the objective function falls below a threshold set to

ε = 10−4×∑x∈A[Lo,m(x)]2 in our implementation. This optimization is performed

separately on the RGB channels.

To initialize the scattering parameters in this optimization, we solve for the

volumetric material model under the assumption that it is homogeneous, i.e., all

the grid nodes have the same µ,κ . Since there exist only two unknowns in this

case, they can be quickly computed using the conjugate gradient procedure with

user-specified initial values.

A key step in conjugate gradient optimization is the computation of the fM

gradient relative to the unknown κ and µ values at each grid node. Since the

diffusion equation has no analytic solution, we compute the gradients numerically.

A straightforward approach for gradient computation is to perturb each of the

variables and obtain the resultant change in objective function value. One forward

diffusion simulation would then be necessary to compute each gradient. Although

this method is feasible for a system with few parameters (e.g., a homogeneous

volume), it is impractical for arbitrary heterogeneous volumes which have a large

number of unknowns. Specifically, model acquisition for an n×m× l grid with

M measurements would require 2× n×m× l×M forward diffusion simulations
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for each iteration, clearly a prohibitive expense.

6.3.3 Adjoint Method For Gradient Computation

To significantly expedite gradient computation, we take advantage of the adjoint

method [50], a technique that has been widely used in optimal control [93]. We

describe here how to directly use the adjoint method in our application.

To use the adjoint method in our solution, we first define the adjoint equation

of the original diffusion equation as

∇ · (κ(x)∇ϕ(x))−µ(x)ϕ(x) = 0, x ∈V, (6.6)

with boundary condition defined on the surface A:

ϕ(x)+2Cκ(x)
∂ϕ(x)

∂n
=

2C
π(1−Fdr)

(Lo,m(x)−LR
o,m(x)), x ∈ A, (6.7)

where (Lo,m(x)−LR
o,m(x)) is the difference between the measured outgoing radi-

ance Lo,m(x) from all frontal sample points x and the outgoing radiance LR
o,m(x)

that is computed from the diffusion equation with the illumination condition qm

of image m. Given ϕ , the gradient of fM with respect to κ and µ at each grid point

is computed by

d fM(~κ,~µ)
/

dκ(x) =
M

∑
m=1

∇ϕm(x) ·∇φm(x)−2λ∆κ(x),

d fM(~κ,~µ)
/

dµ(x) =
M

∑
m=1

ϕm(x)φm(x),

(6.8)

where φm(x) is determined from the diffusion equation with the illumination con-

dition qm of image m.

In contrast to the original diffusion equation, the adjoint method utilizes “vir-

tual” illumination to define the boundary condition. This virtual illumination
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(2C/π)(Lo,m(x)− LR
o,m(x)), which may be negative, and φ are computed from

the diffusion equation using the actual illumination condition. With the virtual

illumination, we solve the adjoint equation for ϕ , and then determine the gradient

of fM relative to κ and µ using Equation (6.8). Using the adjoint method, only

2M forward diffusion simulations are needed for gradient computation. Because

of its computational efficiency, the adjoint method has also been used in [106] for

gradient computation in fluid control.

6.3.4 GPU-based Diffusion Computation

In model acquisition, forward diffusion simulations are used not only in gradient

computation, but also for evaluating the objective function in the golden section

search. To solve the diffusion equation on a 3D regular grid, we discretize the

diffusion equation over the grid nodes, and numerically solve this system using

the multi-grid FDM scheme in [136].

This FDM technique involves considerable computation and is the bottleneck

in model acquisition. For efficient processing, we present a GPU-based multires-

olution scheme that simulates forward diffusion in the pixel shader on grid values

of κ , µ , and q packed into separate 2D textures. This GPU-based method can be

regarded as a regular-grid version of the rendering algorithm in Section 6.4, where

we provide further details.

In solving the diffusion equation on the GPU, we upload all the relevant data

from main memory to texture memory, and then output the radiant fluence results

from the frame buffer back to main memory. The remaining optimization com-

putations are all executed on the CPU. Despite some overhead for data transfer,

an appreciable overall reduction in computation costs is obtained through GPU

acceleration.
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Figure 6.3: Model quality vs. number of measurements. Left: errors of BSSRDFs
computed from material volumes acquired using different numbers of measure-
ments. Right: the front face of the synthetic volume used in this analysis.

Figure 6.4: Comparison of acquired model to ground truth. From left to right:
Illumination setting (behind the material sample); Rendering of volume acquired
from 16 images; Real image of material.
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6.3.5 Discussion

In theory, the diffuse BSSRDF should be densely sampled to ensure that the ac-

quired material volume generates accurate surface appearances for arbitrary illu-

mination conditions. However, because of the redundancy in BSSRDF data, we

have found that models acquired from sparsely sampled images provide good re-

sults in practice. Note that each image here corresponds to a 2D slice of the 4D

BSSRDF.

To examine the relationship between the number of measurements and model

quality, we applied our model acquisition algorithm on the synthetic volume shown

in Figure 6.3, which was modeled using a 72× 72× 10 grid. We subdivide the

front surface into n× n regions that are each separately illuminated. For differ-

ent n, we generated images using the diffusion equation, and then used these

images as input to our algorithm. Normalized errors were then computed as

E = ∑xi,x j∈A[R′d(xi,x j)−Rd(xi,x j)]
2
/

∑xi,x j∈A[Rd(xi,x j)]
2 , where Rd is the dif-

fuse BSSRDF computed from the original volume, and R′d is that computed from

the acquired material volume. The experiments are done with both the front-

lighting and back-lighting setups. Figure 6.3 displays the error for n = 1,2 . . .8,

which indicates that for 16 or more images, the error is comparable to that re-

ported for the factorized BSSRDF representation in [119]. In our current im-

plementation, we use 16 images under different illumination settings for model

acquisition, which provides a level of rendering quality exemplified in Figure 6.4.

6.4 Rendering and Editing

After acquiring a material model from a real sample, a volume of arbitrary shape

can be formed with this material using the mapping techniques described in [17;

122]. These approaches map the material properties into a shell layer at the ob-

ject surface, and construct the inner core volume by synthesizing a user-specified
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material texture or interpolating from the inner boundary of the shell layer using

mean value coordinates [75].

With a given lighting condition and the material properties defined through-

out the object volume, the subsurface scattering effects from the object can be

rendered in a three-pass process. In the first pass, we compute the incoming radi-

ance on the object surface, based on shadow map visibility for directional or point

lighting, or from precomputed radiance transfer techniques [134; 112] for envi-

ronment lighting. In the second pass, we render the multiple scattering effects by

simulating light diffusion inside the object volume with the incident radiance on

the surface as the boundary condition. Finally, we compute the single scattering

term and surface reflectance from the incoming illumination, and obtain the final

rendering result by adding these components together.

To efficiently solve for light diffusion on the GPU, we extend the FDM scheme

on regular volumetric grids to handle a polygrid defined in the object volume. A

polygrid is a grid with regular 6-connections among evenly distributed nodes in-

side the volume, and that has boundary nodes that are aligned with the object

surface and are each connected to one interior node along the inward normal di-

rection. With the polygrid representation of the object volume, we discretize the

light diffusion equation and its boundary condition into a system of linear equa-

tions:
6

∑
j=1

w jiκ(v j)φ(v j)−
(

6

∑
j=1

w ji

)
κ(vi)φ(vi)−u(vi)φ(vi) = 0,

φ(v′i)+2Cκ(v′i)
φ(v′i)−φ(v′j)

d ji
=

1
1−Fdr

q(v′i),

(6.9)

where v j denotes one of six nodes directly connected to interior node vi with

a weight w ji for the Laplacian operator. d ji represents the distance between a

boundary node v′i and the closest interior node v′j along the inward normal direc-

tion, and q(v′i) denotes the incoming radiance at surface node v′i.

In the remainder of this section, we describe how to construct the polygrid of
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an object volume and how to solve the diffusion equation on the GPU. We also

present a hierarchical scheme for accelerating GPU evaluation of light diffusion

on a polygrid.

6.4.1 Polygrid Construction

The steps in constructing a polygrid model of the object volume are shown in

Figure 6.5. We first manually assemble a polycube [138] of similar topology that

approximates the volume. Within the cubes, we form regular grids of equal reso-

lution, and connect the grids between adjacent cubes. The interior nodes directly

linked to boundary nodes on the edges or corners of the cube have connectivity to

multiple boundary nodes, which may lead to artifacts in the light diffusion com-

putation. We address this problem by removing certain nodes and adjusting the

links to obtain single connections to boundary nodes. As shown in Figure 6.5 (g)

and (h), we examine axis-aligned 2D slices of the grid and utilize different grid

adjustment schemes depending on the grid convexity in each slice. This procedure

yields a polygrid defined in the polycube.

We then map this polygrid to the object volume. To find a mapping, we first

determine a projection of the polycube surface onto the object surface, using

a PolyCube-Map [138] or other mesh cross-parameterization method (e.g., [79;

127]). The boundary nodes of the polygrid are then mapped to the object surface

and adjusted to obtain an even distribution [142]. After that, the interior nodes

directly connected to the boundary nodes are placed within the object volume at

a distance d along the inward normal directions, where d is one-tenth the aver-

age distance between connected boundary nodes on the object surface. The close

placement of these nodes to the boundary nodes is intended for accurate han-

dling of the boundary condition. The remaining interior nodes are then positioned

within the volume in a manner that minimizes the variance of distances between

connected nodes: min∑i∈interior Var({‖vi− v j‖ : j ./ i}), where Var(·) denotes the
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Figure 6.5: A 2D illustration of polygrid construction. (a) Creating a polycube
that approximates the object. (b) Generating a grid in the polycube. (c) Modi-
fying the corner nodes. (d) Projecting boundary nodes to the object surface. (e)
Mapping nodes connected to boundary nodes to the object volume. (f) Comput-
ing the final polygrid in the object volume. (g) and (h) are two schemes used to
modify irregular corner nodes on 2D slices of the grid.
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Figure 6.6: The polygrid constructed in a 3D model.

variance of a set of scalars, vi is the 3D position of node i, and j ./ i indicates that

node j is connected to node i. Figure 6.5 illustrates this construction procedure

in 2D. In principle, a conformal mapping [57] should be used to preserve the or-

thogonality of the original grid connections and minimize distortion. However,

this remains a challenging problem for 3D volumes, so in practice we utilize the

presented variance minimization scheme which we have found to yield acceptable

solutions.

This construction scheme maintains the regular connectivity of nodes and pro-

duces locally uniform distributions of interior grid nodes in the object volume.

As exemplified in Figure 6.6, all the interior grid nodes of the polygrid are 6-

connected, and each boundary node is connected to exactly one interior node.

The connectivity between the boundary grid nodes is not used in rendering and

can be ignored in the diffusion computation.
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Figure 6.7: Flattening a polygrid into a packed 2D texture.

Texture Blocks

A Slice in Polygrid

(a) (b)
Texture Blocks

Figure 6.8: Geometric primitives for nodes with different texture access patterns.
(a) Three types of nodes, rendered using different geometric primitives. Each
region is rendered by one primitive. (b) Geometric primitives for some texture
blocks with removed nodes.
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6.4.2 GPU-based Polygrid Diffusion Computation

With the constructed polygrid, we build a system of linear equations for light

diffusion. The material properties for each grid node are sampled from the object

volume, and the incoming illumination is computed for boundary nodes. Although

a general purpose GPU-based linear system solver could be used for computation

[80; 13], we have designed a more efficient GPU implementation that is specific

to diffusion computation on a polygrid.

In this method, the polygrid material parameters are packed into a set of 2D

textures for computation on the GPU. For efficient rendering, the textures must

be packed such that the connected neighbors of each node are easily accessible.

Towards this end, we organize each texture according to the positions of the poly-

grid nodes within the original polycube. We traverse the cubes in the polycube

in scanline order, and flatten the grid of each cube as shown in Figure 6.7. The

grid in each cube is divided into 2D x-y slices, which are each treated as a texture

block and ordered in the texture by increasing z value. In packing the texture, we

retain the empty positions of grid nodes that were previously removed, so that the

cubes have slices of equal size. Two 2D textures Tκ and Tµ are created for the cor-

responding scattering parameters, and for the iterative computation we maintain

two swap radiance buffers IA and IB that are organized in the same manner as Tκ

and Tµ . In addition, we precompute the weights for the Laplacian operator, then

similarly pack this data into two textures Tw1 and Tw2. The incoming radiance is

also packed into a 2D texture Tl according to access order as described later.

After texture packing, we solve the diffusion equations on the polygrid using

the relaxation scheme in [136]. Starting from the initial radiant fluence values

φ0, we iteratively update the radiant fluence values in the two radiance buffers

until convergence. With the radiant fluence at each node corresponding to one

pixel in the radiance buffer, this computation can be executed in the pixel shader

with parameters accessed from the textures. To reduce texture fetches in the pixel

shader, we store φ ′ = κφ in the radiance buffer. In each step, the radiant fluence
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values are updated as follows:

φ
′
n+1(vi) =

∑
1≤ j≤6

w ji(vi)φ
′
n(v j)

µ(vi)/κ(vi)+ ∑
1≤ j≤6

w ji(vi)
,

φ
′
n+1(v

′
i) =

q(v′i)κ(v
′
i)κ(v

′
j)d +2Cκ2(v′i)φ

′
n(v
′
j)

κ(v′j)d +2Cκ(v′i)κ(v
′
j)

,

where right-hand-side operators of the form f (·) involve a texture access, and the

radiance buffer for φ ′n is used as the texture while the other radiance buffer is used

as rendering target for φ ′n+1.

As shown in Figure 6.8, there exist three types of nodes/pixels in the radiance

buffer, each with different texture access patterns for reaching connected nodes.

We render each type of node using a different geometric primitive, represented by

colored regions in the figure. For a (blue) node that lies in the interior of a texture

block, four of its connected neighbors in the polygrid are also adjacent neighbors

in the 2D texture, while the other two neighbors can be found with the same offset

value in other texture blocks. We update the values of these nodes by rendering a

quadrilateral with the texture offsets of the two non-adjacent neighbors as vertex

attributes. After rasterization, this offset information can be interpolated from the

vertices to each pixel in the quad. In a similar manner, the (green) nodes on each

texture block edge are rendered with a line, where three neighbors are adjacent

in the texture, and the texture offsets of the other three are stored as line vertex

attributes. The (red) nodes of each texture block corner are rendered with points,

with the texture offsets of all six neighbors stored as vertex attributes. Slices that

contain removed nodes can also be rendered using these three primitives. All

of these geometric primitives and their vertex attributes can be precomputed and

loaded into graphics memory before rendering. Since the surface boundary nodes

and the interior nodes are processed differently, we render their corresponding

geometric primitives in two separate passes with different pixel shaders. After
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Figure 6.9: A 2D illustration of the adaptive hierarchical technique used in dif-
fusion computation. In this scheme, we fix the values of the blue nodes in the
middle level after initialization from the coarsest level. The blue and green nodes
at the finest resolution are also fixed after initialization. Nodes in the gray region
are not used in the diffusion computation and are removed from textures.

completing this computation, we calculate the output radiance on the surface by

updating the boundary nodes in the radiance buffer as L(v′i) = Ft(xo,ωo)[φ
′(vi)−

q(vi)κ(vi)]/[2πκ(vi)]. These boundary node values are then used as a texture for

surface vertices in the final pass.

With this packing and rendering scheme, the radiant fluence values are up-

dated with 10 texture fetches for interior nodes and 5 texture fetches for surface

nodes. Our scheme avoids extra texture storage for node connectivity information

and dependent texture accesses in rendering. We acknowledge that alternative

schemes for packing and rendering are possible and may be better. Nevertheless,

we have obtained good performance with this method.
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6.4.3 Hierarchical Acceleration

For greater efficiency in computing light diffusion, we employ a hierarchical

scheme to accelerate rendering with the polygrid. In this scheme, we first con-

struct a multiresolution polygrid in the object volume. Starting from the original

polygrid, the positions and material properties of nodes at successively coarser

levels are determined by averaging the positions and material properties of its

eight children at the next finer level. For nodes whose children contain removed

nodes, we normalize the result by the number of existing children. Before ren-

dering, we pack the material properties at each resolution and generate texture

pyramids for Tκ , Tµ , Tw1 and Tw2. Pyramids need not be generated for the radi-

ance buffers IA and IB, which can simply be reused for computation at each level.

During rendering, we first solve the diffusion equations at the coarsest grid level,

and then use the computed radiant fluence at each node as initializations for its

children nodes at the next finer level. This process iterates until a solution at the

original polygrid resolution is obtained.

The hierarchical algorithm can be accelerated by employing an adaptive scheme

in which light diffusion is computed to different resolutions at different depths in

the volume. Since material variations deeper inside the object volume have more

subtle effects on surface appearance, it is sufficient to approximate light diffusion

at deeper nodes with coarser-resolution solutions. As shown in Figure 6.9, after

we obtain the solution at a coarse resolution and copy it to a finer resolution, the

radiant fluence values at nodes below a certain depth are fixed, while the nodes

closer to boundary are updated. In our implementation of this adaptive scheme,

the computed resolution at different depth levels is given by the user. Texture

blocks whose nodes are not used in computation at a given level are removed to

save on texture storage.

In our current implementation, we do not use the V-cycle multi-grid algorithm

to speed up light diffusion computation, since the multigrid algorithm cannot eas-

ily be incorporated into our adaptive scheme. Also, V-cycle multi-grid algorithms
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Figure 6.10: User interface for material editing.

require extra texture storage for residual and temporary radiant fluence values in

each level. If all grid nodes are used in light diffusion, our hierarchical solution

algorithm can be regarded as a simplified N-cycle multi-grid scheme without the

V-cycles for each resolution [123].

A favorable property of the light diffusion algorithm is that the coherence

between frames can be exploited to facilitate rendering. For applications in which

the lighting or material changes gradually, the rendering result of the last frame

provides an excellent initialization for the current frame. With good initial values,

the number of iteration steps can be significantly reduced.
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6.4.4 Editing

With this real-time rendering system, the acquired volumetric material model can

be interactively edited with real-time feedback on the modified appearance. To

illustrate this capability, we developed a simple editing system shown in Fig-

ure 6.10. In addition to painting new values for µ(x) and κ(x), various ways

to modify existing µ(x) and κ(x) are supported. The user can directly adjust µ(x)

and κ(x) by multiplying them with or adding them to user-supplied constants. Al-

ternatively, the user can modulate the µ and κ values within a pattern mask using

a texture. With our volumetric representation, users can also modify a material

at specific depth levels. For a demonstration of a material editing session, please

view the supplemental video.

In our system, all editing operations are executed as pixel operations on the

GPU. We maintain extra buffers T ′κ and T ′µ of the κ and µ textures as rendering

targets for editing. In each frame, T ′κ and T ′µ are modified by user-specified opera-

tions, and then swapped to Tκ and Tµ for rendering. To support editing operations

on local regions, we store the positions of grid nodes in a texture Tp. Then when

the user selects a region on the screen for editing, we compute the screen pro-

jection of each grid node based on its position in the editing shader, and execute

the editing operations only for the nodes within the user-specified local region. In

material editing, we do not use the adaptive scheme, but instead take advantage of

the coherence between frames to reduce rendering computation, which allows for

more complex material editing operations to be executed on the GPU.

6.5 Experimental Results

We implemented our material acquisition and rendering system on a PC con-

figured with an Intel Core2Duo 2.13GHZ CPU, 4GB memory, and a Geforce

8800GTX graphics card with 768MB graphics memory. The GPU-based light
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Wax I Wax II Marble  ArtificialStone

Figure 6.11: Acquired material samples. Top row: real image of sample. Middle
row: reconstructed κ along the surface. Bottom row: reconstructed µ along the
surface. The values of κ and µ are scaled for better viewing.

Material Grid Resolution Illumination Computation Time (hrs)
Wax I 130×53×37 back 2.0
Wax II 140×75×48 front 4.0
Marble 256×256×20 back 11.0

Artificial Stone 128×128×41 back 3.0

Table 6.2: Acquisition settings for the different materials.
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Model Polygrid Texture Rendering Time Final Speed
Resolution Size (MB) t1/t2/t3 (ms) (fps)

Bunny 253×16×16×16 24.9 3.9/23.2/11.5 25.9 (34.7)
Bust 17×32×32×32 18.9 2.5/19.9/7.0 34.0 (52.7)
Bird 108×24×24×24 39.6 4.0/48.3/13.0 15.3 (24.0)
Hole 36×12×12×12 4.8 1.5/8.9/2.1 80.0 (160.4)
Snail 81×12×12×12 18.9 1.6/14.0/3.1 53.4 (106.7)

Table 6.3: Rendering configuration and performance. For the rendering times, ti
indicates the time for the ith rendering pass. The final speed is measured both
without frame coherence and with frame coherence (in parentheses).

diffusion and rendering algorithm was implemented in the OpenGL shading lan-

guage. For the GPU-based light diffusion computation used in model acquisition,

we represent all parameters and computation results as 32-bit floating-point values

for high precision. For light diffusion computations on the polygrid, each channel

of κ and µ is quantized into 8-bits and stored together in 24-bit textures. We use

16-bit floating-point values in rendering computations, which provides sufficient

precision in appearance.

Figure 6.11 displays the material samples used in our experiments and the ac-

quired κ and µ values along the surface of the material volume. For these samples,

the grid resolutions, lighting configurations, and computation times are listed in

Table 6.5. With GPU acceleration, the reconstruction algorithm gains a fifty-fold

increase in speed over a CPU-based implementation on the same platform.

The effect of coherence-based regularization is illustrated in Figure 6.12. Dif-

ferent solutions for the volumetric scattering parameters can give similar results

for the measured lighting condition, as shown in the top row. However, our solu-

tion with greater material coherency as enforced by the regularization term pro-

vides a more natural looking result under a new lighting condition, in this case,

ring lighting from behind. As commonly found in other aspects of nature, what is

observed is often best represented with simplicity.

Table 6.5 lists the polygrid resolution at the finest level, the texture size, and
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Figure 6.12: Effect of coherence-based regularization on material relighting.
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Figure 6.13: Convergence speed of the three schemes. The X axis represents
convergence speed in terms of 100K’s of nodes that are processed.

rendering performance for all the examples shown in this chapter. The polygrid

resolution is the product of the number of cubes in the polycube and the grid

resolution in each cube. The texture size includes all textures used for light dif-

fusion computation. In this table, the rendering times are broken down into the

three passes, for incident light computation (t1), light diffusion (t2), and final ren-

dering (t3). For the overall rendering speed, the first number reports the frame

rate without frame coherence (i.e., radiances initialized to zero), while the second

number in parentheses gives the speed with frame coherence. In rendering, we

use the ambient occlusion to determine visibility for environment lighting, and

the shadow buffer for visibility of local lighting. A three-level polygrid with the

adaptive scheme is used in the measurements for this table.

Figure 6.13 charts the convergence speed of the different rendering methods on

the hole model. Here, the error of a result L is computed as ∑x∈A (L(x)−L0(x))2/∑x∈A L0(x)2,

where L0 is the converged result precomputed without hierarchical and adaptive
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(a) (b) (c)

Figure 6.14: Illustration of scattering components. (a) Approximated single scat-
tering term. (b) Multiple scattering term. (c) Overall rendering result.

acceleration. A multi-resolution polygrid with three levels is used in the hierar-

chical schemes. The polycube for the hole model contains 36 cubes, and the grid

resolution in each cube at the finest level is 12× 12× 12. For the hierarchical

method without the adaptive scheme, we use all grid nodes in the light diffusion

computation. In the adaptive scheme, we manually specify the depth of nodes

that are involved in computing each resolution such that the final error is less than

0.5%. It can be seen that the hierarchical scheme can substantially improve light

diffusion performance on the polygrid. With the adaptive scheme, the computa-

tion is further accelerated (a two-fold speedup in this case) to generate a result

with an error below a user-specified threshold.

A rendering result for a bunny model under environment lighting is shown in

Figure 6.14. The different scattering components and the overall rendering result

are exhibited. The overall result is the sum of the two components.

Figures 6.16 (a) and (b) show rendering results with global illumination for

a bust model, whose volumetric material properties are acquired from a marble

sample, and a hole model, generated with acquired wax material. Complex sur-

face appearances from subsurface scattering and volumetric material variations

are well preserved with our volumetric appearance model.

In Figure 6.17, a bird model is rendered with a reconstructed wax material
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(a) (b) (c) (d)

Figure 6.15: Synthesis of a bunny with marble material. (a) Physical sample. (b)
Bunny rendered with the acquired material model. (c) After interactive editing
to add patterns. (d) After placing the flower pattern at the same location but at a
different depth.

and an artificial stone material. Results are shown from different viewing direc-

tions. The heterogeneity beneath the surface is well handled in our modeling and

rendering technique.

Rendering results of a bunny with different translucent materials edited by

the user are shown in Figure 6.18. Both the local scattering properties of the

material and their distributions are modified in these cases. With the volumetric

material model, editing of physical attributes can be done in an intuitive manner.

Additional editing results are exhibited in Figure 6.15.

Finally, we display the rendering result of a snail in Figure 6.19. The volumet-

ric material properties of the snail body are designed by an artist using our editing

tool. The artist also painted the surface texture and opaque snail shell.

6.6 Conclusion

In this chapter, we proposed efficient techniques based on the diffusion equa-

tion for modeling and rendering heterogeneous translucent materials. A practical

scheme is presented for acquiring volumetric appearance models from real ma-

terial samples, and for rendering the appearance effects of multiple scattering in

real time. With this method, a user can easily edit translucent materials and their
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(a) (b) (c) (d)

Figure 6.16: Rendering results of bust and hole model with material acquired from
real samples. (a)(b) the bust model rendered with environment lighting. (c)(d) the
hole model rendered with local lighting.

(a) (b) (c) (d)

Figure 6.17: Rendering results of bird with different materials. (a)(b) with wax
material. (c)(d) with artificial stone material.

volumetric variations with real-time feedback.

Although our approach effectively acquires a detailed appearance model of

subsurface scattering, it cannot determine the actual material properties and their

variations in the volume, especially deep within the volume. This results from ob-

ject appearance being relatively insensitive to the material composition far beneath

the surface. So while the acquired model is useful for rendering surface appear-

ance, it lacks the precision needed in applications such as solid texture mapping,

where deep volumes may become exposed on the surface.
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(a) (b) (c) (d)

Figure 6.18: Rendering results of a bunny model with different materials edited
by a user. (a) Edited from an acquired wax material. (b-d) Edited from various
homogeneous materials.

Figure 6.19: The rendering result of a snail with environment lighting. The
translucent material of the snail body was designed using our editing tool, while
the snail shell was modeled and rendered as an opaque surface.
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In rendering, the polygrid representation used in this chapter leads to an ap-

proximate FDM solution for arbitrary-shaped object volumes. With this approx-

imation, we obtain realistic rendering results and real-time performance. For ob-

jects with fine geometric detail or complex topology, however, the presented poly-

grid construction scheme may produce large distortions in some regions, which

can lead to rendering artifacts. We intend to address this issue in future work by

examining better methods for mesh and volume parameterization.

Another problem we plan to investigate is acquisition of the single scattering

effects and phase functions of heterogeneous translucent materials. In addition,

we would like to extend our rendering algorithm to real-time animation of translu-

cent objects.
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Chapter 7

Modeling textured translucent
materials with lazy solid texture
synthesis

General function  12D

BSSRDF  8D

SVBRDF  6D

Light field  4D
BRDF  4D

BSSDF  6D

Color textures  2D Bump maps  2D

Material attribute repetition coherency
solved by: Subspace search

Interactive 
modeling

Fabrication

Acquisition

In the previous chapter, we presented

a method for spatially varying sub-

surface scattering based on the diffu-

sion model with a volumetric repre-

sentation. The optical properties de-

fined within a three-dimensional vol-

ume generally follow a coherent spa-

tial distribution in materials and can be

modeled as solid textures. With a solid texture, the translucent appearance of a

material can be reproduced for objects of arbitrary shapes.

Direct acquisition methods cannot recover material volumes with very high

resolution, due to the high computation cost and memory requirements. However,

the coherent and repetitive spatial patterns in real-world material volumes allow

a material to be modeled by relatively little data as shown in existing research
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on texture synthesis based on the Markov Random Field (MRF) model. Several

works generate a 3D texture volume from 2D example images of a material [152;

124; 78]. Such methods typically solve a global problem, where the entire volume

is synthesized because the color of each voxel directly or indirectly depends on

all of the other voxels.

For modeling translucent appearance, however, texture synthesis generally is

not needed throughout the entire volume. While material properties on or near the

surface need to synthesized at a high resolution, voxels deep beneath the surface

contribute only low frequency lighting effects to the overall appearance, and thus

can be modeled more simply with little or no variation in optical values. Taking

advantage of this property by performing synthesis only locally along the surface

can reduce storage and computation by orders of magnitude in comparison to

global texture synthesis of a 3D volume.

Local evaluation for texture synthesis cannot be done by existing example-

based methods, but is possible with classical solid texturing methods such as pro-

cedural texturing [37]. In this approach, the texture values at a point in the volume

are generated by a simple procedure that does not depend on surrounding values.

Little memory is consumed since only the procedural algorithm is stored. Unfor-

tunately though, only a limited set of materials - such as marble, wood and cellular

patterns - can be effectively generated by procedures.

In this chapter, we utilize the material attribute repetition coherence of tex-

tures in material volumes to bridge the gap between procedural texturing, which

can evaluate textures locally at run time but is limited to few materials, and solid

texture synthesis, which requires pre-computation and storage of an entire vol-

ume. Our approach starts from 2D images and synthesizes a solid texture on a

surface, as if it was carved out of a volume of matter. However, only the parts

of the volume needed for accurate rendering are synthesized. To determine the

texture value of a voxel, our method relies only on the colors of a small number
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of surrounding voxels. The result for an entire surface is computed at once, usu-

ally in a few seconds, and stored for later display. Our GPU implementation is

fast enough to synthesize textures on demand, in a few milliseconds, for surfaces

appearing when interactively cutting or breaking objects.

The key idea making our approach possible is to pre-compute a small number

of carefully selected 3D candidates, later used in our solid synthesis algorithm.

Each candidate is formed by interleaving three well-chosen 2D neighborhoods

from the example images. Synthesis is performed by subspace search within this

limited space of pre-computed 3D candidates, which improves efficiency and sig-

nificantly reduces the dependency chain required to compute voxel colors. This

allows us to develop our new parallel, spatially deterministic solid texture synthe-

sis algorithm.

The result is a lazy solid synthesis scheme, only computing colors in voxels

actually being used, as demonstrated in Fig. 7.1. High resolution solid textures

are applied to objects in seconds, at low memory cost. Our GPU implementation

is fast enough to synthesize textures on demand, enabling interactive cutting and

breaking of objects. Our synthesis scheme is spatially deterministic: The same

value is always generated at the same location in space. Hence, the textures syn-

thesized for appearing surfaces remain consistent.

The generated solid textures are rendered with an advanced diffusion based

rendering method, which enables real-time rendering of high resolution translu-

cent material volumes with interactive cutting. As an object is cut, full resolution

textures are synthesized only along the newly appearing surface, and this greatly

reduces the computation and memory cost of modeling textured translucent mate-

rials.
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Figure 7.1: Lazy solid synthesis starts from 2D images and synthesizes a solid
texture on a surface. Only the required parts of the volume are effectively synthe-
sized. a) A gargoyle textured by a 10243volume. b) Thanks to spatial determin-
ism, the object may be broken and the interior textured in a consistent manner. c)
0.42% of the voxels are synthesized by our algorithm, requiring only 5.4 seconds
for synthesis and 17.9MB of storage, instead of 3GB for the full volume. d) Our
approach enables interactive cutting of objects with on demand synthesis for the
appearing surfaces. New textures are synthesized in about 8 milliseconds.

7.1 Previous Work

Various techniques have been presented for synthesizing planar textures from an

example image (or exemplar). Often this is performed by pasting together small

pixel neighborhoods [39; 153; 81] or entire patches of texture content [38; 82].

A different class of algorithms instead synthesizes textures in a parallel per-pixel

manner [154; 86]. This approach is of particular interest to us for solid synthesis,

since it enables efficient synthesis of subsets of an image while enforcing spa-

tial determinism. However, an extension to 3D is not straightforward, because a

full volume is typically not available as input. Even if such a volume were avail-

able, its cubic size would imply both a large increase in computation and memory

consumption.

Methods for per-pixel synthesis generally operate in the following way. For

each pixel, a small neighborhood representing its current surrounding is extracted.

The exemplar is then searched for the pixel with the most similar neighborhood,
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and the pixel color is copied to the output. To expedite the search process, a set

of candidates, referred to as k-coherent candidates [5; 141], can be pre-computed

for each exemplar pixel. These candidates consist of coordinates of the k pixels

having the most similar neighborhood. Then during synthesis, the search for a

best matching neighborhood is limited to candidates in the pre-computed sets of

already synthesized pixels.

The synthesis of solid 3D textures from example was introduced in the pyra-

mid histogram matching of [66] and the spectral analysis methods of [46; 47]. The

former reproduces global statistics of the 2D example images in the volume, while

the latter two create a procedural solid texture from the spectral analysis of mul-

tiple images. Among later techniques, [124] synthesizes a volume by capturing

the co-occurrences of grayscale levels in the neighborhoods of 2D images. [71]

proposed a solid synthesis method targeted at aggregates of particles, whose distri-

bution and shape is analyzed from an input image. [116] adapted constrained 2D

synthesis [67] to illustrate object interiors. These approaches share the drawback

that spatial determinism is not enforced and seams appear at transitions between

different cuts.

[152] first adapted 2D neighborhood matching synthesis schemes to 3D vol-

umes. The key idea is to consider three 2D exemplars, one in each direction. In

each pixel of the output volume (voxel), three interleaved 2D neighborhoods are

extracted (see Fig. 7.2). The best matches are found independently in each of the

three exemplars, and a local optimization step then attempts to converge toward

the best color for all three directions. [78] relies on similar interleaved neighbor-

hoods, but uses a global optimization approach [81]. A histogram matching step

is also introduced, further improving the result. Both these approaches search for

best matching neighborhoods independently in each direction. Consequently, a

large number of iterations are required before the algorithm reaches a satisfactory

result.

While these approaches produce impressive results, none is appropriate for
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Figure 7.2: Left: The three exemplars Ex, Ey, Ezand a corresponding 3-
neighborhood. Right: the crossbar defined by the 3-neighborhood.

fast synthesis of subsets of the volume. They either rely on sequential generation

or global optimization. In both cases, the dependency chain in the computations

implies that a complete volume has to be computed, even if the user is only inter-

ested in a small subset of the voxels.

7.2 Overview and terminology

Our goal is to generate high-quality, high-resolution solid textures given three

2D exemplars - often the same image repeated thrice. Since we target texturing

of surfaces, we want our approach to allow very fast synthesis of subsets of the

volume.

A first idea would be to revisit the solid synthesis approach of [152], adapt

it to be parallel and use the 2D k-coherent candidates mechanism to achieve a

significant speed-up. However, it is important to realize that 2D candidates are not

likely to be meaningful for 3D synthesis: Each candidate will represent a correct

2D neighborhood in its image, but once put together they are likely to introduce

color inconsistencies. This will both reduce synthesis quality, and require a long

time for the iterative synthesis process to produce good results. As many iterations

of neighborhood matching will be required, the dependency chain to compute
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the color of a voxel will involve a large number of other voxels, making subset

synthesis impractical. For a detailed comparison between this approach and ours,

please refer to Sec. 7.5.5.

Instead, our novel scheme pre-computes 3D candidates given three 2D exam-

ple images. Each candidate is made of three interleaved 2D neighborhoods, and

is carefully selected to provide both quality and speed during synthesis (Sec. 7.3).

This is done as a pre-computation, and only once for a given set of three 2D exem-

plars. The candidates are later used during the neighborhood matching step of our

parallel solid synthesis scheme (Sec. 7.4). Our algorithm perform multi-resolution

synthesis in a sparse volume pyramid, only synthesizing the small subset of the

voxels necessary to texture the surface. Synthesis is performed within seconds,

and the result is stored for display. Our GPU implementation generates textures

on demand, in a few milliseconds, for instance for new surfaces appearing when

interactively cutting or breaking objects (Sec. 7.5).

Terminology. We now introduce some terminology. We refer to pixels in 2D

images, while the term voxel is used for pixels located in a volume. In this work

we consider neighborhoods made of three interleaved 2D neighborhoods: Three

N ×N 2D neighborhoods embedded in three orthogonal planes and meeting at

their center (see Fig. 7.2 (middle)). In our implementation we choose N = 5,

which provides both good quality and performance. We refer to these triples of 2D

neighborhoods as 3-neighborhoods, and name them 3D candidates after selection.

We define the crossbar to be the set of pixels which are contained in more than

one 2D neighborhood (Fig. 7.2 (right)).

Ex, Ey, Ez are the three 2D exemplars corresponding to each one of the three

orthogonal planes (Fig. 7.2 (left)). The term triple indicates a triple of 2D co-

ordinates, defining a 3-neighbourhood: Each coordinate is the center of a 2D

neighborhood in the corresponding exemplar.

Our algorithm performs multi-resolution synthesis in a volume pyramid, noted
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V . Each level is designated by V l where l ∈ [O...L] and L is the maximum (finest)

resolution.

7.3 3D candidates selection

In each pixel of each exemplar we compute a small candidate set of 3-neighborhoods

represented as coordinate triples. These sets are used during synthesis as candi-

dates for best matching neighborhoods. Hence, they must capture the appearance

of the 3D neighborhoods implicitly described by the input images.

Given the exemplars Ex, Ey, Ez, the search space for possible candidates is

huge: it contains all possible triples of coordinates. The key novelty of our ap-

proach is to drastically prune the search space prior to synthesis. The major diffi-

culty is that we cannot explicitly test whether a candidate triple forms a neighbor-

hood representative of the not-yet-synthesized volume. This information is only

implicitly given by the input images.

We hence propose to select candidate triples following two important prop-

erties: First, a good triple must have matching colors along the crossbar of the

3-neighborhood. This provides an easy way to only select triples with good color

consistency (see Sec. 7.3.1). The second property is less obvious. A major step

forward in 2D texture synthesis speed and quality was achieved by giving a higher

priority to candidates likely to form coherent patches from the example image [5;

67]. This notion is however not trivial to extend to 3D, as three exemplars are

interleaved. Candidates providing coherence in one exemplar are not likely to

provide coherence in the other two. Here, our approach of forming candidates

prior to synthesis gives us a crucial advantage: We are able to consider coher-

ence across all three exemplars, keeping only those triples likely to form coherent

patches with other neighboring candidates in all three directions (see Sec. 7.3.2).

Since our synthesis algorithm is multi-resolution, we first compute an image
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Figure 7.3: Each candidate consists of three exemplar coordinates defining a 3-
neighborhood. Consistent triples have low color differences along the crossbar.
We seek to minimize the color differences along the three pairs of pixel strips,
shown here with the same color.

pyramid of each 2D exemplar and apply the candidate set construction indepen-

dently on each level of the pyramid of each exemplar. For clarity, the following

description is for a single level.

7.3.1 Color consistency

Our first observation comes from the fact that a suitable candidate should be con-

sistent across the crossbar. We use this observation to build first sets of potential

candidates in each pixel of each exemplar.

As illustrated in Figure 7.3, we seek to minimize the color disparity between

the lines shared by interleaved 2D neighborhoods. We compute a L2 color differ-

ence between pairs of 1-dimensional “strips” of pixels (i.e., a Nx1 or 1xN vector)

from the appropriate exemplars (Ex, Ey, or Ez). The sum of color differences for

the three pairs of pixel strips defines our crossbar error CB for any candidate triple.

In each pixel of each exemplar, we form triples using the pixel itself and two

neighborhoods from the other two exemplars. We select the triples producing

the smallest crossbar error. For efficiency, we approximate this process first by

separately extracting the S most-similar pixel strips from each of the two other

exemplars, using the ANN library [108]. For the example of Figure 7.3, assuming

we are computing a candidate set for p in Ex, we would first find in Ey the S

160



CHAPTER 7. MODELING TEXTURED TRANSLUCENT MATERIALS WITH LAZY SOLID TEXTURE SYNTHESIS

pixel strips best matching the orange line from Ex, and in Ez the S pixel strips best

matching the green line from Ex. We then produce all possible S2 triples - using

the current pixel as the third coordinate - and order them according to the crossbar

error CB. In our results, we keep the 100 best triples and typically use a value of

S = 65, experimentally chosen to not miss any good triple.

7.3.2 Triples of coherent candidates

Color consistency is only a necessary condition and many uninteresting candidate

triples may be selected. As a consequence, if we directly use these candidates our

algorithm will be inefficient as many will be always rejected.

After constructing candidates based on color consistency, we obtain a set of

candidate triples at each pixel of each exemplar. Our key idea is to check whether

a candidate may form coherent patches in all directions with candidates from

neighboring pixels. This is in fact a simple test. We consider each coordinate

within a candidate triple and verify that at least one candidate from a neighboring

pixel has a continuous coordinate. Figure 7.4 illustrates this idea for pixels in Ex.

We only keep candidates finding continuous coordinates for all three entries of the

triple. Note that one is trivially true, i.e. by definition neighboring candidates in

Ex have a continuous coordinate in Ex.

To formalize this notion, let us only consider exemplar Ex without loss of

generality. We note xC (resp. yC, zC) the set of candidates for exemplar Ex (resp.

Ey, Ez). xCk[p] is the k-th candidate triple for pixel p in Ex. We note xCk[p]y and
xCk[p]z the coordinates in respectively exemplar Ey and Ez for the candidate triple.

In a given pixel p, we iteratively update the set of candidates as:

xCi+1[p] =





c ∈ xCi[p] : ∃k1,k2, |δ1|= 1, |δ2|= 1 s.t.



|xCk1

i [p+δ1]y− cy|= 1

and

|xCk2
i [p+δ2]z− cz|= 1




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where i is the iteration counter, k1, k2 indices in candidate sets and δ1, δ2 off-

sets to direct neighbors. We perform several iterations of this process, reducing

the number of candidates with every pass. In our current implementation we it-

erate until having no more than 12 candidates per pixel, which typically requires

2 iterations. If more candidates remain, we keep the first 12 with the smallest

crossbar matching error. While it is possible that no candidate coherency exists,

this happens rarely in practice.

7.3.3 Candidate Slab

After candidate generation, we obtain a set of candidate triples at each pixel.

These candidates are not only useful for neighborhood matching, but also pro-

vide a very good initialization for the synthesis process.

Let us consider a single exemplar. Recall that each candidate triple defines

a 3-neighborhood, that is three interleaved N ×N 2D neighborhoods. One 2D

neighborhood is in the plane of the exemplar, while the two others are orthogonal

to it (see Figure 7.5, left) and intersect along a line of N voxels above and below

the exemplar. This provides a way to thicken the exemplar and to form candidate

slabs. To initialize synthesis we create such a slab using the best (first) candidate

Figure 7.4: Two candidates of neighboring pixels in Ex. Each candidate is a triple
with coordinates in Ex, Ey and Ez. The first triple is shown in orange, the second in
green. Notice how the coordinates of the candidates in Ey are contiguous: Along
both vertical pixel strips, the candidates form a coherent patch from Ey. This is not
the case in Ez. Note that the orange and green triples will only be kept if another
neighboring triple with a contiguous coordinate in Ez is found.

162



CHAPTER 7. MODELING TEXTURED TRANSLUCENT MATERIALS WITH LAZY SOLID TEXTURE SYNTHESIS

at each pixel (see Figure 7.5, right).

Please note, however, that the slab is formed using a single candidate among

the several available per exemplar pixel. Using the slab directly as a 3D exemplar

would be very limiting: This would ignore all other candidates. Instead, our al-

gorithm exploits the full variety of the candidates for neighborhood matching and

uses a slab only for initialization. This is very different from using a 3D exemplar

as input, which would require a large example volume to offer a similar variety of

candidates.

Figure 7.5: Left: Exemplar thickening. Right: Candidate slab obtained from
the first candidates. The slab is shown from top and bottom view. Notice how
coherent structures appear around the exemplar. (This is not a synthesis result -
simply a visualization of the candidates).

7.4 Lazy Solid Synthesis

For each pixel of each 2D exemplar, we now have a set of pre-computed 3D

candidates, which we will use to perform efficient solid synthesis.

Our parallel deterministic synthesis is inspired by the 2D parallel algorithm of

[86]. While it has the same overall structure, it does adapt and extend it in several

ways.
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7.4.1 Parallel solid texture synthesis

A first evident change to the original 2D algorithm is that our algorithm performs

synthesis in a multi-resolution 3D volume pyramid, instead of operating on a 2D

image pyramid. Only part of this volume pyramid may be visited by the algorithm,

depending on the subset of desired voxels.

We perform two successive steps at every resolution level: upsampling which

increases the resolution of the previous level result, and correction which applies

several passes of neighborhood matching using our pre-computed 3D candidates.

Contrary to the original scheme we found it unnecessary to add variation at every

level, and perturb the result through jitter only once, after initialization. If finer

control is desired, jitter could be explicitly added after each upsampling step.

This is summarized below:

1. Synthesize( lstart , Vinit , Ex,Ey,Ez, xC,yC,zC, DesiredVoxels )

2. Masklstart ← ComputeMask(DesiredVoxels,lstart )

3. V lstart ← tiling of Vinit

4. V lstart ← Jitter(V lstart )

5. For l = lstart ... L

6. If l > lstart then V l ,Maskl ← Upsampling(V l−1,Maskl−1)

7. For p = 1...2

8. V l ,Maskl ← Correction(V l ,Maskl ,xC,yC,zC)

9. End

lstart is the level at which synthesis starts. ComputeMask computes the mask of

voxels that have to be synthesized at level lstart (see Sec. 7.4.2). Vinit is an initial

result from which to begin synthesis, as explained below.

In every voxel of the synthesis pyramid we maintain a coordinate triple, rep-

resenting a 3-neighborhood. For a voxel at coordinates v in the volume of level l
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we note the stored triple coordinates V [v]lx, V [v]ly and V [v]lz. The color of a voxel

is obtained by averaging the three colors at coordinates V [v]lx, V [v]ly and V [v]lz in

respectively Ex, Ey and Ez.

Figure 7.6: Quality of solid texture synthesis is improved by using candidate
slabs for initialization (right), compared to random initial values (left). This is
especially the case on structured exemplars.

Initialization

To reduce synthesis time, multi-resolution synthesis algorithms can start from an

intermediate level of the image pyramid. The initial result given as input is then

iteratively refined, with successive passes of neighborhood matching. A good

initialization is key to achieve high-quality synthesis.

Since we do not have an example volume, we rely on the candidate slabs

(Sec. 7.3.3) for initialization. They provide a good approximation of the 3D con-

tent to be synthesized. We simply choose one of the candidate slabs as Vinit and

tile it in the volume to initialize synthesis. In practice, we initialize the process

three levels above the finest (lstart = L−3) using the candidate slab from the cor-

responding level of the exemplar pyramid.

Figure 7.6 shows how our initialization improves quality compared to a typical

random initialization. In particular, it preserves regularity present in the input

images.
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Jitter

Since we initialize with a tiling, we have to explicitly introduce variations to gen-

erate variety in the result. We hence perturb the initial result by applying a con-

tinuous deformation, similar to a random warp. We compute the distorted volume

J as:

∀v, J[v] =V [v+ ∑
i=0...G

Ai~di e
− ||v−ci||2

2σ2
i ]

where v are voxel coordinates, Ai is a scalar, ~di a random normalized direction, ci

a random point in space and σi controls the influence of Gaussian i. G is typically

around 200, with values of Ai ranging from 0.1 to 0.3 and σi from 0.01 to 0.05

in unit volume space. While exact values do not matter - the main purpose is

to randomize - it is important for Ai to have larger magnitude with smaller σi:

This adds stronger perturbation at small scales, while adding subtle distortions

to coarser scales. Small scale distortions are corrected by synthesis, introducing

variety. The overall magnitude of the jitter is directly controllable by the user.

Upsampling

Upsampling is a simple coordinate inheritance: Each of the eight child volume
cells inherits three coordinates from its parent, one for each direction. The new
coordinates of the child at location i jk within the volume of level l are computed
as:

V [i jk]lx = 2 ·V [(b i
2c,b

j
2c,b k

2c)]l−1
x +( j mod 2, k mod 2)

V [i jk]ly = 2 ·V [(b i
2c,b

j
2c,b k

2c)]l−1
y +(i mod 2, k mod 2)

V [i jk]lz = 2 ·V [(b i
2c,b

j
2c,b k

2c)]l−1
z +(i mod 2, j mod 2)

Correction

The correction step relies on our candidate sets to perform fast neighborhood

matching. It is performed on all synthesized voxels simultaneously, in parallel.
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Input data is read from the previous step result so that neighboring voxels do not

influence each other during correction.

The result from the previous step gives us a coordinate triple in each voxel,

from which we compute a color by averaging the corresponding three colors from

the exemplars. In each synthesized voxel, we start by gathering its current 3-

neighborhood, that is the one that can be observed in the colored version of the

result. We will use this 3-neighborhood to search for a best matching candidate.
Next, we gather a set of potential candidates for the voxel. We visit each of its

direct neighbors, and use the stored coordinate triples to gather the candidate sets.
This relies on the coherent candidate idea introduced by [5] and [141]. The final
candidate set C (v) for voxel v is computed as:

C (v) = Cx(v)∪Cy(v)∪Cz(v) where

Cx(v) = { xCk[V [v+Pxδ ]x−δ ] : k = 1...K,δ ∈ {−1,0,1}2}
Cy(v) = { yCk[V [v+Pyδ ]y−δ ] : k = 1...K,δ ∈ {−1,0,1}2}
Cz(v) = { zCk[V [v+Pzδ ]z−δ ] : k = 1...K,δ ∈ {−1,0,1}2}

xCk[p] is the k-th candidate at location p in Ex. Px, Py and Pz are 3× 2 matrices

transforming a 2D offset from exemplar to volume space (see Figure7.3).

Each candidate is itself a triple of coordinates forming a 3-neighborhood. We

search for the best matching candidate by considering the distance between the

candidate 3-neighborhood and the 3-neighborhood we extracted for the current

voxel. The distance is a simple L2 norm on color differences. In practice, we

speed up these comparisons using PCA-projected neighborhoods.

We finally replace the coordinate triple in the current voxel by the coordinate

triple of the best matching candidate. Note that because the candidate triples

have been precomputed and optimized, we are guaranteed that the color disparity

between the three colors in each voxel is kept low.

We perform two correction passes at every level of the pyramid, and improve

convergence of the correction process by adapting the sub-pass mechanism of
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[86]. We simply perform 8 sub-passes instead of 4 in 2D, processing interleaved

subsets of voxels one after the other.

Separation of the first candidate coordinate. While our candidate selection is

very efficient, we still end up with many candidate comparisons: We gather 12

candidates from the 33 = 27 direct neighbors (including the center), for a total of

324 candidates per voxel. We further reduce the search space by performing a two

step search.

During synthesis, the first step is to search for the best matching 2D candidates

in each of the three directions. The second step is to gather the 3D candidates only

from these three best matching pixels. This greatly reduces the size of the candi-

date set to consider, but still allows for a large number of candidate combinations.

In practice we keep 4 2D and 12 3D candidates per exemplar pixel at coarse levels,

while we reduce to 2 2D and 4 3D candidates at the finest level for maximum per-

formance. At most, we thus perform a search within 27×4 = 108 2D candidates

and 3×12 = 36 3D candidates.

7.4.2 Lazy Subset Synthesis

In order to synthesize the smallest number of voxels, we determine, from a re-

quested set of voxels at finest resolution, the entire dependency chain throughout

the volume pyramid. This guarantees all necessary information is available to en-

sure spatial determinism. Figure 7.7 illustrates this idea on a simple 2D example.

To restrict synthesis only on the necessary voxels, we compute a synthesis

mask. When Maskl
p[v] is true, it indicates that voxel v at pass p and level l has

to be synthesized. Note that we only need to compute the mask for level lstart :

During synthesis, the mask for the next level or next pass is trivially obtained

through upsampling and correction (see Sec. 7.4.1).

We compute the mask from from last to first pass, and from fine to coarse

levels. The number of required voxels depends on the size and shape of the
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Pass 2
Desired voxels

Pass 1

Level L Level L-1 Level L-2

Pass 1Pass 2
Pass 1Pass 2

Figure 7.7: From a set of desired voxels at finest resolution, we have to determine
the entire dependency chain throughout the volume pyramid. The neighborhood
matching passes performed at every level imply the dilation of the set of voxels to
synthesize.

neighborhoods used during synthesis. In the following pseudo-code, we note

Maskl
p
⊗

NeighborhoodShape the dilation of the mask by the shape of the neigh-

borhoods. Function Downsample reduces the resolution of the mask and flags a

parent voxel as required if any of its children are required. DesiredVoxels contains

the set of voxels requested by the user.

To compute a single voxel, with N = 5, 2 passes and synthesis of the 3 last

levels, our scheme requires a dependency chain of 6778 voxels. Note that in a

volume the size of the dependency chain grows quadratically with the number of

passes.

1. ComputeMask (DesiredVoxels)

2. Mask f inestlevel
last pass ← DesiredVoxels

3. Foreach level l from finest to lstart

4. Foreach pass p from last to first

5. Maskl
p−1 = Maskl

p
⊗

NeighborhoodShape

6. end foreach

7. If l > lstart then Maskl−1
last pass = Downsample(Maskl

f irst pass)

8. end foreach

9. return Masklstart
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7.5 Implementation and Results

We implemented our solid texture synthesis approach both entirely in software

and using the GPU to accelerate the actual synthesis. All our results are created

on an Intel Core2 6400 (2.13GHz) CPU and an NVIDIA GeForce 8800 Ultra.

Note that we sometimes add feature distance [78] to the RGB exemplars.

Whenever this is the case, the feature distance is shown along with the original

image.

7.5.1 Candidate pre-computation

Apart from Figure 7.9, all results in this chapter are computed from a single exam-

ple image repeated three times. Depending on the orientation chosen for the image

in Ex, Ey and Ez, the pre-computed candidates may be shared. This incurs sav-

ings in computation and data structures since we can perform the pre-computation

only once. All reported sizes and timings are for a single example image sharing

a same candidate data structure, using the orientation depicted in Figure 7.3. The

entire pre-computation is fast: Typically 7 seconds for 642 exemplars, and 25 to

35 seconds for 1282 exemplars. This includes building the exemplar pyramids,

computing the PCA bases and building the candidate sets. Typical memory re-

quirement for our pre-computation data structure is 231KB for a 642 exemplar.

After pre-computation we can quickly perform synthesis on any surface, and

generate many variations of a same texture as illustrated in the supplemental ma-

terial. This affords a very convenient tool to decorate objects from a database of

pre-computed exemplars.

7.5.2 GPU implementation

The synthesis algorithm is implemented in fragment shaders, using the OpenGL

Shading Language. We unfold volumes in tiled 2D textures, using three 2-channel
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r20mm

16 bit render targets to store the synthesized triples. We pre-compute and reduce

the dimensionality of all candidate 3-neighborhoods using PCA, keeping between

12 and 8 dimensions. We typically keep more terms at coarser levels since less

variance is captured by the first dimensions. We finally quantize the neighbor-

hoods to 8-bits to reduce bandwidth. Hence, candidate sets are stored in RGBA 8

bit textures.

Synthesizing around surfaces When texturing objects, our goal is to focus

computations only around the voxels intersecting the surface. In order to minimize

memory consumption, we perform synthesis into a TileTree data structure [85],

but other approaches such as octree textures [9] could be used. After synthesis,

rendering is performed directly using the TileTree, or the texture can be unfolded

in a standard UV map.

The TileTree subdivides the surface into a set of square tiles. Each tile is in

fact a height-field and corresponds to the set of voxels intersecting the surface. We

enlarge the voxel set as described Sec. 7.4.2, and perform synthesis independently

in each tile. In order to reduce the size of the 3D texture used for synthesis, we

’push’ the voxel columns at the bottom of the tile, as illustrated in the inset. This

slightly complicates addressing, but greatly reduces memory consumption on the

GPU.

Synthesizing tiles independently implies that many voxels at coarse resolution

are computed several times. This is especially unfortunate since these voxels only

represent 10 percent of the total number of voxels. We reduce this overhead by
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emulating a very simple cache mechanism for coarse level voxels. We first syn-

thesize a small 323 volume up to level L− 1, and store this intermediate result.

When synthesizing the surface, we restart synthesis at level lstart = L−1 using a

tiling of the intermediate result. Variety is added as usual by perturbing the tiling

with warping.

When interactively cutting an object, synthesis occurs only once for the newly

appearing surfaces. Since the TileTree cannot be updated interactively, we store

the result in a 2D texture map for display. For simplicity our implementation only

allows planar cuts: The new surfaces are planar and are trivially parameterized

onto the 2D texture synthesized when the cut occurs. These textures are shown at

the top of the screen in the accompanying video.

7.5.3 Rendering

To efficiently render synthesized translucent volumes, we combine the advantages

of lazy solid synthesis and multi-resolution algorithm of TransCut [91], which em-

ploys a fast solver of the diffusion equation that adapts to changes in topological

structure during object cutting. TransCut obtains its efficiency by computing dis-

crete divergences of the diffusion equation and constructing the diffusion equation

matrix using analytic formulas derived for linear finite elements. For synthesis,

only those voxels on or near the object surface are synthesized at full resolution,

while deeper volumes are assigned low resolution texture, since they contribute

only low frequency effects to the final rendering result.

7.5.4 Full volume synthesis and comparisons

While our scheme is designed for fast surface synthesis, we can also use it to

quickly generate full volumes of color content. Here we discuss this possibility

and use it to compare our algorithm with previous work.
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Quality For comparison purposes, we reproduce in Figure 7.8 solid textures

similar to those presented in [78]. As can be seen, our new approach produces re-

sults which are at least of comparable quality and often slightly better. Figure 7.9

illustrates how complex structures are synthesized from different example images.

Timings In Figure 7.8, for the 642 examples of the first row our method re-

quires a total of 7.22 seconds for synthesizing the 643 volume (7 seconds for

pre-computation and 220 milliseconds for synthesis). The memory requirement

during synthesis is 3.5MB. For the 1282 image of the last row, our method re-

quires a total of 28.7 seconds for synthesizing the 1283 volume (27 seconds for

pre-computation and 1.7 seconds for synthesis). In comparison, [78] reported

timings between 10 and 90 minutes.

7.5.5 Solid synthesis for translucent objects

Figure 7.10 shows results of synthesizing solid textures for translucent material

volumes. Performing synthesis using our lazy scheme results in a very low mem-

ory consumption compared to the equivalent volume resolution.

Synthesis speed for the initial bunny surface is 2.5 seconds, excluding pre-

computation, while storage of the texture data requires only 7.1MB, compared to

the 375MB for full volume storage.

While being slower than state-of-the-art pure surface texture synthesis ap-

proaches, our scheme inherits all the properties of solid texturing: No distortions

due to planar parameterization, a unique feeling of a coherent block of matter, and

consistent texturing when the object is cut, broken or edited. None of the pure 2D

synthesis approaches can enforce these properties easily.

Our timings nonetheless allow for on demand synthesis when cutting or break-

ing objects. Figure 7.10 shows three frames of real-time cutting. The average time

for synthesizing textures for a new cut is 10 ms. In terms of memory, synthesiz-

ing a 2562 slice of texture content requires 14.4MB. The overhead is due to the
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Figure 7.8: Comparisons to some of the result textures in [78]. For each compar-
ison, our result is shown on the right.

necessary padding to ensure spatial determinism (see Sec. 7.4.2).

Comparison with a simple tiling A typical approach for solid texturing is to

pre-compute a full cyclic volume and to tile it in space for texturing objects. As

shown Figure 7.11, our scheme offers richer textures than a simple volume tiling

and avoids the appearance of repetitive patterns along some particular directions.

Recall that synthesis occurs only once: There is no overhead for displaying the

object.

Comparison with a method using standard 2D candidates In order to exper-

imentally verify that our 3D candidates provide good quality results with fewer
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Figure 7.9: Left: A volume generated from two different images. Right: Trans-
parency reveals shape distribution. Background gray voxels are transparent for
the stones, green voxels for the spheres. For clarity we removed shapes crossing
the volume boundary.

Figure 7.10: Results on modeling translucent materials. The bunny model is
textured with the equivalent of a 5123 volume. Three frames of real-time cutting
are shown. The interior surfaces are synthesized on demand, in 8 milliseconds on
average, while the user cuts the object. Notice the coherent structures across cut
boundaries.

iterations, we also implemented our synthesis algorithm using only standard 2D

candidates. As seen Figure 7.12, it takes roughly twice the number of iterations to

obtain a result of equivalent visual quality (we obtain similar numbers on different

textures). Due to the increased number of iterations, the size of the dependency

chain for computing a single voxel grows from 6778 voxels with 3D candidates

to 76812 voxels with 2D candidates, hence a factor of 11.3 in both memory usage
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and speed. This makes local evaluation impractical, and would not be useful for

synthesis on surfaces.

7.6 Discussion and Conclusions

Our method is of course not without limitations. In particular, if the exemplars

Ex, Ey, Ez do not define a coherent 3D volume, the quality of the result will be

poor, as shown Figure 7.13 (left). An interesting direction of future research is

to exploit our pre-computation to determine whether three exemplars are likely to

generate a consistent 3D volume.

A related limitation is that it may be impossible to find coherent candidates

during our candidate selection process for some parts of the image. As shown

in Figure 7.13 (right) this will introduce a bias in the algorithm, removing some

features.

Figure 7.11: Left: Result of tiling a 1283 volume to texture a surface. Obvious
repetitions are visible along some particular directions. Right: Our approach does
not exhibit visible repetitions thanks to synthesis.

Conclusion We presented a new algorithm for 3D synthesis of translucent ma-

terials, creating a consistent volume of matter from 2D example images. Our

176



CHAPTER 7. MODELING TEXTURED TRANSLUCENT MATERIALS WITH LAZY SOLID TEXTURE SYNTHESIS

init 1 iter. 2 iter. 3 iter. 4 iter.

Figure 7.12: Comparison of 3D candidates (top) versus 2D candidates (bottom).
Using our 3D candidates, a visually pleasing result is reached in 2 iterations. After
4 iterations the 2D candidates barely reached the same quality.

Figure 7.13: Left: A case where the 2D example is incompatible with a good solid
texture definition. Right: A case where a part of the exemplar has no coherent
candidates: The red feature is lost through synthesis.

algorithm has the unique ability to synthesize colors for a subset of the voxels,

while enforcing spatial determinism. This affords efficient surface synthesis as

the complexity in both space and time only depends on the area to be textured.

Our key idea is to pre-compute 3D candidates in a pre-process, by interleaving

three 2D neighborhoods from the input images. Thanks to a careful selection, our

pre-computed candidates significantly improve synthesis efficiency and reduce the

number of iterations required to produce good results. This is key in reducing the
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size of the dependency chain when evaluating subsets.

Our GPU implementation is fast enough to provide on demand synthesis when

interactively cutting or breaking objects, enabling realistic texturing effects in

real-time applications and physical simulations.
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Part III

Material Fabrication
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The techniques described up to this point in the thesis have focused on how

to transfer real-world material appearance into the virtual world. In fact, the vast

majority of computer graphics algorithms are designed to render appearance on

display systems such as video monitors. Though the appearance of materials can

be faithfully represented by computer models, it has not been well studied how to

reproduce them in the physical world.

With the recent advent of 3D printing, it has become possible for geometric

models in computer graphics to be physically constructed. Real objects can be

scanned as 3D meshes, manipulated with computer-aided design tools, and then

fabricated as an actual object in the real world. This closed loop from the physical

to the virtual and then back to the physical may lead to greater relevance of com-

puter graphics in our daily lives, and has already made an impact in areas such as

industrial design, where this closed loop system has been used to accelerate the

rapid-prototyping work cycle.

Though a closed loop for object geometry has been established, closing the

loop for material appearance is much less straightforward. While a 3D printer is

designed to output a broad range of volumetric shapes, the materials from which

such shapes can be manufactured are quite limited. The fabrication of different

material appearances is nevertheless an important pursuit, as it could drive new

applications and expand the scope of existing ones such as in industrial design.

Effective production of material appearance may moreover lead to a new appear-

ance modeling paradigm, one that incorporates the ability to go back and forth

between the real and virtual worlds.

In this final part of the thesis, we address the problem of how to fabricate

different material appearances from a limited set of basis materials that can be

controlled within a milling machine or 3D printer. Though new materials cannot

be created by a printer, we show how it is possible to volumetrically arrange its

material elements to produce a physical sample whose spatially varying subsur-

face scattering effects closely match that of a given translucent material [31]. Our
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solutions are obtained both efficiently and stably by accounting for inter-attribute

correlation coherence among scattering profiles and element arrangements within

the given material, with reconstruction by subspace search. Adding this fabri-

cation technique for subsurface scattering to existing methods for manufacturing

surface reflectance closes the gap in the appearance modeling loop.
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In Chapter 2, we described various

works for fabricating surfaces with

different reflectance properties. For

example, the system of Matusik et

al. [100] combines several types of

inks with different reflectance proper-

ties to reproduce the directionally de-

pendent behavior of spatially-varying

opaque materials. How to fabricate translucent objects that exhibit subsurface

scattering effects, however, has remained an open problem.

Fabricating a material volume with desired subsurface scattering effects is use-

ful in many applications. In the food industry, great effort is made to manufac-

ture realistic-looking fake food for exhibition and advertisements. Artists need

powerful techniques for mimicking realistic human skin in wax sculptures. Inte-

rior designers use faux painting to reproduce the appearance of marble and other
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materials for surface decoration. Although dedicated techniques have been devel-

oped for many of these applications, there does not exist a general and automatic

solution for fabricating a desired translucent material volume. Considerable man-

ual work and experience is generally needed to craft materials with a particular

translucent appearance.

In this chapter, we present a method for automatically fabricating a material

volume with a desired BSSRDF. As in Chapter 6, we focus on optically thick

materials, whose subsurface scattering behavior is well captured by the diffusion

approximation. For such materials, our key observation is that it is possible to

reproduce the visual appearance of a given material by carefully combining other

materials with different optical properties. Thus with a fixed set of basis manu-

facturing materials, we can reproduce a wide variety of heterogeneous BSSRDFs

by stacking material layers whose thickness and composition vary spatially. The

type of basis manufacturing materials and number of layers are constrained by the

hardware setup. Given these constraints, our method computes the distribution

of basis materials and spatially variant layer thicknesses so that the BSSRDF of

the output volume is as close to the target BSSRDF as possible. A surface tex-

ture layer may be added to enrich the BSSRDF colors of the output volume when

needed. Figure 8.1 shows an example volume manufactured with our system.

We compute the optimal layout of each layer of the output volume, i.e., the

distribution of basis materials and thickness of each layer, by a subspace search

of the possible layer layouts for the corresponding BSSRDF that is closest to the

input BSSRDF. For a homogeneous material, the material and thickness is con-

stant within each layer but may vary across layers. In this case, the computation is

relatively easy and to further facilitate this computation we have developed an effi-

cient method for quickly constructing the BSSRDFs of all layer layouts. The case

of heterogeneous materials is much harder. The complex interactions between the

optical properties and spatial distributions of the materials lead to a non-linear re-

lationship between the BSSRDF over the surface and the underlying volumetric
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Color Texture

Layer 1

Layer 2

Layer 3

(a) Input BSSRDF (b) Layered material volume (c) Fabricated Material Volume 

Figure 8.1: Our system automatically generates a layered material volume for
approximating a custom BSSRDF. (a) The appearance of a real material sample
under diffuse lighting and a beam light. (b) A collection of layers generated by
our system for assembling the output volume. (c) The appearance of the fabricated
material volume under the same diffuse lighting and beam light.

material properties. Deriving the optimal layer layout from the input BSSRDF is

difficult as it amounts to solving a large non-linear optimization problem. Further-

more, manufacturing constraints impose limits on valid material distributions and

thickness of layers and make this non-linear optimization even more challenging.

We solve this problem in two steps. In the first step, we decouple the non-local

BSSRDF into local scattering profiles and determine the material composition

(i.e. the basis material in each layer) under each individual surface point based on

inter-attribute correlation coherence, in which points with similar scattering pro-

files have similar material compositions beneath them. After that, we model the

light transport between surface points using a diffusion process and optimize the

thickness of the layers at each location by an adapted inverse diffusion optimiza-

tion. For any given BSSRDF, our approach automatically computes the optimal

material volume in dozens of minutes.

We have experimented with two hardware setups having different tradeoffs:

a milling machine and a 3D printer. The milling machine allows us to choose

manufacturing materials with a variety of scattering properties, but has limitations

in the number and precision of the layers it can effectively produce. The 3D printer

allows us to print quickly a larger number of layers with high precision, but has
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a very limited selection of manufacturing materials. With these hardware setups,

our method can generate material volumes with a wide range of homogeneous and

heterogeneous BSSRDFs.

8.1 Related Work

Few works have proposed fabrication methods for computer graphics. For surface

appearance, a traditional color printing system can faithfully print the color of

surfaces, but cannot reproduce the directional dependence aspect of appearance.

Weyrich et al. [157] used a milling machine to fabricate a designed microfacet

pattern on a physical surface for generating custom surface reflectance. Matusik

et al. [100] developed a system for printing spatially varying BRDFs via a set

of inks with known BRDFs. Although these systems can well reproduce a given

surface reflectance, they cannot model the subsurface scattering effects caused by

light transport inside the object volume.

Concurrent to our work, Hašan et al. [63] proposed a 3D printer based solu-

tion for reproducing material volume with a specified BSSRDF. Although both

approaches are based on the diffusion approximation and approximate the input

BSSRDF with layers of basis materials, they are different in several ways. To

find the layer layout for approximating homogeneous BSSRDFs, [63] developed

efficient search heuristics by pruning the layer layouts that yield poor solutions,

while our work presents a cluster based approach for computing the BSSRDFs of

all valid layer layouts. This allows us to precompute the gamut of basis materi-

als and then find the layer layout for a specified BSSRDF via nearest neighbor

search. For heterogeneous BSSRDFs, [63] determines the layer layout for each

surface point separately from the local scattering profiles that are factorized from

the input BSSRDF as in [135]. In our method, the local scattering profiles are

only used to initialize the layer layout in the volume. A volume optimization al-

gorithm is proposed to further optimize the volume layer layout for approximating
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the input BSSRDF. Combined with a surface texture layer and two hardware so-

lutions (3D printer and milling machine), our method can effectively reproduce a

wide variety of heterogeneous BSSRDFs with a fixed set of basis manufacturing

materials.

In object manufacturing, most traditional computer aided design and manufac-

turing systems represent 3D shape with B-rep geometry [8] and fabricate each sep-

arate part of a 3D shape with one homogeneous substrate. The material variation

inside the object volume is ignored. 3D printers construct complex 3D objects by

aggregating materials layer by layer. Despite their hardware capability to support

voxel-based object and material variations in the object volume, most commercial

systems available now can only print B-rep geometry with one or two proprietary

materials inside [143]. Some printers such as the Z Corp Spectrum Z510 have the

capability to print colors at any voxel in an object volume. However, the basis

materials available for printing are very limited and almost opaque.

Our system models the output volume as a set of layers of basis materials, each

of which can be well converted to a B-rep geometry and fabricated by traditional

manufacturing hardware (such as milling machines or 3D printers). It also can

be easily extended for future 3D printing systems that support more materials and

flexible material variations in the object volume.

8.2 System Pipeline

The goal of this work is to approximate the appearance of a desired subsurface

scattering material that is described by the BSSRDF S(xi,ωi;xo,ωo), which re-

lates the outgoing radiance L(xo,ωo) at a point xo in direction ωo to the incoming

radiance L(xi,ωi) as

L(xo,ωo) =
∫

A

∫

Ω
S(xi,ωi;xo,ωo)L(xi,ωi)(n(xi) ·ωi)dωidxi, (8.1)

186



CHAPTER 8. FABRICATING SPATIALLY-VARYING SUBSURFACE SCATTERING

Ny

Nz

Nx

Ny

Nz

Nx

(a) (b)

Figure 8.2: The output volume V . Different colors indicate layers with different
basis materials. (a) The layered volume for a homogeneous BSSRDF. (b) The
layered volume for a heterogenous BSSRDF.

where Ω is the hemisphere around xi; A is the area around the point xo, and n(xi)

is the surface normal at xi. As in [53; 119; 135], we decompose the light transport

into two components as L(xo,ωo) = Ls(xo,ωo)+Ld(xo,ωo), where Ls(xo,ωo) ac-

counts for light immediately reflected from the surface and Ld accounts for light

scattered in the material volume. We focus on the latter component Ld that is

captured by the diffuse BSSRDF Sd , which we further decompose as

Sd(xi,ωi;xo,ωo) =
1
π

Fr(η(xi),ωi)Rd(xi,xo)Fr(η(xo),ωo), (8.2)

where Fr is the angular dependent Fresnel function that is determined by the re-

fraction index η of the material, while Rd is a four dimensional function of two

surface locations that encodes the spatial subsurface scattering of heterogeneous

materials. Again following [53; 119; 135], we focus exclusively on a represen-

tation for the 4D spatial component of the diffuse BSSRDF Rd and ignore the

angular dependencies.

We simulate the appearance of the input BSSRDF by printing an object vol-

ume V . Different manufacturing hardware can construct objects using a fixed set
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of basis materials (with given translucent properties) specific to that hardware. To

approximate the BSSRDF on the surface, we construct the volume with layers of

these basis materials, as shown in Figure 8.2. The thickness of layers under each

surface point is identical for homogeneous BSSRDFs, and varied appropriately

for simulating heterogenous BSSRDFs. To model a BSSRDF with sharp varia-

tions, the basis materials in the layer may also be varied under each surface point.

In our experiments, we found that to ensure that the output volume is not too frag-

ile, the minimal thickness of material layers needs to be limited. Furthermore, to

save manufacturing time and cost, we also limit the total number of layers in the

output volume. Essentially, 3D manufacturing methods impose layout constraints

that we have to respect during printing.

As in standard printing methods, the output volume provides just an approxi-

mation of the input BSSRDF. Given the basis materials and layout constraints, our

goal is to produce an output volume that is as close to the original input as pos-

sible. We call material mapping the process by which we determine the volume

to print. More formally, while respecting layout constraints, we seek to minimize

the L2 difference E between the input BSSRDF Rd and output BSSRDF R′d of the

printed volume V , written as

E =
∫

xi

∫

x j

∥∥Rd(xi,x j)−R′d(xi,x j)
∥∥2dxidx j. (8.3)

To print the volume, we need to determine the basis material and thickness

of each layer, which we call the layer layout, under each surface point in the

volume V . Since the surface BSSRDF depends on the volume distribution in a

non-linear manner, determining the layer layouts for the volume V amounts to a

non-linear optimization. This makes BSSRDF printing very different from color

and reflectance printing, since in those cases determining what to print involves

simpler operations.

To print homogenous materials, we map the BSSRDF to a volume made by
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layering slabs of homogenous basis materials that have the same thickness for

points on the surface. Conceptually, to determine the basis material and the thick-

ness of each layer, we compute the BSSRDF for all possible layer layouts gener-

ated by the basis materials, and pick the closest one. Since computing the BSS-

RDF for each layer layout by brute force is expensive, we develop an efficient

method for quickly constructing the BSSRDFs of all layer layouts.

To print a BSSRDF generated from heterogeneous translucent materials, we

vary the column layer layouts under different surface points in the output vol-

ume. The resulting light transport becomes more complex due to the heterogene-

ity, making material mapping more challenging. We make this process manage-

able by introducing a two step process. First, in the volume initialization step, we

factor the BSSRDF into local scattering profiles. We then approximate each scat-

tering profile with a homogeneous BSSRDF and initialize the layer layout (i.e. the

basis material and thickness of each layer) in each column separately with the ho-

mogenous mapping method. At each surface point, this initialization determines

the basis material for each layer and a starting layer thickness. We use this as

starting configuration for a second step, the volume optimization step, where we

model the light transport in the volume using a diffusion process and optimize the

thickness of the layers at each location using an adapted inverse diffusion opti-

mization [146]. The details of our material mapping procedure are described in

the next section.

Since we use only a small number of basis materials with limited color hues

and saturations, it is possible that some of the rich chromatic variations in input

BSSRDFs falls outside the color gamut of our basis. To further enrich the color

of the BSSRDF generated by the output volume, a very thin color texture layer

is placed on the top surface for modulating both incoming and outgoing radiance.

We ignore the thickness of this color texture layer and represent it as a Nx×Ny

2D surface color texture T that represents the transmission for RGB channels, in

which 1 indicates fully transparent and 0 is opaque. Given input BSSRDF Rd ,
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s

Figure 8.3: Photographs and optical properties of basis materials used in our two
manufacturing solutions. (a)(b)(c) The basis materials used for the milling ma-
chine solution. (d)(e) The basis materials used for the 3D printer solution.

we solve the optimal color texture and the output volume iteratively. Given the

initial color texture T0, we modulate the input BSSRDF Rd(xi,xo) as RT
d (xi,xo) =

Rd(xi,xo)/(T (xi)T (xo)) and use the result RT
d as the input for material mapping.

After material mapping, we update the color texture by

T (x) =
∑xo∈A Rd(x,xo)

2R
′
d(x,xo)

∑xo∈A Rd(x,xo)
, (8.4)

where R
′
d is the BSSRDF computed from the output volume obtained by material

mapping. We repeat this process until the update of the color texture is small

enough.

We tested our system with two manufacturing configurations. The first solu-

tion is based on a milling machine, where the basis material for each layer can be

chosen from a set of substrates with different translucency and colors. We mill

each material layer separately from a substrate block and assemble all layers to-

gether to generate the output volume. We use three basis materials and limit the

number of layers to three for this hardware.

The second solution is based on a 3D printer, which can print complex ge-

ometric shapes with high precision. Our 3D printer provides one basis material
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used to print 3D shapes and one support material that is used during the printing

process, but is normally removed after printing. In our system, we retain the sup-

port material after printing and use it as a second basis material. We use six layers

for this hardware. Figure 8.3 illustrates all basis materials and their scattering

properties in these two solutions.

Even with this small number of basis materials, the generated output volumes

well approximate a wide range of BSSRDFs. We borrow the term “gamut” from

traditional printing to indicate the space of homogenous BSSRDFs reproducible

by our setup. Figure 8.4 shows the gamut of our two manufacturing setups, where

σs and σa are the scattering coefficient and absorption coefficient of the homoge-

neous material, respectively. We compute this gamut by mapping each homoge-

nous BSSRDF to a layered volume of basis materials and include in the gamut

all BSSRDFs with relative mapping errors smaller than 10−4. We compute the

relative error as ∫
xi

∫
x j

∥∥Rd(xi,x j)−R′d(xi,x j)
∥∥2dxidx j

∫
xi

∫
x j

∥∥Rd(xi,x j)
∥∥2dxidx j

. (8.5)

Different from material and reflectance printing, the gamut of homogeneous ma-

terials we can simulate is larger than the convex hull of the basis materials. This is

the result of the non-linear relationship between the BSSRDF and the volumetric

material properties. From a intuitive standpoint, since an observer can only see

the object surfaces, we are free to vary the volume as needed to reproduce that

appearance.

Computing all the possible heterogeneous BSSRDFs that can be reproduced

by our setup is prohibitively expensive. To gain an intuition of which heteroge-

nous variations we can reproduce, we make the observation that heterogenous

BSSRDFs can be factored into products of 1D scattering profiles independently

defined at each surface location [135]. These scattering profiles represent well

the local scattering effects at each surface location, effectively decoupling the

pairwise correlations in the heterogeneous BSSRDF. Intuitively, at each surface
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Figure 8.4: The gamuts of our two manufacturing setups. The basis materials are
indicated by red points. The blue gamut regions indicate the homogeneous mate-
rials whose BSSRDFs can be reproduced by our setup. The grey regions mark the
homogeneous materials with little scattering (with BSSRDF radius smaller than
1.0mm), which are not the main targets of our method. (a) The gamut of three
basis materials used for the milling machine solution. (b) The gamut of two basis
materials used for the 3D printer solution.

location we can think of the scattering profile as approximately defining a ho-

mogeneous BSSRDF that describes scattering from a small homogeneous region

around the point. If all these homogeneous BSSRDFs fit within our gamut, our

material volume should approximate well the original heterogeneous BSSRDF.

8.3 Material Mapping

In this section we discuss the details of how we compute the output volume that

best matches the input BSSRDF. In our algorithms, the volume V is represented

as Nx×Ny×Nz voxels on a regular 3D grid, where Nx×Ny determines the sur-

face resolution and Nz determines the thickness of the layered material volume
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(Figure 8.2). The voxel size is set to the precision of the manufacturing hardware

along three axes. The volume is composed by Nl layers, each made of one of the

basis materials. We discretize each layer thickness by the voxel size and limit it

to be larger than a minimal thickness determined by the manufacturing hardware.

We indicate with Mx the layer layout under a surface point x, defined as the set of

basis materials and thickness for each layer in the column under x.

8.3.1 Homogeneous BSSRDFs

Let us first consider the BSSRDF generated from a semi-infinite homogeneous

material slab, which is isotropic and can be represented as a function of distance

r = ‖xi−xo‖ between two surface points as R(r) = Rd(xi,xo). To reproduce this

BSSRDF, we layer Nl slabs of base materials that have equal thickness for all

points on the surface. The resulting multi-layered volume is homogeneous along

the X and Y directions but heterogeneous along Z.

To determine the basis material and thickness of each layer (i.e. the number of

voxels it occupies along Z), we solve Equation 8.3 by computing the BSSRDFs

for all possible layer layouts of the basis materials, and pick the closest one to the

input BSSRDF.

For each configuration, we compute the BSSRDF RNl(r) generated by the

volume with Kubelka-Munk theory [33]:

R̂Nl = R̂1 +
T̂1R̂1T̂1

1− R̂1R̂Nl−1
(8.6)

where R̂ and T̂ refer to the Fourier transformed function R(r) and T (r). R1(r) and

T1(r) are the BSSRDF and transmission function of the top layer computed using

the multipole model [33]. RNl−1(r) is the BSSRDF of the remaining Nl−1 layers

beneath the top layer, which can be recursively computed using Equation (8.6).

After computation, we transfer the result back to the spatial domain via the inverse
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FFT.

Performing this computation for each layer layout separately would be im-

practical given the very large number of possible configurations. We reduce the

number of needed BSSRDF evaluations by observing that many layer layouts of

basis materials generate similar BSSRDFs. This is because small variations of

layer thickness generally have little effect on a BSSRDF. Therefore, for layer lay-

outs that have the same top layer and similar RNl−1(r), we can compute their

BSSRDF once.

Based on this observation, our algorithm starts by constructing the set M1 =

{m1} of all layouts m1 that include a single basis material whose thickness is

varied from the minimal layer thickness to the output volume thickness in voxel

sized steps along Z. We compute the BSSRDFs and transmission functions of

each slab using the multipole model [33]. We then cluster these layouts using

k-means clustering such that the distance of BSSRDFs in each cluster is less than

a small threshold. For each cluster, we compute the representative BSSRDF and

transmission function as the average of BSSRDFs and transmission functions of

layer layouts in the cluster.

After that, we iteratively construct all layer layouts from bottom to top in Nl

steps. In each step, we generate the set Mi+1 of candidate layouts constructed by

adding a basis material layer m1
l from M1 to a layer layout mi

l from Mi. Formally,

Mi+1 = {m1
l
⋃

mi
l|m1

l ∈ M1,mi
l ∈ Mi}, where the

⋃
operator adds a layer on top

of a layout. We discard all layouts with thickness larger than the output volume.

The BSSRDF of each layout in Mi+1 is computed with the representative of M1
l

and Mi
l using Equation (8.6). Thus the total number of BSSRDF computations

is NM1 ×NMi � |M1| × |Mi|, where NM1 and NMi are the number of clusters in

M1 and Mi and | · | is the size of a set. We then cluster Mi+1 based on the layout

BSSRDFs and pick representatives.

After Nl steps, we remove all layer layouts whose thickness is not equal to the

volume thickness and compute the BSSRDF for layouts in the final set. Given

194



CHAPTER 8. FABRICATING SPATIALLY-VARYING SUBSURFACE SCATTERING

an input BSSRDF, we first search for the best matched representative BSSRDF.

We then compute the BSSRDF of each layer layout in this cluster and search for

the best match. The approximate nearest neighbor acceleration scheme is used to

speed up this search process[108].

8.3.2 Heterogeneous BSSRDFs

To print a BSSRDF generated from heterogeneous translucent materials, we vary

the column layer layouts (i.e. the basis material and thickness in each layer) under

different surface points, resulting in a heterogeneous output volume. Computing

the layer layouts for each column amounts to solving the non-linear optimization

problem defined in Equation (8.3). This optimization is much more challenging

than homogeneous mapping since the BSSRDF of a heterogeneous output volume

is determined by the couplings of different layer layouts in all columns. We do so

with a two step process. First, in the volume initialization step, we decouple the

BSSRDF into local scattering profiles and use the homogeneous algorithm in the

preceding section to assign basis materials and initial layer thicknesses to each

column separately. Second, in the volume optimization step, we then optimize

all layer thicknesses for all columns concurrently by using an inverse diffusion

optimization. Figure 8.5 shows the best fit volume after each step compared to

the original BSSRDF. After initialization, the layered material volume roughly

approximates the input BSSRDF. Further improvements to the approximation are

achieved with volume optimization.

To determine the material layout in each column, we first decouple the input

diffuse BSSRDF Rd into a product of 1D scattering profiles Px(r) defined at each

surface location x, and parameterized over the local distance r = ||xo− xi|| as in

[135]: Rd(xi,xo) ≈
√

Pxi(r)Pxo(r). For a heterogeneous BSSRDF, this factoriza-

tion effectively decouples the non-local light transport between pairs of surface

points into a set of local scattering profiles, each of which is defined at a single
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point and mainly determined by the scattering properties of the material volume

under such a surface point.

Based on this observation, we consider the homogeneous BSSRDF deter-

mined by the scattering profile at each location x, defined as Rx(r)= argminR
∫ ∞

0 [Px(r)−R(r)]2rdr,

and use the homogeneous algorithm presented above to assign a layer layout for

the material column at x. More specifically, we first precompute the BSSRDFs of

all valid homogeneous layer layouts. For each surface location, we then search for

the best matching representative BSSRDF in the precomputed dataset. We then

choose the layer layout in this cluster that is most similar to the ones assigned to

the neighboring points, proceeding in scanline order. To assign a layer layout to

the point, the similarity of layer layouts is measured by ∑z δ (bx(z),by(z)) where

bx(z) and by(z) are the basis materials at depth z for the layer layouts at x and y.

This assignment scheme favors smoothly varying layer layouts for regions with

similar local scattering profiles.

The initialized volume only provides a rough approximation for the input BSS-

RDF because the light transport between columns is not considered in the last step.

To obtain a better match, we fix the basis materials used in all layers and further

optimize all layer thicknesses concurrently to better approximate the input BSS-

RDF by minimizing the objective function in Equation (8.3). Here the BSSRDF

of the output volume R′d is computed by simulating the light transport in the vol-

ume with a diffusion process, which is described by the following equations for

points v in the volume V and points x on the surface A [70; 3]:

∇ · (κ(v)∇φ(v))−σa(v)φ(v) = 0, v ∈V (8.7)

φ(x)+2Cκ(x)
∂φ(x)
∂n(x)

=
4

1−Fdr
Li(x) x ∈ A (8.8)

where σa(v) and κ(v) = 1/[3(σa(v)+σs(v)] denote the absorption and diffusion
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Target BSSRDF After Volume Initialization After Volume Optimization

Figure 8.5: Rendering results of BSSRDFs after volume initialization and vol-
ume optimization under diffuse lighting are shown in the top row. The errors of
BSSRDFs after the initialization and optimization processes are presented in the
bottom row.
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coefficients at v, φ(v) is the radiant flux, Fdr is the diffuse Fresnel reflectance (de-

termined by the refraction index η of the material [74]) and C = (1+Fdr)/(1−
Fdr). Here we assume the phase function of the material is isotropic. The diffuse

incoming lighting Li(x) at a surface point x is given by Li(x) =
∫

Ω L(x,ωi)(n ·ωi)Fr(η(x),ωi)dωi.

Once the radiant flux is determined for a given incoming lighting by the diffusion

process, the multiple scattering component of the outgoing radiance at x is com-

puted as

Ld(x,ωo) =
Fr(η(x),ωo)

4π
[(1+

1
C
)φ(x)− 4

1+Fdr
Li(x)]. (8.9)

We can then compute the diffuse BSSRDF between two surface points, by con-

sidering a unit incoming lighting Li(x) = 1 at x and ignoring the angular Fresnel

terms for both incoming and outgoing lighting, as

R′d(xi,xo) =





1
4π
[(1+ 1

C)φ(xo)] xi 6= xo

1
4π
[(1+ 1

C)φ(xo)− 4
1+Fdr

] xi = xo.
(8.10)

We determine the thickness of each layer by minimizing the objective func-

tion in Equation (8.3) where the volume BSSRDF is computed using the diffu-

sion process above. This can be solved by inverse diffusion optimization, as in

[146]. Since the basis materials in all layers are determined during initialization,

the objective function Eh is a function of only the set of spatially varying layer

thicknesses h = {h(x, l)}, where h(x, l) is the starting depth of layer l at x.

To minimize Eh, we apply the conjugate gradient algorithm, summarized in

Table 8.1. We begin by initializing basis materials and layer thicknesses using

the homogeneous method. At each step, we determine the gradient ∇Eh of Eh

with respect to h. To guarantee that the thickness is larger than the minimal layer

thickness defined by the material configuration, we set the gradient to 0 when the

thickness reaches the minimal thickness constraint. The search direction is then
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Set basis materials for each layer using the volume initialization step
Set initial thicknesses h0 using the volume initialization step
Set initial search direction: d0 =−∇Eh(h0) and p0 = d0
Repeat following steps until Eh < ε

Compute gradient: ∇Eh(ht =
(

dEh
dh(x,l)

)

Set pt =−∇Eh(ht)

Update search direction: dt = pt +β ·dt−1, β = max
(

pT
t (pt−pt−1)

pT
t−1pt−1

,0
)

Compute λ : Golden section search by min
λ

[Eh (ht +λdt)]

Update solution ht+1 = ht +λ ′dt

Table 8.1: Conjugate gradient based algorithm for minimizing Eh.

updated with the Polak-Ribiere method [123]. The optimal step size λ along the

search direction is found by a golden section search. We then update h using the

computed gradient ∇Eh and λ . We continue iterating until the layer thickness

converges.

The most expensive step of this algorithm is the computation of the Eh gradient

relative to the thicknesses h(x, l). A straightforward method is to perturb each

layer boundary at each location, update the material properties in the volume,

and compute the resulting change in objective function value. This would require

Nx×Ny×Nl diffusion simulations, becoming prohibitively expensive. We speed

up this procedure by using an adjoint method similar to [146].

We represent the error Eh({κ},{σa}) as a function of the material properties

κ and σa of all voxels in the volume. Since these are in turn defined by the layer

thickness (and the basis materials fixed during optimization), we can use the chain

rule to derive the gradient of the objective function relative to layer thickness as

dEh

dh(x, l)
=

dEh

dκ(x,zl−1)
dκ(x,zl−1)

dh(x, l)
+

dEh

dσa(x,zl−1)
dσa(x,zl−1)

dh(x, l)
(8.11)

where (x,zl) refers to the first voxel in the l-th layer at x, and (x,zl−1) is the last

voxel of the upper l−1 layers. Note that this computation only involves voxels at
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the layer boundaries because the change of the layer boundary only modifies the

material properties in the boundary voxels. We compute dEh/dκ(x,zl−1) and

dEh/dσa(x,zl−1) using the adjoint method [146], while dκ(x,zl−1)/dh(x, l)
and dσa(x,zl−1)/dh(x, l) are directly computed by

dκ(x,zl−1)
dh(x, l)

= κ(x,zl)−κ(x,zl−1)

dσa(x,zl−1)
dh(x, l)

= σa(x,zl)−σa(x,zl−1).
(8.12)

Using this scheme, we only need two diffusion simulations for computing the

gradient, which is much more efficient than the straightforward method.

In inverse diffusion optimization, the diffusion simulation is used in both gra-

dient computation and golden search. To solve the diffusion equation on a 3D

regular grid of a layered material volume, we discretize the diffusion equation

as a set of linear equations over the voxels using the finite difference method

(FDM) scheme in [136]. We implemented a multigrid method [123] for solving

this sparse linear system on the GPU using CUDA. The adjoint diffusion equation

is discretized and computed in the same way.

8.4 Hardware Manufacturing Setup

We fabricate the output volume determined during material mapping using two

different hardware solutions: a milling machine and a 3D printer.

The milling machine solution is based on an Atrump M218 CNC machining

center. The maximum operating range is 660mm, 460mm, and 610mm in the X,

Y and Z directions respectively. The stepper motor resolution is 0.005mm. The

machining center has an automated tool changer with 16 drill bits. The size of

drill bits ranges from 6mm to 0.5mm. Based on these hardware properties, we set

the output volume size to be 130mm along each dimension, and the voxel size is

200



CHAPTER 8. FABRICATING SPATIALLY-VARYING SUBSURFACE SCATTERING

1.0mm× 1.0mm× 0.1mm so one pixel of the measured BSSRDF corresponds to

one voxel of the output volume. The number of layers in the volume is three and

the minimal layer thickness is 1.0mm.

Given the output volume, we convert each layer into a B-rep and fabricate it

with the milling machine. If both sides of a layer are not flat, our system splits

it into two or more pieces, each of which has one flat side. For all results shown

in this chapter, we only need to split the middle layer into two pieces for manu-

facturing. Given the B-rep of each layer piece, the machining center mills a basis

material block into our desired layer shape. A typical output of the milling ma-

chine is shown in Figure 8.1. After the milling process, we use UV sensitive glass

glue to assemble those layers into the final volume and ignore the light refraction

between the layer boundaries. The milling time varies with the complexity of the

layer surface. For the homogeneous cases, the average total milling time for all

three layers is about 30 minutes. For the heterogeneous cases, the total milling

time ranges from one hour to six hours.

In our implementation, we use the Mastercam software to execute GCode to

control the milling process. We do not optimize the smoothness of the layer thick-

ness of neighboring columns as in [157] because the voxel size along the X and

Y directions in our setup is larger than the drill bit diameters. Moreover, our so-

lution is not sensitive to the layer surface orientation. In practice, we found that

the milling machine can reproduce well our desired layer shapes without visual

artifacts in the final results.

The 3D printer solution is based on an Object Eden250 3D printing system.

The net build size is 250mm×250mm×200mm, and the precision of the resulting

volume is 0.1mm along each dimension. Thus we set the output volume size to be

100mm×100mm×30mm and 0.1mm as the voxel size. The minimal layer thick-

ness is 0.1mm in this setup. Since the printer can control the material distribution

in a more flexible way, we set the number of layers to six in the output volume. For

this solution, one pixel of the measured BSSRDF corresponds to 10× 10 voxels
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of the fabricated volume. We obtain the BSSRDF for each voxel by upsampling

the original BSSRDF.

The printer manufactures objects with a single resin. It prints the 3D shapes

with the resin material, while the support substrate automatically fills the vertical

gaps between the resins and the vertical gaps between the resin and the build tray.

Therefore, we convert the layers consisting of resin materials as B-rep shapes and

send them together to the 3D printer. To print the volume with the support material

in the top layer, we add an extra thin resin layer on top of the volume for printing

and then remove it after printing. Both materials in the output volume are kept.

Depending on the complexity of material distribution and output volume size, the

printing time varies from 1.5 hours to 3 hours.

For each basis material, we measure the optical properties from a thick ho-

mogeneous block of size of 100mm x 100mm x 64mm, where the light transport

in the volume is well modeled by the dipole approximation. We then shoot red

(635nm), green (532nm) and blue laser beams (473nm) at a point on the top sur-

face and capture HDR images of the scattering profiles around the lighting point

for each color channel. We then follow the method in [74] to fit the material prop-

erties from the captured scattering profiles. Since the basis material blocks are not

perfectly homogeneous, we randomly sampled scattering profiles at ten points on

the top surface and averaged them to get the final scattering profile for fitting. Fig-

ure 8.3 lists the material properties of all basis materials used in our two hardware

solutions. All the basis materials we used have a similar refractive index of 1.5.

Thus in our implementation we ignore the mismatch of refractive index between

layers.

We printed our color texture with a Canon PIXMA iP8500 ink jet printer on a

transparent film. To calibrate the color, we printed out a color pattern and captured

a photo under uniform back lighting with a calibrated camera. Then we compute

the transmission rate of the inks.
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Figure 8.6: Comparisons of the red channel scattering profiles measured from real
homogeneous material samples (in blue) and ones measured from the fabricated
volumes (in red).

8.5 Experimental Results

We implemented our system on a Intel Xeon E5400 machine with an NVidia

GeForce 9800GT graphics card. The material mapping algorithm is implemented

in C++ on the CPU, while the diffusion simulation is implemented using CUDA

on the GPU. The computation time for solving the volume layout of a homoge-

neous input BSSRDF is about 10 minutes. For all the heterogeneous BSSRDF re-

sults shown, our system takes about 10 minutes for computing the printing gamut

and doing volume initialization. Depending on the volume size and the number of

layers in the output volume, it then takes 15 to 45 minutes for volume optimization

(Table 8.2), in which 80% of the time is spent for golden section search, 16% for

gradient computation, and 4% for other computations. The number of conjugate

gradient steps in the volume optimization depends on the spatial complexity of

the input BSSRDF and varies across samples, ranging from 5 to 50.

We evaluated our method with three homogeneous BSSRDFs measured from

real material samples. For this purpose, we chose three materials (cheese, milk

and wax) with various degrees of translucency and simulated their homogeneous

BSSRDFs with layered volumes fabricated by the milling machine. One pixel of

the measured BSSRDF corresponds to 1mm of the actual size, thus the fabricated
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15 min 23 min 45 min 42 min 35 minTime

Material
Samples

Table 8.2: Computation times for all the heterogeneous BSSRDF results.

sample has a 1 : 1 scale with the real sample. No surface textures are applied

to the resulting volumes. Figure 8.7 illustrates the scattering effects of real ho-

mogeneous material samples and the fabricated material volumes under circular

lighting. We measure the BSSRDF from the fabricated volume and compute its

relative error by Equation (8.5). Figure 8.6 compares the scattering profiles mea-

sured from real samples to the ones measured from the fabricated results. With

three basis material slabs, the fabricated volumes faithfully reproduce the homo-

geneous BSSRDFs with different scattering ranges.

We also tested our method with three measured BSSRDFs with different kinds

of heterogeneity. Figure 8.8 shows the rendering results of the input heteroge-

neous BSSRDFs with images of our output volumes under different lightings.

The two marble data sets are from [119], and the jade data set is from [135]. We

used the milling machine to fabricate the layered volumes for approximating the

two marble data sets and used the 3D printer for generating the volume for simu-

lating the jade BSSRDF. Surface textures are used for modulating the BSSRDFs

of all three volumes. We ignored the physical size of the original sample and fol-

lowed the pixel to voxel correspondence to determine the output scale (e.g. for the

milling machine solution, one pixel of the measured BSSRDF corresponds to one

voxel, and for the 3D printer solution, one pixel of the measured BSSRDF corre-

sponds to 10× 10 voxels of the fabricated volume). We calibrated the projector

and camera used in our capturing setup and used the same lighting for rendering.
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As shown in Figure 8.8, our method effectively simulates the heterogeneous scat-

tering effects of different materials. We scanned the volume with a line light and

computed the relative errors by Er = ∑i (Ii− I′i)
2/∑i (Ii)

2, where I′i is the image

captured from the fabricated volume, while I is the rendering result of the input

BSSRDF.

Figure 8.9 shows a fabricated material volume for simulating the heteroge-

neous BSSRDF of a real salmon slice. We followed the method in [119] to cap-

ture the BSSRDF from a real salmon slice (i.e. the blue box in Figure 8.9(a)) and

then used the measured BSSRDF as input to our system. We printed the output

volume using the 3D printer and applied a color texture on its top surface. The

size of the output volume is scaled to 100mm× 100mm× 12mm, while the size

of the actual salmon slice is 60mm×60mm. As shown in Figure 8.9(c), the sharp

variations of scattering effects caused by different tissues are well captured by our

fabricated volume. Combined with surface texture, the resulting volume generates

convincing scattering effects under different lighting.

Using our method, the user can also fabricate arbitrary objects with convincing

translucent appearance. To this end, our system first generates the layered mate-

rial volume from the input BSSRDF and then maps the layered material volume

to a 3D object volume via shell mapping [122]. After that, we print the 3D ob-

ject volume via the 3D printer. Figure 8.10 displays a fabricated jello piece with

translucent appearance captured from a real piece of jello. Figure 8.11 shows a

fabricated round plate with a jade BSSRDF designed by an artist. Under different

lightings, the fabricated objects exhibit compelling subsurface scattering effects.

Since our method only focuses on diffuse BSSRDFs, it cannot well model

subsurface scattering of very translucent materials. Surface reflectance as well as

single scattering are also ignored in our approach. Moreover, due to the small

number of basis materials used in our method, our method will fail to reproduce

BSSRDFs with rich chromatic variations that are out of the color gamut. The

surface texture used in our method alleviates this limitation but cannot totally
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r r r

Figure 8.7: Comparison of scattering effects of real material samples and fabri-
cated volumes under circular lighting.

compensate for it. Limited by the thickness of the output volume, our method

cannot be applied for 3D objects with sharp geometric features.

8.6 Conclusions
In this chapter, we presented a complete and efficient solution for modeling and

fabricating desired spatially varying subsurface scattering effects with a limited

number of basis materials. In our system, the input BSSRDF is represented by

a layered volume of basis materials, which can be separated into homogeneous

components and easily manufactured by existing hardware. A material mapping

algorithm is proposed for efficiently computing an optimal layered volume for

an input BSSRDF. A surface texture is used to further enhance the color of the

BSSRDF of the output volume. Experimental results show that our system can

well reproduce a wide range of heterogenous subsurface scattering effects.
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Figure 8.8: Comparison of the rendering results of input heterogeneous BSS-
RDFs and the photographs of fabricated volumes under different lightings.

(a) (b) (c) (d) (e)

Figure 8.9: Fabricated salmon with BSSRDF measured from a real salmon slice.
(a) Photograph of real salmon slice under diffuse lighting. The BSSRDF measured
in the blue box is used as input to our system. (b) Photograph of the fabricated
volume under diffuse lighting. (c) Rendering results of the input BSSRDF un-
der line lighting. (d) Photograph of fabricated volume taken under the same line
lighting.
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(a) (b) (c) (d)

Figure 8.10: Fabricated jello. (a) A real piece of jello, the homogeneous BSSRDF
of which is used as input to our system. (b) A fabricated piece of jello generated
by 3D printer. (c) Photograph of the real piece of jello under line lighting. (d)
Photograph of the piece of fabricated jello under the same line lighting. The real
jello and the fabricated one have the same size of 50mm×50mm×27mm.

Figure 8.11: Fabricated round plate with designed jade-like subsurface scattering.
(a) The input BSSRDF rendered with diffuse light. (b) Photograph of the fabri-
cated round plate under diffuse light. (c)(d) Appearance of the fabricated round
plate captured under different lightings. The object size is 82mm×82mm×9mm.
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Chapter 9

Conclusion

People have long pursued techniques for creating highly realistic visual content,

initially in artistic forms such as paintings and sculptures, and more recently in

modern media such as photography and advanced computer graphics. The com-

mercial impact of realistic computer graphics has taken off in the past several

years, as high definition rendering results and special effects have became a major

selling point in many box office hits such as The Matrix, Transformers and Avatar.

To support such magnificent effects, an important pillar is accurate reproduction

of material appearance. Complex physical factors and countless details contribute

to how a material appears, and every detail counts in generating a high quality

reproduction. Throughout this thesis, numerous high quality appearance exam-

ples are exhibited, with the many detailed and subtle variations playing a pivotal

role in imparting a realistic look. However, achieving a high level of quality is a

challenging task, since extensive appearance data has generally been needed for

modeling those details. This has made efficient appearance modeling a critical

issue in the field of computer graphics.

Easy and efficient appearance modeling techniques can not only benefit pro-

fessional graphics studios, but also be used by amateur artists who cannot afford

expensive dedicated appearance acquisition devices. The techniques presented in
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this thesis require only off-the-shelf consumer electronics such as DSLR cameras

and DLP projectors, and the interactive modeling method in Chapter 4 does not

need an acquisition device at all, as appealing results can be generated just from

images found on the Internet. We believe that with these advanced techniques,

CG appearance modeling will become accessible to a much wider audience, and

allow more users to enjoy creating high quality appearance content.

Beyond the classical appearance modeling tasks such as acquisition, interac-

tive modeling and editing, the recent direction of appearance fabrication brings

new applications and even more fun to appearance modeling. Unlike the past

where people could only appreciate the beautiful materials they modeled in a vir-

tual environment, now with appearance fabrication techniques we can reproduce

these creations in the real world.

To realize these aims, this thesis developed several techniques based on the

fundamental observation that coherence is an inherent property in the appearance

of most materials in our daily lives. Through close examination of material ap-

pearance - observing patterns, redundancies and subtle relationships - the various

ways that materials are coherent emerged. The main challenges in appearance ac-

quisition and modeling are caused by complex details which cannot be represented

by simple formulas, and the solution advanced in this thesis is to explore and take

advantage of the coherency that exists. With this approach, we account for the

relationships among such details to simplify the modeling process, with compact

appearance representations and efficient solutions for acquiring them. The tech-

niques derived in this coherency-based framework span appearance acquisition,

interactive modeling and fabrication. This underlying idea and the proposed tech-

niques are applicable to both opaque surfaces with complex reflectance properties

and translucent objects with subsurface scattering effects. The major technical

contributions are reviewed in the following.
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Acquisition and modeling of opaque surfaces

An efficient SVBRDF capturing system, called manifold bootstrapping, was intro-

duced in Chapter 3. Based on the idea that reflectance over a given material sample

forms a low-dimensional manifold, it reconstructs this manifold by decomposing

reflectance measurement into two phases. The first measures reflectance at a high

angular resolution, but only for sparse samples over the surface, while the second

acquires low angular resolution samples densely over the surface. With this data,

obtained with a novel and simple capturing scheme, high resolution SVBRDFs

are acquired efficiently with relatively few measurements.

An interactive material modeling pipeline, called AppGen, that creates high

quality spatially-varying reflectance from a single image was presented in Chap-

ter 4. Given just a single image of a surface, AppGen recovers its SVBRDF with

the help of simple user annotations that indicate global reflectance and shading

information. This data is propagated over the surface in a manner guided by ob-

served coherence in the material, and together with further image analysis the

image is decomposed into different appearance components and fine scale geom-

etry, from which the SVBRDF is constructed. With just minutes of interaction,

convincing results are generated. A large variety of materials have successfully

been generated from images with different reflectance and normal variations in

this way.

Modeling and rendering of subsurface light transport

A non-linear coherence-based framework for analysis and capture of subsurface

light transport was presented in Chapter 5. The non-linear coherence of light

transport is exploited to reconstruct the subsurface scattering of light within an

object from a relatively small number of images. These images are captured using

an adaptive scheme that minimizes the number needed for reconstruction. With

this technique, the appearance of an object can be regenerated under a variety of
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lighting conditions different from those recorded in the images.

A diffusion model for translucent material acquisition and editing was de-

scribed in Chapter 6. With a volume based representation, this model allows for

capturing, editing and rendering of translucent materials with heterogeneous op-

tical properties. With the diffusion equation and a volumetric model, our method

solves for the most coherent material volume whose appearance is consistent with

a sparse number of image observations. The use of material coherency signif-

icantly simplifies the acquisition of optical properties in a real material sample.

The captured volumetric model can be easily edited and rendered in real time on

the GPU, with accurate reproduction under novel lighting conditions and view-

points.

An efficient solid texture synthesis system for modeling texture-like translu-

cent material volumes was introduced in Chapter 7. Based on the coherence of

textures in three dimensions, a high-resolution translucent material volume is ef-

ficiently generated from small 2D slices. The efficiency of this approach greatly

facilitates modeling of translucent materials, allowing for interactive texture de-

sign and real-time synthesis when cutting or breaking translucent objects.

Material fabrication

A complete solution based on the diffusion model for fabricating spatially-varying

subsurface scattering was presented in Chapter 8. Given the optical properties of

material elements used in a 3D printing system, a volumetric arrangement of these

elements that reproduces the appearance of a given translucent material is solved.

By accounting for the coherence among the scattering profiles within the given

material, this technique fabricates accurate results both efficiently and stably.
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9.1 Future work

This thesis focused on coherency properties in material appearance, which com-

monly exist in some form. A related approach may be to account for sparsity prop-

erties of the appearance data. An example of this is the recent work on compres-

sive light transport sensing [118], which incorporates a sparsity-based algorithm

into light transport modeling. Similar techniques could potentially be applied for

modeling high resolution SVBRDFs and BSSRDFs. Moreover, coherency-based

methods and sparsity-based approaches both have their inherent advantages and

drawbacks, and how to combine them into a theoretically common framework

would be an important direction for future work, one that could yield significant

improvements in modeling efficiency.

In appearance modeling, an important topic for future work is device develop-

ment for capturing material appearance. While our methods aim to use easy-to-

build hardware constructed mostly from off-the-shelf consumer electronics, an-

other direction is to develop easy-to-use gadgets designed with special compo-

nents to further accelerate or simplify the appearance acquisition process. For

example, based on the manifold bootstrapping idea, Ren et al. [125] designed a

novel BRDF chart containing a carefully selected BRDF basis, which combined

with a hand-held linear light source allows reflectance capture to be easily per-

formed using a mobile phone camera. With portable and easy-to-use devices, the

appearance modeling process can become more practical for ordinary users, en-

abling them to use self-measured appearance data in applications such as gaming

with an environment or object they created.

Appearance analysis often requires a tremendous amount of data that is im-

practical to acquire when the measurement process is tedious and cumbersome.

The efficient systems proposed in this thesis can greatly reduce the cost of obtain-

ing high quality appearance data sets, and can potentially facilitate future work in

data-driven appearance analysis. One direction is to explore the structure of the
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appearance space to possibly uncover coherence and other relationships among

different materials, rather than only within a single specific sample as done in

this thesis. An in-depth study of appearance space structure may lead to further

technical advances in appearance capture, editing, and rendering.

Advanced computer graphics is having an impact commercially and in our

daily lives like never before. This is reflected by a multitude of compelling ap-

plications such as creating digital avatars of ourselves with the Microsoft Kinect

camera, and 3D visual displays supported by stereo rendering. We believe that

with advances in appearance modeling, the time that anyone can digitize anything

they want with accurate geometry and appearance information is coming soon,

and the technologies introduced in this thesis will be an important step towards

realizing this goal.
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