
ChartSense: Interactive Data Extraction from Chart Images
Daekyoung Jung1 Wonjae Kim1 Hyunjoo Song1 Jeong-in Hwang1

Bongshin Lee2 Bohyoung Kim3 Jinwook Seo1
1Seoul National University, Seoul, Republic of Korea

2Microsoft Research, Redmond, WA, USA
3Hankuk University of Foreign Studies, Yongin-si, Republic of Korea

{rati, wjkim, hjsong, jihwang}@hcil.snu.ac.kr
bongshin@microsoft.com bkim@hufs.ac.kr jseo@snu.ac.kr

ABSTRACT
Charts are commonly used to present data in digital
documents such as web pages, research papers, or
presentation slides. When the underlying data is not available,
it is necessary to extract the data from a chart image to utilize
the data for further analysis or improve the chart for more
accurate perception. In this paper, we present ChartSense, an
interactive chart data extraction system. ChartSense first
determines the chart type of a given chart image using a deep
learning based classifier, and then extracts underlying data
from the chart image using semi-automatic, interactive
extraction algorithms optimized for each chart type. To
evaluate chart type classification accuracy, we compared
ChartSense with ReVision, a system with the state-of-the-art
chart type classifier. We found that ChartSense was more
accurate than ReVision. In addition, to evaluate data
extraction performance, we conducted a user study,
comparing ChartSense with WebPlotDigitizer, one of the
most effective chart data extraction tools among publicly
accessible ones. Our results showed that ChartSense was
better than WebPlotDigitizer in terms of task completion
time, error rate, and subjective preference.

Author Keywords
Chart recognition; Data extraction; Chart classification;
Deep learning; Mixed-initiative interaction.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Due to their perceptual advantages over textual
representations, charts are popular and preferable means to
represent important numerical data in documents [19].
People use various types of charts in digital documents,

many of which can be reused for several purposes such as
further analyzing the data presented in the chart or improving
the chart design. However, for most static charts available on
the Web or in digital documents, people do not have access
to the underlying data [8].

An automatic chart data extraction tool like ReVision could
help people obtain data, but the extraction accuracy might be
too low for practical use with general chart images because
text region detection in images is challenging (i.e., often less
than 80 percent of detection rates) even with the state-of-the-
art algorithms [32]. A tool like WebPlotDigitizer [23] could
help people obtain more accurate results with additional
manual extraction capability, but it is tedious and time-
consuming to handle multiple series data.

In this paper, to suggest a more practical solution to this chart
data extraction problem, we present ChartSense, a semi-
automatic interactive chart data extraction tool. ChartSense
integrates algorithms to automatically detect marks (e.g.,
bars in a bar chart) and simple user interactions to support
more accurate and efficient extraction of the underlying data
from static chart images. For more effective extraction,
ChartSense adopts the twofold pipeline proposed by Savva
et al. [24]: ChartSense first identifies the type of chart by
exploiting deep learning techniques, and ChartSense then
applies an interactive data extraction algorithm most
appropriate for the identified chart type. In addition,
ChartSense provides a set of simple interactions to fine-tune
the result, enabling more accurate data extraction.

We also evaluate the efficacy of ChartSense by comparing
its classification accuracy with ReVision [24], the state-of-
the-art chart type classification system, and its data
extraction accuracy and task completion time with
WebPlotDigitizer [23], the most effective one among the
publicly available chart data extraction tools.

This paper makes the following contributions:

1. A chart type classification method using deep learning
techniques, which performs better than ReVision [24].

2. A mixed-initiative interaction design for fast and
accurate data extraction for six popular chart types.

3. The design and development of ChartSense, an
interactive chart data extraction system equipped with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4655-9/17/05…$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025957

the mixed-initiative interaction and the chart type
classification method.

4. A controlled experiment showing the efficacy of
ChartSense in comparison to WebPlotDigitizer and for
three additional chart types.

RELATED WORK
Our work is built upon prior work in three related research
areas; 1) mixed-initiative approaches and systems, 2) chart
data extraction algorithms and tools, and 3) applications that
use chart data extraction algorithms.

Mixed-initiative Approach and System
Mixed-initiative user interfaces enable people to collaborate
effectively with intelligent agents [11]. Horvitz presented
critical factors that should be considered when designing
mixed-initiative interfaces that integrates automated services
with direct manipulation interfaces. Many researchers tried
similar approaches to solve challenging problems in various
domains. Schwarz et al. [25] presented a framework for
handling uncertainty in user inputs by providing feedback
about input uncertainties. The feedback changes dynamically
through user interactions depending on the probabilistic
states of corresponding UI elements. Taking a similar
approach, Gao et al. [7] presented a mixed-initiative system
to resolve ambiguity in natural language interfaces for data
visualization. Healey et al. [10] presented a semi-automatic
visualization assistant system with which people can
collaborate to improve the results of the system for more
effective visualization of multi-dimensional datasets. Their
approach is also based on a mixed-initiative strategy where
people can integrate their strength with AI-based search
algorithms. We also adopt a mixed-initiative approach in
ChartSense to combine advantages from automatic chart
mark extraction algorithms and people to improve efficiency
and accuracy of data extraction from chart images.
Chart Data Extraction
There are automatic chart data extraction algorithms based
on image processing and machine learning to extract data
from chart images [6, 12, 13, 26]. They depend largely on
edge detection or vectorization algorithms. Therefore, if the
result of the edge detection or vectorization algorithms is
noisy for an input chart image, the data extraction accuracy
could degrade significantly. For example, when we apply the
Canny edge detection algorithm [3] to line charts in our chart
image corpus for line detection, we observe that too much
noise is included in the result to accurately detect the target
lines. We thus take a mixed initiative approach, i.e., involve
users in the data extraction algorithms to improve the
accuracy of the extraction results.

ReVision [24] is a system that automatically classifies chart
types and extracts data from a chart image. It classifies a
chart image as one of the ten chart types and automatically
extracts data from bar charts and pie charts. Its classification
accuracy is about 80% on average, and it extracts marks
successfully from 71% of bar charts and 64% of pie charts.
We build upon ReVision’s twofold pipeline (type

classification first and then data extraction) and improve
accuracy for both the type classification and data extraction.

WebPlotDigitizer [23] is a web-based tool that extracts data
from four charts types (bar & line charts and polar & ternary
diagrams). It has both automatic and manual modes. In the
manual mode, people have to specify necessary information
for data extraction. For example, they have to specify y
positions of all bars’ top for extracting data from a bar chart.
In the automatic mode, it extracts marks automatically using
a simple color detection technique. However, due to its low
accuracy, people usually use the manual mode, which is
faster and more accurate than the automatic mode. Ycasd [8]
is a data extraction tool for line charts. It uses a manual
technique similar to WebPlotDigitizer with which people
have to specify all the data points in a line chart.

iVoLVER [21] is also a web-based versatile tool that extracts
data from an image and reconstructs representations of the
data. It relies on users’ inputs in both specifying data types
(e.g., text, colors, shapes, etc.) and sampling data points in
the image. Thus, it requires a relatively large number of
interactions to extract data accurately from a chart image.
ChartSense adopts a mixed-initiative approach for faster and
more accurate data extraction.

DataThief [30] is another tool that extracts data from line
charts. It can extract one line at a time, so people have to run
it multiple times for a chart with multiple lines. People also
have to specify six points (origin point, end-points of x-y axis,
start- and end-point of the target line, and a point on the line).
DataThief extracts intermediate points between the start- and
end-points of the line while tracing along the line. However,
the tracing often fails and halts, so people have to manually
specify the tracing direction at the halting point.

Applications using Chart Data Extraction
Chart data extraction results have been used in a number of
applications, such as redesigning a chart, generating helpful
overlay for a chart, mapping a text to a mark based on
crowdsourcing, and aiding search and retrieval of chart
images. ReVision [24] provides support for redesigning a
chart for better perception. It extracts a relational data table
from an input chart image and presents possible
visualizations using the extracted data. ReVision allows
people to select an alternative chart design from a list of
charts ranked by MacKinley’s effectiveness [20].

Harper and Agrawala [9] presented another technique for
redesigning existing charts. Their technique extracts data
from D3 [1] visualizations by analyzing the structure of
documents generated by D3.js, and enables non-expert users
to easily modify visual attributes of the target visualizations.
Their system includes two tools: (1) deconstructing tool
extracts marks, underlying data, and mapping between them
from a visualization and (2) restyling tool helps users change
the style of the visualization. If underlying data can be
extracted from bitmap chart images, it becomes possible for

their restyling tool to convert bitmap chart images to
interactive D3 charts.

Graphical overlays [15] are a technique that automatically
generates helpful overlays from chart images. It is based on
mark extraction results by ReVision and DataThief.
Graphical overlays are applicable to bar, pie, and line charts
because ReVision and DataThief can extract data from those
chart types. The graphical overlays technique can be used
with other chart types if combined with mark extraction
algorithms for more chart types.

Kong et al. [16] presented a useful application of chart mark
and data extraction. They presented a crowdsourcing
pipeline to generate mapping between text phrases in the
main text and marks in the chart. They used ReVision to
extract marks and corresponding data values from chart
images in the pre-processing stage. This application can
benefit from better chart mark and data extraction.

Choudhury and Giles [5] presented an architecture for
extracting information from figures in a PDF file (i.e.,
academic papers). Their architecture consists of underlying
data extractor, metadata extractor, natural language
processor (to understand the semantics of figures), and
search engine for figures and metadata. The architecture is
like a digital library for figures, where users can search for
figures of interest. Their data extractor module is limited to
line charts. More accurate and general chart data extraction
could make the architecture more widely applicable. Siegel
et al. [27] parsed result-figures in research papers, and
facilitated searching and retrieving of the figures. Chen et al.
[4] proposed a search engine based on diagram component
extraction, which is capable to search for similar diagrams
with partially matched components.
CHARTSENSE SYSTEM
We designed the ChartSense system using the twofold
pipeline of chart data extraction suggested in ReVision [24]:
chart classification and data extraction. We implemented
ChartSense as a web application: the server is responsible for
type classification and data extraction while the client
provides user interfaces for our interactive data extraction.

Chart Classification

Chart Image Corpus Construction
A corpus of chart images with correct tagging of chart types
plays an important role in accurate chart type classification.
Before introducing our chart type classification technique,
we explain how we built our chart image corpus.

We started with the chart images corpus used in ReVison by
Savva et al. [24]. To increase the corpus size, we collected
additional chart images and manually tagged them with their
chart types. We ran a script to collect chart images using
Google image search and manually removed incorrect search
results. To compare the accuracy of our classification with
that of ReVision, we collected the same ten chart types as
ReVision (area, bar, line, map, Pareto, pie, radar, scatter plot,

table, and Venn diagram). We used the chart name as a
search keyword (e.g., ‘area chart,’ ‘bar chart’) for each chart
type and collected all images returned by Google image
search. As a result, we obtained 737 ~ 901 images for each
chart type (Table 1). Among these, we removed the
following inappropriate images:

• False search results (e.g., bar charts or donut charts in
pie chart image search)

• Abstract menu icons or symbols
• Images that include multiple types of charts (e.g.,

images with both bar and pie charts)
• Handmade sketches
• Box plots in bar chart image search
• Photos in map image search
• Forms in table image search

Table 1 shows the final number of images, collected and then
filtered for each chart type. In this way, we constructed two
image corpora for classifier evaluation: 1) small corpus (n =
2084): ReVision’s chart images and 2) large corpus (n =
6997): merged corpus of ReVision’s and newly obtained
chart images (n = 5659 in Table 1).

Neural Network Model for Classification
We built our chart type classification model based on
convolutional neural network (CNN), a type of feed-forward
artificial neural network that was proven to show good
accuracy for image classification among the variations of
neural networks [17]. CNN consists of three layers:
convolution layer, pooling layer, and fully connected layer.
Since implementation details of each layer is not an issue for
reproducing CNN, we explain each layer in a conceptual
manner. Convolution layer tangles nearby pixels to abstract
their meaning. Pooling layer extracts representative
specimens from the result of the convolution layer to reduce
computational time. Fully connected layer does conventional
neural network learning with a back propagation method.

Among many of CNN variations, we chose GoogLeNet [28],
an ensemble model based on CNN that showed the best
performance in the ImageNet Large Scale Visual

Chart Type Collected Filtered
Area chart 819 509
Bar chart 866 557
Line chart 885 619
Map 889 567
Pareto chart 737 391
Pie chart 874 568
Radar chart 822 465
Scatter plot 872 696
Table 901 594
Venn diagram 849 693
Table 1. Number of newly collected and filtered images

Recognition Competition (ILSVRC) 2014 competition. We
also evaluated models with relatively shallower networks
(i.e., LeNet-1 [18] and AlexNet [17]). We used our two
constructed image corpus for training and validation.
Training and validation sets were randomly divided into 80%
and 20%, respectively, from the corpus.

Throughout the training process, we mainly used a deep
learning framework Caffe [14]. We first normalized an
image into a dimension of 256 × 256 × 3 (width × height × #
of color channels) with a Python image library, and then
constructed image database with Lightning Memory-
Mapped Database (LMDB) to achieve higher I/O
performance. We used all three networks described in the
Caffe format from the Caffe Model Zoo. Among six Caffe
solvers, we chose stochastic gradient descent (SGD) solver,
which is widely used due to its simplicity and time efficiency
[2]. The learning rate policy, which should be specified prior
to running the solver, was initially set to 0.01 and was
dropped by a factor of 10 at the 33% (0.001) and 66%
(0.0001) of the iteration process. Each iteration does forward
and backward propagations to obtain output and update
weights. We used one Amazon Web Service g2.2xlarge (26
ECUs, 8 vCPUs, 2.6 GHz, Intel Xeon E5-2670, 15 GB
memory) instance with Caffe-installed AMI (Amazon
Machine Image) to train the models. It took approximately 2
hours to train GoogLeNet and AlexNet using the large
corpus, and about 30 minutes for the small corpus. Training
LeNet-1 took less than a minute for both corpora.

Chart Type Classification Accuracy
We first compared the accuracy of the three classification
models (Table 2). Both AlexNet and GoogLeNet showed
considerably higher accuracy compared to LeNet-1, yet the
difference between the two was relatively small. However,
the number of parameters of GoogLeNet model (approx.
5.9M) was ten times smaller than that of AlexNet model
(56.9M). In terms of memory efficiency and its accuracy on
large corpus, we adopted the model trained with GoogLeNet
in ChartSense. Then, we compared the accuracy of our chart
classification model with that of ReVision [24]. We
calculated the accuracy using five-fold cross validation (five
repetitions with 80% training and 20% validation sets). We
trained our model using the two image corpora (i.e., small
and large corpora).

Overall, ChartSense shows higher average accuracy than
ReVision for both datasets. Figure 1 shows the chart
classification accuracy results per chart type along with the
overall average accuracy with all chart types combined. For
individual chart types, ChartSense exhibits higher
classification accuracy for all chart types than Revision when
trained with the large corpus, but for six out of 10 types (bar
chart, line chart, map, pie chart, scatterplot, and table) with
the small corpus.

Data Extraction
In this section, we first summarize three main challenges in
developing an automatic chart data extraction algorithm that
has enough accuracy and effectiveness for practical use. We
then describe a mixed-initiative approach we propose to
overcome these challenges by utilizing both image
processing techniques and user interactions.

Three Challenges in Chart Data Extraction
First, the diversity in chart style makes it difficult to apply a
single extraction algorithm to all the charts of the same type:
although two chart images belong to the same chart type,
their detailed chart styles can be significantly different. For
example, some line charts contain no tick marks on the x-axis
or others may not have horizontal guidelines along the y-axis.
If a data extraction algorithm works under the assumption
that the chart image has tick marks on the x-axis or guidelines

Model

Classification Accuracy
(%) number

of params Small
corpus

Large
corpus

LeNet-1 41.8 44.2 0.4M

AlexNet 77.9 88.8 56.9M

GoogLeNet 76.7 91.3 6.0M

Table 2. Classification accuracy and size of models.

Figure 1. Accuracy of chart type classification of ChartSense and ReVision [24] for each chart type. Each classification model

is trained with the small corpus and the large corpus.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Area Bar Line Map Pareto Pie Radar Scatter Table VennDiagram Average

ChartSense with small corpus ReVision with small corpus ChartSense with large corpus ReVision with large corpus

along the y-axis, it is not likely to work well for the charts
that do not meet the assumption.

Second, Gestalt principles describe how effective we humans
are in simplifying and deciphering even occluded visual
components [31]. However, algorithms may have trouble in
interpreting overlapped visual entities. For example, when
two lines intersect each other in a line chart, humans can
correctly perceive both series that intersect on a point.
However, it could be challenging for line detection
algorithms, which usually use pixel colors for identifying
multiple lines, to correctly separate two series.

Third, to convert extracted marks into data values, it is
necessary to read labels beside axes. Once a text region
containing a label is identified, we can extract the label by
using optical character recognition (OCR). Many OCR
algorithms show reasonably high accuracy; however, to the
best of our knowledge, although some previous works tried
to solve similar problem for graphics or maps [22, 29], there
has not been yet a text-region-detection algorithm for chart
images with sufficient accuracy for practical usage (often
less than 80 percent for detection and less than 60 percent for
recognition) [32]. For example, chart data extraction tools
such as ReVision [24] ask people to specify text regions in
chart images manually.

Mixed-Initiative Approach
The main goal of ChartSense interface and interaction design
was to maximize the accuracy of data extraction results while
minimizing the burden of manual user interactions. To
achieve this design goal, we first reviewed available
techniques for automatic data extraction and identified their
strengths and weaknesses by trying them with many real
chart images. Then, we designed basic interactions to
overcome the weaknesses (1) by asking users to specify
critical features (e.g., y-values in a line/area chart, base
colors and center point in a radar chart) with which automatic
extraction algorithms can generate more accurate results and
(2) by presenting the automatic extraction results in a way to
match unique characteristics of each chart type so that users

can effectively fine-tune the results (e.g., adjusting the center
point in a pie chart). Thus, reliability of chart type classifier
was critical in our system and we improved the accuracy by
utilizing a deep learning-based algorithm.

To support the fine-tuning of the results from data extraction
algorithms, we tightly coupled a table view for extracted data
values and a chart view where the reconstructed chart is
overlaid on the original chart image; users can interactively
verify all extracted values because any adjustments in either
view are coordinated.

We here detail the data extraction algorithm for each chart
type after explaining a few assumptions we made. We also
report the portion of images covered by the assumptions in
the newly obtained corpus. We denote user interaction and
ChartSense reaction using ‘[US]’ and ‘[CS],’ respectively.

Line Chart
We make the following four assumptions regarding line
charts: 1) line charts do not have 3D effects; 2) each series
has a distinct color; 3) intervals are equal in size; and 4) each
series has horizontal orientation (e.g., time axis for time
series data is the horizontal axis). 84.17% of the line charts
in our newly obtained corpus satisfy all the four assumptions.
The percentages of line chart images that are excluded by not
fulfilling the four assumptions are 2.26%, 5.33%, 5.65%, and
3.55%, respectively.

The data extraction process for line charts is as follows:

1. [US] Specify a bounding rectangle that encloses all the lines
2. [US] Specify two y-positions and the corresponding data

values (Figure 2)
3. [US] Specify intervals of data points (Figure 2)
4. [CS] Detect lines in the rectangle specified in step 1
5. [US] Select correct lines among the detected ones
6. [CS] Convert the selected lines into values, reconstruct a line

chart from the values, and overlay the line chart with the
input image

7. [US] Adjust incorrectly recognized data points

Step 1 helps ChartSense crop the input image for more
efficient processing in the following steps. In step 3,
ChartSense incorporates user interactions to minimize user
inputs required to define the interval. Users need to specify
only three values: the horizontal positions of the leftmost and
rightmost data points, and the number of horizontal sampling
positions. ChartSense then calculates all other sampling
horizontal positions between the two end positions. It shows
the calculated x-positions with vertical red lines so that users
can change the three values if necessary.

To detect lines in step 4, ChartSense starts from detecting the
dominant colors in the image. Its dominant color detection
algorithm converts the image into the HSV color space.
ChartSense uses the H channel to acquire a histogram
mapped to the number of pixels and then finds evident color

Figure 2. Users specify key features: two pairs of y-

position/values (blue lines and texts) and interval of data
points (red lines).

ranges as in Figure 3 with a heuristically determined
frequency threshold (i.e., 1% of total number of pixels).
When there are more than one local maximum values within
an evident color range (R3 in Figure 3), ChartSense divides
the range into several parts using local minimum values as
boundaries (e.g., R3, R4, and R5 in Figure 3). For each hue
range, ChartSense can obtain a binary image where the value
of each pixel that belongs to the hue range is white, and black
otherwise. ChartSense uses the binary images to detect
candidates for correct lines.

ChartSense derives least squared regression lines to enhance
the accuracy of the originally extracted y-value of sampling
point. To make a regression, ChartSense additionally
extracts y-values from four evenly distributed locations
between each pair of neighboring sampling points. Since
there are two corresponding regression lines for all sampling
points except for the two endpoints (i.e., the first and the last
sampling points), ChartSense determines the final estimation
of value by taking the average of the two derived y-values
from the two regression lines. For the first and the last
sampling points, ChartSense simply uses the estimated value
from the only regression line. Finally, its algorithm connects
all derived y-values to make a line.

Because ChartSense could not always detect lines correctly,
it asks users to select real (correct) lines among the detected
ones in step 5. ChartSense shows five detected line colors
(each determined by taking the average of pixel values in
each cluster) in a table, and users can check the
corresponding detected lines one-by-one by hovering the
mouse cursor over the table cells. After users select correctly
detected lines, ChartSense extracts data and overlays the
reconstructed line chart on the input image, and users can
adjust incorrectly recognized data points by directly
manipulating them.

Area Chart
Data extraction from area charts is almost identical to that of
line charts. The only difference is that data extraction in line
charts finds a point for each horizontal sampling position
with a least square regression line while data extraction in
area charts simply finds a range of y-values for each color at
each sampling position.

Radar Chart
For radar charts, we make three assumptions: 1) each
polygon’s color is distinct; 2) all axes share the same scale;
and 3) all angles between adjacent axes are same. 94.41% of
radar chart images in our newly obtained corpus satisfies all
the three assumptions. The percentages of chart images that
are excluded by the three assumptions is 0.43%, 2.58%, and
2.58%. Color-filled polygons are particularly challenging to
extract data from, because blending of overlapping polygons
could generate a new polygon (see the inset figure). Thus, we
utilize mixed-initiative approach in handling non-empty
polygons.

The data extraction process for radar charts is as follows:

1. [US] Specify the center point of a radar chart
2. [US] Specify two consecutive axes end points of the radar

chart
3. [US] Specify background color and non-mixed foreground

colors for polygons
4. [US] Specify the value for axis end points
5. [CS] Detect polygons
6. [CS] Convert the selected polygons into values, create a

radar chart, and overlay the radar chart on the input
image

7. [US] Adjust incorrectly recognized data points

Radar charts use a similar visual
encoding with line charts; both
charts use position as a visual
variable to encode data. The
difference is that radar charts
use a polar coordinate system
while line charts use the
Cartesian coordinates system.
While a polyline in a line chart
connects data points that are on
distinct vertical axes, a polygon in a radar chart connects data
points on distinct radial axes. Therefore, the center point and
axes angles are necessary in radar charts instead of the
baseline and data points’ interval in bar charts. Note that the
center point and axes detections for radar charts are more
challenging because of the circular arrangement. Thus,
ChartSense asks users to specify the center point and the end-
points of each axis.

Regarding color-filled radar charts, ChartSense additionally
asks users to specify foreground color information (by
clicking on regions with a non-mixed color. Since
overlapped regions have blended colors, clustering based on
hue is not applicable for color-filled cases. Thus, ChartSense
prepares a list of blended colors from every possible

Figure 3. Detection of dominant colors from an image using a
histogram built on the HSV color space. Candidate ranges are

acquired using a heuristic frequency threshold (i.e., 1% of total
number of pixels), which is denoted by orange line in the

figure. A range with multiple local maximum values is divided
again using local minimum values as boundaries.

R1 R2

R3’

R3 R4 R5 H

Fr
eq

ue
nc

y

combination of the non-mixed foreground colors. It clusters
pixels by finding the most similar color from the list and
builds binary images for each cluster. In each binary image,
ChartSense samples 20 outermost points between each
neighboring axes pair. Then, it builds lines with all possible
pair of points. For each line, it compares an area of a triangle
constructed by the line and two axes and selects the line that
yields the smallest area and contains all 20 sampled points
inside the triangle. Since there are two neighboring axes,
final data points are determined as the average of the two
estimations. When the algorithm fails to find more than one
outermost points, it returns a random value on the axis to
leave opportunity for manual adjustment.

Bar Chart
We make two assumptions: 1) bar charts have no 3D effect;
and 2) bar charts do not include stacked bar charts. Among
our 557 bar chart images, 68.58% satisfies all the two
assumptions. The percentages of chart images that are
excluded by the two assumptions are 9.34%, and 24.24%,
respectively.

ChartSense detects bars in a bar chart image as follows. It
detects a list of color ranges using an H channel histogram as
it does with line charts. For each color range, it makes a
binary image by setting white for pixels that have color
within the range and black for the others. To remove axis or
assistance grid lines, ChartSense applies an open
morphological transform (kernel size: 13) to the binary
image. ChartSense then finds all connected components by
8-way connectivity, and define a rectangular bounding box
for each connected component, which becomes a bar in the
result. The detection algorithm for a single bar is similar to
prior work [24], but if there are multiple bars in one binary
images (e.g., grouped bar chart with multiple series), they are
considered as the bars from the same series.

Using the bar detection algorithm, ChartSense extracts data
from bar charts as follows.

1. [CS] Detects the baseline (x-axis) and overlay the detected
baseline on the input image

2. [US] Adjust the baseline if needed
3. [US] Specify two y-positions and the corresponding data

values
4. [CS] Detect bars, convert them into values, create a bar chart

from the extracted values, and overlay the bar chart on
the input image

5. [US] Adjust incorrectly recognized bars if needed

ChartSense detects bars in the
input image by the bar
detection algorithm. Then, it
infers chart orientation from
the number of bars that shares
vertical or horizontal baselines
(i.e., the orientation is vertical
when there are more bars with horizontally aligned bottom

lines, and vice versa). If the extracted bars’ bottom lines are
aligned on a line, ChartSense regards the line as the baseline
(left inset figure). Otherwise, ChartSense calculates the
average of the bottom lines’ y values and regards the
horizontal line at the average y value as baseline (right inset
figure).

Users can fine-tune the baseline position correctly in step 2.
ChartSense overlays the detected baseline on the input image,
and users can move the baseline using mouse or keyboard
until the extracted baseline matches the original baseline.
After users confirm the baseline, ChartSense crops the image
above the baseline and uses the cropped image as an input to
the next bar detection algorithm in step 4. Cropping removes
unnecessary outer regions for more accurate detection of bars.

ChartSense assumes that the y-axis scale is linear, and asked
users to specify any two y-positions along with the
corresponding data values in step 3. Guidelines and
associated text values appear as users specify the y-positions
and data values as blue lines and text.

After extracting data values, ChartSense reconstructs a bar
chart from the extracted data and overlays the bar chart with
the input image. In the new bar chart, ChartSense represents
bars as transparent rectangles. When users move mouse
cursor over the rectangles, ChartSense highlights them with
translucent color. Users can easily identify the disagreement
between the underlying data and the extracted data by
comparing the two. The reconstructed bar chart supports
direct manipulation. Users can adjust bar heights, add
missing bars, or remove misrecognized bars directly in the
reconstructed bar chart until the reconstructed bar chart
matches the input bar chart. After the initial data extraction
(step 4), the data table shows the extracted data. ChartSense
updates the table dynamically upon any user modifications
to the reconstructed bar chart, and users can select and
highlight a bar by clicking on or hovering mouse cursor over
the corresponding cell in the table.

The data extraction process for bar charts shows the general
flow of data extraction in ChartSense, which applies to other
chart types in general. Therefore, for the remaining chart
types, we explain only the unique processes for each chart
type while skipping the common parts.

Pie Chart
We make three assumptions: 1) pie charts have no 3D effect;
2) each wedge has a distinct color from its adjacent wedges;
and 3) no wedges protrude over the circle’s border. 53.16%
of pie charts in our corpus satisfies all the three assumptions.
The percentages of chart images that are excluded by these
assumptions are 37.89%, 6.49%, and 8.42%, respectively.

The data extraction for pie charts consists of only two steps:

1. [CS] Detect the center point and all borders
2. [US] Adjust the center point correctly and add, remove, or

modify incorrectly recognized border points

We focus on explaining center and border points detection
algorithm in detail because it is the essential part in the pie
chart data extraction. First, ChartSense makes a binary image
from a given input image by the same method used for bar
charts. Second, it identifies the center and the radius of the
pie circle by applying Open morphological transform, Canny
edge detection algorithm [3], and Hough transform in turn.
After finding the center C and the radius R, ChartSense
defines border points by sampling the 1,000 pixels uniformly
along the circle whose center is C and radius is one of 0.5R,
0.6R, 0.7R, 0.8R, and 0.9R. While traversing the sampling
points sequentially, ChartSense detects a sudden change of
pixel values between two consecutive sampling points, and
regards the center of the transition points as a border point.
This method can fail when there are letters or symbols in the
wedges. Therefore, ChartSense runs the border search
procedure five times with different radii (0.5R, 0.6R, 0.7R,
0.8R, 0.9R) and use the result that returns the smallest
number of border points. This approach is similar to prior
work [24] that uses a circular Hough transformation with
multiple radii for robustness. After detecting the center and
border points, ChartSense overlays them on the input chart.
Users fine-tune the center point and the border points, and
the data table is updated accordingly (Figure 4).

EVALUATION: CONTROLLED EXPERIMENT
We conducted a controlled experiment to evaluate the
effectiveness of ChartSense for data extraction from chart
images. The experiment consisted of two parts (Figure 5). In
Part 1, we compared ChartSense (CS) to WebPlotDigitizer
(WPD) for bar and line charts. In Part 2, we examined the
effectiveness of CS only for three additional charts—area,
pie, and radar charts—because WPD does not support data
extraction from these charts.

Participants and Dataset
We recruited 16 participants (9 males and 7 females) from a
university campus recruiting website. Average age of the
participants was 22.6, ranging from 20 to 26. They received
about $20 for their participation.

Chart images used for the study were selected from the image
corpus we built using Google image search for chart type
classification. To calculate the data extraction accuracy, we
selected images that had ground truths (i.e., all marks in an
image have text labels representing the data values of the
marks). For Part 1, we selected 10 bar chart images and 10
line chart images. The images were divided into two
categories: single series (with nine marks) and multiple
series (two series with nine marks for each). To control the
number of marks to be consistent, we trimmed some marks
from the original images when necessary. For Part 2, we
selected five images per chart type for area, pie, and radar
charts. The images contained different number of marks (6
to 16 for area charts, 6 to 13 for pie charts, and 4 to 24 for
radar charts). We erased the ground truth before the user
study.

Study Design, Procedure, and Setup
We ran the comparison part of the study as a 2 (Interface: CS
vs. WPD) × 2 (Chart Type: Bar vs. Line) × 2 (Series: single
vs. multiple) within-subject design (see Part 1 in Figure 5).
Each participant performed the data extraction tasks from
both bar and line charts, for both single and multiple series
charts, using both CS and WPD. To avoid the learning effect,
we counterbalanced the order of interfaces and chart types.

Each session began with a brief introduction of the study
procedure. We then asked the participants to fill out a simple
pre-study questionnaire to collect their age, gender and major.

In Part 1, prior to beginning the timed tasks with each block
(i.e., a combination of Chart Type and Interface), we
demonstrated participants how to extract data from charts
using the interfaces for about two minutes. We then asked
them to practice extracting data from sample charts until they
could get familiar with the data extraction using the
interfaces without time constraints. For the timed tasks,
participants extracted data five times for each number of
series, and saved the result in a local folder. We asked
participants to extract data for chart images as accurately and
quickly as possible. After they completed each of the four

Figure 5. The study consists of two parts. In the first part,
we compared ChartSense to WebPlotDigitizer for bar and
line charts. In the second part, we evaluated ChartSense

for area, radar, and pie charts.

Figure 4. Data extraction from pie charts. The blue circle

represents the detected center point and red points represent
border points. If users modify the position of the blue circle or

red points, the data table is updated immediately.

blocks, we asked participants to fill out a questionnaire. The
experiment for Part I took about 40 minutes on average.

Participants went through a similar process in Part 2 but only
with CS to extract data from area, pie, and radar charts. After
the tutorial, participants extracted data five times for each
chart type. After they completed each of the three chart types,
we asked participants to fill out a questionnaire. Part 2 took
about 50 minutes on average.

Each participant worked on a PC with a client web
application running on a Google Chrome web browser. All
results (extracted data values) were saved in the local disk.
For each condition, we showed the folder that contains five
chart image files. We asked participants to extract data from
the image files in the order they appear in the folder. For each
trial, we timed with a stopwatch, starting when participants
opened a file and ending when they saved the result.

Results
We measured and analyzed two dependent variables from the
experiment: (1) task completion time and (2) error rate that
is the ratio of difference between an extracted value and its
ground truth to the ground truth. We also performed a
statistical analysis of questionnaire responses.

Part 1: Task Completion Time
 We analyzed the task completion time with a 2 (Interface) ×
2 (Chart Type) × 2 (Series) repeated-measures analysis of
variance (RM-ANOVA).

We found a significant main effect of Interface (F1,15=70.57,
p<.001) (Figure 6a). We also found significant main effects
of Chart Type (F1,15=11.09, p<.001) and Series (F1,15=69.35,
p<.001) (Figure 6b, 6c). It was expected that line charts take
more time than bar charts because more interactions are
required for line charts regardless of interface being used.
Also, it is not surprising that charts with a larger number of
series would take more time to complete the task.

For both chart types, CS helped participants finish tasks
faster than WPD (Figure 7). We found a significant
interaction between Interface and Series (F1,15=84.711,
p<.001). For both “single” and “multiple” series charts, CS
took less time than WPD. More interestingly, for charts that
include more marks, the task time of WPD drastically
increased; however, CS exhibited a relatively moderate
increase in the task completion time.

Part 1: Error Rate
We saved the extracted data and calculated error rate for each
extracted data value as follow.

error rate =
|𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ − 𝑒𝑒𝑒𝑒𝑡𝑡𝑔𝑔𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑔𝑔 𝑣𝑣𝑒𝑒𝑣𝑣𝑔𝑔𝑒𝑒|

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑔𝑔𝑔𝑔𝑡𝑡ℎ

For each trial, we took an average of error rates for all
extracted values (Figure 8). We analyzed the error rate with
a 2 (Interface) × 2 (Chart Type) × 2 (Series) RM-ANOVA.

We found a significant main effect of Interface (F1,15=12.785,
p=.003). We also found a significant main effect of Chart
Type (F1,15=478.964, p<.001) and Series (F1,15=37.101,
p<.001). We found a significant interaction between
Interface and Series (F1,15=11.449, p=.004), and Chart Type
and Series (F1,15=9.090, p=.009)

Part 1: Subjective Preference
We ran Friedman Chi-Square tests for the ratings and found
a significant difference for all questions (p<.001), indicating
that participants felt that CS was easier to use than WPD. The
ratings for CS tended to be higher than WPD for other three

Question
Bar Line

CS WPD CS WPD
Q1. This interface was

easy to learn.* 6.4 5.0 6.0 4.8

Q2. This interface was
easy to use.* 6.4 4.6 5.9 4.9

Q3. This interface was
easy to understand. 5.3 4.0 5.6 4.5

Q4. This interface was
accurate.* 6.3 4.7 6.3 4.8

Q5. I would like to use
this interface again.* 5.7 4.0 5.8 4.1

Table 3. Average Likert scale ratings for CS and WPD using the
scale of 1=Strongly disagree and 7=Strongly agree. The ratings

of CS were significantly higher than those of WPD for every
questions except for Q3 with line chart (gray background).

Figure 6. Task completion time (sec)
by main effects. Main effects were

significant for all three factors.

Figure 7. Significant interaction effect
between Interface and Number of series

on completion time (sec).

Figure 8. Error rate (%) by main
effects. Main effects were significant

for all three factors.

questions. The subjective evaluation result is summarized in
Table 3.

Part 2: Task Completion Time, Error Rate, and Subjective
Preference
The second part of our study only involved CS. The average
task completion time and error rate are summarized in Table
4. The subjective evaluation results show that CS interfaces
for area, pie and radar charts are easy to learn, easy to use,
and easy to understand (ratings are 6/6.56/5.6 for area,
5.94/6.38/5.44 for pie, and 5.75/6.06/5.44 for radar charts).
DISCUSSION AND FUTURE WORK

Chart Type Classification Accuracy
Our quantitative comparison on chart type classification
accuracy of ChartSense and ReVision showed that our
classification model is more accurate than ReVision’s model.
When trained with the large image corpus (i.e., union of
previously used dataset in ReVision and newly collected
dataset), our classification model showed higher accuracy
than ReVision for all chart types, but when trained with the
small image corpus, ReVision’s classification model showed
higher accuracy in five chart types—area, Pareto, radar,
scatter plot, and Venn diagram. This can be attributable to
the fact that the number of images for certain chart types is
not sufficient to build an effective CNN model, thus shared
features do not properly represent the chart type throughout
the convolution layer and pooling layer in the network.

Mixed-initiative Approach
Our controlled user study results supported our hypothesis
that ChartSense outperforms WebPlotDigitizer in terms of
task completion time, error rate, and subjective satisfaction.
We attribute this result to our design decision to take a
mixed-initiative approach that harmoniously integrates the
state-of-the-art automatic mark extraction techniques with
simple yet effective user interactions. We believe our
prototype is designed to take advantages from both automatic
and manual approaches while mitigating their disadvantages.

Because we could not find any available tools that can extract
data from area, pie, and radar charts, we could not conduct a
comparative study for these chart types. However, given that
error rates are around 3% (Table 4), we believe ChartSense
could be practically useful.

In statistical analysis, we excluded data points from
repetitive unintentional mistakes with WPD interface and
outliers identified with interquartile range (i.e., Tukey’s test).
While using WPD for line chart, some participants clicked
on the first data points rather than a point on the x-axis, which
is supposed to be the reference value for data extraction.
Since it led to huge errors, we excluded such data points
before applying Tukey’s test.

It was surprising that line chart data extraction showed
significantly lower error rate than bar chart data extraction,
as we expected that it would be easier for participants to fine-
tune bar tops than they fine-tune data points in line charts. It
might be because of more user interactions in line charts did

more good (more information) than harm (potential error) in
our mixed-initiative approach.

Generalizability
We made a few assumptions for input chart images that
ChartSense can handle. Although our data extraction
algorithms cover a significant number of real-world charts
even with the assumptions, more work is needed to make our
approach more generally applicable. It is especially
important if users are interested in redesigning existing
charts using perceptually more effective encodings because
many poorly designed charts are excluded by the
assumptions. An interesting future research direction would
be to integrate ChartSense with chart restyling techniques
proposed by Savva et al. [24] or Harper and Agrawala [9].

Text-region-finding detection algorithm with high accuracy
can improve the performance of our interactive data
extraction algorithm because the performance of OCR is
significantly affected by text-region-finding results. Text
labels in charts play an important role in chart data extraction
algorithms since they serve as reference points to convert
marks into values. Since there was no practical text-region-
finding algorithms available, users have to manually specify
y-positions and type in corresponding data values in current
chart data extraction tools. An actionable future research
direction would be to developing a text-region-finding
algorithm for charts. It might be less challenging to detect
text regions in chart images than in general images because
the text labels often are located near axes in charts.

CONCLUSION
We presented ChartSense: a system that classifies chart type
and extracts underlying data from chart images by an
interactive data extraction algorithm. Our quantitative
evaluation showed that ChartSense achieves higher
classification accuracy than the previous classification
system, ReVision. We conducted a controlled experiment to
investigate whether it could improve users’ performance to
extract data for two chart types: bar and line charts. We found
that participants could extract data faster and more accurately
with ChartSense than WebPlotDigitizer. Furthermore,
ChartSense is practically useful for three additional chart
types—area, pie, and radar charts.

ACKNOWLEDGMENTS
This work was supported by the National Research
Foundation of Korea (NRF) grants funded by the Korea
government (MSIP) (No. NRF-2014R1A2A2A03006998
and NRF-2016R1A2B2007153). The ICT at Seoul National
University provided research facilities for this study.
Jinwook Seo is the corresponding author.

Chart Type Area Pie Radar

Time (s) 60.40 32.51 61.63

Error rate (%) 1.89 2.21 3.19

Table 4. Average task completion time and error rate for
area, pie, and radar charts by ChartSense.

REFERENCES
1. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.

2011. D³ data-driven documents. IEEE Trans. Vis.
Comput. Graphics 17, 12: 2301-2309.

2. Léon Bottou. 2012. Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade, Grégoire
Montavon, Geneviève, Orr, Klaus-Robert Müller
(eds.). Springer Berlin Heidelberg, 421-436.

3. John Canny. 1986. A computational approach to edge
detection. IEEE Trans. Pattern Anal. Mach. Intell
PAMI-8, 6: 679-698.

4. Zhe Chen, Michael Cafarella, and Eytan Adar. 2015.
DiagramFlyer: A search engine for data-driven
diagrams. In Proceedings of the 24th International
Conference on World Wide Web Companion (WWW
'15), 183-186.

5. Sagnik Ray Choudhury and Clyde Lee Giles. 2015. An
architecture for information extraction from figures in
digital libraries. In Proceedings of the 24th
International Conference on World Wide Web
Companion (WWW '15), 667-672.

6. Jinglun Gao, Yin Zhou, and Kenneth E. Barner. 2012.
View: Visual information extraction widget for
improving chart images accessibility. In Proceedings of
the 19th IEEE International Conference on Image
Processing (ICIP '12), 2865-2868

7. Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,
and Karrie G. Karahalios. 2015. DataTone: Managing
ambiguity in natural language interfaces for data
Visualization. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software and Technology
(UIST '15), 489-500.

8. Arnd Gross, Sibylle Schirm, and Markus Scholz. 2014.
Ycasd–a tool for capturing and scaling data from
graphical representations. BMC bioinformatics 15, 1:
219.

9. Jonathan Harper and Maneesh Agrawala. 2014.
Deconstructing and restyling D3 visualizations. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST '14),
253-262.

10. Christopher G. Healey, Sarat Kocherlakota, Vivek Rao,
Reshma Mehta, and Renee St. Amant. 2008. Visual
perception and mixed-initiative interaction for assisted
visualization design. IEEE Trans. Vis. Comput.
Graphics 14, 2: 396-411.

11. Eric Horvitz. 1999. Principles of mixed-initiative user
interfaces. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems (CHI '99),
159-166.

12. Weihua Huang, Chew Lim Tan, and Wee Kheng Leow.
2004. Model-based chart image recognition. In
Graphics Recognition. Recent Advances and

Perspectives, Josep Lladós and Young-Bin Kwon
(eds.). Springer Berlin Heidelberg, 87-99.

13. Weihua Huang, Ruizhe Liu, and Chew Lim Tan. 2007.
Extraction of vectorized graphical information from
scientific chart images. In Proceedings of the 9th
International Conference on Document Analysis and
Recognition (ICDAR '07), 521-525.

14. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe:
Convolutional architecture for fast feature embedding.
In Proceedings of the ACM International Conference
on Multimedia (MM '14), 675-678.

15. Nicholas Kong and Maneesh Agrawala. 2012.
Graphical overlays: Using layered elements to aid chart
reading. IEEE Trans. Vis. Comput. Graphics 18, 12:
2631-2638.

16. Nicholas Kong, Marti A. Hearst, and Maneesh
Agrawala. 2014. Extracting references between text
and charts via crowdsourcing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '14), 31-40.

17. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. 2012. Imagenet classification with deep
convolutional neural networks. In Proceedings of the
25th Neural Information Processing Systems (NIPS
'12), 1106-1114.

18. Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86,
11: 2278-2324.

19. Yan Liu, Xiaoqing Lu, Yeyang Qin, Zhi Tang, and
Jianbo Xu. 2013. Review of chart recognition in
document images. In IS&T/SPIE Electronic Imaging,
865410-865410.

20. Jock Mackinlay. 1986. Automating the design of
graphical presentations of relational information. ACM
Trans. Graph. 5, 2: 110-141.

21. Gonzalo Gabriel Méndez, Miguel A. Nacenta, and
Sebastien Vandenheste. 2016. iVoLVER: Interactive
visual language for visualization extraction and
reconstruction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '16), 4073-4085

22. Aria Pezeshk and Richard L. Tutwiler. 2011.
Automatic feature extraction and text recognition from
scanned topographic maps. IEEE Trans. Geosci.
Remote Sens 49, 12: 5047-5063.

23. Ankit Rohatgi. 2015. WebPlotDigitizer, Version 3.8.
Retrieved September 22, 2015 from
http://arohatgi.info/WebPlotDigitizer

24. Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-
Fei, Maneesh Agrawala, and Jeffrey Heer. 2011.

ReVision: Automated classification, analysis and
redesign of chart images. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software
and Technology (UIST '11), 393-402.

25. Julia Schwarz, Scott Hudson, Jennifer Mankoff, and
Andrew D. Wilson. 2010. A framework for robust and
flexible handling of inputs with uncertainty. In
Proceedings of the 23rd Annual ACM Symposium on
User Interface Software and Technology (UIST '10),
47-56.

26. Mingyan Shao and Robert P. Futrelle. 2006.
Recognition and classification of figures in PDF
documents. In Graphics Recognition. Ten Years
Review and Future Perspectives, Wenyin Liu and
Josep Lladós (eds.). Springer Berlin Heidelberg, 231-
242.

27. Noah Siegel, Zachary Horvitz, Roie Levin, Santosh
Divvala, and Ali Farhadi. 2016. FigureSeer: Parsing
result-figures in research papers. In Proceedings of the
14th European Conference on Computer Vision
(ECCV '16), 664-680.

28. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
2015. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR '15), 1-9.

29. Karl Tombre, Salvatore Tabbone, Loïc Pélissier, Bart
Lamiroy, and Philippe Dosch. 2002. Text/graphics
separation revisited. In Document Analysis Systems V,
Daniel Lopresti, Jianying Hu, and Ramanujan Kashi
(eds.). Springer Berlin Heidelberg, 200-211.

30. Bas Tummers. 2015. DataTheif III. Retrieved
September 22, 2015 from http://www.datathief.org/

31. Colin Ware, 2012. Information Visualization:
perception for design (3rd. ed.). Elsevier.

32. Qixiang Ye and David Doermann. 2015. Text detection
and recognition in imagery: A survey. IEEE Trans.
Pattern Anal. Mach. Intell. 37, 7: 1480-1500.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Mixed-initiative Approach and System
	Chart Data Extraction
	Applications using Chart Data Extraction

	CHARTSENSE SYSTEM
	Chart Classification
	Chart Image Corpus Construction
	Neural Network Model for Classification
	Chart Type Classification Accuracy

	Data Extraction
	Three Challenges in Chart Data Extraction
	Mixed-Initiative Approach
	Line Chart
	Area Chart
	Radar Chart
	Bar Chart
	Pie Chart

	EVALUATION: CONTROLLED EXPERIMENT
	Participants and Dataset
	Study Design, Procedure, and Setup
	Results
	Part 1: Task Completion Time
	Part 1: Error Rate
	Part 1: Subjective Preference
	Part 2: Task Completion Time, Error Rate, and Subjective Preference

	DISCUSSION AND FUTURE WORK
	Chart Type Classification Accuracy
	Mixed-initiative Approach
	Generalizability

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

