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Abstract—This paper develops a model that addresses
sentence embedding, a hot topic in current natural lan-
guage processing research, using recurrent neural networks
(RNN) with Long Short-Term Memory (LSTM) cells. The
proposed LSTM-RNN model sequentially takes each word
in a sentence, extracts its information, and embeds it into
a semantic vector. Due to its ability to capture long term
memory, the LSTM-RNN accumulates increasingly richer
information as it goes through the sentence, and when it
reaches the last word, the hidden layer of the network
provides a semantic representation of the whole sentence.
In this paper, the LSTM-RNN is trained in a weakly
supervised manner on user click-through data logged by a
commercial web search engine. Visualization and analysis
are performed to understand how the embedding process
works. The model is found to automatically attenuate the
unimportant words and detects the salient keywords in
the sentence. Furthermore, these detected keywords are
found to automatically activate different cells of the LSTM-
RNN, where words belonging to a similar topic activate the
same cell. As a semantic representation of the sentence,
the embedding vector can be used in many different
applications. These automatic keyword detection and topic
allocation abilities enabled by the LSTM-RNN allow the
network to perform document retrieval, a difficult language
processing task, where the similarity between the query and
documents can be measured by the distance between their
corresponding sentence embedding vectors computed by
the LSTM-RNN. On a web search task, the LSTM-RNN
embedding is shown to significantly outperform several
existing state of the art methods. We emphasize that the
proposed model generates sentence embedding vectors that
are specially useful for web document retrieval tasks. A
comparison with a well known general sentence embedding
method, the Paragraph Vector, is performed. The results
show that the proposed method in this paper significantly
outperforms it for web document retrieval task.

Index Terms—Deep Learning, Long Short-Term Mem-
ory, Sentence Embedding.

I. INTRODUCTION

H. Palangi and R. Ward are with the Department of Electrical and
Computer Engineering, University of British Columbia, Vancouver,
BC, V6T 1Z4 Canada (e-mail: {hamidp,rababw}@ece.ubc.ca)

L. Deng, Y. Shen, J.Gao, X. He, J. Chen and X. Song are
with Microsoft Research, Redmond, WA 98052 USA (e-mail:
{deng,jfgao,xiaohe,yeshen,jianshuc,xinson}@microsoft.com)

LEARNING a good representation (or features) of
input data is an important task in machine learning.

In text and language processing, one such problem is
learning of an embedding vector for a sentence; that is, to
train a model that can automatically transform a sentence
to a vector that encodes the semantic meaning of the
sentence. While word embedding is learned using a
loss function defined on word pairs, sentence embedding
is learned using a loss function defined on sentence
pairs. In the sentence embedding usually the relationship
among words in the sentence, i.e., the context informa-
tion, is taken into consideration. Therefore, sentence em-
bedding is more suitable for tasks that require computing
semantic similarities between text strings. By mapping
texts into a unified semantic representation, the embed-
ding vector can be further used for different language
processing applications, such as machine translation [1],
sentiment analysis [2], and information retrieval [3].
In machine translation, the recurrent neural networks
(RNN) with Long Short-Term Memory (LSTM) cells, or
the LSTM-RNN, is used to encode an English sentence
into a vector, which contains the semantic meaning of
the input sentence, and then another LSTM-RNN is
used to generate a French (or another target language)
sentence from the vector. The model is trained to best
predict the output sentence. In [2], a paragraph vector
is learned in an unsupervised manner as a distributed
representation of sentences and documents, which are
then used for sentiment analysis. Sentence embedding
can also be applied to information retrieval, where the
contextual information are properly represented by the
vectors in the same space for fuzzy text matching [3].

In this paper, we propose to use an RNN to sequen-
tially accept each word in a sentence and recurrently map
it into a latent space together with the historical informa-
tion. As the RNN reaches the last word in the sentence,
the hidden activations form a natural embedding vector
for the contextual information of the sentence. We further
incorporate the LSTM cells into the RNN model (i.e. the
LSTM-RNN) to address the difficulty of learning long
term memory in RNN. The learning of such a model
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is performed in a weakly supervised manner on the
click-through data logged by a commercial web search
engine. Although manually labelled data are insufficient
in machine learning, logged data with limited feedback
signals are massively available due to the widely used
commercial web search engines. Limited feedback in-
formation such as click-through data provides a weak
supervision signal that indicates the semantic similarity
between the text on the query side and the clicked text
on the document side. To exploit such a signal, the
objective of our training is to maximize the similarity
between the two vectors mapped by the LSTM-RNN
from the query and the clicked document, respectively.
Consequently, the learned embedding vectors of the
query and clicked document are specifically useful for
web document retrieval task.

An important contribution of this paper is to analyse
the embedding process of the LSTM-RNN by visualizing
the internal activation behaviours in response to different
text inputs. We show that the embedding process of the
learned LSTM-RNN effectively detects the keywords,
while attenuating less important words, in the sentence
automatically by switching on and off the gates within
the LSTM-RNN cells. We further show that different
cells in the learned model indeed correspond to differ-
ent topics, and the keywords associated with a similar
topic activate the same cell unit in the model. As the
LSTM-RNN reads to the end of the sentence, the topic
activation accumulates and the hidden vector at the last
word encodes the rich contextual information of the
entire sentence. For this reason, a natural application
of sentence embedding is web search ranking, in which
the embedding vector from the query can be used to
match the embedding vectors of the candidate documents
according to the maximum cosine similarity rule. Evalu-
ated on a real web document ranking task, our proposed
method significantly outperforms many of the existing
state of the art methods in NDCG scores. Please note
that when we refer to document in the paper we mean
the title (headline) of the document.

II. RELATED WORK

Inspired by the word embedding method [4], [5], the
authors in [2] proposed an unsupervised learning method
to learn a paragraph vector as a distributed representation
of sentences and documents, which are then used for
sentiment analysis with superior performance. However,
the model is not designed to capture the fine-grained
sentence structure. In [6], an unsupervised sentence
embedding method is proposed with great performance
on large corpus of contiguous text corpus, e.g., the
BookCorpus [7]. The main idea is to encode the sentence
s(t) and then decode previous and next sentences, i.e.,

s(t−1) and s(t+1), using two separate decoders. The en-
coder and decoders are RNNs with Gated Recurrent Unit
(GRU) [8]. However, this sentence embedding method
is not designed for document retrieval task having a
supervision among queries and clicked and unclicked
documents. In [9], a Semi-Supervised Recursive Au-
toencoder (RAE) is proposed and used for sentiment
prediction. Similar to our proposed method, it does not
need any language specific sentiment parsers. A greedy
approximation method is proposed to construct a tree
structure for the input sentence. It assigns a vector per
word. It can become practically problematic for large
vocabularies. It also works both on unlabeled data and
supervised sentiment data.

Similar to the recurrent models in this paper, The
DSSM [3] and CLSM [10] models, developed for in-
formation retrieval, can also be interpreted as sentence
embedding methods. However, DSSM treats the input
sentence as a bag-of-words and does not model word
dependencies explicitly. CLSM treats a sentence as a bag
of n-grams, where n is defined by a window, and can
capture local word dependencies. Then a Max-pooling
layer is used to form a global feature vector. Methods in
[11] are also convolutional based networks for Natural
Language Processing (NLP). These models, by design,
cannot capture long distance dependencies, i.e., depen-
dencies among words belonging to non-overlapping n-
grams. In [12] a Dynamic Convolutional Neural Network
(DCNN) is proposed for sentence embedding. Similar to
CLSM, DCNN does not rely on a parse tree and is easily
applicable to any language. However, different from
CLSM where a regular max-pooling is used, in DCNN a
dynamic k-max-pooling is used. This means that instead
of just keeping the largest entries among word vectors in
one vector, k largest entries are kept in k different vec-
tors. DCNN has shown good performance in sentiment
prediction and question type classification tasks. In [13],
a convolutional neural network architecture is proposed
for sentence matching. It has shown great performance in
several matching tasks. In [14], a Bilingually-constrained
Recursive Auto-encoders (BRAE) is proposed to create
semantic vector representation for phrases. Through ex-
periments it is shown that the proposed method has great
performance in two end-to-end SMT tasks.

Long short-term memory networks were developed
in [15] to address the difficulty of capturing long term
memory in RNN. It has been successfully applied to
speech recognition, which achieves state-of-art perfor-
mance [16], [17]. In text analysis, LSTM-RNN treats a
sentence as a sequence of words with internal structures,
i.e., word dependencies. It encodes a semantic vector of
a sentence incrementally which differs from DSSM and
CLSM. The encoding process is performed left-to-right,
word-by-word. At each time step, a new word is encoded
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into the semantic vector, and the word dependencies
embedded in the vector are “updated”. When the process
reaches the end of the sentence, the semantic vector has
embedded all the words and their dependencies, hence,
can be viewed as a feature vector representation of the
whole sentence. In the machine translation work [1], an
input English sentence is converted into a vector repre-
sentation using LSTM-RNN, and then another LSTM-
RNN is used to generate an output French sentence.
The model is trained to maximize the probability of
predicting the correct output sentence. In [18], there are
two main composition models, ADD model that is bag
of words and BI model that is a summation over bi-gram
pairs plus a non-linearity. In our proposed model, instead
of simple summation, we have used LSTM model with
letter tri-grams which keeps valuable information over
long intervals (for long sentences) and throws away use-
less information. In [19], an encoder-decoder approach is
proposed to jointly learn to align and translate sentences
from English to French using RNNs. The concept of
“attention” in the decoder, discussed in this paper, is
closely related to how our proposed model extracts
keywords in the document side. For further explanations
please see section V-A2. In [20] a set of visualizations
are presented for RNNs with and without LSTM cells
and GRUs. Different from our work where the target task
is sentence embedding for document retrieval, the target
tasks in [20] were character level sequence modelling for
text characters and source codes. Interesting observations
about interpretability of some LSTM cells and statistics
of gates activations are presented. In section V-A we
show that some of the results of our visualization are
consistent with the observations reported in [20]. We
also present more detailed visualization specific to the
document retrieval task using click-through data. We also
present visualizations about how our proposed model can
be used for keyword detection.

Different from the aforementioned studies, the method
developed in this paper trains the model so that sentences
that are paraphrase of each other are close in their
semantic embedding vectors — see the description in
Sec. IV further ahead. Another reason that LSTM-RNN
is particularly effective for sentence embedding, is its
robustness to noise. For example, in the web document
ranking task, the noise comes from two sources: (i) Not
every word in query / document is equally important,
and we only want to “remember” salient words using
the limited “memory”. (ii) A word or phrase that is
important to a document may not be relevant to a
given query, and we only want to “remember” related
words that are useful to compute the relevance of the
document for a given query. We will illustrate robustness
of LSTM-RNN in this paper. The structure of LSTM-
RNN will also circumvent the serious limitation of using

a fixed window size in CLSM. Our experiments show
that this difference leads to significantly better results in
web document retrieval task. Furthermore, it has other
advantages. It allows us to capture keywords and key
topics effectively. The models in this paper also do not
need the extra max-pooling layer, as required by the
CLSM, to capture global contextual information and they
do so more effectively.

III. SENTENCE EMBEDDING USING RNNS WITH AND
WITHOUT LSTM CELLS

In this section, we introduce the model of recurrent
neural networks and its long short-term memory version
for learning the sentence embedding vectors. We start
with the basic RNN and then proceed to LSTM-RNN.

A. The basic version of RNN

The RNN is a type of deep neural networks that
are “deep” in temporal dimension and it has been used
extensively in time sequence modelling [21], [22], [23],
[24], [25], [26], [27], [28], [29]. The main idea of using
RNN for sentence embedding is to find a dense and
low dimensional semantic representation by sequentially
and recurrently processing each word in a sentence and
mapping it into a low dimensional vector. In this model,
the global contextual features of the whole text will be
in the semantic representation of the last word in the
text sequence — see Figure 1, where x(t) is the t-th
word, coded as a 1-hot vector, Wh is a fixed hashing
operator similar to the one used in [3] that converts the
word vector to a letter tri-gram vector, W is the input
weight matrix, Wrec is the recurrent weight matrix, y(t)
is the hidden activation vector of the RNN, which can be
used as a semantic representation of the t-th word, and
y(t) associated to the last word x(m) is the semantic
representation vector of the entire sentence. Note that
this is very different from the approach in [3] where the
bag-of-words representation is used for the whole text
and no context information is used. This is also different
from [10] where the sliding window of a fixed size (akin
to an FIR filter) is used to capture local features and a
max-pooling layer on the top to capture global features.
In the RNN there is neither a fixed-sized window nor
a max-pooling layer; rather the recurrence is used to
capture the context information in the sequence (akin
to an IIR filter).

The mathematical formulation of the above RNN
model for sentence embedding can be expressed as

l(t) = Whx(t)

y(t) = f(Wl(t) + Wrecy(t− 1) + b) (1)

where W and Wrec are the input and recurrent matrices
to be learned, Wh is a fixed word hashing operator, b
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𝒍(2) 𝒍(1) 𝒍(𝑚) 

Fig. 1. The basic architecture of the RNN for sentence embedding,
where temporal recurrence is used to model the contextual information
across words in the text string. The hidden activation vector corre-
sponding to the last word is the sentence embedding vector (blue).

is the bias vector and f(·) is assumed to be tanh(·).
Note that the architecture proposed here for sentence
embedding is slightly different from traditional RNN in
that there is a word hashing layer that convert the high
dimensional input into a relatively lower dimensional
letter tri-gram representation. There is also no per word
supervision during training, instead, the whole sentence
has a label. This is explained in more detail in section
IV.

B. The RNN with LSTM cells

Although RNN performs the transformation from the
sentence to a vector in a principled manner, it is generally
difficult to learn the long term dependency within the
sequence due to vanishing gradients problem. One of
the effective solutions for this problem in RNNs is
using memory cells instead of neurons originally pro-
posed in [15] as Long Short-Term Memory (LSTM) and
completed in [30] and [31] by adding forget gate and
peephole connections to the architecture.

We use the architecture of LSTM illustrated in Fig.
2 for the proposed sentence embedding method. In this
figure, i(t), f(t) ,o(t) , c(t) are input gate, forget gate,
output gate and cell state vector respectively, Wp1, Wp2

and Wp3 are peephole connections, Wi, Wreci and bi,
i = 1, 2, 3, 4 are input connections, recurrent connections
and bias values, respectively, g(·) and h(·) are tanh(·)
function and σ(·) is the sigmoid function. We use this
architecture to find y for each word, then use the y(m)
corresponding to the last word in the sentence as the
semantic vector for the entire sentence.

Considering Fig. 2, the forward pass for LSTM-RNN

𝒙(𝑡) 

𝑾ℎ 

𝒍(𝑡) 

𝑾3 

𝒙(𝑡) 

𝑾ℎ 

𝒍(𝑡) 

𝑾4 

𝒙(𝑡) 

𝑾ℎ 

𝒍(𝑡) 

𝑾2 

𝒙(𝑡) 

𝑾ℎ 

𝒍(𝑡) 

𝑾1 

𝑔(. ) 

𝜎(. ) 𝜎(. ) Input Gate Output Gate 

𝜎(. ) Forget Gate 

Cell × 

𝒚𝑔(𝑡) 

𝒊(𝑡) 

𝒇(𝑡) 

𝒄(𝑡 − 1) × 

ℎ(. ) 

× 

𝒄(𝑡) 

𝒐(𝑡) 

𝒚(𝑡) 

𝒄(𝑡 − 1) 

𝑾𝑝2 

𝑾𝑝3 𝑾𝑝1 

𝒚(𝑡 − 1) 

𝑾𝑟𝑒𝑐4 

𝟏 

𝒃4 

𝒚(𝑡 − 1) 

𝟏 

𝑾𝑟𝑒𝑐3 
𝒃3 

𝟏 

𝒃1 

𝑾𝑟𝑒𝑐1 

𝒚(𝑡 − 1) 

𝟏 

𝒃2 

𝒚(𝑡 − 1) 

𝑾𝑟𝑒𝑐2 

Fig. 2. The basic LSTM architecture used for sentence embedding

model is as follows:

yg(t) = g(W4l(t) + Wrec4y(t− 1) + b4)

i(t) = σ(W3l(t) + Wrec3y(t− 1) + Wp3c(t− 1) + b3)

f(t) = σ(W2l(t) + Wrec2y(t− 1) + Wp2c(t− 1) + b2)

c(t) = f(t) ◦ c(t− 1) + i(t) ◦ yg(t)

o(t) = σ(W1l(t) + Wrec1y(t− 1) + Wp1c(t) + b1)

y(t) = o(t) ◦ h(c(t)) (2)

where ◦ denotes Hadamard (element-wise) product. A
diagram of the proposed model with more details is
presented in section VI of Supplementary Materials.

IV. LEARNING METHOD

To learn a good semantic representation of the input
sentence, our objective is to make the embedding vectors
for sentences of similar meaning as close as possible,
and meanwhile, to make sentences of different meanings
as far apart as possible. This is challenging in practice
since it is hard to collect a large amount of manually
labelled data that give the semantic similarity signal
between different sentences. Nevertheless, the widely
used commercial web search engine is able to log
massive amount of data with some limited user feedback
signals. For example, given a particular query, the click-
through information about the user-clicked document
among many candidates is usually recorded and can be
used as a weak (binary) supervision signal to indicate
the semantic similarity between two sentences (on the
query side and the document side). In this section, we
explain how to leverage such a weak supervision signal
to learn a sentence embedding vector that achieves the
aforementioned training objective. Please also note that
above objective to make sentences with similar meaning
as close as possible is similar to machine translation
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Fig. 3. The click-through signal can be used as a (binary) indication
of the semantic similarity between the sentence on the query side and
the sentence on the document side. The negative samples are randomly
sampled from the training data.

tasks where two sentences belong to two different lan-
guages with similar meanings and we want to make their
semantic representation as close as possible.

We now describe how to train the model to achieve the
above objective using the click-through data logged by a
commercial search engine. For a complete description of
the click-through data please refer to section 2 in [32].
To begin with, we adopt the cosine similarity between
the semantic vectors of two sentences as a measure for
their similarity:

R(Q,D) =
yQ(TQ)TyD(TD)

‖yQ(TQ)‖ · ‖yD(TD)‖
(3)

where TQ and TD are the lengths of the sentence
Q and sentence D, respectively. In the context of
training over click-through data, we will use Q and
D to denote “query” and “document”, respectively.
In Figure 3, we show the sentence embedding vec-
tors corresponding to the query, yQ(TQ), and all the
documents, {yD+(TD+),yD−1

(TD−1
), . . . ,yD−n (TD−n )},

where the subscript D+ denotes the (clicked) positive
sample among the documents, and the subscript D−j
denotes the j-th (un-clicked) negative sample. All these
embedding vectors are generated by feeding the sen-
tences into the RNN or LSTM-RNN model described
in Sec. III and take the y corresponding to the last word
— see the blue box in Figure 1.

We want to maximize the likelihood of the clicked
document given query, which can be formulated as the
following optimization problem:

L(Λ) = min
Λ

{
− log

N∏
r=1

P (D+
r |Qr)

}
= min

Λ

N∑
r=1

lr(Λ)

(4)
where Λ denotes the collection of the model parameters;
in regular RNN case, it includes Wrec and W in Figure
1, and in LSTM-RNN case, it includes W1, W2, W3,
W4, Wrec1, Wrec2, Wrec3, Wrec4, Wp1, Wp2, Wp3,
b1, b2, b3 and b4 in Figure 2. D+

r is the clicked
document for r-th query, P (D+

r |Qr) is the probability

of clicked document given the r-th query, N is number
of query / clicked-document pairs in the corpus and

lr(Λ) = − log

 eγR(Qr,D
+
r )

eγR(Qr,D
+
r ) +

∑n
i=j e

γR(Qr,D
−
r,j)


= log

1 +

n∑
j=1

e−γ·∆r,j

 (5)

where ∆r,j = R(Qr, D
+
r ) − R(Qr, D

−
r,j), R(·, ·) was

defined earlier in (3), D−r,j is the j-th negative candidate
document for r-th query and n denotes the number of
negative samples used during training.

The expression in (5) is a logistic loss over ∆r,j .
It upper-bounds the pairwise accuracy, i.e., the 0 - 1
loss. Since the similarity measure is the cosine function,
∆r,j ∈ [−2, 2]. To have a larger range for ∆r,j , we use
γ for scaling. It helps to penalize the prediction error
more. Its value is set empirically by experiments on a
held out dataset.

To train the RNN and LSTM-RNN, we use Back Prop-
agation Through Time (BPTT). The update equations for
parameter Λ at epoch k are as follows:

4Λk = Λk −Λk−1

4Λk = µk−14Λk−1 − εk−1∇L(Λk−1 + µk−14Λk−1)
(6)

where ∇L(·) is the gradient of the cost function in (4),
ε is the learning rate and µk is a momentum parameter
determined by the scheduling scheme used for training.
Above equations are equivalent to Nesterov method
in [33]. To see why, please refer to appendix A.1 of
[34] where Nesterov method is derived as a momentum
method. The gradient of the cost function, ∇L(Λ), is:

∇L(Λ) = −
N∑
r=1

n∑
j=1

T∑
τ=0

αr,j
∂∆r,j,τ

∂Λ︸ ︷︷ ︸
one large update

(7)

where T is the number of time steps that we unfold the
network over time and

αr,j =
−γe−γ∆r,j

1 +
∑n
j=1 e

−γ∆r,j
. (8)

∂∆r,j,τ

∂Λ in (7) and error signals for different param-
eters of RNN and LSTM-RNN that are necessary for
training are presented in Appendix A. Full derivation of
gradients in both models is presented in section III of
supplementary materials.

To accelerate training by parallelization, we use mini-
batch training and one large update instead of incremen-
tal updates during back propagation through time. To
resolve the gradient explosion problem we use gradient
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Algorithm 1 Training LSTM-RNN for Sentence Embed-
ding

Inputs: Fixed step size “ε”, Scheduling for “µ”, Gradient clip threshold
“thG”, Maximum number of Epochs “nEpoch”, Total number of query
/ clicked-document pairs “N”, Total number of un-clicked (negative) docu-
ments for a given query “n”, Maximum sequence length for truncated BPTT
“T ”.
Outputs: Two trained models, one in query side “ΛQ”, one in document
side “ΛD”.
Initialization: Set all parameters in ΛQ and ΛD to small random numbers,
i = 0, k = 1.
procedure LSTM-RNN(ΛQ,ΛD)

while i ≤ nEpoch do
for “first minibatch” → “last minibatch” do
r ← 1
while r ≤ N do

for j = 1→ n do
Compute αr,j . use (8)
Compute

∑T
τ=0 αr,j

∂∆r,j,τ
∂Λk,Q
. use (14) to (44) in appendix A

Compute
∑T
τ=0 αr,j

∂∆r,j,τ
∂Λk,D
. use (14) to (44) in appendix A

sum above terms for Q and D over j
end for
sum above terms for Q and D over r
r ← r + 1

end while
Compute ∇L(Λk,Q) . use (7)
Compute ∇L(Λk,D) . use (7)
if ‖∇L(Λk,Q)‖ > thG then
∇L(Λk,Q)← thG ·

∇L(Λk,Q)

‖∇L(Λk,Q)‖
end if
if ‖∇L(Λk,D)‖ > thG then
∇L(Λk,D)← thG ·

∇L(Λk,D)

‖∇L(Λk,D)‖
end if
Compute 4Λk,Q . use (6)
Compute 4Λk,D . use (6)
Update: Λk,Q ← 4Λk,Q + Λk−1,Q

Update: Λk,D ← 4Λk,D + Λk−1,D

k ← k + 1
end for
i← i+ 1

end while
end procedure

re-normalization method described in [35], [24]. To
accelerate the convergence, we use Nesterov method [33]
and found it effective in training both RNN and LSTM-
RNN for sentence embedding.

We have used a simple yet effective scheduling for
µk for both RNN and LSTM-RNN models, in the first
and last 2% of all parameter updates µk = 0.9 and for
the other 96% of all parameter updates µk = 0.995. We
have used a fixed step size for training RNN and a fixed
step size for training LSTM-RNN.

A summary of training method for LSTM-RNN is
presented in Algorithm 1.

V. ANALYSIS OF THE SENTENCE EMBEDDING
PROCESS AND PERFORMANCE EVALUATION

To understand how the LSTM-RNN performs sentence
embedding, we use visualization tools to analyze the
semantic vectors generated by our model. We would
like to answer the following questions: (i) How are
word dependencies and context information captured?

(ii) How does LSTM-RNN attenuate unimportant infor-
mation and detect critical information from the input
sentence? Or, how are the keywords embedded into the
semantic vector? (iii) How are the global topics identified
by LSTM-RNN?

To answer these questions, we train the RNN with
and without LSTM cells on the click-through dataset
which are logged by a commercial web search engine.
The training method has been described in Sec. IV.
Description of the corpus is as follows. The training set
includes 200,000 positive query / document pairs where
only the clicked signal is used as a weak supervision for
training LSTM. The relevance judgement set (test set)
is constructed as follows. First, the queries are sampled
from a year of search engine logs. Adult, spam, and
bot queries are all removed. Queries are de-duped so
that only unique queries remain. To reflex a natural
query distribution, we do not try to control the quality
of these queries. For example, in our query sets, there
are around 20% misspelled queries, and around 20%
navigational queries and 10% transactional queries, etc.
Second, for each query, we collect Web documents to
be judged by issuing the query to several popular search
engines (e.g., Google, Bing) and fetching top-10 retrieval
results from each. Finally, the query-document pairs are
judged by a group of well-trained assessors. In this
study all the queries are preprocessed as follows. The
text is white-space tokenized and lower-cased, numbers
are retained, and no stemming/inflection treatment is
performed. Unless stated otherwise, in the experiments
we used 4 negative samples, i.e., n = 4 in Fig. 3.

We now proceed to perform a comprehensive analysis
by visualizing the trained RNN and LSTM-RNN models.
In particular, we will visualize the on-and-off behaviors
of the input gates, output gates, cell states, and the
semantic vectors in LSTM-RNN model, which reveals
how the model extracts useful information from the input
sentence and embeds it properly into the semantic vector
according to the topic information.

Although giving the full learning formula for all
the model parameters in the previous section, we will
remove the peephole connections and the forget gate
from the LSTM-RNN model in the current task. This
is because the length of each sequence, i.e., the number
of words in a query or a document, is known in advance,
and we set the state of each cell to zero in the beginning
of a new sequence. Therefore, forget gates are not a great
help here. Also, as long as the order of words is kept, the
precise timing in the sequence is not of great concern.
Therefore, peephole connections are not that important
as well. Removing peephole connections and forget gate
will also reduce the amount of training time, since a
smaller number of parameters need to be learned.
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Fig. 4. Query: “hotels in shanghai”. Since the sentence ends at
the third word, all the values to the right of it are zero (green color).

A. Analysis

In this section we would like to examine how the in-
formation in the input sentence is sequentially extracted
and embedded into the semantic vector over time by the
LSTM-RNN model.

1) Attenuating Unimportant Information: First, we
examine the evolution of the semantic vector and how
unimportant words are attenuated. Specifically, we feed
the following input sentences from the test dataset into
the trained LSTM-RNN model:
• Query: “hotels in shanghai”
• Document: “shanghai hotels accommodation hotel

in shanghai discount and reservation”
Activations of input gate, output gate, cell state and the
embedding vector for each cell for query and document
are shown in Fig. 4 and Fig. 5, respectively. The vertical
axis is the cell index from 1 to 32, and the horizontal
axis is the word index from 1 to 10 numbered from left
to right in a sequence of words and color codes show
activation values. From Figs.4–5, we make the following
observations:
• Semantic representation y(t) and cell states c(t) are

evolving over time. Valuable context information is
gradually absorbed into c(t) and y(t), so that the
information in these two vectors becomes richer
over time, and the semantic information of the
entire input sentence is embedded into vector y(t),
which is obtained by applying output gates to the
cell states c(t).

• The input gates evolve in such a way that it
attenuates the unimportant information and de-
tects the important information from the input
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Fig. 5. Document: “shanghai hotels accommodation hotel
in shanghai discount and reservation”. Since the sentence ends
at the ninth word, all the values to the right of it are zero (green color).

sentence. For example, in Fig. 5(a), most of
the input gate values corresponding to word 3,
word 7 and word 9 have very small values
(light green-yellow color)1, which corresponds to
the words “accommodation”, “discount” and
“reservation”, respectively, in the document sen-
tence. Interestingly, input gates reduce the effect of
these three words in the final semantic representa-
tion, y(t), such that the semantic similarity between
sentences from query and document sides are not
affected by these words.

2) Keywords Extraction: In this section, we show
how the trained LSTM-RNN extracts the important in-
formation, i.e., keywords, from the input sentences. To
this end, we backtrack semantic representations, y(t),
over time. We focus on the 10 most active cells in
final semantic representation. Whenever there is a large
enough change in cell activation value (y(t)), we assume
an important keyword has been detected by the model.
We illustrate the result using the above example (“hotels
in shanghai”). The evolution of the 10 most active cells
activation, y(t), over time are shown in Fig. 6 for the
query and the document sentences.2From Fig. 6, we also
observe that different words activate different cells. In
Tables I–II, we show the number of cells each word

1If this is not clearly visible, please refer to Fig. 1 in section I of
supplementary materials. We have adjusted color bar for all figures to
have the same range, for this reason the structure might not be clearly
visible. More visualization examples could also be found in section IV
of Supplementary Materials

2Likewise, the vertical axis is the cell index and horizontal axis is
the word index in the sentence.
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TABLE II
KEY WORDS FOR DOCUMENT: “shanghai hotels accommodation hotel in shanghai discount and reservation”

shanghai hotels accommodation hotel in shanghai discount and reservation
Number of assigned

cells out of 10
Left to Right - 4 3 8 1 8 5 3 4

Number of assigned
cells out of 10
Right to Left 4 6 5 4 5 1 7 5 -
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Fig. 6. Activation values, y(t), of 10 most active cells for Query:
“hotels in shanghai” and Document: “shanghai hotels accommodation
hotel in shanghai discount and reservation”

TABLE I
KEY WORDS FOR QUERY: “hotels in shanghai”

Query hotels in shanghai
Number of assigned

cells out of 10
Left to Right - 0 7

Number of assigned
cells out of 10
Right to Left 6 0 -

activates.3 We used Bidirectional LSTM-RNN to get the
results of these tables where in the first row, LSTM-RNN
reads sentences from left to right and in the second row
it reads sentences from right to left. In these tables we
labelled a word as a keyword if more than 40% of top
10 active cells in both directions declare it as keyword.
The boldface numbers in the table show that the number
of cells assigned to that word is more than 4, i.e., 40%
of top 10 active cells. From the tables, we observe that
the keywords activate more cells than the unimportant
words, meaning that they are selectively embedded into
the semantic vector.

3) Topic Allocation: Now, we further show that the
trained LSTM-RNN model not only detects the key-
words, but also allocates them properly to different cells
according to the topics they belong to. To do this, we go
through the test dataset using the trained LSTM-RNN
model and search for the keywords that are detected

3Note that before presenting the first word of the sequence, activation
values are initially zero so that there is always a considerable change in
the cell states after presenting the first word. For this reason, we have
not indicated the number of cells detecting the first word as a keyword.
Moreover, another keyword extraction example can be found in section
IV of supplementary materials.

by a specific cell. For simplicity, we use the following
simple approach: for each given query we look into the
keywords that are extracted by the 5 most active cells
of LSTM-RNN and list them in Table III. Interestingly,
each cell collects keywords of a specific topic. For
example, cell 26 in Table III extracts keywords related
to the topic “food” and cells 2 and 6 mainly focus on
the keywords related to the topic “health”.

B. Performance Evaluation

1) Web Document Retrieval Task: In this section, we
apply the proposed sentence embedding method to an
important web document retrieval task for a commercial
web search engine. Specifically, the RNN models (with
and without LSTM cells) embed the sentences from the
query and the document sides into their corresponding
semantic vectors, and then compute the cosine similarity
between these vectors to measure the semantic similarity
between the query and candidate documents.

Experimental results for this task are shown in Table
IV using the standard metric mean Normalized Dis-
counted Cumulative Gain (NDCG) [36] (the higher the
better) for evaluating the ranking performance of the
RNN and LSTM-RNN on a standalone human-rated test
dataset. We also trained several strong baselines, such as
DSSM [3] and CLSM [10], on the same training dataset
and evaluated their performance on the same task. For
fair comparison, our proposed RNN and LSTM-RNN
models are trained with the same number of parameters
as the DSSM and CLSM models (14.4M parameters).
Besides, we also include in Table IV two well-known
information retrieval (IR) models, BM25 and PLSA, for
the sake of benchmarking. The BM25 model uses the
bag-of-words representation for queries and documents,
which is a state-of-the-art document ranking model based
on term matching, widely used as a baseline in IR
society. PLSA (Probabilistic Latent Semantic Analysis)
is a topic model proposed in [37], which is trained
using the Maximum A Posterior estimation [38] on
the documents side from the same training dataset. We
experimented with a varying number of topics from 100
to 500 for PLSA, which gives similar performance, and
we report in Table IV the results of using 500 topics.
Results for a language model based method, uni-gram
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TABLE III
KEYWORDS ASSIGNED TO EACH CELL OF LSTM-RNN FOR DIFFERENT QUERIES OF TWO TOPICS, “FOOD” AND “HEALTH”

Query cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8 cell 9 cell 10 cell 11 cell 12 cell 13 cell 14 cell 15 cell 16
al yo yo sauce yo sauce sauce

atkins diet lasagna diet
blender recipes

cake bakery edinburgh bakery
canning corn beef hash beef, hash

torre de pizza
famous desserts desserts

fried chicken chicken chicken
smoked turkey recipes
italian sausage hoagies sausage

do you get allergy allergy
much pain will after total knee replacement pain pain, knee

how to make whiter teeth make, teeth to
illini community hospital community, hospital hospital community

implant infection infection infection
introductory psychology psychology psychology

narcotics during pregnancy side effects pregnancy pregnancy,effects, during during
fight sinus infections infections

health insurance high blood pressure insurance blood high, blood
all antidepressant medications antidepressant, medications

Query cell 17 cell 18 cell 19 cell 20 cell 21 cell 22 cell 23 cell 24 cell 25 cell 26 cell 27 cell 28 cell 29 cell 30 cell 31 cell 32
al yo yo sauce

atkins diet lasagna diet diet
blender recipes recipes

cake bakery edinburgh bakery bakery
canning corn beef hash corn, beef

torre de pizza pizza pizza
famous desserts

fried chicken chicken
smoked turkey recipes turkey recipes
italian sausage hoagies hoagies sausage sausage

do you get allergy
much pain will after total knee replacement knee replacement

how to make whiter teeth whiter
illini community hospital hospital hospital

implant infection infection
introductory psychology psychology

narcotics during pregnancy side effects
fight sinus infections sinus, infections infections

health insurance high blood pressure high, pressure insurance,high
all antidepressant medications antidepressant medications

language model (ULM) with Dirichlet smoothing, are
also presented in the table.

To compare the performance of the proposed method
with general sentence embedding methods in document
retrieval task, we also performed experiments using two
general sentence embedding methods.

1) In the first experiment, we used the method pro-
posed in [2] that generates embedding vectors
known as Paragraph Vectors. It is also known as
doc2vec. It maps each word to a vector and then
uses the vectors representing all words inside a
context window to predict the vector representation
of the next word. The main idea in this method is
to use an additional paragraph token from previ-
ous sentences in the document inside the context
window. This paragraph token is mapped to vector
space using a different matrix from the one used to
map the words. A primary version of this method
is known as word2vec proposed in [39]. The only
difference is that word2vec does not include the
paragraph token.
To use doc2vec on our dataset, we first trained
doc2vec model on both train set (about 200,000
query-document pairs) and test set (about 900,000
query-document pairs). This gives us an embed-
ding vector for every query and document in the
dataset. We used the following parameters for
training:
• min-count=1 : minimum number of of words

per sentence, sentences with words less than
this will be ignored. We set it to 1 to make
sure we do not throw away anything.

• window=5 : fixed window size explained in
[2]. We used different window sizes, it re-
sulted in about just 0.4% difference in final
NDCG values.

• size=100 : feature vector dimension. We used
400 as well but did not get significantly dif-
ferent NDCG values.

• sample=1e-4 : this is the down sampling ratio
for the words that are repeated a lot in corpus.

• negative=5 : the number of noise words, i.e.,
words used for negative sampling as explained
in [2].

• We used 30 epochs of training. We ran an ex-
periment with 100 epochs but did not observe
much difference in the results.

• We used gensim [40] to perform experiments.

To make sure that a meaningful model is trained,
we used the trained doc2vec model to find the
most similar words to two sample words in our
dataset, e.g., the words “pizza” and “infection”.
The resulting words and corresponding scores are
presented in section V of Supplementary Materi-
als. As it is observed from the resulting words,
the trained model is a meaningful model and can
recognise semantic similarity.
Doc2vec also assigns an embedding vector for
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each query and document in our test set. We used
these embedding vectors to calculate the cosine
similarity score between each query-document pair
in the test set. We used these scores to calcu-
late NDCG values reported in Table IV for the
Doc2Vec model.
Comparing the results of doc2vec model with
our proposed method for document retrieval task
shows that the proposed method in this paper
significantly outperforms doc2vec. One reason for
this is that we have used a very general sen-
tence embedding method, doc2vec, for document
retrieval task. This experiment shows that it is
not a good idea to use a general sentence embed-
ding method and using a better task oriented cost
function, like the one proposed in this paper, is
necessary.

2) In the second experiment, we used the Skip-
Thought vectors proposed in [6]. During train-
ing, skip-thought method gets a tuple (s(t −
1), s(t), s(t + 1)) where it encodes the sentence
s(t) using one encoder, and tries to reconstruct
the previous and next sentences, i.e., s(t− 1) and
s(t+ 1), using two separate decoders. The model
uses RNNs with Gated Recurrent Unit (GRU)
which is shown to perform as good as LSTM.
In the paper, authors have emphasized that: ”Our
model depends on having a training corpus of con-
tiguous text”. Therefore, training it on our training
set where we barely have more than one sentence
in query or document title is not fair. However,
since their model is trained on 11,038 books from
BookCorpus dataset [7] which includes about 74
million sentences, we can use the trained model
as an off-the-shelf sentence embedding method as
authors have concluded in the conclusion of the
paper.
To do this we downloaded their trained mod-
els and word embeddings (its size was more
than 2GB) available from “https://github.com/
ryankiros/skip-thoughts”. Then we encoded each
query and its corresponding document title in our
test set as vector.
We used the combine-skip sentence embedding
method, a vector of size 4800 × 1, where it is
concatenation of a uni-skip, i.e., a unidirectional
encoder resulting in a 2400 × 1 vector, and a bi-
skip, i.e., a bidirectional encoder resulting in a
1200 × 1 vector by forward encoder and another
1200×1 vector by backward encoder. The authors
have reported their best results with the combine-
skip encoder.
Using the 4800 × 1 embedding vectors for each
query and document we calculated the scores and
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Fig. 7. LSTM-RNN compared to RNN during training: The vertical
axis is logarithmic scale of the training cost, L(Λ), in (4). Horizontal
axis is the number of epochs during training.

NDCG for the whole test set which are reported
in Table IV.
The proposed method in this paper is perform-
ing significantly better than the off-the-shelf skip-
thought method for document retrieval task. Nev-
ertheless, since we used skip-thought as an off-
the-shelf sentence embedding method, its result
is good. This result also confirms that learning
embedding vectors using a model and cost function
specifically designed for document retrieval task is
necessary.

As shown in Table IV, the LSTM-RNN significantly
outperforms all these models, and exceeds the best
baseline model (CLSM) by 1.3% in NDCG@1 score,
which is a statistically significant improvement. As we
pointed out in Sec. V-A, such an improvement comes
from the LSTM-RNN’s ability to embed the contextual
and semantic information of the sentences into a finite
dimension vector. In Table IV, we have also presented
the results when different number of negative samples,
n, is used. Generally, by increasing n we expect the
performance to improve. This is because more nega-
tive samples results in a more accurate approximation
of the partition function in (5). The results of using
Bidirectional LSTM-RNN are also presented in Table
IV. In this model, one LSTM-RNN reads queries and
documents from left to right, and the other LSTM-RNN
reads queries and documents from right to left. Then the
embedding vectors from left to right and right to left
LSTM-RNNs are concatenated to compute the cosine
similarity score and NDCG values.

A comparison between the value of the cost function
during training for LSTM-RNN and RNN on the click-
through data is shown in Fig. 7. From this figure,
we conclude that LSTM-RNN is optimizing the cost
function in (4) more effectively. Please note that all
parameters of both models are initialized randomly.

https://github.com/ryankiros/skip-thoughts
https://github.com/ryankiros/skip-thoughts
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TABLE IV
COMPARISONS OF NDCG PERFORMANCE MEASURES (THE HIGHER

THE BETTER) OF PROPOSED MODELS AND A SERIES OF BASELINE
MODELS, WHERE nhid REFERS TO THE NUMBER OF HIDDEN UNITS,
ncell REFERS TO NUMBER OF CELLS, win REFERS TO WINDOW SIZE,
AND n IS THE NUMBER OF NEGATIVE SAMPLES WHICH IS SET TO 4

UNLESS OTHERWISE STATED. UNLESS STATED OTHERWISE, THE
RNN AND LSTM-RNN MODELS ARE CHOSEN TO HAVE THE SAME

NUMBER OF MODEL PARAMETERS AS THE DSSM AND CLSM
MODELS: 14.4M, WHERE 1M = 106 . THE BOLDFACE NUMBERS

ARE THE BEST RESULTS.
Model NDCG NDCG NDCG

@1 @3 @10
Skip-Thought 26.9% 29.7% 36.2%
off-the-shelf

Doc2Vec 29.1% 31.8% 38.4%
ULM 30.4% 32.7% 38.5%
BM25 30.5% 32.8% 38.8%

PLSA (T=500) 30.8% 33.7% 40.2%
DSSM (nhid = 288/96) 31.0% 34.4% 41.7%

2 Layers
CLSM (nhid = 288/96, win=1) 31.8% 35.1% 42.6%
2 Layers, 14.4 M parameters

CLSM (nhid = 288/96, win=3) 32.1% 35.2% 42.7%
2 Layers, 43.2 M parameters

CLSM (nhid = 288/96, win=5) 32.0% 35.2% 42.6%
2 Layers, 72 M parameters

RNN (nhid = 288) 31.7% 35.0% 42.3%
1 Layer

LSTM-RNN (ncell = 32) 31.9% 35.5% 42.7%
1 Layer, 4.8 M parameters
LSTM-RNN (ncell = 64) 32.9% 36.3% 43.4%

1 Layer, 9.6 M parameters
LSTM-RNN (ncell = 96) 32.6% 36.0% 43.4%

1 Layer, n = 2
LSTM-RNN (ncell = 96) 33.1% 36.5% 43.6%

1 Layer, n = 4
LSTM-RNN (ncell = 96) 33.1% 36.6% 43.6%

1 Layer, n = 6
LSTM-RNN (ncell = 96) 33.1% 36.4% 43.7%

1 Layer, n = 8
Bidirectional LSTM-RNN 33.2% 36.6% 43.6%

(ncell = 96), 1 Layer

VI. CONCLUSIONS AND FUTURE WORK

This paper addresses deep sentence embedding. We
propose a model based on long short-term memory to
model the long range context information and embed the
key information of a sentence in one semantic vector. We
show that the semantic vector evolves over time and only
takes useful information from any new input. This has
been made possible by input gates that detect useless
information and attenuate it. Due to general limitation
of available human labelled data, we proposed and
implemented training the model with a weak supervision
signal using user click-through data of a commercial web
search engine.

By performing a detailed analysis on the model, we
showed that: 1) The proposed model is robust to noise,
i.e., it mainly embeds keywords in the final semantic
vector representing the whole sentence and 2) In the pro-
posed model, each cell is usually allocated to keywords

from a specific topic. These findings have been supported
using extensive examples. As a concrete sample appli-
cation of the proposed sentence embedding method, we
evaluated it on the important language processing task of
web document retrieval. We showed that, for this task,
the proposed method outperforms all existing state of the
art methods significantly.

This work has been motivated by the earlier successes
of deep learning methods in speech [41], [42], [43],
[44], [45] and in semantic modelling [3], [10], [46],
[47], and it adds further evidence for the effectiveness
of these methods. Our future work will further extend
the methods to include 1) Using the proposed sentence
embedding method for other important language pro-
cessing tasks for which we believe sentence embedding
plays a key role, e.g., the question / answering task. 2)
Exploit the prior information about the structure of the
different matrices in Fig. 2 to develop a more effective
cost function and learning method. 3) Exploiting atten-
tion mechanism in the proposed model to improve the
performance and find out which words in the query are
aligned to which words of the document.

APPENDIX A
EXPRESSIONS FOR THE GRADIENTS

In this appendix we present the final gradient expres-
sions that are necessary to use for training the proposed
models. Full derivations of these gradients are presented
in section III of supplementary materials.

A. RNN

For the recurrent parameters, Λ = Wrec (we have
ommitted r subscript for simplicity):

∂∆j,τ

∂Wrec
= [δD

+

yQ (t− τ)yTQ(t− τ − 1)+

δD
+

yD (t− τ)yTD+(t− τ − 1)]− [δ
D−j
yQ (t− τ)yTQ(t− τ − 1)

+ δ
D−j
yD (t− τ)yT

D−j
(t− τ − 1)] (9)

where D−j means j-th candidate document that is not
clicked and

δyQ(t− τ − 1) = (1− yQ(t− τ − 1))◦
(1 + yQ(t− τ − 1)) ◦WT

recδyQ(t− τ) (10)

and the same as (10) for δyD (t−τ−1) with D subscript
for document side model. Please also note that:

δyQ(TQ) = (1− yQ(TQ)) ◦ (1 + yQ(TQ))◦
(b.c.yD(TD)− a.b3.c.yQ(TQ)),

δyD (TD) = (1− yD(TD)) ◦ (1 + yD(TD))◦
(b.c.yQ(TQ)− a.b.c3.yD(TD)) (11)
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where

a = yQ(t = TQ)TyD(t = TD)

b =
1

‖yQ(t = TQ)‖
, c =

1

‖yD(t = TD)‖
(12)

For the input parameters, Λ = W:

∂∆j,τ

∂W
= [δD

+

yQ (t− τ)lTQ(t− τ)+

δD
+

yD (t− τ)lTD+(t− τ)]−

[δ
D−j
yQ (t− τ)lTQ(t− τ) + δ

D−j
yD (t− τ)lT

D−j
(t− τ)] (13)

A full derivation of BPTT for RNN is presented in
section III of supplementary materials.

B. LSTM-RNN

Starting with the cost function in (4), we
use the Nesterov method described in (6) to
update LSTM-RNN model parameters. Here, Λ
is one of the weight matrices or bias vectors
{W1,W2,W3,W4,Wrec1,Wrec2,Wrec3,Wrec4

,Wp1,Wp2,Wp3,b1,b2,b3,b4} in the LSTM-RNN
architecture. The general format of the gradient of the
cost function, ∇L(Λ), is the same as (7). By definition
of ∆r,j , we have:

∂∆r,j

∂Λ
=
∂R(Qr, D

+
r )

∂Λ
− ∂R(Qr, Dr,j)

∂Λ
(14)

We omit r and j subscripts for simplicity and present
∂R(Q,D)

∂Λ for different parameters of each cell of LSTM-
RNN in the following subsections. This will complete
the process of calculating ∇L(Λ) in (7) and then we
can use (6) to update LSTM-RNN model parameters.
In the subsequent subsections vectors vQ and vD are
defined as:

vQ = (b.c.yD(t = TD)− a.b3.c.yQ(t = TQ))

vD = (b.c.yQ(t = TQ)− a.b.c3.yD(t = TD)) (15)

where a, b and c are defined in (12). Full derivation of
truncated BPTT for LSTM-RNN model is presented in
section III of supplementary materials.

1) Output Gate: For recurrent connections we have:

∂R(Q,D)

∂Wrec1
= δrec1yQ (t).yQ(t−1)T +δrec1yD (t).yD(t−1)T

(16)
where

δrec1yQ (t) = oQ(t) ◦ (1−oQ(t)) ◦h(cQ(t)) ◦vQ(t) (17)

and the same as (17) for δrec1yD (t) with subscript D for
document side model. For input connections, W1, and
peephole connections, Wp1, we will have:

∂R(Q,D)

∂W1
= δrec1yQ (t).lQ(t)T + δrec1yD (t).lD(t)T (18)

∂R(Q,D)

∂Wp1
= δrec1yQ (t).cQ(t)T + δrec1yD (t).cD(t)T (19)

The derivative for output gate bias values will be:

∂R(Q,D)

∂b1
= δrec1yQ (t) + δrec1yD (t) (20)

2) Input Gate: For the recurrent connections we have:

∂R(Q,D)

∂Wrec3
=

diag(δrec3yQ (t)).
∂cQ(t)

∂Wrec3
+ diag(δrec3yD (t)).

∂cD(t)

∂Wrec3
(21)

where

δrec3yQ (t) = (1− h(cQ(t))) ◦ (1 + h(cQ(t))) ◦ oQ(t) ◦ vQ(t)

∂cQ(t)

∂Wrec3
= diag(fQ(t)).

∂cQ(t− 1)

∂Wrec3
+ bi,Q(t).yQ(t− 1)T

bi,Q(t) = yg,Q(t) ◦ iQ(t) ◦ (1− iQ(t)) (22)

In equation (21), δrec3yD (t) and ∂cD(t)
∂Wrec3

are the same as
(22) with D subscript. For the input connections we will
have the following:

∂R(Q,D)

∂W3
=

diag(δrec3yQ (t)).
∂cQ(t)

∂W3
+ diag(δrec3yD (t)).

∂cD(t)

∂W3
(23)

where

∂cQ(t)

∂W3
= diag(fQ(t)).

∂cQ(t− 1)

∂W3
+ bi,Q(t).xQ(t)T

(24)
For the peephole connections we will have:

∂R(Q,D)

∂Wp3
=

diag(δrec3yQ (t)).
∂cQ(t)

∂Wp3
+ diag(δrec3yD (t)).

∂cD(t)

∂Wp3
(25)

where

∂cQ(t)

∂Wp3
= diag(fQ(t)).

∂cQ(t− 1)

∂Wp3
+bi,Q(t).cQ(t−1)T

(26)
For bias values, b3, we will have:

∂R(Q,D)

∂b3
=

diag(δrec3yQ (t)).
∂cQ(t)

∂b3
+ diag(δrec3yD (t)).

∂cD(t)

∂b3
(27)

where

∂cQ(t)

∂b3
= diag(fQ(t)).

∂cQ(t− 1)

∂b3
+ bi,Q(t) (28)
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3) Forget Gate: For the recurrent connections we will
have:

∂R(Q,D)

∂Wrec2
=

diag(δrec2yQ (t)).
∂cQ(t)

∂Wrec2
+ diag(δrec2yD (t)).

∂cD(t)

∂Wrec2
(29)

where

δrec2yQ (t) = (1− h(cQ(t))) ◦ (1 + h(cQ(t))) ◦ oQ(t) ◦ vQ(t)

∂cQ(t)

∂Wrec2
= diag(fQ(t)).

∂cQ(t− 1)

∂Wrec2
+ bf,Q(t).yQ(t− 1)T

bf,Q(t) = cQ(t− 1) ◦ fQ(t) ◦ (1− fQ(t)) (30)

For input connections to forget gate we will have:

∂R(Q,D)

∂W2
=

diag(δrec2yQ (t)).
∂cQ(t)

∂W2
+ diag(δrec2yD (t)).

∂cD(t)

∂W2
(31)

where

∂cQ(t)

∂W2
= diag(fQ(t)).

∂cQ(t− 1)

∂W2
+ bf,Q(t).xQ(t)T

(32)
For peephole connections we have:

∂R(Q,D)

∂Wp2
=

diag(δrec2yQ (t)).
∂cQ(t)

∂Wp2
+ diag(δrec2yD (t)).

∂cD(t)

∂Wp2
(33)

where

∂cQ(t)

∂Wp2
= diag(fQ(t)).

∂cQ(t− 1)

∂Wp2
+bf,Q(t).cQ(t−1)T

(34)
For forget gate’s bias values we will have:

∂R(Q,D)

∂b2
=

diag(δrec2yQ (t)).
∂cQ(t)

∂b2
+ diag(δrec2yD (t)).

∂cD(t)

∂b2
(35)

where

∂cQ(t)

∂b2
= diag(fQ(t)).

∂cQ(t− 1)

∂b3
+ bf,Q(t) (36)

4) Input without Gating (yg(t)): For recurrent con-
nections we will have:

∂R(Q,D)

∂Wrec4
=

diag(δrec4yQ (t)).
∂cQ(t)

∂Wrec4
+ diag(δrec4yD (t)).

∂cD(t)

∂Wrec4
(37)

where

δrec4yQ (t) = (1− h(cQ(t))) ◦ (1 + h(cQ(t))) ◦ oQ(t) ◦ vQ(t)

∂cQ(t)

∂Wrec4
= diag(fQ(t)).

∂cQ(t− 1)

∂Wrec4
+ bg,Q(t).yQ(t− 1)T

bg,Q(t) = iQ(t) ◦ (1− yg,Q(t)) ◦ (1 + yg,Q(t)) (38)

For input connection we have:

∂R(Q,D)

∂W4
=

diag(δrec4yQ (t)).
∂cQ(t)

∂W4
+ diag(δrec4yD (t)).

∂cD(t)

∂W4
(39)

where

∂cQ(t)

∂W4
= diag(fQ(t)).

∂cQ(t− 1)

∂W4
+ bg,Q(t).xQ(t)T

(40)
For bias values we will have:

∂R(Q,D)

∂b4
=

diag(δrec4yQ (t)).
∂cQ(t)

∂b4
+ diag(δrec4yD (t)).

∂cD(t)

∂b4
(41)

where

∂cQ(t)

∂b4
= diag(fQ(t)).

∂cQ(t− 1)

∂b4
+ bg,Q(t) (42)

5) Error signal backpropagation: Error signals are
back propagated through time using following equations:

δrec1Q (t− 1) =

[oQ(t− 1) ◦ (1− oQ(t− 1)) ◦ h(cQ(t− 1))]

◦WT
rec1.δ

rec1
Q (t) (43)

δreciQ (t− 1) = [(1− h(cQ(t− 1))) ◦ (1 + h(cQ(t− 1)))

◦ oQ(t− 1)] ◦WT
reci .δ

reci
Q (t), for i ∈ {2, 3, 4}

(44)
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SUPPLEMENTARY
MATERIAL

APPENDIX B
A MORE CLEAR FIGURE FOR INPUT GATE FOR

“hotels in shanghai” EXAMPLE

In this section we present a more clear figure for part
(a) of Fig. 5 that shows the structure of the input gate for
document side of “hotels in shanghai” example. As it
is clearly visible from this figure, the input gate values
for most of the cells corresponding to word 3, word
7 and word 9 in document side of LSTM-RNN have
very small values (light green-yellow color). These are
corresponding to words “accommodation”, “discount”
and “reservation” respectively in the document title.
Interestingly, input gates are trying to reduce effect
of these three words in the final representation (y(t))
because the LSTM-RNN model is trained to maximize
the similarity between query and document if they are a
good match.

APPENDIX C
A CLOSER LOOK AT RNNS WITH AND WITHOUT

LSTM CELLS IN WEB DOCUMENT RETRIEVAL TASK

In this section we further show examples to reveal
the advantage of LSTM-RNN sentence embedding com-
pared to the RNN sentence embedding.

First, we compare the scores assigned by trained RNN
and LSTM-RNN to our “hotels in shanghai” example.
On average, each query in our test dataset is associated
with 15 web documents (URLs). Each query / document
pair has a relevance label which is human generated.
These relevance labels are “Bad”, “Fair”, “Good” and

TABLE V
RNNS WITH & WITHOUT LSTM CELLS FOR THE SAME QUERY:

“hotels in shanghai”
hotels in shanghai

Number of assigned
cells out of 10 (LSTM-RNN) - 0 7

Number of assigned
neurons out of 10 (RNN) - 2 9

“Excellent”. This example is rated as a “Good” match
in the dataset. The score for this pair assigned by RNN
is “0.8165” while the score assigned by LSTM-RNN is
“0.9161”. Please note that the score is between 0 and
1. This means that the score assigned by LSTM-RNN is
more correspondent with the human generated label.

Second, we compare the number of assigned neurons
and cells to each word by RNN and LSTM-RNN respec-
tively. To do this, we rely on the 10 most active cells
and neurons in the final semantic vectors in both models.
Results are presented in Table V and Table VI for query
and document respectively. An interesting observation
is that RNN sometimes assigns neurons to unimportant
words, e.g., 6 neurons are assigned to the word “in” in
Table VI.

As another example we consider the query,
“how to fix bath tub wont turn off”. This
example is rated as a “Bad” match in the dataset by
human. It is good to know that the score for this pair
assigned by RNN is “0.7016” while the score assigned
by LSTM-RNN is “0.5944”. This shows the score
generated by LSTM-RNN is closer to human generated
label.

Number of assigned neurons and cells to each word
by RNN and LSTM-RNN are presented in Table VII
and Table VIII for query and document. This is out of
10 most active neurons and cells in the semantic vector
of RNN and LSTM-RNN. Examples of RNN assigning
neurons to unimportant words are 3 neurons to the word
“a” and 4 neurons to the word “you” in Table VIII.

APPENDIX D
DERIVATION OF BPTT FOR RNN AND LSTM-RNN

In this appendix we present the full derivation of the
gradients for RNN and LSTM-RNN.

A. Derivation of BPTT for RNN

From (4) and (5) we have:

∂L(Λ)

∂Λ
=

N∑
r=1

∂lr(Λ)

∂Λ
= −

N∑
r=1

n∑
j=1

αr,j
∂∆r,j

∂Λ
(45)

where

αr,j =
−γe−γ∆r,j

1 +
∑n
j=1 e

−γ∆r,j
(46)
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TABLE VI
RNNS WITH & WITHOUT LSTM CELLS FOR THE SAME DOCUMENT: “shanghai hotels accommodation hotel in shanghai discount and

reservation”
shanghai hotels accommodation hotel in shanghai discount and reservation

Number of assigned
cells out of 10 (LSTM-RNN) - 4 3 8 1 8 5 3 4

Number of assigned
neurons out of 10 (RNN) - 10 7 9 6 8 3 2 6

TABLE VII
RNN VERSUS LSTM-RNN FOR QUERY: “how to fix bath tub wont turn off ”

how to fix bath tub wont turn off
Number of assigned

cells out of 10 (LSTM-RNN) - 0 4 7 6 3 5 0
Number of assigned

neurons out of 10 (RNN) - 1 10 4 6 2 7 1

TABLE VIII
RNN VERSUS LSTM-RNN FOR DOCUMENT: “how do you paint a bathtub and what paint should . . . ”

how do you paint a bathtub and what paint should you . . .
Number of assigned

cells out of 10(LSTM-RNN) - 1 1 7 0 9 2 3 8 4
Number of assigned

neurons out of 10(RNN) - 1 4 4 3 7 2 5 4 7

and

∆r,j = R(Qr, D
+
r )−R(Qr, Dr,j) (47)

We need to find ∂∆r,j

∂Λ for input weights and recurrent
weights. We omit r subscript for simplicity.

1) Recurrent Weights:

∂∆j

∂Wrec
=
∂R(Q,D+)

∂Wrec
−
∂R(Q,D−j )

∂Wrec
(48)

We divide R(D,Q) into three components:

R(Q,D) = yQ(t = TQ)TyD(t = TD)︸ ︷︷ ︸
a

.

1

‖yQ(t = TQ)‖︸ ︷︷ ︸
b

.
1

‖yD(t = TD)‖︸ ︷︷ ︸
c

(49)

then

∂R(Q,D)

∂Wrec
=

∂a

∂Wrec
.b.c︸ ︷︷ ︸

D

+ a.
∂b

∂Wrec
.c︸ ︷︷ ︸

E

+

a.b.
∂c

∂Wrec︸ ︷︷ ︸
F

(50)

We have

D =
∂yQ(t = TQ)TyD(t = TD).b.c

∂Wrec

=
∂yQ(t = TQ)TyD(t = TD).b.c

∂yQ(t = TQ)
.
∂yQ(t = TQ)

∂Wrec
+

∂yQ(t = TQ)TyD(t = TD).b.c

∂yD(t = TD)
.
∂yD(t = TD)

∂Wrec

= yD(t = TD).b.c.
∂yQ(t = TQ)

∂Wrec
+

yQ(t = TQ). (b.c)T︸ ︷︷ ︸
b.c

.
∂yD(t = TD)

∂Wrec
(51)

Since f(.) = tanh(.), using chain rule we have

∂yQ(t = TQ)

Wrec
=

[(1− yQ(t = TQ)) ◦ (1 + yQ(t = TQ))]yQ(t− 1)T

(52)

and therefore

D = [b.c.yD(t = TD) ◦ (1− yQ(t = TQ))◦
(1 + yQ(t = TQ))]yQ(t− 1)T+

[b.c.yQ(t = TQ) ◦ (1− yD(t = TD))◦
(1 + yD(t = TD))]yD(t− 1)T (53)

To find E we use following basic rule:

∂

∂x
‖x− a‖2 =

x− a

‖x− a‖2
(54)
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Therefore

E = a.c.
∂

∂Wrec
(‖yQ(t = TQ)‖)−1 =

− a.c.(‖yQ(t = TQ)‖)−2.
∂‖yQ(t = TQ)‖

∂Wrec

= −a.c.(‖yQ(t = TQ)‖)−2.
yQ(t = TQ)

‖yQ(t = TQ)‖
∂yQ(t = TQ)

∂Wrec

= −[a.c.b3.yQ(t = TQ) ◦ (1− yQ(t = TQ))◦
(1 + yQ(t = TQ))]yQ(t− 1) (55)

F is calculated similar to (55):

F = −[a.b.c3.yD(t = TD) ◦ (1− yD(t = TD))◦
(1 + yD(t = TD))]yD(t− 1) (56)

Considering (50),(53),(55) and (56) we have:

∂R(Q,D)

∂Wrec
= δyQ(t)yQ(t− 1)T + δyD (t)yD(t− 1)T

(57)
where

δyQ(t = TQ) = (1− yQ(t = TQ)) ◦ (1 + yQ(t = TQ))◦
(b.c.yD(t = TD)− a.b3.c.yQ(t = TQ)),

δyD (t = TD) = (1− yD(t = TD)) ◦ (1 + yD(t = TD))◦
(b.c.yQ(t = TQ)− a.b.c3.yD(t = TD)) (58)

Equation (58) will just unfold the network one time step,
to unfold it over rest of time steps using backpropagation
we have:

δyQ(t− τ − 1) = (1− yQ(t− τ − 1))◦
(1 + yQ(t− τ − 1)) ◦WT

recδyQ(t− τ),

δyD (t− τ − 1) = (1− yD(t− τ − 1))◦
(1 + yD(t− τ − 1)) ◦WT

recδyD (t− τ) (59)

where τ is the number of time steps that we unfold the
network over time which is from 0 to TQ and TD for
queries and documents respectively. Now using (48) we
have:

∂∆j,τ

∂Wrec
= [δD

+

yQ (t− τ)yTQ(t− τ − 1)+

δD
+

yD (t− τ)yTD+(t− τ − 1)]− [δ
D−j
yQ (t− τ)yTQ(t− τ − 1)

+ δ
D−j
yD (t− τ)yT

D−j
(t− τ − 1)] (60)

To calculate final value of gradient we should fold back
the network over time and use (45), we will have:

∂L(Λ)

∂Wrec
= −

N∑
r=1

n∑
j=1

T∑
τ=0

αr,j,TD,Q
∂∆r,j,τ

∂Wrec︸ ︷︷ ︸
one large update

(61)

2) Input Weights: Using a similar procedure we will
have the following for input weights:

∂R(Q,D)

∂W
= δyQ(t−τ)lQ(t−τ)T+δyD (t−τ)lD(t−τ)T

(62)
where

δyQ(t− τ) = (1− yQ(t− τ)) ◦ (1 + yQ(t− τ))◦
(b.c.yD(t− τ)− a.b3.c.yQ(t− τ)),

δyD (t− τ) = (1− yD(t− τ)) ◦ (1 + yD(t− τ))◦
(b.c.yQ(t− τ)− a.b.c3.yD(t− τ)) (63)

Therefore:
∂∆j,τ

∂W
=

[δD
+

yQ (t− τ)lTQ(t− τ) + δD
+

yD (t− τ)lTD+(t− τ)]−

[δ
D−j
yQ (t− τ)lTQ(t− τ) + δ

D−j
yD (t− τ)lT

D−j
(t− τ)] (64)

and therefore:

∂L(Λ)

∂W
= −

N∑
r=1

n∑
j=1

T∑
τ=0

αr,j
∂∆r,j,τ

∂W︸ ︷︷ ︸
one large update

(65)

B. Derivation of BPTT for LSTM-RNN

Following from (50) for every parameter, Λ, in
LSTM-RNN architecture we have:

∂R(Q,D)

∂Λ
=

∂a

∂Λ
.b.c︸ ︷︷ ︸

D

+ a.
∂b

∂Λ
.c︸ ︷︷ ︸

E

+ a.b.
∂c

∂Λ︸ ︷︷ ︸
F

(66)

and from (51):

D = yD(t = TD).b.c.
∂yQ(t = TQ)

∂Λ
+

yQ(t = TQ).b.c.
∂yD(t = TD)

∂Λ
(67)

From (55) and (56) we have:

E = −a.c.b3.yQ(t = TQ)
∂yQ(t = TQ)

∂Λ
(68)

F = −a.b.c3.yD(t = TD)
∂yD(t = TD)

∂Λ
(69)

Therefore
∂R(Q,D)

∂Λ
= D + E + F =

vQ
∂yQ(t = TQ)

∂Λ
+ vD

∂yD(t = TD)

∂Λ
(70)

where

vQ = (b.c.yD(t = TD)− a.b3.c.yQ(t = TQ))

vD = (b.c.yQ(t = TQ)− a.b.c3.yD(t = TD)) (71)
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1) Output Gate: Since α◦β = diag(α)β = diag(β)α
where diag(α) is a diagonal matrix whose main diagonal
entries are entries of vector α, we have:

∂y(t)

∂Wrec1
=

∂

∂Wrec1
(diag(h(c(t))).o(t))

=
∂diag(h(c(t)))

∂Wrec1︸ ︷︷ ︸
zero

.o(t) + diag(h(c(t))).
∂o(t)

∂Wrec1

= o(t) ◦ (1− o(t)) ◦ h(c(t)).y(t− 1)T (72)

Substituting (72) in (70) we have:

∂R(Q,D)

∂Wrec1
= δrec1yQ (t).yQ(t−1)T +δrec1yD (t).yD(t−1)T

(73)
where

δrec1yQ (t) = oQ(t) ◦ (1− oQ(t)) ◦ h(cQ(t)) ◦ vQ(t)

δrec1yD (t) = oD(t) ◦ (1− oD(t)) ◦ h(cD(t)) ◦ vD(t)
(74)

with a similar derivation for W1 and Wp1 we get:

∂R(Q,D)

∂W1
= δrec1yQ (t).lQ(t)T + δrec1yD (t).lD(t)T (75)

∂R(Q,D)

∂Wp1
= δrec1yQ (t).cQ(t)T + δrec1yD (t).cD(t)T (76)

For output gate bias values we have:

∂R(Q,D)

∂b1
= δrec1yQ (t) + δrec1yD (t) (77)

2) Input Gate: Similar to output gate we start with:

∂y(t)

∂Wrec3
=

∂

∂Wrec3
(diag(o(t)).h(c(t)))

=
∂diag(o(t))

∂Wrec3︸ ︷︷ ︸
zero

.h(c(t)) + diag(o(t)).
∂h(c(t))

∂Wrec3

= diag(o(t)).(1− h(c(t))) ◦ (1 + h(c(t)))
∂c(t)

∂Wrec3
(78)

To find ∂c(t)
∂Wrec3

assuming f(t) = 1 (we derive formula-
tion for f(t) 6= 1 from this simple solution) we have:

c(0) = 0

c(1) = c(0) + i(1) ◦ yg(1) = i(1) ◦ yg(1)

c(2) = c(1) + i(2) ◦ yg(2)

. . .

c(t) =

t∑
k=1

i(k) ◦ yg(k) =

t∑
k=1

diag(yg(k)).i(k) (79)

Therefore

∂c(t)

∂Wrec3
=

t∑
k=1

[
∂diag(yg(k))

Wrec3︸ ︷︷ ︸
zero

.i(k) + diag(yg(k)).
∂i(k)

Wrec3
]

=

t∑
k=1

diag(yg(k)).i(k) ◦ (1− i(k)).y(k − 1)T (80)

(81)

and

∂y(t)

∂Wrec3
=

t∑
k=1

[o(t) ◦ (1− h(c(t))) ◦ (1 + h(c(t)))︸ ︷︷ ︸
a(t)

◦ yg(k) ◦ i(k) ◦ (1− i(k))︸ ︷︷ ︸
b(k)

]y(k − 1)T (82)

But this is expensive to implement, to resolve it we have:

∂y(t)

∂Wrec3
=

t−1∑
k=1

[a(t) ◦ b(k)]y(k − 1)T︸ ︷︷ ︸
expensive part

+ [a(t) ◦ b(t)]y(t− 1)T

= diag(a(t))

t−1∑
k=1

b(k).y(k − 1)T︸ ︷︷ ︸
∂c(t−1)
∂Wrec3

+ diag(a(t)).b(t).y(t− 1)T (83)

Therefore
∂y(t)

∂Wrec3
= [diag(a(t))][

∂c(t− 1)

∂Wrec3
+ b(t).y(t− 1)T ]

(84)
For f(t) 6= 1 we have

∂y(t)

∂Wrec3
= [diag(a(t))][diag(f(t)).

∂c(t− 1)

∂Wrec3

+ bi(t).y(t− 1)T ] (85)

where

a(t) = o(t) ◦ (1− h(c(t))) ◦ (1 + h(c(t)))

bi(t) = yg(t) ◦ i(t) ◦ (1− i(t)) (86)

substituting above equation in (70) we will have:

∂R(Q,D)

∂Wrec3
= diag(δrec3yQ (t)).

∂cQ(t)

∂Wrec3

+ diag(δrec3yD (t)).
∂cD(t)

∂Wrec3
(87)

where

δrec3yQ (t) = (1− h(cQ(t))) ◦ (1 + h(cQ(t))) ◦ oQ(t) ◦ vQ(t)

∂cQ(t)

∂Wrec3
= diag(fQ(t)).

∂cQ(t− 1)

∂Wrec3
+ bi,Q(t).yQ(t− 1)T

bi,Q(t) = yg,Q(t) ◦ iQ(t) ◦ (1− iQ(t)) (88)
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In equation (87), δrec3yD (t) and ∂cD(t)
∂Wrec3

are the same as
(88) with D subscript. Therefore, update equations for
Wrec3 are (87), (88) for Q and D and (6).

With a similar procedure for W3 we will have the
following:

∂R(Q,D)

∂W3
= diag(δrec3yQ (t)).

∂cQ(t)

∂W3

+ diag(δrec3yD (t)).
∂cD(t)

∂W3
(89)

where

∂cQ(t)

∂W3
= diag(fQ(t)).

∂cQ(t− 1)

∂W3
+ bi,Q(t).xQ(t)T

(90)
Therefore, update equations for W3 are (89), (90) for Q
and D and (6).

For peephole connections we will have:

∂R(Q,D)

∂Wp3
= diag(δrec3yQ (t)).

∂cQ(t)

∂Wp3

+ diag(δrec3yD (t)).
∂cD(t)

∂Wp3
(91)

where

∂cQ(t)

∂Wp3
= diag(fQ(t)).

∂cQ(t− 1)

∂Wp3
+bi,Q(t).cQ(t−1)T

(92)
Hence, update equations for Wp3 are (91), (92) for Q
and D and (6).

Following similar derivation for bias values b3 we will
have:

∂R(Q,D)

∂b3
= diag(δrec3yQ (t)).

∂cQ(t)

∂b3

+ diag(δrec3yD (t)).
∂cD(t)

∂b3
(93)

where

∂cQ(t)

∂b3
= diag(fQ(t)).

∂cQ(t− 1)

∂b3
+ bi,Q(t) (94)

Update equations for b3 are (93), (94) for Q and D and
(6).

3) Forget Gate: For forget gate, with a similar deriva-
tion to input gate we will have

∂y(t)

∂Wrec2
= [diag(a(t))][diag(f(t)).

∂c(t− 1)

∂Wrec2

+ bf (t).y(t− 1)T ] (95)

where

a(t) = o(t) ◦ (1− h(c(t))) ◦ (1 + h(c(t)))

bf (t) = c(t− 1) ◦ f(t) ◦ (1− f(t)) (96)

substituting above equation in (70) we will have:

∂R(Q,D)

∂Wrec2
= diag(δrec2yQ (t)).

∂cQ(t)

∂Wrec2

+ diag(δrec2yD (t)).
∂cD(t)

∂Wrec2
(97)

where

δrec2yQ (t) = (1− h(cQ(t))) ◦ (1 + h(cQ(t))) ◦ oQ(t) ◦ vQ(t)

∂cQ(t)

∂Wrec2
= diag(fQ(t)).

∂cQ(t− 1)

∂Wrec2
+ bf,Q(t).yQ(t− 1)T

bf,Q(t) = cQ(t− 1) ◦ fQ(t) ◦ (1− fQ(t)) (98)

Therefore, update equations for Wrec2 are (97), (98) for
Q and D and (6).

For input weights to forget gate, W2, we have

∂R(Q,D)

∂W2
= diag(δrec2yQ (t)).

∂cQ(t)

∂W2

+ diag(δrec2yD (t)).
∂cD(t)

∂W2
(99)

where

∂cQ(t)

∂W2
= diag(fQ(t)).

∂cQ(t− 1)

∂W2
+ bf,Q(t).xQ(t)T

(100)
Therefore, update equations for W2 are (99), (100) for
Q and D and (6).

For peephole connections, Wp2, we have

∂R(Q,D)

∂Wp2
= diag(δrec2yQ (t)).

∂cQ(t)

∂Wp2

+ diag(δrec2yD (t)).
∂cD(t)

∂Wp2
(101)

where

∂cQ(t)

∂Wp2
= diag(fQ(t)).

∂cQ(t− 1)

∂Wp2
+bf,Q(t).cQ(t−1)T

(102)
Therefore, update equations for Wp2 are (101), (102)
for Q and D and (6).

Update equations for forget gate bias values, b2, will
be following equations and (6):

∂R(Q,D)

∂b2
= diag(δrec2yQ (t)).

∂cQ(t)

∂b2

+ diag(δrec2yD (t)).
∂cD(t)

∂b2
(103)

where

∂cQ(t)

∂b2
= diag(fQ(t)).

∂cQ(t− 1)

∂b3
+ bf,Q(t) (104)
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4) Input without Gating (yg(t)): Gradients for yg(t)
parameters are as follows:

∂y(t)

∂Wrec4
= [diag(a(t))][diag(f(t)).

∂c(t− 1)

∂Wrec4

+ bg(t).y(t− 1)T ] (105)

where

a(t) = o(t) ◦ (1− h(c(t))) ◦ (1 + h(c(t)))

bg(t) = i(t) ◦ (1− yg(t)) ◦ (1 + yg(t)) (106)

substituting above equation in (70) we will have:

∂R(Q,D)

∂Wrec4
= diag(δrec4yQ (t)).

∂cQ(t)

∂Wrec4

+ diag(δrec4yD (t)).
∂cD(t)

∂Wrec4
(107)

where

δrec4yQ (t) = (1− h(cQ(t))) ◦ (1 + h(cQ(t))) ◦ oQ(t) ◦ vQ(t)

∂cQ(t)

∂Wrec4
= diag(fQ(t)).

∂cQ(t− 1)

∂Wrec4
+ bg,Q(t).yQ(t− 1)T

bg,Q(t) = iQ(t) ◦ (1− yg,Q(t)) ◦ (1 + yg,Q(t)) (108)

Therefore, update equations for Wrec4 are (107), (108)
for Q and D and (6).

For input weight parameters, W4, we have

∂R(Q,D)

∂W4
= diag(δrec4yQ (t)).

∂cQ(t)

∂W4

+ diag(δrec4yD (t)).
∂cD(t)

∂W4
(109)

where
∂cQ(t)

∂W4
= diag(fQ(t)).

∂cQ(t− 1)

∂W4
+ bg,Q(t).xQ(t)T

(110)
Therefore, update equations for W4 are (109), (110) for
Q and D and (6).

Gradients with respect to bias values, b4, are

∂R(Q,D)

∂b4
= diag(δrec4yQ (t)).

∂cQ(t)

∂b4

+ diag(δrec4yD (t)).
∂cD(t)

∂b4
(111)

where
∂cQ(t)

∂b4
= diag(fQ(t)).

∂cQ(t− 1)

∂b4
+ bg,Q(t) (112)

Therefore, update equations for b4 are (111), (112) for
Q and D and (6). There is no peephole connections for
yg(t).

APPENDIX E
LSTM-RNN VISUALIZATION

In this appendix we present more examples of LSTM-
RNN visualization.

A. LSTM-RNN Semantic Vectors: Another Example

Consider the following example from test dataset:
• Query: “how to fix bath tub wont turn off”
• Document: “how do you paint a bathtub and what
paint should you use yahoo answers︸ ︷︷ ︸

treated as one word

”

Activations of input gate, output gate, cell state and
cell output for each cell for query and document are
presented in Fig.9 and Fig.10 respectively based on a
trained LSTM-RNN model.

Three interesting observations from Fig.9 and Fig.10:
• Semantic representation y(t) and cell states c(t) are

evolving over time.
• In part (a) of Fig.10, we observe that input gate

values for most of the cells corresponding to word
3, word 4, word 7 and word 9 in document side
of LSTM-RNN have very small values (light blue
color). These are corresponding to words “you”,
“paint”, “and” and “paint” respectively in the
document title. Interestingly, input gates are trying
to reduce effect of these words in the final repre-
sentation (y(t)) because the LSTM-RNN model is
trained to maximize the similarity between query
and document if they are a good match.

• y(t) is used as semantic representation after apply-
ing output gate on cell states. Note that valuable
context information is stored in cell states c(t).

B. Key Word Extraction: Another Example

Evolution of 10 most active cells over time for the
second example are presented in Fig. 11 for query and
Fig. 12 for document. Number of assigned cells out of
10 most active cells to each word are presented in Table
IX and Table X.

APPENDIX F
DOC2VEC SIMILARITY TEST

To make sure that a meaningful model is trained,
we used the trained doc2vec model to find the most
similar words to two sample words in our dataset, the
words “pizza” and “infection”. The resulting words and
corresponding scores are as follows:

print(model.most-similar(’pizza’)) :

[(u’recipes’, 0.9316294193267822),
(u’recipe’, 0.9295548796653748),
(u’food’, 0.9250608682632446),
(u’restaurants’, 0.9223555326461792),
(u’bar’, 0.9191627502441406),
(u’sabayon’, 0.916868269443512),
(u’page’, 0.9160783290863037),
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Fig. 9. Query: “how to fix bath tub wont turn off ”

TABLE IX
KEYWORD EXTRACTION FOR QUERY: “how to fix bath tub wont turn off ”

how to fix bath tub wont turn off
Number of assigned

cells out of 10
Left to Right - 0 4 7 6 3 5 0

Number of assigned
cells out of 10
Right to Left 4 1 6 7 6 7 7 -

(u’restaurant’, 0.9112323522567749),
(u’house’, 0.9104640483856201),
(u’the’, 0.9103578925132751)]

print(model.most-similar(’infection’)):

[(u’infections’, 0.9698576927185059),
(u’treatment’, 0.9143450856208801),
(u’symptoms’, 0.9138627052307129),
(u’disease’, 0.9100595712661743),
(u’palpitations’, 0.9083651304244995),
(u’pneumonia’, 0.9073051810264587),
(u’medical’, 0.9043352603912354),
(u’abdomen’, 0.9034136533737183),

(u’medlineplus’, 0.9032401442527771),
(u’gout’, 0.9027985334396362)]

As it is observed from the resulting words, the trained
model is a meaningful model and can recognise semantic
similarity.

APPENDIX G
DIAGRAM OF THE PROPOSED MODEL

To clarify the difference between the proposed method
and the general sentence embedding methods, in this
section we present a diagram illustrating the training
procedure of the proposed model. It is presented in
Fig. 13. In this figure n is the number of negative
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Fig. 10. Document: “how do you paint a bathtub and what paint should . . . ”

TABLE X
KEYWORD EXTRACTION FOR DOCUMENT: “how do you paint a bathtub and what paint should . . . ”

how do you paint a bathtub and what paint should you . . .
Number of assigned

cells out of 10
Left to Right - 1 1 7 0 9 2 3 8 4

Number of assigned
cells out of 10
Right to Left 5 9 5 4 8 4 5 5 9 -

(unclicked) documents. The other parameters in this
figure are similar to those used in Fig. 2 and Fig. 3
of the paper.
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Fig. 11. Query: “how to fix bath tub wont turn off ”
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Fig. 12. Document: “how do you paint a bathtub and what paint should . . . ”
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Fig. 13. Architecture of the proposed method.
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