
2

Treating the Storage Stack Like a Network

IOAN STEFANOVICI, Microsoft Research
BIANCA SCHROEDER, University of Toronto
GREG O’SHEA, Microsoft Research
ENO THERESKA, Confluent, Imperial College London

In a data center, an IO from an application to distributed storage traverses not only the network but also
several software stages with diverse functionality. This set of ordered stages is known as the storage or IO
stack. Stages include caches, hypervisors, IO schedulers, file systems, and device drivers. Indeed, in a typical
data center, the number of these stages is often larger than the number of network hops to the destination.
Yet, while packet routing is fundamental to networks, no notion of IO routing exists on the storage stack.
The path of an IO to an endpoint is predetermined and hard coded. This forces IO with different needs
(e.g., requiring different caching or replica selection) to flow through a one-size-fits-all IO stack structure,
resulting in an ossified IO stack.

This article proposes sRoute, an architecture that provides a routing abstraction for the storage stack.
sRoute comprises a centralized control plane and “sSwitches” on the data plane. The control plane sets the
forwarding rules in each sSwitch to route IO requests at runtime based on application-specific policies. A
key strength of our architecture is that it works with unmodified applications and Virtual Machines (VMs).
This article shows significant benefits of customized IO routing to data center tenants: for example, a factor
of 10 for tail IO latency, more than 60% better throughput for a customized replication protocol, a factor of 2
in throughput for customized caching, and enabling live performance debugging in a running system.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; D.4.7 [Operating
Systems]: Organization and Design; C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Data centers, storage, software-defined storage, SDS, routing, storage
stack

ACM Reference Format:
Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and Eno Thereska. 2017. Treating the storage stack like a
network. ACM Trans. Storage 13, 1, Article 2 (February 2017), 27 pages.
DOI: http://dx.doi.org/10.1145/3032968

1. INTRODUCTION

An application’s IO stack is rich in stages providing compute, network, and storage
functionality. These stages include guest OSes, file systems, hypervisors, network ap-
pliances, and distributed storage with caches and schedulers. Indeed, there are over
18+ types of stages on a typical data center IO stack [Thereska et al. 2013]. Further-
more, most IO stacks support the injection of new stages with new functionality using

Authors’ addresses: I. Stefanovici and G. O’Shea, Microsoft Research, 21 Station Road, Cambridge, CB1
2FB, United Kingdom; emails: {t-iostef, gregos}@microsoft.com; B. Schroeder, Department of Computer Sci-
ence, University of Toronto, 10 King’s College Road, Rm.3302, Toronto, Ontario, M5S 3G4, Canada; email:
bianca@cs.toronto.edu; E. Thereska, Confluent, Inc., 101 University Ave, Suite 111, Palo Alto, CA, 94301,
United States; email: eno.thereska@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1553-3077/2017/02-ART2 $15.00
DOI: http://dx.doi.org/10.1145/3032968

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

http://dx.doi.org/10.1145/3032968
http://dx.doi.org/10.1145/3032968

2:2 I. Stefanovici et al.

filter drivers common in most OSes [Microsoft Corporation 2014b; FreeBSD 2014; Love
2010] or appliances over the network [Sherry et al. 2012].

Controlling or programming how IOs flow through this stack is hard, if not impossi-
ble, for tenants and service providers alike. Once an IO enters the system, the path to
its endpoint is pre-determined and static. It must pass through all stages on the way
to the endpoint. A new stage with new functionality means a longer path with added
latency for every IO. As raw storage and networking speeds improve, the length of the
IO stack is increasingly becoming a new bottleneck [Peter et al. 2014]. Furthermore,
the IO stack stages have narrow interfaces and operate in isolation. Unlocking func-
tionality often requires coordinating the functionality of multiple such stages. These
reasons lead to applications running on a general-purpose IO stack that cannot be
tuned to any of their specific needs or to one-off customized implementations that
require application and system rewrite.

This article’s main contribution is experimenting with applying a well-known net-
working primitive, routing, to the storage stack. IO routing provides the ability to
dynamically change the path and destination of an IO, like a read or write, at runtime.
Control plane applications use IO routing to provide customized data plane function-
ality for tenants and data center services.

Consider three specific examples of how routing is useful. In one example, a load
balancing service selectively routes write requests to go to less-loaded servers, while
ensuring read requests are always routed to the latest version of the data (Section 5.1).
In another example, a control application provides per-tenant throughput versus la-
tency tradeoffs for replication update propagation by using IO routing to set a tenant’s
IO read- and write-set at runtime (Section 5.2). In a third example, a control applica-
tion can route requests to per-tenant caches to maintain cache isolation (Section 5.3).
Finally, a control application enables dynamic performance debugging and bottleneck
isolation in data paths that span several machines (Section 5.4).

IO routing is challenging because the storage stack is stateful. Routing a write IO
through one path to endpoint A and a subsequent read IO through a different path or
to a different endpoint B needs to be mindful of application consistency needs. Another
key challenge is data plane efficiency. Changing the path of an IO at runtime requires
determining where on the data plane to insert storage switches to minimize the number
of times an IO traverses them, as well as to minimize IO processing times.

We designed and implemented sRoute, a system that enables IO routing in the
storage stack. sRoute’s approach builds on the IOFlow storage architecture [Thereska
et al. 2013]. IOFlow already provides a separate control plane for storage traffic and a
logically centralized controller with global visibility over the data center topology. As an
analogy to networking, sRoute builds on IOFlow just like software-defined networking
(SDN) functions build on OpenFlow [McKeown et al. 2008]. IOFlow also made a case
for request routing. However, it only explored the concept of bypassing stages along the
IO path and did not consider the full IO routing spectrum where the path and endpoint
can also change, leading to consistency concerns. This article provides a more complete
routing abstraction.

This article makes the following contributions:

—We propose an IO routing abstraction for the IO stack.
—sRoute provides per-IO and per-flow routing configuration updates with strong se-

mantic guarantees.
—sRoute provides an efficient control plane. It does so by distributing the control plane

logic required for IO routing using delegate functions.
—We report on building four control applications using IO routing: tail latency control,

replica set control, file caching control, and performance debugging.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:3

Fig. 1. Three types of IO routing: endpoint, waypoint, and scatter. p, r refer to sources such as VMs or
containers. X, Y, Z are endpoints such as files. W represents a waypoint stage with specialized functionality,
for example, a file cache or scheduler.

—We provide a detailed road map for future work on software-defined storage that we
hope will encourage further research in the area.

The results of our evaluation demonstrate that data center tenants benefit signifi-
cantly from IO stack customization. The benefits can be provided to today’s unmodified
tenant applications and VMs. Furthermore, writing specialized control applications is
straightforward because they use a common IO routing abstraction.

2. ROUTING TYPES AND CHALLENGES

The data plane, or IO stack, comprises all the stages an IO request traverses from an
application until it reaches its destination. For example, a read to a file will traverse a
guest OS’s file system, buffer cache, scheduler, and then similar stages in the hypervi-
sor, followed by OSes, file systems, caches, and device drivers on remote storage servers.
We define per-IO routing in this context as the ability to control the IO’s endpoint as
well as the path to that endpoint. The first question is what the above definition means
for storage semantics. A second question is whether IO routing is a useful abstraction.

To address the first question, we looked at a large set of storage system functionalities
and distilled from them three types of IO routing that make sense semantically in the
storage stack. Figure 1 illustrates these three types. In endpoint routing, IO from a
source p to a destination file X is routed to another destination file Y . In waypoint
routing, IOs from sources p and r to a file X are first routed to a specialized stage W .
In scatter routing, IOs from p and r are routed to a subset of data replicas.

This article makes the case that IO routing is a useful abstraction. We show that
many specialized functions on the storage stack can be recast as routing problems.
Our hypothesis when we started this work was that, because routing is inherently
programmable and dynamic, we could substitute hard-coded one-off implementations
with one common routing core. Table I shows a diverse set of such storage stack func-
tionalities, categorized according to the type of IO routing that enables them.

Endpoint routing. Routes IO from a single-source application p to a file X to
another file Y . The timing of the routing and operation semantics is dictated by the
control logic. For example, write requests could go to the new endpoint and reads could
be controlled to go to the old or new endpoints. Endpoint routing enables functionality
such as improving tail latency [Dean and Barroso 2013; Narayanan et al. 2008b], copy-
on-write [Oracle 2010; Hitz et al. 1994; Rodeh et al. 2013], file versioning [Microsoft
2010], and data re-encoding [Abd-El-Malek et al. 2005]. These policies have in common
the need for a dynamic mechanism that changes the endpoint of new data and routes IO

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:4 I. Stefanovici et al.

Table I. Examples of Specialized Functionality and the Type
of IO Routing That Enables Them

Functionality How IO routing helps

Endpoint Tail latency control Route IO to less loaded servers
Copy-on-write Route writes to new location
File versioning Route IO to right version

Waypoint Cache size guarantee Route IO to specialized cache
Deadline policies Route IO to specialized scheduler

Scatter Maximize throughput Route reads to all replicas
Minimize latency Route writes to replica subset
Logging/Debugging Route selected IOs to loggers

to the appropriate endpoint. Section 5.1 shows how we implement tail latency control
using endpoint routing.

Waypoint routing. Waypoint routing routes IO from a multi-source application
{p, r} to a file X through an intermediate waypoint stage W . W could be a file cache
or scheduler. Waypoint routing enables specialized appliance processing [Sherry et al.
2012]. These policies need a dynamic mechanism to inject specialized waypoint stages
or appliances along the stack and to selectively route IO to those stages. Section 5.3
shows how we implement file cache control using waypoint routing.

Scatter routing. Scatters IO from file X to additional endpoints Y and Z. The
control logic dictates which subset of endpoints to read data from and write data to.
Scatter routing enables specialized replication and erasure coding policies [Terry et al.
2013; Li et al. 2012], as well as interactive logging and debugging of the storage stack
[Barham et al. 2004; Sigelman et al. 2010; Fonseca et al. 2007]. These policies have
in common the need for a dynamic mechanism to choose which endpoint to write to
and read from. This control enables programmable tradeoffs around throughput and
update propagation latency. Section 5.2 shows how we implement replica set control
using scatter routing. Section 5.4 shows how we implement performance debugging.

2.1. Challenges

IO routing is challenging for several reasons:
Consistent systemwide configuration updates. IO routing requires a control-

plane mechanism for changing the path of an IO request. The mechanism needs to
coordinate the forwarding rules in each sSwitch in the data plane. Any configuration
changes must not lead to system instability, where an IO’s semantic guarantees are
violated by having it flow through an incorrect path.

Metadata consistency. IO routing allows read and write IOs to be sent to po-
tentially different endpoints. Several applications benefit from this flexibility. Some
applications, however, have stricter consistency requirements and require, for exam-
ple, that a read always follow the path of a previous write. A challenge is keeping track
of the data’s latest location. Furthermore, IO routing metadata needs to coexist con-
sistently with metadata in the rest of the system. The guest file system, for example,
has a mapping of files to blocks, and the hypervisor has a mapping of blocks to virtual
disks on an (often) remote storage backend. The backend could be a distributed system
of its own with a metadata service mapping files or chunks to file systems to physical
drives.

File system semantics. Some file system functionality (such as byte-range file
locking when multiple clients access the same file) depends on consulting file system
state to determine the success and semantics of individual IO operations. The logic
and state that dictates the semantics of these operations resides inside the file system,

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:5

Fig. 2. System architecture. sSwitches can route IO within a physical machine’s IO stack and across ma-
chines over the network.

Table II. Control API to the sSwitch

Insert (IOHeader, Delegate)
Creates a new fwd. rule matching the IO header,
using dynamic control delegate to look up destination
Delete (IOHeader)
Deletes all rules matching the header
Quiesce (IOHeader, Boolean)
Blocks or unblocks incoming IO matching IO header
when Boolean is true or false respectively
Drain (IOHeader)
Drains all pending IOs matching the IO header

at the destination endpoint of these IOs. IO routing needs to maintain the same file
system functionality and semantics in the storage stack.

Efficiency. Providing IO stack customization requires a different way of building
specialized functionality. We move away from an architecture that hard-codes func-
tionality on the IO stack to an architecture that dynamically directs IOs to specialized
stages. Any performance overheads incurred must be minimal.

3. DESIGN

Figure 2 shows sRoute’s architecture. It is composed of the following:

—sSwitches on the data plane, that change the route of IOs according to forwarding
rules. sSwitches are programmable through a simple API with four calls shown in
Table II. The sSwitches forward IOs to other file destinations, the controller, or to
specialized stages (e.g., one that implements a particular caching algorithm).

—A control plane with a logically centralized controller specifies the location of the
sSwitches and inserts forwarding rules in them.

—Specialized stages that take an IO as an input, perform operations on its payload,
and return the IO back to the sSwitch for further forwarding.

3.1. Baseline Architecture

The baseline system architecture our design builds on is that of an enterprise data
center. Each tenant is allocated VMs or containers1 and runs arbitrary applications or

1This article’s implementation uses VMs.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:6 I. Stefanovici et al.

Fig. 3. Construct definitions.

services in them. Network and storage are virtualized and VMs are unaware of their
topology and properties.

The baseline system is assumed to already have separate control and data planes and
builds on the IOFlow architecture [Thereska et al. 2013]. That architecture provides
support for flow-based classification and queuing and communication of basic per-flow
statistics to a controller.

3.2. Design Goals

sRoute’s design targets several goals. First, we want a solution that does not involve
application or VM changes. Applications have limited visibility of the data center’s
IO stack. This article takes the view that data center services are better positioned
for IO stack customization. These are then exposed to applications through new types
of service level agreements, for example, guaranteeing better throughput and latency.
Second, data-plane performance overheads should be minimal. Third, the control plane
should be flexible and allow for a diverse set of application policies.

The rest of this section focuses on the sSwitches and the control plane interfaces to
them. Section 4 presents implementation details. Section 5 focuses on control applica-
tions. Figure 3 provides the construct definitions used in the rest of the article.

3.3. sSwitches on the Data Plane

An sSwitch is a special stage that is inserted into the IO stack (data plane) to provide
IO routing. An sSwitch forwards IO according to rules specified by the control plane. A
forwarding rule contains two parts: an IO header and an action or delegate function.2
IO packets are matched against the IO header, and the associated delegate in the
first successful rule match executes (hence, the order of installed rules matters). In
the simplest form, this delegate returns a set of stages where the IO should next be
directed. For example, routing all traffic from VM1 for file X on server S1 to file Y on
server S2 can be represented with this rule:

1: <V M1, ∗, //S1/X> → (; return{<IO, //S2/Y>}).
An sSwitch implements four control plane API calls as shown in Table II. The APIs

allow the control plane to Insert a forwarding rule or Delete it. Rules can be changed
dynamically by two entities on the control plane: the controller or a control Delegate
function.

As defined in Figure 3, the IO header is a tuple containing the source of an IO, the
operation, and the file affected. The source of an IO can be a process or a VM uniquely

2The reason the second part of the rule is a function (as opposed to simply a set of routing locations) is for
control plane efficiency in some situations, as is explained further in this section.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:7

authenticated through a security identifier. The destination is a file in a (possibly
remote) share or directory. Building on IOFlow’s classification mechanism [Thereska
et al. 2013] allows an sSwitch to have visibility over all this information and other
relevant IO header entries at any point in the IO stack (without IOFlow, certain header
entries such as the source, could be lost or overwritten as IO flows through the system).

The operation can be one of read, write, create, or delete. Wildcards and longest
prefix matching can be used to find a match on the IO header. A default match rule
sends an IO to its original destination. A detour location could be a file (e.g., another
file on a different server from the original IO’s destination), a stage on the path to the
endpoint (example rule 1 below), or the centralized controller (example rule 2 below
that sends the IO header for all writes from VM2 to the controller):

1: <V M1, ∗, //S1/X> → (; return{<IO, //S2/C>})
2: <V M2, w, ∗ >→ (; return{<IOHeader, Controller>}).

The sSwitch is responsible for transmitting the full IO, its header, or the output of a
function on the IO header to a set of stages. The response does not have to flow through
the same path as the request, as long as it reaches the initiating source.3

Unlike in networking, the sSwitch needs to perform more work than just forwarding.
It also needs to prepare the endpoint stages to accept IO, which is unique to storage.
When a rule is first installed, the sSwitch needs to open a file connection to the end-
point stages, in anticipation of IO arriving. The sSwitch needs to create it and take
care of any namespace conflicts with existing files. Open and create operations are ex-
pensive synchronous metadata operations. There is an inherent tradeoff between lazy
file creation on the first IO arriving and file creation on rule installation. The former
avoids unnecessarily creating files for rules that do not have any IO matching them,
but on a match the first IO incurs a large latency. The latter avoids the latency but
could create several empty files. The exact tradeoff penalties depend on the file systems
used. By default, this article implements the latter, but ideally this decision would also
be programmable (but it is not so yet.)

sSwitches implement two additional control plane APIs. A Quiesce call is used to
block any further requests with the same IO header from propagating further. The
implementation of this call builds on the lower-level IOFlow API that sets the token
rate on a queue [Thereska et al. 2013]. Drain is called on open file handles to drain any
pending IO requests downstream. Both calls are synchronous. These calls are needed
to change the path of IOs in a consistent manner, as discussed in the next section.

3.4. Controller and Control Plane

A logically centralized controller has global visibility over the stage topology of the data
center. This topology comprises all physical servers, network and storage components,
as well as the software stages within a server. Maintaining this topology in a fault-
tolerant manner is already feasible today [Isard 2007].

The controller is responsible for three tasks. First, it takes a high-level tenant policy
and translates it into sSwitch API calls. Second, it decides where to insert the sSwitches
and specialized stages in the IO stack to implement the policy. Third, it disseminates
the forwarding rules to the sSwitches. We show these tasks step by step for two simple
control applications below.

The first control application directs a tenant’s IO to a specialized file cache. This
policy is part of a case study detailed in Section 5.3. The tenant is distributed over

3sSwitches cannot direct IO responses to sources that did not initiate the IO. Finding scenarios that need
such source routing and the mechanism for doing so is future work.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:8 I. Stefanovici et al.

10 VMs on 10 different hypervisors and accesses a read-only dataset X. The controller
forwards IO from this set of VMs to a specialized cache C residing on a remote machine
connected to the hypervisors through a fast RDMA network. The controller knows the
topology of the data paths from each VM to C and injects sSwitches at each hypervisor.
It then programs each sSwitch as follows:

1: for i ← 1, 10 do
2: Quiesce (<V Mi, *, //S1/X>, true)
3: Drain (<V Mi, *, //S1/X>)
4: Insert (<V Mi, *, //S1/X>, (; return {<IO, //S2/C>}))
5: Quiesce (<V Mi, *, //S1/X>, false).

Lines 2 and 3 are needed to complete any IOs in flight. This is done so the sSwitch
does not need to keep any extra metadata to know which IOs are on the old path. That
metadata would be needed, for example, to route a newly arriving read request to the
old path since a previous write request might have been buffered in an old cache on that
path. The delegate on line 4 simply returns the cache stage. Finally, line 5 unblocks IO
traffic. The controller also injects an sSwitch at server S2 where the specialized cache
resides, so any requests that miss in cache are sent further to the file system of server
S1. The rule at S2 matches IOs from C for file X and forwards them to server S1:

1: Insert (<C, *, //S1/X>, (; return {<IO, //S1/X>}))
The second control application improves a tenant’s tail latency and illustrates a

more complex control delegate. The policy states that queue sizes across servers should
be balanced. This policy is part of a case study detailed in Section 5.1. When a load
burst arrives at a server S1 from a source VM1, the control application decides to
temporarily forward that load to a less busy server S2. The controller can choose to
insert an sSwitch in the VM1’s hypervisor or at the storage server S1. The latter means
that IOs go to S1 as before and S1 forwards them to S2. To avoid this extra network
hop, the controller chooses the former. It then calls the following functions to insert
rules in the sSwitch:

1: Insert (<VM1, w, //S1/X>, (F(); return {<IO, //S2/X>}))
2: Insert (<VM1, r, //S1/X>, (; return {<IO, //S1/X>})).

The rules specify that writes “w” are forwarded to the new server, whereas reads
“r” are still forwarded to the old server. This application demands that reads return
the latest version of the data. When subsequently a write for the first 512KB of data
arrives,4 the delegate function updates the read rule through function F() whose body
is shown below:

1: Delete (<VM1, r, //S1/X>)
2: Insert (<VM1, r, //S1/X, 0, 512KB >, (; return {<IO, //S2/X>}))
3: Insert (<VM1, r, //S1/X>, (; return {<IO, //S1/X>}).

Note that quiescing and draining are not needed in this scenario since the sSwitch is
keeping the metadata necessary (in the form of new rules) to route a request correctly.
A subsequent read for a range between 0 and 512KB will match the rule in line 2 and
will be sent to S2. Note that sSwitch matches on byte ranges as well, so a read for a

4The request’s start offset and data length are part of the IO header.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:9

range between 0 and 1024KB will be now split into two reads. The sSwitch maintains
enough buffer space to coalesce the responses.

3.4.1. Delegates. The above examples showed instances of control delegates. Control
delegates are restricted control plane functions that are installed at sSwitches for
control plane efficiency. In the second example above, the path of an IO depends on the
workload. Write requests can potentially change the location of a subsequent read. One
way to handle this would be for all requests to be sent by the sSwitch to the controller
using the following alternate rules and delegate function:

1: Insert (<VM1, w, //S1/X>, (; return {<IO, Controller>}))
2: Insert (<VM1, r, //S1/X>, (; return {<IO, Controller>})).

The controller would then serialize and forward them to the appropriate destination.
Clearly, this is inefficient, bottlenecking the IO stack at the controller. Instead, the
controller uses restricted delegate functions that make control decisions locally at the
sSwitches.

This article assumes a non-malicious controller; however, the design imposes certain
functionality restrictions on the delegates to help guard against accidental errors. In
particular, delegate functions may only call the APIs in Table II and may otherwise
only create or keep state local to the sSwitch. They may not rewrite the IO header or
IO data. That is important since the IO header contains entries such as the source
security descriptor that are needed for file access control to work in the rest of the
system. These restrictions allow us to consider the delegates as a natural extension of
the centralized controller. Simple programming language checks and passing the IO
as read-only to the delegate enforce these restrictions.

3.5. Consistent Rule Updates

Forwarding rule updates could lead to instability in the system. This section introduces
the notion of consistent rule updates. These updates preserve well-defined storage-
specific properties. Similarly to networking [Reitblatt et al. 2012], storage has two
different consistency requirements: per-IO and per-flow.

Per-IO consistency. Per-IO consistent updates require that each IO flows either
through an old set of rules or an updated set of rules but not through a stack that is
composed of old and new paths. The Quiesce and Drain calls in the API in Table II are
sufficient to provide per-IO consistent updates.

Per-flow consistency. Many applications require a stream of IOs to behave con-
sistently. For example, an application might require that a read request obtains the
data from the latest previous write request. In cases where the same source sends
both requests, then per-IO consistency also provides per-flow consistency. However, the
second request can arrive from a different source, like a second VM in the distributed
system. In several basic scenarios, it is sufficient for the centralized controller to seri-
alize forwarding rule updates. The controller disseminates the rules to all sSwitches
in two phases. In the first phase, the controller quiesces and drains requests going to
the old paths and, in the second phase, the controller updates the forwarding rules.

However, a key challenge are scenarios where delegate functions create new rules.
This complicates update consistency since serializing these new rules through the
controller is inefficient when rules are created frequently (e.g., for every write request).
In these cases, control applications attempt to provide all serialization through the
sSwitches themselves. They do so as follows. First, they consult the topology map to
identify points of serialization along the IO path. The topology map identifies common
stages among multiple IO sources on their IO stack. For example, if two clients are

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:10 I. Stefanovici et al.

Fig. 4. Three possible options for placing sSwitches for consistent rule updates. Either can be chosen
programmatically at runtime.

reading and writing to the same file X, then the control application has the option of
inserting two sSwitches with delegate functions close to the two sources to direct both
clients’ IOs to Y . This option is shown in Figure 4(a). The sSwitches would then need
to use two-phase commit between themselves to keep rules in sync, as shown in the
figure. This localizes updates to participating sSwitches, thus avoiding the need for the
controller to get involved.

A second option would be to insert a single sSwitch close to X (e.g., at the storage
server) that forwards IO to Y . This option is shown in Figure 4(b). A third option would
be to insert an sSwitch at Y that forwards IO back to X if the latest data are not on
Y . This type of forwarding rule can be thought of as implementing backpointers. Note
that two additional sSwitches are needed close to the source to forward all traffic, that
is, reads and writes, to Y ; however, these sSwitches do not need to perform two-phase
commit. The choice between the last two options depends on the workload. If the control
application expects that most IO will go to the new file, then the third option would
eliminate an extra network hop.

3.6. Fault Tolerance and Availability

This section analyzes new potential risks on fault tolerance and availability induced
by our system. Data continue to be N-way replicated for fault tolerance, and its fault
tolerance is the same as in the original system.

First, the controller service is new in our architecture. The service can be replicated
for availability using standard Paxos-like techniques [Lamport 1998]. If the controller
is temporarily unavailable, then the implication on the rest of the system is at worst
slower performance, but correctness is not affected. For example, IO that matches rules
that require transmission to the controller will be blocked until the controller recovers.

Second, our design introduces new metadata in the form of forwarding rules at
sSwitches. It is a design goal to maintain all state at sSwitches as soft state to simplify
recovery—also there are cases where sSwitches do not have any local storage available
to persist data. The controller itself persists all the forwarding rules before installing
them at sSwitches. The controller can choose to replicate the forwarding rules, for
example, using three-way replication (using storage space available to the controller—
either locally or remotely).

However, forwarding rules created at the control delegates pose a challenge because
they need persisting. sRoute has two options to address this challenge. The first is for
the controller to receive all delegate updates synchronously, ensure they are persisted,
and then return control to the delegate function. This option involves the controller on
the critical path. The second option (the default) is for the delegate rules to be stored
with the forwarded IO data. A small header is prepended to each IO containing the
updated rule. On sSwitch failure, the controller knows to which servers IO has been
forwarded and recovers all persisted forwarding rules from them.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:11

Third, sSwitches introduce new code along the IO stack, thus increasing its com-
plexity. When sSwitches are implemented in the kernel (see Section 4), an sSwitch
failure may cause the entire server to fail. We have kept the code footprint of sSwitches
small and we plan to investigate software verification techniques in the future to guard
against such failures.

3.7. Design Considerations

The behaviour and semantics of some file system operations (e.g., file locking) is de-
termined by state stored inside the file system. Because IO routing is done inside the
storage stack, above the file system layer, maintaining the semantics of these oper-
ations introduces extra complexity to our design. Currently, there are two solutions
to maintaining the semantics of these operations: (i) the state can remain in the file
system at the original endpoint, and sSwitches can issue RPCs to query it as IOs flow
through the system (naturally, this is not desirable due to the extra communication
overhead per IO) or (ii) when an sSwitch begins routing a flow, the relevant file system
state can be pushed into the sSwitch, and subsequently maintained there, such that
the sSwitch can maintain the desired semantics for subsequent incoming IOs.

4. IMPLEMENTATION

An sSwitch is implemented partly in kernel level and partly in user level. The kernel
part is written in C and its functionality is limited to partial IO classification through
longest prefix matching and forwarding within the same server. The user-level part is
written in C# and implements further sub-file-range classification using hash tables.
It also implements forwarding IO to remote servers. An sSwitch is a total of 25 kLOC.
The kernel part of our implementation has been released and is free to download as
part of the MSR Storage Toolkit [Research 2014].

Routing within a server’s IO stack. Our implementation makes use of the filter
driver architecture in Windows [Microsoft Corporation 2014b]. Each filter driver im-
plements a stage in the kernel and is uniquely identified using an altitude ID in the
IO stack. The kernel part of the sSwitch automatically attaches control code to the be-
ginning of each filter driver processing. Bypassing a stage is done by simply returning
from the driver early. Going through a stage means going through all the driver code.

Routing across remote servers. To route an IO to an arbitrary remote server’s
stage, the kernel part of the sSwitch first performs an upcall sending the IO to the
user-level part of the sSwitch. That part then transmits the IO to a remote detour
location using TCP or RDMA (default) through the SMB file system protocol. On the
remote server, an sSwitch intercepts the arriving packet and routes it to a stage within
that server.

sSwitch and stage identifiers. An sSwitch is a stage and has the same type of
identifier. A stage is identified by a server host name and a driver name. The driver
name is a tuple of <device driver name, device name, altitude>. The altitude is an
index into the set of drivers or user-level stages attached to a device.

Other implementation details. For the case studies in this article, it has been
sufficient to inject one sSwitch inside the Hyper-V hypervisor in Windows and another
on the IO stack of a remote storage server just above the NTFS file system using
file system filter drivers [Microsoft Corporation 2014b]. Specialized functionality is
implemented entirely in user-level stages in C#. For example, we have implemented
a user-level cache (Section 5.3). The controller is also implemented in user level and
communicates with both kernel- and user-level stages through RPCs over TCP. Rout-
ing happens on a per-file basis at block granularity. Our use cases do not employ any
semantic information about the data stored in each block. For control applications that
require such information, the functionality would be straightforward to implement,

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:12 I. Stefanovici et al.

Fig. 5. Current performance range of an sSwitch.

using miniport [Microsoft Corporation 2014a] drivers, instead of filter drivers. Appli-
cations and VMs always run unmodified on our system. However, some applications
pass several static hints such as “write through” to the OS using hard-coded flags.
The sSwitches intercept open/create calls and can change these flags. In particular,
for specialized caching (Section 5.3) the sSwitches disable OS caching by specifying
Write-through and No-buffering flags. Caching is then implemented through the con-
trol application. To avoid namespace conflict with existing files, sRoute stores files in
a reserved “sroute-folder” directory on each server. That directory is exposed to the
cluster as an SMB share writable by internal processes only.

Implementation limitations. A current limitation of the implementation is that
sSwitches cannot intercept individual IO to memory mapped files. However, they can
intercept bulk IO that loads a file to memory and writes pages to disk, which is sufficient
for most scenarios.

Another current limitation of our implementation is that it does not support byte-
range file locking for multiple clients accessing the same file, while performing endpoint
routing. The state to support this functionality is kept in the file system, at the original
endpoint of the flow. When the endpoint is changed, this state is unavailable. To support
this functionality, there are two alternatives, as described in Section 3.7.

The performance range of the current implementation of an sSwitch is illustrated in
Figure 5. This throughput includes passing an IO through both kernel and user-level.
Two scenarios are shown. In the “Only IO routed” scenario, each IO has a routing
rule, but an IO’s response is not intercepted by the sSwitch (the response goes straight
to the source). In the “Both IO and response routed” scenario both an IO and its
response are intercepted by the sSwitch. Intercepting responses is important when the
response needs to be routed to a non-default source as well (one of our case studies
for caches in Section 5.3 requires response routing). Intercepting an IO’s response in
Windows is costly (due to interrupt handling logic beyond the scope of this article),
and the performance difference is a result of the OS, not of the sSwitch. Thus, the
performance range for small IO is between 50,000 and 180,000 IOPS, which makes
sSwitches appropriate for an IO stack that uses disk or SSD backends but not yet a
memory-based stack.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:13

Fig. 6. Load on three Exchange server volumes showing load imbalances.

5. CONTROL APPLICATIONS

This section makes three points. First, we show that a diverse set of control applica-
tions can be built on top of IO routing. Thus, we show that the programmable routing
abstraction can replace one-off hard-coded implementations. We have built and eval-
uated four control applications implementing tail latency control, replica set control,
file cache control, and performance debugging. These applications cover each of the
detouring types in Table I. Second, we show that tenants benefit significantly from the
IO customization provided by the control applications. Third, we evaluate data and
control plane performance.

Testbed. The experiments are run on a testbed with 12 servers, each with 16 Intel
Xeon 2.4GHz cores, 384GB of RAM, and Seagate Constellation 2 disks. The servers
run the Windows Server 2012 R2 operating system and can act as either Hyper-V
hypervisors or as storage servers. Each server has a 40Gbps Mellanox ConnectX-3 NIC
supporting RDMA and connected to a Mellanox MSX1036B-1SFR switch.

Workloads. We use three different workloads in this section. The first is TPC-
E [Transaction Processing Performance Council 2014] running over unmodified SQL
Server 2012 R2 databases. TPC-E is a transaction processing OLTP workload with
small IO sizes. The second workload is a public IO trace from an enterprise Exchange
email server [SNIA 2007]. The third workload is IoMeter [Intel Corporation 2014],
which we use for controlled micro-benchmarks.

5.1. Tail Latency Control

Tail latency in data centers can be orders of magnitude higher than average latency
leading to application unresponsiveness [Dean and Barroso 2013]. One of the reasons
for high tail latency is that IOs often arrive in bursts. Figure 6 illustrates this behavior
in publicly available Exchange server traces [SNIA 2007], showing traffic to three
different volumes of the Exchange trace. The difference in load between the most
loaded volume and the least loaded volume is two orders of magnitude and lasts for
more than 15min.

Data center providers have load balancing solutions for CPU and network traf-
fic [Greenberg et al. 2009]. IO to storage, on the other hand, is difficult to load balance
at short timescales because it is stateful. An IO to an overloaded server S must go to

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:14 I. Stefanovici et al.

S since it changes state there. The first control application addresses the tail latency
problem by temporarily forwarding IOs from loaded servers onto less loaded ones while
ensuring that a read always accesses the last acknowledged update. This is a type of
endpoint routing. The functionality provided is similar to Everest [Narayanan et al.
2008b] but written as a control application that decides when and where to forward to
based on global system visibility.

The control application attempts to balance queue sizes at each of the storage servers.
To do so, for each storage server, the controller maintains two running averages based
on stats it receives5: ReqAvg and ReqRec. ReqAvg is an exponential moving average over
the last hour. ReqRec is an average over a sliding window of 1min, meant to capture the
workload’s recent request rate. The controller then temporarily forwards IO if:

ReqRec > αReqAvg,

where α represents the relative increase in request rate that triggers the forwarding.
We evaluate the impact of this control application on the Exchange server traces shown
in Figure 6, but first we show how we map this scenario into forwarding rules.

There are three flows in this experiment. Three different VMs, VMmax, VMmin, and
VMmed, on different hypervisors access one of the three volumes in the trace “Max,”
“Min,” and “Median.” Each volume is mapped to a Virtual Hard Drive (VHD) file
VHDmax, VHDmin, and VHDmed, residing on three different servers Smax, Smin, and Smed,
respectively. When the controller detects imbalanced load, it forwards write IOs from
the VM accessing Smax to a temporary file T on server Smin:

1: <∗, w, //Smax/VHDmax >→ (F(); return{<IO, //Smin/T >})
2: <∗, r, //Smax/VHDmax >→ (; return{<IO, //Smax/VHDmax>}).

Read IOs follow the path to the most up-to-date data, whose location is updated by
the delegate function F() as the write IOs flow through the system. We showed how F()
updates the rules in Section 3.4. Thus, the forwarding rules always point a read to the
latest version of the data. If no writes have happened yet, then all reads by definition
go to the old server VMmax.

The control application may also place a specialized stage O in the new path that
implements an optional log-structured layout that converts all writes to streaming
writes by writing them sequentially to Smin. The layout is optional since SSDs already
implement it internally and it is most useful for disk-based backends. The control
application inserts a rule forwarding IO from the VM first to O (rule 1 below) and
another to route from O to Smin (rule 2).

1: <∗, ∗, //Smax/VHDmax >→ (; return{<IO, //Smin/O>})
2: <O, ∗, //Smax/VHDmax >→ (; return{<IO, //Smin/T >}).

Note that in this example data are partitioned across VMs and no VMs share data.
Hence, the delegate function in the sSwitch is the only necessary point of metadata
serialization in system. This is a simple version of case (a) in Figure 4 where sSwitches
do not need two-phase commit. The delegate metadata are temporary. When the con-
troller detects that a load spike has ended, it triggers data reclaim. All sSwitch rules
for writes are changed to point to the original file VHDmax. Note that read rules still
point to T until new arriving writes overwrite those rules to point to VHDmax through
their delegate functions. The controller can optionally speed up the reclaim process by
actively copying forwarded data to its original location. When the reclaim process ends,
all rules can be deleted, and the the sSwitches and specialized stage removed from the

5The controller uses IOFlow’s getQueueStats API [Thereska et al. 2013] to gather systemwide statistics for
all control applications.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:15

Fig. 7. CDF of response time for baseline system and with IO routing.

IO stack, since all data reside in and can be accessed again from the original server
Smax.

We experiment by replaying the Exchange traces using a time-accurate trace replayer
on the disk-based testbed. We replay a 30min segment of the trace, capturing the
peak interval and allowing for all forwarded data to be reclaimed. We also employ a
log-structured write optimization stage that converts all writes to sequential writes.
Figure 7 shows the results. IO routing results in two orders of magnitude improvements
in tail latency for the flow to Smax. The change latency distribution for Smin (not shown)
is negligible.

Overheads. Data (2.8GB) were forwarded and the delegate functions persisted ap-
proximately 100,000 new control plane rules with no noticeable overhead. We experi-
mentally triggered one sSwitch failure and measured that it took approximately 30s to
recover the rules from the storage server. The performance benefit obtained is similar
to specialized implementations [Narayanan et al. 2008b]. The CPU overhead at the
controller was less than 1%.

5.2. Replica Set Control

No one replication protocol fits all workloads [Abd-El-Malek et al. 2005; Terry et al.
2013; Li et al. 2012]. Data center services tend to implement one particular choice
(e.g., primary-based serialization) and offer it to all workloads passing through the
stack (e.g., Calder et al. [2011]). One particularly important decision that such an
implementation hard codes is the choice of write-set and read-set for a workload. The
write-set specifies the number of servers to contact for a write request. The size of
the write-set has implications on request latency (a larger set usually means larger
latency). The read-set specifies the number of servers to contact for read requests. A
larger read-set usually leads to higher throughput since multiple servers are read in
parallel.

The write- and read-sets need to intersect in certain ways to guarantee a chosen
level of consistency. For example, in primary-secondary replication, the intersection of
the write- and read-sets contains just the primary server. The primary then writes the

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:16 I. Stefanovici et al.

Fig. 8. Reads benefit from parallelism during read-only phases and the system performs correct serialization
during read:write phases (left). The first write needs to block until forwarding rules are changed (right).

data to a write-set containing the secondaries. The request is completed once a subset
of the write-set has acknowledged it (the entire write-set by default).

The replica set control application provides a configurable write- and read-set. It uses
only scatter routing to do so, without any specialized stages. In the next experiment
the policy at the control application specifies that if the workload is read-only, then
the read-set should be all replicas. However, for correct serialization, if the workload
contains writes, all requests must be serialized through the primary, that is, the read-
set should be just the primary replica. In this experiment, the application consists of
10 IoMeters on 10 different hypervisors reading and writing to a 16GB file using two-
way primary-based replication on the disk testbed. IoMeter uses 4KB random-access
requests and each IoMeter maintains four requests outstanding.

The control application monitors the read:write ratio of the workload through the
getQueueStats API call, and when it detects that it has been read-only for more than
30s (a configurable parameter), it switches the read-set to be all replicas. To do that, it
injects sSwitches at each hypervisor and sets up rules to forward reads to a randomly
chosen server Srand. This is done through a control delegate F() that picks the next
server at random. To make the switch between old and new rule, the controller firsts
quiesces writes and then drains them. It then inserts the new read-set rule (rule 1)
as follows:

1: <∗, r, //S1/X> → (F(); return{<IO, //Srand/X>})
2: <∗, w, ∗> → (; return{<IOHeader, Controller>}).

The controller is notified of the arrival of any write requests by the rule (2). The
controller then proceeds to revert the read-set rule and restarts the write stream.

Figure 8 shows the results. The performance starts high since the workload is in a
read-only state. When the first write arrives at time 25, the controller switches the read-
set to contain just the primary. In the third phase starting at time 90, writes complete
and read performance improves, since reads do not contend with writes. In the fourth
phase at time 125, the controller switches the read-set to be both replicas, improving
read performance by 63% as seen in Figure 8 (left). The tradeoff is that the first write
requests that arrive incur a latency overhead from being temporarily blocked while
the write is signalled to the controller, as shown in Figure 8 (right). Depending on the
application performance needs, this latency overhead can be amortized appropriately
by increasing the time interval before assuming the workload is read-only. The best-
case performance improvement expected is 2×, but the application (IoMeter) has a low
number of outstanding requests and does not saturate storage in this example.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:17

Fig. 9. Controller sets path of an IO through multiple cache using forwarding rules in sSwitches.

Overheads. The control application changes the forwarding rules infrequently
at most every 30s. In an unoptimized implementation, a rule change translated to
418Bytes/flow for updates (40MB for 100,000 flows). The control application received
stats every second using 302Bytes/flow for statistics (29MB/s for 100,000 flows). The
CPU overhead at the controller is negligible.

5.3. File Cache Control

File caches are important for performance: Access to data in the cache is more than
3 orders of magnitude faster than to disks. A well-known problem is that data center
tenants today have no control over the location of these caches or their policies [Arpaci-
Dusseau and Arpaci-Dusseau 2001; Engler et al. 1995; Cao et al. 1996; Stefanovici et al.
2015]. The only abstraction the data center provides to a tenant today is a VM’s memory
size. This is inadequate in capturing all the places in the IO stack where memory could
be allocated. VMs are inadequate even in providing isolation: An aggressive application
within a VM can destroy the cache locality of another application within that VM.

Previous work [Stefanovici et al. 2015] has explored the programmability of caches
on the IO stack and showed that applications and cloud providers can greatly benefit
from the ability to customize cache size, eviction, and write policies, as well as explicitly
control the placement of data in caches along the IO stack. Such explicit control can be
achieved by using filter rules installed in a cache [Stefanovici et al. 2015]. All incoming
IO headers are matched against installed filter rules, and an IO is cached if its header
matches an installed rule. However, this type of simple control only allows IOs to be
cached at some point along their fixed path from the application to the storage server.
The ability to route IOs to arbitrary locations in the system using sSwitches while
maintaining desired consistency semantics allows disaggregation of cache memory
from the rest of a workload’s allocated resources.

This next file cache control application provides several IO stack customizations
through waypoint routing. We focus on one here: cache isolation among tenants. Cache
isolation in this context means that (a) the controller determines how much cache each
tenant needs, and (b) the sSwitches isolate one tenant’s cache from another’s. sRoute
controls the path of an IO. It can forward an IO to a particular cache on the data plane.
It can also forward an IO to bypass a cache as shown in Figure 9.

The experiment uses two workloads, TPC-E and IoMeter, competing for a storage
server’s cache. The storage backend consists of hard disks. The TPC-E workload repre-
sents queries from an SQL Server database with a footprint of 10GB running within a
VM. IoMeter is a random-access read workload with IO sizes of 512KB. sRoute’s policy
in this example is to maximize the utilization of the cache with the hit rate measured

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:18 I. Stefanovici et al.

Fig. 10. Maximizing hit rate for two tenants with different cache miss curves.

in terms of IOPS. In the first step, all IO headers are sent to the controller, which
computes their miss ratio curves using a technique similar to SHARDS [Waldspurger
et al. 2015].

Then the controller sets up sSwitches so the IOs from IOMeter and from TPC-E go
to different caches CIOMeter and CTPCE with sizes provided by SHARDS, respectively
(the caches reside at the storage server):

1: <IOMeter, ∗, ∗>, (; return{<IO, CIOMeter>})
2: <TPCE, ∗, ∗>, (; return{<IO, CTPCE>}).

Figure 10 shows the performance of TPC-E when competing with two bursts of
activity from the IoMeter workload, with and without sRoute. When sRoute is enabled
(Figure 10(b)), total throughput increases when both workloads run. In contrast, with
today’s caching (Figure 10(a)), total throughput actually drops. This is because IoMeter
takes enough cache away from TPC-E to displace its working set out of the cache. With
sRoute, total throughput improves by 57% when both workloads run, and TPC-E’s
performance improves by 2×.

Figure 10(c) shows the cache allocations output by our control algorithm when sRoute
is enabled. Whenever IoMeter runs, the controller gives it 3/4 of the cache, whereas

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:19

TPC-E receives 1/4 of the cache, based on their predicted miss ratio curves. This cache
allocation leads to each receiving around 40% cache hit ratio. Indeed, the allocation
follows the miss ratio curve that denotes what the working set of the TPC-E workload
is—after this point diminishing returns can be achieved by providing more cache to this
workload. Notice that the controller apportions unused cache to the TPC-E workload
15s after the IoMeter workload goes idle.

Overheads. The control application inserted forwarding rules at the storage server.
Rule changes were infrequent (the most frequent was every 30s). The control plane uses
approximately 178Bytes/flow for rule updates (17MB for 100,000 flows). The control
plane subsequently collects statistics from sSwitches and cache stages every control
interval (default is 1s). The statistics are around 456Bytes/flow (roughly 43MB for
100,000 flows). We believe these are reasonable control plane overheads. Our current
method for generating miss ratio curves (a non-optimized variant of SHARDS) runs
offline and consumes 100% of two cores at the controller.

5.4. Performance Debugging

In a data center, IOs from applications traverse numerous software stages across sev-
eral physical machines on their way to the durable storage backend. In such an envi-
ronment, applications can experience degraded storage performance, due to short- and
long-lived bottlenecks appearing at various points in the stack. This can occur for a
variety of reasons, such as the following: the available storage capacity cannot match
the changing demands of the application, shared resources (CPU, memory, network)
can become heavily contended without proper resource isolation, or data reconstruc-
tion (such as RAID recovery) can introduce extra load on the storage backend after a
hardware failure.

Unfortunately, despite the multitude of causes, degraded storage performance ex-
hibits in the same way to applications: large increases in IO latencies and drops in
storage throughput. In an environment where the storage stack spans several machines
and consists of many software stages, it is difficult (if not impossible) for operators to
dynamically pinpoint and address bottlenecks along the IO path quickly.

The control application described in this section enables performance debugging in
the IO stack by leveraging the control delegate functions while performing any type
of IO routing. The control delegates measure individual IO response times at multiple
points in the stack and sends them to the controller, who then calculates the latencies
incurred by IOs between each stage to pinpoint bottlenecks in the stack.

To measure individual IO response times, a control delegate at an sSwitch records the
timestamp when the IO was first seen into a hash table. This state is maintained until
the IO is seen again on its return path, at which point its response time is calculated
and sent to the controller, as shown in Figure 11. To see how an sSwitch accomplishes
this, we consider the one at stage A, which routes IOs for the file X according to the
following rule:

1:
<∗, ∗, //S1/X> → (F(IOHeader);

return{<IO, B>,<F(IOHeader), Controller>}).

The rule states that a delegate function F() is first executed, and then the IO is for-
warded to the next stage B, while the output of the delegate function (the IO’s response
time) is sent to the controller. Since the delegate function F() needs to intercept an
IO on both its outgoing and return path, the delegate function’s body is split into two
parts. The first executes when the IO is first seen on its outgoing path:

1: timestamps[IOHeader] = Time.Now;

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:20 I. Stefanovici et al.

Fig. 11. sSwitches send their measured IO response times for the IO going to file X to the controller.

The second part executes on the IO’s return path:

1: responseTimes[IOHeader] = Time.Now − timestamps[IOHeader];
2: return responseTimes[IOHeader];

sSwitches along the IO path each collect the observed response time for an IO from
their position in the stack, and send them to the controller, generating a sequence:

respA, respB, . . . , respN.

The controller then pairwise subtracts the reponse times to derive the latency of each
link on the IO path as follows:

latencyAB = respA − respB
latencyBC = respB − respC

· · ·
latency(N−1)N = resp(N−1) − respN

.

Having calculated the latencies for each of the links along the IO path, the con-
troller can then easily identify the bottlenecked link that is causing the application to
experience increases in IO latencies. The data center operator can then focus their at-
tention on that link to mitigate the existing problem. This control application provides
functionality for storage similar to that provided by the traceroute utility for networks.

Since collecting response times for in-flight IOs might introduce extra latency on the
data path, the control application can also sample just a fraction of IOs, reducing the
impact of debugging on the live system. This sampling can be turned on or off, as well
as dynamically adjusted at runtime.

Overheads. Figure 12 quantifies the overhead of collecting response times for in-
flight IOs in an sSwitch. In order to quantify worst-case performance, we used IOMeter
to perform sequential Read operations from an SSD backend, varying the IO size
between 0.5KB and 64KB and varying the sample rate from 0% (no response times
collected) to 100% (response times collected for every IO). Note that across all IO sizes,
even at 100% sampling, the overheads are never move than 20% for latency and 17%
for throughput. When taking confidence intervals into account, the differences are not
significant. We believe these overheads are acceptable, as they are only incurred while
temporarily diagnosing problems that otherwise cause orders-of-magnitude drops in
performance. In addition, sampling response times can be turned off after enough
samples have been collected and the problem is being diagnosed. Currently, there
is considerably more variance in the overhead costs for higher IO sizes, and we are
working to minimize this, as well as the overall performance overhead.

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:21

Fig. 12. Average overheads of collecting response times while performance debugging. Each bar represents
a different sampling rate, with 0% baseline, and 100% when sampling every IO. Error bars show minimum
and maximum values over three runs.

6. OPEN QUESTIONS

In this section, we outline open questions and directions for future work on software-
defined storage. We hope this will generate interest and encourage future research in
the area.

—sRoute currently lacks any verification tools that could help programmers. For ex-
ample, it is possible to write incorrect control applications that route IOs to arbi-
trary locations, resulting in data loss. Thus, the routing flexibility is powerful but
unchecked. There are well-known approaches in networking, such as header space
analysis [Kazemian et al. 2013], that we believe could also apply to storage, but we
have not investigated them yet. Similar approaches could also be used to make sure
that routing rules from multiple control applications running on the same controller
co-exist in the system safely and that they collectively achieve the correct desired
functionality.

—SDN has become a well-established field over the past several years. As a community,
we have gained experience with SDN controllers and following this work also with
software-defined storage (SDS) controllers. It would be desirable to have a control
plane that understands both the network and storage. For example, it is currently
possible to get inconsistent end-to-end policies, where the storage controller decides
to send data from server A to B, while the network controller decides to block any
data from A going to B. Unifying the control plane across resources is an important
area for future work.

—It would also be interesting to explore domain-specific languages and to specify
and control storage functionality built using the lower-level programmable storage
primitives explored in this article. The goal would be to raise the level of abstraction
for programmers using our system and make it easier to specify storage policies
and functionality at a higher level rather than directly controlling the lower-level
mechanisms used to implement this functionality.

—IO routing is currently done in the IO stack, without application involvement. As
such, we maintain the application-facing interface and semantics of the current IO
stack, while opening up the stack and making it programmable by data center opera-
tors. While this enables a wealth of new functionality and policies to be implemented
(some of which are described in this article), there may be other functionality and
policies that could benefit from some amount of application involvement (or greater
knowledge of application semantics). For example, performing a backup requires
obtaining a consistent snapshot of the application. This is supported in our current
design, where the backup is initiated by the client application. However, any policy
that involves scheduling or initiating backups based on global state across several

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:22 I. Stefanovici et al.

machines (e.g., current network load or storage server idleness) will require some
amount of knowledge about application state and potentially direct cooperation from
the application. Exploring application involvement in IO routing and the types of
policies and functionality it enables is an interesting area for future work. Similar
recent work has explored application involvement for data center networks [Ballani
et al. 2015].

—Another interesting area of exploration relates to handling policies for storage data
at rest. Currently, sRoute operates on IO as it is flowing through the system. Once
the IO reaches its destination, it is considered at rest. It might be advantageous for
an sSwitch itself to initiate data movement for data at rest. That would require new
forwarding rule types and make an sSwitch more powerful.

—Previous work [Angel et al. 2014] has shown how to dynamically infer application
demands, as well as data center appliance capacities, and enforce end-to-end per-
formance isolation across an entire data path comprising several machines. It is
important to incorporate knowledge of data path capacity into the control logic that
makes routing decisions. Understanding the feasibility and impact of changing the
path of a flow of IOs can have a significant impact on overall performance and on
quickly adapting to changes in demand or capacity.

—There recently has been an increasing focus on streaming IO, where data do not rest
(in a file or database) but are constantly flowing at high rates from one processing
node to another. Features are extracted from such data for analytics and machine
learning, and decisions need to be made on the fly as to where a record goes next.
Streaming IO is currenty handled by a different storage stack to traditional file or
record-based data, leading to inefficiencies from having two separate ways to store
and analyse data. It is an open research question whether such inefficiencies could be
resolved by one storage stack. One particularly interesting problem has to do with the
granularity of the classification and routing mechanisms. Previous work [Thereska
et al. 2013] on SDS has focused on traditional file-based storage workloads. For those
workloads, a file (e.g., a VHD image) stays open for the duration of the workload,
and the IO classification and routing stays static for the duration of the workload,
which can be minutes, hours, or even days. Streaming IO changes some of these
fundamental workload characteristics. IO classification and routing often needs to
be done per-IO rather than per-file-open session. The IO sizes tend to be smaller than
traditional file-based workloads (i.e., <512Bytes), which means that per-IO handling
needs to be efficient. IOs do not necessarily terminate in files. Often they terminate
in a sink processor node that transmits them to another device for further processing
(typically over TCP sockets). Hence, the challenge is to extend the SDS language for
specifying sources and sinks to accomodate a wider range of possibilities. At a high
level, because streaming IO has similar characteristics to networked IO, this further
hints at an opportunity to unify SDN and SDS into one hyper-converged framework.

—Another emerging area of research is on the use of programable FPGA hardware
in data centers to speed up various aspects of cloud workloads such as web search,
machine learning, and network processing [Putnam et al. 2014; Greenberg 2015;
Netronome 2016]. It would be interesting to explore the offload of storage func-
tionality currently implemented in inlined software stages onto FPGAs. This is a
particularly intriguing as data center FPGA use is already strongly coupled with the
network [Greenberg 2015; Netronome 2016], further lending to the opportunity of a
hyper-converged SDN/SDS network.

7. RELATED WORK

Our work is most related to SDNs [Koponen et al. 2010; Casado et al. 2007; Yan
et al. 2007; Ferguson et al. 2013; Qazi et al. 2013; Jain et al. 2013; Tolia et al. 2006;

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

Treating the Storage Stack Like a Network 2:23

Cully et al. 2014] and SDS [Arpaci-Dusseau and Arpaci-Dusseau 2001; Thereska et al.
2013]. Specifically, our work builds directly on the control-data decoupling enabled by
IOFlow [Thereska et al. 2013] and borrows two specific primitives: classification and
rate limiting based on IO headers for quiescing. IOFlow also made a case for request
routing. However, it only explored the concept for bypassing stages along the path
and did not consider the full IO routing spectrum where the path and endpoint can
also change, leading to consistency concerns. This chapter provides the full routing
abstraction.

There has been much work in providing applications with specialized use of sys-
tem resources [Engler et al. 1995; Kaashoek et al. 1997; Bershad et al. 1995; Arpaci-
Dusseau and Arpaci-Dusseau 2001; Arpaci-Dusseau et al. 2003]. The Exokernel ar-
chitecture [Engler et al. 1995; Kaashoek et al. 1997] provides applications with direct
control over resources with minimal kernel involvement. SPIN [Bershad et al. 1995]
and Vino [Seltzer et al. 1996] allow applications to download code into the kernel and
specialize resource management for their needs. Another orthogonal approach is to
extend existing OS interfaces and pass hints vertically along the IO stack [Arpaci-
Dusseau and Arpaci-Dusseau 2001; Arpaci-Dusseau et al. 2003, 2006; Mesnier et al.
2011]. Hints can be passed in both directions between the application and the system,
exposing application needs and system resource capabilities to provide a measure of
specialization.

In contrast to the above approaches, this chapter makes the observation that modern
IO stacks support mechanisms for injecting stages with specialized functionality (e.g.,
in Windows [Microsoft Corporation 2014b], FreeBSD [FreeBSD 2014], and Linux [Love
2010]). sRoute transforms the problem of providing application flexibility into an IO
routing problem. sRoute provides a control plane to customize an IO stack by forward-
ing IO to the right stages without changing the application or requiring a different OS
structure.

We built three control applications on top of IO routing. The functionality provided
from each has been extensively studied in isolation. For example, application-specific
file cache management has shown significant performance benefits [Cao et al. 1996;
Harty and Cheriton 1992; Krueger et al. 1993; Wong and Wilkes 2002; Huang et al.
2013; Stefanovici et al. 2015]. Snapshots, copy-on-write, and file versioning all have at
their core IO routing. Hard-coded implementations can be found in file systems like
ZFS [Oracle 2010], WAFL [Hitz et al. 1994], and btrfs [Rodeh et al. 2013]. Similarly,
Narayanan et al. describe an implementation of load balancing through IO offload-
ing of write requests [Narayanan et al. 2008a, 2008b]. Abd-el-malek et al. describe a
system implementation where data can be re-encoded and placed on different servers
[Abd-El-Malek et al. 2005]. Finally, several distributed storage systems each offer dif-
ferent consistency guarantees [Baker et al. 2011; Cooper et al. 2008; Terry et al. 2013;
DeCandia et al. 2007; Li et al. 2012; Corbett et al. 2012; Lakshman and Malik 2010;
Terry et al. 1995; Calder et al. 2011; Chang et al. 2006]. In contrast to these specialized
implementations, sRoute offers a programmable IO routing abstraction that allows for
all this functionality to be specified and customized at runtime.

8. CONCLUSION

This article presents sRoute, an architecture that enables an IO routing abstraction
and makes the case that it is useful. We show that many specialized functions on the
storage stack can be recast as routing problems. Our hypothesis when we started this
work was that, because routing is inherently programmable and dynamic, we could
substitute hard-coded one-off implementations with one common routing core. This
article shows how sRoute can provide unmodified applications with specialized tail
latency control, replica set control, achieve file cache isolation, and aid in performance

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

2:24 I. Stefanovici et al.

debugging, all to substantial benefit. We also outlined several promising avenues for
future work, which we hope will motivate others to contribute to this area.

ACKNOWLEDGMENTS

We thank the anonymous FAST reviewers; our shepherd, Jason Flinn; and others, including Hitesh Ballani,
Thomas Karagiannis, and Antony Rowstron, for their feedback.

REFERENCES

Michael Abd-El-Malek, William V. Courtright, II, Chuck Cranor, Gregory R. Ganger, James Hendricks,
Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq
Sinnamohideen, John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. 2005. Ursa minor:
Versatile cluster-based storage. In Proceedings of the 4th Conference on USENIX Conference on File and
Storage Technologies, Volume 4 (FAST’05). USENIX Association, Berkeley, CA, 5–5.

Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno Thereska. 2014. End-to-end
performance isolation through virtual datacenters. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley, CA, 233–248.

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. 2001. Information and control in gray-box systems.
In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01). ACM, New York,
NY, 43–56. DOI:http://dx.doi.org/10.1145/502034.502040

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Lakshmi N. Bairavasundaram, Timothy E. Denehy,
Florentina I. Popovici, Vijayan Prabhakaran, and Muthian Sivathanu. 2006. Semantically-smart disk
systems: Past, present, and future. SIGMETRICS Perform. Eval. Rev. 33, 4 (Mar. 2006), 29–35.
http://doi.acm.org/10.1145/1138085.1138093

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Timothy E. Denehy, Thomas J.
Engle, Haryadi S. Gunawi, James A. Nugent, and Florentina I. Popovici. 2003. Transforming policies
into mechanisms with infokernel. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03). ACM, New York, NY, 90–105. DOI:http://dx.doi.org/10.1145/945445.945455

Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James Larson, Jean-
Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing scal-
able, highly available storage for interactive services. In Proceedings of CIDR. Retrieved from
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf.

Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P. Grosvenor, Thomas Karagiannis, Lazaros
Koromilas, and Greg O’Shea. 2015. Enabling end-host network functions. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM’15). ACM, New York,
NY, 493–507. DOI:http://dx.doi.org/10.1145/2785956.2787493

Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using magpie for request extrac-
tion and workload modelling. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation, Volume 6 (OSDI’04). USENIX Association, Berkeley, CA, 18–18.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Chambers, and S.
Eggers. 1995. Extensibility safety and performance in the SPIN operating system. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (SOSP’95). ACM, New York, NY, 267–283.
DOI:http://dx.doi.org/10.1145/224056.224077

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim
ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Mar-
vin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. 2011. Windows azure
storage: A highly available cloud storage service with strong consistency. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New York, NY, 143–157.
DOI:http://dx.doi.org/10.1145/2043556.2043571

Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. 1996. Implementation and performance of integrated
application-controlled file caching, prefetching, and disk scheduling. ACM Trans. Comput. Syst. 14, 4
(Nov. 1996), 311–343. DOI:http://dx.doi.org/10.1145/235543.235544

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker.
2007. Ethane: Taking control of the enterprise. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM’07). ACM, New
York, NY, 1–12. DOI:http://dx.doi.org/10.1145/1282380.1282382

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

http://dx.doi.org/10.1145/502034.502040
http://doi.acm.org/10.1145/1138085.1138093
http://dx.doi.org/10.1145/945445.945455
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://dx.doi.org/10.1145/2785956.2787493
http://dx.doi.org/10.1145/224056.224077
http://dx.doi.org/10.1145/2043556.2043571
http://dx.doi.org/10.1145/235543.235544
http://dx.doi.org/10.1145/1282380.1282382

Treating the Storage Stack Like a Network 2:25

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: A distributed storage
system for structured data. In Proceedings of USENIX OSDI. Retrieved from http://dl.acm.org/
citation.cfm?id=1267308.1267323

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno
Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1277–1288.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale
Woodford. 2012. Spanner: Google’s globally-distributed database. In Proceedings USENIX OSDI.

Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan, Daniel Stodden,
Geoffrey Lefebvre, Daniel Ferstay, and Andrew Warfield. 2014. Strata: Scalable high-performance stor-
age on virtualized non-volatile memory. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST’14). USENIX Association, Berkeley, CA, 17–31.

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (Feb. 2013), 74–80.
DOI:http://dx.doi.org/10.1145/2408776.2408794

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
highly available key-value store. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP’07). ACM, New York, NY, 205–220. DOI:http://dx.doi.org/10.1145/1294261.1294281

D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An operating system architecture for
application-level resource management. In Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP’95). ACM, New York, NY, 251–266. DOI:http://dx.doi.org/10.1145/224056.224076

Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi.
2013. Participatory networking: An API for application control of SDNs. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM’13). ACM, New York, NY, 327–338.
DOI:http://dx.doi.org/10.1145/2486001.2486003

Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. 2007. X-trace: A pervasive
network tracing framework. In Proceedings of the 4th USENIX Conference on Networked Systems Design
& Implementation (NSDI’07). USENIX Association, Berkeley, CA, 20.

FreeBSD. 2014. FreeBSD GEOM storage framework. Retrieved from http://www.freebsd.org/doc/handbook/.
Albert Greenberg. 2015. SDN for the Cloud (Sigcomm 2015 Keynote). Retrieved from http://conferences.

sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf.
Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri,

David A. Maltz, Parveen Patel, and Sudipta Sengupta. 2009. VL2: A scalable and flexible data center net-
work. In Proceedings of ACM SIGCOMM. Retrieved from http://doi.acm.org/10.1145/1592568.1592576

Kieran Harty and David R. Cheriton. 1992. Application-controlled physical memory using external page-
cache management. In Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS V). ACM, New York, NY, 187–197.
DOI:http://dx.doi.org/10.1145/143365.143511

Dave Hitz, James Lau, and Michael Malcolm. 1994. File system design for an NFS file server appliance.
In Proceedings of the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference (WTEC’94). USENIX Association, Berkeley, CA, 19–19.

Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and Harry C. Li. 2013. An
analysis of facebook photo caching. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP’13). ACM, New York, NY, 167–181. DOI:http://dx.doi.org/10.1145/2517349.2522722

Intel Corporation. 2014. IoMeter Benchmark. Retrieved from http://www.iometer.org/. (2014).
Michael Isard. 2007. Autopilot: Automatic data center management. SIGOPS Oper. Syst. Rev. 41, 2 (April

2007), 60–67. DOI:http://dx.doi.org/10.1145/1243418.1243426
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah

Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. 2013. B4: Experience with a globally-deployed software defined wan. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM’13). ACM, New York, NY, 3–14.
DOI:http://dx.doi.org/10.1145/2486001.2486019

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M. Briceño, Russell Hunt, David Mazières,
Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth Mackenzie. 1997. Application perfor-
mance and flexibility on exokernel systems. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP’97). ACM, New York, NY, 52–65. DOI:http://dx.doi.org/10.1145/268998.266644

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/224056.224076
http://dx.doi.org/10.1145/2486001.2486003
http://www.freebsd.org/doc/handbook/
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf
http://doi.acm.org/10.1145/1592568.1592576
http://dx.doi.org/10.1145/143365.143511
http://dx.doi.org/10.1145/2517349.2522722
http://www.iometer.org/
http://dx.doi.org/10.1145/1243418.1243426
http://dx.doi.org/10.1145/2486001.2486019
http://dx.doi.org/10.1145/268998.266644

2:26 I. Stefanovici et al.

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown, and Scott Whyte. 2013.
Real time network policy checking using header space analysis. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation (nsdi’13). USENIX Association, Berkeley,
CA, 99–112.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv
Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. 2010. Onix: A dis-
tributed control platform for large-scale production networks. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI’10). USENIX Association, Berkeley, CA,
351–364.

Keith Krueger, David Loftesness, Amin Vahdat, and Thomas Anderson. 1993. Tools for the development
of application-specific virtual memory management. In Proceedings of the Eighth Annual Conference
on Object-oriented Programming Systems, Languages, and Applications (OOPSLA’93). ACM, New York,
NY, 48–64. DOI:http://dx.doi.org/10.1145/165854.165867

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 2 (Apr. 2010), 35–40. DOI:http://dx.doi.org/10.1145/1773912.1773922

Leslie Lamport. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 2 (May 1998), 133–169.
DOI:http://dx.doi.org/10.1145/279227.279229

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012.
Making geo-replicated systems fast as possible, consistent when necessary. In Proceedings of USENIX
OSDI (OSDI’12).

Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley Professional.
Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott

Shenker, and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. ACM SIG-
COMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 69–74. DOI:http://dx.doi.org/10.1145/1355734.1355746

Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers. 2011. Differentiated storage services. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New
York, NY, 57–70. DOI:http://dx.doi.org/10.1145/2043556.2043563

Microsoft. 2010. Virtual Hard Disk Performance. Retrieved from http://download.microsoft.com/download/0/
7/7/0778C0BB-5281-4390-92CD-EC138A18F2F9/WS08_R2_VHD_Performance_WhitePaper.docx.

Microsoft Corporation. 2014a. Minidrivers, Miniport drivers, and driver pairs. Retrieved from https://msdn.
microsoft.com/en-us/library/windows/hardware/hh439643.aspx.

Microsoft Corporation. 2014b. File System Minifilter Drivers (MSDN). Retrieved from https://msdn.microsoft.
com/en-us/windows/hardware/drivers/ifs/file-system-minifilter-drivers.

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008a. Write Off-loading: Practical
power management for enterprise storage. Trans. Storage 4, 3, Article 10 (Nov. 2008), 23 pages.
DOI:http://dx.doi.org/10.1145/1416944.1416949

Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony Rowstron. 2008b.
Everest: Scaling down peak loads through I/O Off-loading. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA,
15–28.

Netronome. 2016. Agilio Server Networking Platform. Retrieved from https://www.netronome.com/products/
overview/.

Oracle. 2010. Oracle Solaris ZFS Administration Guide. Retrieved from http://docs.oracle.com/cd/
E19253-01/819-5461/index.html.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. 2014. Arrakis: The operating system is the control plane. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14). USENIX Association, 1–16.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon
Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A reconfigurable fabric for
accelerating large-scale datacenter services. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA’14). IEEE Press, Piscataway, NJ, 13–24.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan Yu. 2013. SIMPLE-fying
middlebox policy enforcement using SDN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM (SIGCOMM’13). ACM, New York, NY, 27–38. DOI:http://dx.doi.org/10.1145/2486001.2486022

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. 2012. Abstractions for
network update. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

http://dx.doi.org/10.1145/165854.165867
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2043556.2043563
http://download.microsoft.com/download/0/7/7/0778C0BB-5281-4390-92CD-EC138A18F2F9/WS08R2VHDPerformanceWhitePaper.docx
http://download.microsoft.com/download/0/7/7/0778C0BB-5281-4390-92CD-EC138A18F2F9/WS08R2VHDPerformanceWhitePaper.docx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439643.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439643.aspx
https://msdn.microsoft.com/en-us/windows/hardware/drivers/ifs/file-syst em-minifilter-drivers
https://msdn.microsoft.com/en-us/windows/hardware/drivers/ifs/file-syst em-minifilter-drivers
http://dx.doi.org/10.1145/1416944.1416949
https://www.netronome.com/products/overview/
https://www.netronome.com/products/overview/
http://docs.oracle.com/cd/E19253-01/819-5461/index.html
http://docs.oracle.com/cd/E19253-01/819-5461/index.html
http://dx.doi.org/10.1145/2486001.2486022

Treating the Storage Stack Like a Network 2:27

Architectures, and Protocols for Computer Communication (SIGCOMM’12). ACM, New York, NY, 323–
334. DOI:http://dx.doi.org/10.1145/2342356.2342427

Microsoft Research. 2014. Microsoft Research Storage Toolkit. Retrieved from https://www.microsoft.
com/en-us/research/project/software-defined-stora ge-architectures/.

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The linux B-tree filesystem. Trans. Stor. 9, 3,
Article 9 (Aug. 2013). DOI:http://dx.doi.org/10.1145/2501620.2501623

Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. 1996. Dealing with dis-
aster: Surviving misbehaved kernel extensions. In Proceedings of the Second USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI’96). ACM, New York, NY, 213–227.
DOI:http://dx.doi.org/10.1145/238721.238779

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and Vyas Sekar. 2012.
Making middleboxes someone else’s problem: Network processing as a cloud service. In Proceedings of
the ACM SIGCOMM. Helsinki, Finland, 12. DOI:http://dx.doi.org/10.1145/2342356.2342359

Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing Infras-
tructure. Technical Report. Google, Inc.

SNIA. 2007. Exchange server traces. Retrieved from http://iotta.snia.org/traces/130. (2007).
Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder, Hitesh Ballani, Thomas Karagiannis,

Antony Rowstron, and Tom Talpey. 2015. Software-defined caching: Managing caches in multi-tenant
data centers. In Proceedings of the 6th ACM Symposium on Cloud Computing (SoCC’15). ACM, New
York, NY, 174–181. DOI:http://dx.doi.org/10.1145/2806777.2806933

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and
Hussam Abu-Libdeh. 2013. Consistency-based service level agreements for cloud storage. In Proceedings
of ACM SOSP.

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. 1995. Managing
update conflicts in Bayou, a weakly connected replicated storage system. In Proceedings of ACM SOSP.

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Rowstron, Tom Talpey, Richard
Black, and Timothy Zhu. 2013. IOFlow: A software-defined storage architecture. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP’13). ACM, New York, NY,
182–196. DOI:http://dx.doi.org/10.1145/2517349.2522723

Niraj Tolia, Michael Kaminsky, David G. Andersen, and Swapnil Patil. 2006. An architecture for internet
data transfer. In Proceedings of the 3rd Conference on Networked Systems Design & Implementation,
Volume 3 (NSDI’06). USENIX Association, Berkeley, CA, 19–19.

Transaction Processing Performance Council. 2014. TPC Benchmark E - Rev. 1.14.0. Standard.
Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad. 2015. Efficient MRC con-

struction with SHARDS. In Proceedings of the 13th USENIX Conference on File and Storage Technologies
(FAST’15). USENIX Association, Santa Clara, CA.

Theodore M. Wong and John Wilkes. 2002. My cache or yours? Making storage more exclusive. In Proceedings
of the General Track of the Annual Conference on USENIX Annual Technical Conference (ATEC’02).
USENIX Association, Berkeley, CA, 161–175.

Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hui Zhang, and Zheng Cai. 2007. Tesseract:
A 4D network control plane. In Proceedings of the 4th USENIX Conference on Networked Systems Design
& Implementation (NSDI’07). USENIX Association, Berkeley, CA, 27–27.

Received October 2016; accepted December 2016

ACM Transactions on Storage, Vol. 13, No. 1, Article 2, Publication date: February 2017.

http://dx.doi.org/10.1145/2342356.2342427
http://approjects.co.za/?big=en-us/research/project/software-defined-stora ge-architectures/
http://approjects.co.za/?big=en-us/research/project/software-defined-stora ge-architectures/
http://dx.doi.org/10.1145/2501620.2501623
http://dx.doi.org/10.1145/238721.238779
http://dx.doi.org/10.1145/2342356.2342359
http://iotta.snia.org/traces/130
http://dx.doi.org/10.1145/2806777.2806933
http://dx.doi.org/10.1145/2517349.2522723

